SEV-SNP Platform Attestation

Using VIirTEE/SEV
Publication 58217
Revision 1.2

Issue Date July, 2023

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

© 2023 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution
has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and
AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations
or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel,
to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s
products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, Infinity Guard, 3D V-Cache, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. PCle is a registered trademark of PCI-SIG Corporation. Other product names and links to external sites used in this
publication are for identification purposes only and may be trademarks of their respective companies.

* Links to third party sites are provided for convenience and unless explicitly stated, AMD is not responsible for the contents of such
linked sites and no endorsement is implied.

Date Version Changes
Mar, 2023 1.0 Initial public release
Apr, 2023 1.1 Incorporated community-generated API changes
Jul, 2023 1.2 Updated the code to match library SEV-SNP update.
Audience

This document describes using the SEV-SNP update in the VirTEE/SEV crate to interface with 3rd Gen and newer AMD
EPYC™ processors. You must have admin 0S access and familiarity with 0S-specific configuration, monitoring, and
troubleshooting tools.

Author

Larry Dewey, Diego Gonzalez Villalobos

i 58217-1.2

Chapter1

Chapter 2

2.1
2.2

Chapter 3

3.1
3.2

AMDZ\

Table of Contents

Introduction -----------cccemcicer et s e e e 1
PlatformOwner ----------c-cccccccmmccmme e e e e e e 3
SYSTEM REQUITEIMENTS ..iiiiiiiiiiiiiit sttt e e e e e s e e e e s s e e ee s s beee e e st bee e e asbbe e e essbbe e e nsbeeennns 3
APT CAPADIlITIES weviiiiiiieiiciiie ettt b e e e r e e n et e ar e r e et b rre e e arrbe e e enrr e e s 3
2.21 Request the Status of the AMD SECUTIe PrOCESSOTocveiviiieiiee e 4
2.2.2 Load New Extended Configurations ... 4
2.2.3 Request Existing Extended Configurationscccciiiiiiinii i 6
GuestOwner ---------c--cccnccccnnccnnccueecceeecceeecseseaenaaenan. 7
SYSTEM REQUITEIMENTS ..oiiiii ittt er et e sr e e e ar e e e s sre s 7
DAY =Y oI o1 =TSPTSRO 7
3.21 Requesting and Attesting a Standard Attestation REpOrtcccoceoviiinii i 7
3.2.2 Requesting and Attesting an Extended Attestation REPOItcccccvvviniiiii s 12
3.2.3 Requesting @ DeriVeO KBYooiiiiiiiiiie ettt 13

58217 -1.2 il

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

This page intentionally left blank.

iv 58217 -1.2

AMDZ\

Chapter
1 Introduction

The VIirTEE/sev* crate offers a Rust-friendly, simple-to-use API for interfacing with the AMD Secure Processor included
within AMD EPYC processors. The library has support for interacting with legacy SEV firmware, but the VirTEE
community has recently added support to interact with the new SEV-SNP firmware that can be found in 3rd Gen and
newer AMD EPYCs. This User Guide includes potential solutions for performing general platform attestation for trusted
execution environments (TEE) secured by AMD SEV-SNP for both:

* Platform owners: Those who manage the system software where virtual machines or containers will be deployed,
such as a host or Cloud Service Provider (CSP). This is the system software, including the hypervisor, where a
confidential virtual-machine (VM) or container will be deployed. See “Platform Owner” on page 3.

* Guest owners: Those seeking to deploy the workloads. See “Guest Owner” on page 7.
This User Guide explores various capabilities available to both platform owners and guest owners provided in the SEV-

SNP update in the VirTEE/sev crate, provides examples of various use cases, and explains why you may prefer various
options.

58217-1.2 1

https://github.com/virtee/sev

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

This page intentionally left blank.

2 58217-1.2

AMDZ\

Chapter
2 Platform Owner

The Platform owner is the system software, including the hypervisor, where a confidential virtual-machine (VM) or
container will be deployed.

2.1 System Requirements

« Hardware: Your system must be powered by 3rd Gen or later AMD EPYC processors.

» Firmware: You should always use the latest SEV firmware supported by your BIOS to have the latest features and
security protection. The VirTEE/sev SEV-SNP features are compatible with firmware (version 1.54.01).

* Kernel: SEV-SNP development is ongoing. AMD recommends using the latest host patches* for the Linux kernel
until this support is upstream.

» Software: If the guest owner and/or platform owner needs to:

- Validate unique portions of the Identity Block (structure definition) provided by a guest to be included within an
attestation report.

- Validate the kernel, initrd, or cmdline parameters (only OVMF / EDK I1)

Then use:

- OVMF/EDK II: SNP latest™
- QEMU: SNP latest*

If neither of the above are required, then AMD recommends using upstream OVMF/EDK Il and QEMU version 7.1.

2.2 API Capabilities

Platform owners may:

* Request the AMD Secure Processor status. See “"Request the Status of the AMD Secure Processor” on page 4.
* Load new extended configurations. See “Load New Extended Configurations” on page 4.

* Request existing extended configurations. See “Request Existing Extended Configurations” on page 6.

58217-1.2 3

https://github.com/AMDESE/linux/tree/snp-host-latest
https://download.amd.com/developer/eula/sev/amd_sev_fam19h_model0xh_1.54.01.zip
https://www.amd.com/system/files/TechDocs/56860.pdf#page=28&zoom=100,0,325
https://www.amd.com/system/files/TechDocs/56860.pdf#page=91&zoom=100,0,700
https://github.com/AMDESE/ovmf/tree/snp-latest
https://github.com/AMDESE/qemu/tree/snp-latest

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

2.2.1 Request the Status of the AMD Secure Processor

AMD recommends checking the status of the AMD Secure Processor before beginning the process of configuring a host
platform for cached certificates. To do this:

1. Include the VirTEE/sev crate into your Rust project.

// Import library
use sev::firmware: :host::*;

2. Connect to the firmware and request the snp status of the AMD Secure Processor.

// Open a connection to the firmware.
let mut firmware: Firmware = Firmware::open () .unwrap () ;

// Request the current snp status of the AMD Secure Processor.
let snp status: SnpPlatformStatus = firmware.snp platform status () .unwrap() ;

2.2.2 Load New Extended Configurations

Storing policies and certificate-chains in hypervisor memory allows platform owners to enhance ease-of-use for guest
owners by eliminating the need to manually request a certificate-chain from the AMD Key Distribution Server (KDS). This
also reduces the extent to which CSP operations depend on the AMD KDS. Further, this mitigates manually requesting
certificate-chains per VM/container when attempting to scaling to large deployments.

AMD KDS

ARK
ASK
VCEK

Platform Owner Platform Owner

Hypervisor
Memory
ARK
ASK

VCEK

AMD Secure Processor AMD Secure Processor

,________________________________--
| U R ——

Standard Attestation

Figure 2-1: Standard (left) and extended (right) attestation flows

To load new extended configurations:
1. Include the VirTEE/sev crate into your Rust project.

// Import library
use sev::firmware::host::*;

2. Read the bytes of the certificates which will be stored in hypervisor memory. You can do this using
include bytes! () as shown below, or by some other means.

// Read certificate bytes.
pub const ARK: &[u8] = include bytes! ("ark.pem") ;

4 58217-1.2

Chapter 2: Platform Owner AM D n

pub const ASK: &[u8] = include bytes! ("ask.pem") ;
pub const VCEK: &[u8] = include bytes! ("vcek.pem") ;

Create a configuration for when guests request an extended report using one of the following three options:

- Certificates Only: Allows platform owners to store a certificate-chain in hypervisor memory without modifying
the contents of the reported TCB.

// Generate a vector of certificates to store in hypervisor memory.

let certificates: Vec<CertTableEntry> = vec! |
CertTableEntry: :new(CertType: :ARK, ARK.to vec()),
CertTableEntry: :new(CertType: :ASK, ASK.to vec()),
CertTableEntry: :new(CertType: :VCEK, VCEK.to vec()),

I

// Call the "new certs only” constructor to generate the extended configuration.
let ext config: ExtConfig = ExtConfig::new_certs only(

certificates
)

- Configuration Only: Useful for setting or updating the contents of the reported TCB without storing a
certificate-chain.

// Specify the desired configuration

let configuration: Config = Config: :new(
TcbVersion: :new(3, 0, 10, 169),
OI

) 5

// Call the "new config only~ constructor to generate the extended configuration.
let ext config: ExtConfig = ExtConfig::new config only(
configuration

) 5

- Configuration and Certificates: Useful for setting or updating the contents of the reported TCB while also
storing the certificate-chain.

// Specify the desired configuration

let configuration: Config = Config: :new(
TcbVersion: :new(3, 0, 10, 169),
Ol

)

// Generate a vector of certificates to store in hypervisor memory.

let certificates: Vec<CertTableEntrys> = vec! [
CertTableEntry: :new(CertType: :ARK, ARK.to vec()),
CertTableEntry: :new(CertType: :ASK, ASK.to vec()),
CertTableEntry: :new(CertType: : VCEK, VCEK.to wvec()),

15

// Call the “new” constructor to generate the extended configuration.
let ext config: ExtConfig = ExtConfig: :new(

configuration,

certificates
) 5

58217-1.2 5

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

4. Connect to the firmware and forward the extended request to the AMD Secure Processor:

// Open a connection to the firmware.
let mut fw: Firmware = Firmware: :open () .unwrap () ;

// Forward the certificates to the AMD Secure Processor to be loaded.
if let Err(error) = fw.snp reset config(&ext config) {

// Handle an error if one is encountered.

}
2.2.3 Request Existing Extended Configurations

To request existing extended configurations:
1. Include the VirTEE/sev crate into your Rust project.

// Import library
use sev::firmware: :host::*;

2. Connect to the firmware and request for the current configuration:

// Open a connection to the firmware.
let mut fw: Firmware = Firmware::open () .unwrap () ;

// Request the current configuration.
let current configuration: ExtConfig = fw.snp get ext config() .unwrap() ;

6 58217-1.2

AMDZ\

Guest Owner

The Guest owner is a tenant of a virtualization provider. They may have one or more guest confidential virtual machines
(VM) or containers that may be deployed in a Platform Owner’s environment.

3.1 System Requirements

Guest-level support has been completed and is upstream. Use Linux Kernel 5.19 or newer to access the guest driver.

3.2 API Capabilities
Guest owners may:
» Request a standard attestation report. See “Requesting and Attesting a Standard Attestation Report” on page 7.

* Request an extended attestation report. See “Requesting and Attesting an Extended Attestation Report” on
page 12.

* Request a unique key cryptographically derived from a hardware-owned secret. See “Requesting a Derived Key” on
page 13.

This User Guide includes possible steps for platform that are beyond the scope of this library.

3.2.1 Requesting and Attesting a Standard Attestation Report
To request and attest a standard attestation report:

1. Import the necessary pieces from the crate.

// Import the modules
use sev::firmware::guest::* ;

58217-1.2 7

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

2. Create and supply 64 bytes of unique data to include in the attestation report.

// This could be a unique message, a public key, etc.
let unique data: [u8; 64] = [
65, 77, 68, 32, 105, 115, 32, 101, 120, 116, 114, 101, 109, 101, 108, 121, 32, 97,

119,

101, 115, 111, 109, 101, 33, 32, 87, 101, 32, 109, 97, 107, 101, 32, 116, 104, 101,
32,

98, 101, 115, 116, 32, 67, 80, 85, 115, 33, 32, 65, 77, 68, 32, 82, 111, 99, 107,
115,

33, 33, 33, 33, 33, 33,
I

3. Connect to the firmware and request a SEV-SNP attestation report.

// Open a connection to the firmware.
let mut fw: Firmware = Firmware::open()?;

// Request a standard attestation report.
let attestation report: AttestationReport = fw.get report (None, Some (unique data),
None) ;

4. Validate the Root of Trust. This is one of the most significant steps in the attestation process. The openssl* crate
provides all of the tools needed to verify the signature chain. The VirTEE/sev library includes structures and
functions that simplify certificate handling. The current AMD root of trust is:

- The AMD Root Key (ARK) is self-signed.
- The ARK signed the AMD Signing Key (ASK).
- The ASK signed the Versioned Chip Endorsement Key (VCEK).

For example:

a. Import the necessary certificate pieces for certificate handling.
use sev::{
certs::snp::{ca, Certificate, Chain},
firmware: :host: :CertType,

b. Import the necessary pieces from the openss1 crate.

ecdsa: :EcdsaSig,
pkey: : {PKey, Public},
sha: :Sha384,
x509::X509,

c. Pull the certificate-chain from the AMD Key Distribution Server (KDS), as described in the VCEK Specification. All
fields are expected to be a minimum of two characters in length, as well as zero-padded (ex. 8 => 08). You will
find that the hwid matches the chip id on the attestation report.

const KDS_ CERT SITE: &str = "https://kdsintf.amd.com";
const KDS VCEK: &str = "/vcek/v1l";
const KDS CERT CHAIN: &str = "cert chain";

/// Requests the certificate-chain (AMD ASK + AMD ARK)
/// These may be used to verify the downloaded VCEK is authentic.

pub fn request cert chain (sev prod name: &str) -> (ask, ark) {

// Should make -> https://kdsintf.amd.com/vcek/vl/{SEV_PROD NAME}/cert chain

8 58217-1.2

https://www.amd.com/system/files/TechDocs/57230.pdf#page=15
https://crates.io/crates/openssl

Chapter 3: Guest Owner AM D n

let url: String = format! ("{KDS CERT SITE}{KDS VCEK}/{sev prod name}/
{KDS_CERT CHAIN}") ;

println! ("Requesting AMD certificate-chain from: {url}");
let rsp: Response = get (&url) .unwrap () ;
let body: Vec<u8> = rsp.bytes() .unwrap() .to vec();
let chain: Vec<x509> = X509::stack from pem (&body) .unwrap () ;
// Create a ca chain with ark and ask
let ca_chain: ca::Chain = ca::Chain::from pem(&chain[1l].to pem, &chain[0].to pem) ;

ca chain

7

/// Requests the VCEK for the specified chip and TCP

pub fn request vcek(chip id: [u8; 64], reported tcb: TcbVersion) -> X509 ({
let hw id: String = hexify(&chip id);
let url: String = format! (
"{KDS CERT SITE}{KDS VCEK}/{SEV_PROD NAME}/\
{hw_id}?blSPL={:02}&teeSPL={:02}&snpSPL={:02}&ucodeSPL={:02}",
reported tcb.boot loader,
reported tcb.microcode

) 5
println! ("Requesting VCEK from: {url}\n");
let rsp bytes = get (&url) .unwrap () .bytes () .unwrap () .to _vec() ;

Certificate::from der (&rsp bytes)

J/ i
Verify the Root of Trust
let ca chain: ca::Chain = request cert chain("milan") ;

// chip id and reported tcb should be pulled from the host machine,
// or an attestation report. let vcek: Certificate = request vcek
chip id,

reported tcb

)5

// Create a full-chain with the certificates:
Let cert chain = Chain{ca: ca_chain, vcek: vcek};

//Now you can simply verify the whole chain in one command.
cert chain.verify () .unwrap() ;

//Or you can verify each certificate individually
let ark = cert chain.ca.ark;
let ask = cert chain.ca.ask;
if (&ark, &ark) .verify() .unwrap()
println! ("The AMD ARK was self-signed...");
if (&ark, &ask) .verify () .unwrap() {
iprintln! ("The AMD ASK was signed by the AMD ARK...");
f (&ask, &vcek) .verify () .unwrap ()
println! ("The VCEK was signed by the AMD ASK...");
} else {
eprintln! ("The VCEK was not signed by the AMD ASK!") ;

58217-1.2 9

AMD :l SEV-SNP Platform Attestation Using VirTEE /SEV

5. Verify the guest Trusted Compute Base by verifying the following fields in an attestation report and a VCEK:

Bootloader
TEE

SNP
Microcode

Chip ID

Neither the openss1 nor the VirTEE/sev crates support validating X509v3 Extensions (at time of writing). One
possible solution is to use the x509_parser* crate in conjunction with the asn1_rs* crate (for 0IDs). The following
examples will be built off these definitions:

10

58217 -1.2

https://docs.rs/x509-parser/0.14.0/x509_parser/
https://docs.rs/asn1-rs/latest/asn1_rs/index.html

Chapter 3: Guest Owner AM D n

/

hkkkkhkkkkkkkkkkhkkkhkkkkkkkkkkkkhkkkkkkkkkk ok kkk ok kk ok ok k ok ok k ok ok k ok k ok ok ok k ok k& ok ok ok k ok ok k ok k& ok k& ok k& ok ok Kk ok K ko
B HELPER FUNCTIONS

KA R A A R A A R A A AR AR A AR A AR AR A AR A AR A AR A AR A AR AR A A AR A A A A Ak A Ak Ak kA k%

/

fn check cert ext byte(ext: &X509Extension, val: u8) -> bool {

if ext.value[0] !'= 0x2 {
panic! ("Invalid type encountered!");
}
if ext.value[l] != 0x1l && ext.value[l] != 0x2 {
panic! ("Invalid octet length encountered") ;
}
if let Some (byte value) = ext.value.last() {
*byte value == val
} else {
false
}
}
fn check cert ext bytes(ext: &X509Extension, val: &[u8]) -> bool {
ext.value == val
}
/
R R I b I b I I S I I b b Ib I I S I S IR e S R S R S R I S b b b b b b b S b I S b I b b e b b e b b I S R I b R I S R b S I I b I S S b 2b e S b S b S b 4
o EXAMPLE ATTESTATION FUNCTION:

KA AR A A A A A A A A A A A A A A A A AR A AR A AR A A A AR ARk Kk k k%

/

fn validate cert metadata (
cert: &X509Certificate,
report: &AttestationReport,

) —> bool {
let extensions: HashMap<Oid, &X509Extension> = cert.extensions map () .unwrap () ;
if let Some(cert bl) = extensions.get (&SnpOid::BootLoader.oid()) {

if !check cert ext byte(cert bl, report.reported tcb.boot loader) {
eprintln! ("Report TCB Boot Loader and Certificate Boot Loader mismatch
encountered.");
return false;
}
println! ("Reported TCB Boot Loader from certificate matches the attestation
report.");

}

if let Some(cert tee) = extensions.get (&SnpOid::Tee.oid()) {
if !check cert ext byte(cert tee, report.reported tcb.tee) {
eprintln! ("Report TCB TEE and Certificate TEE mismatch encountered.");
return false;
}
println! ("Reported TCB TEE from certificate matches the attestation report.");
}

if let Some (cert snp) = extensions.get (&SnpOid::Snp.oid()) {
if !check cert ext byte(cert snp, report.reported tcb.snp) {

58217-1.2 1

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

eprintln! ("Report TCB SNP and Certificate SNP mismatch encountered.");
return false;

}

println! ("Reported TCB SNP from certificate matches the attestation report.");

}

if let Some(cert ucode) = extensions.get (&SnpOid::Ucode.oid()) {
if !check cert ext byte(cert ucode, report.reported tcb.microcode) {
eprintln! ("Report TCB Microcode and Certificate Microcode mismatch
encountered.");
return false;
}
println! ("Reported TCB Microcode from certificate matches the attestation
report.");

}

if let Some(cert hwid) = extensions.get (&SnpOid::HwId.oid()) {
if !check cert ext bytes(cert hwid, &report.chip id) {
eprintln! ("Report TCB Microcode and Certificate Microcode mismatch
encountered.") ;
return false;
}

println! ("Chip ID from certificate matches the attestation report."):;

true

6. Verify that the signature contained in the attestation report truly came from the VCEK.

let ar signature: EcdsaSig = EcdsaSig::try from(&report.signature) .unwrap() ;

let signed bytes: &[u8] = &bincode::serialize (&report) .unwrap () [0x0..0x2A0] ;

let amd vcek pubkey: EcKey<Public> = vcek.public key() .unwrap() .ec_key () .unwrap () ;
let mut hasher: Sha384 = Sha384::new/()

hasher.update (signed bytes) ;

let base message digest: [u8; 48] = hasher.finish();

if ar signature.verify (base message digest.as ref(),
println! ("VCEK signed the Attestation Report!") ;
} else {
eprintln! ("VCEK did NOT sign the Attestation Report!") ;

vcek pubkey.as ref ()) .unwrap ()

// Or you can use a complete certificate chain to verify the attestation report
(&report, &certificate chain) .verify () .unwrap ()

3.2.2 Requesting and Attesting an Extended Attestation Report

To request and attest an extended attestation report:
1. Create and supply 64 bytes of unique data to include in the attestation report.

// This could be a unique message, a public key, etc.

let unique data: [u8; 64] = [

65, 77, 68, 32, 105, 115, 32, 101, 120, 116, 114, 101, 109, 101, 108, 121, 32,
119,

101, 115, 111, 109, 101, 33, 32, 87, 101, 32, 109, 97, 107, 101, 32, 116, 104, 101,
32,

°g8, 101, 115, 116, 32, 67, 80, 85, 115, 33, 32, 65, 77, 68, 32, 82, 111, 99, 107,
115,

33, 33, 33, 33, 33, 33,
I

12 58217-1.2

Chapter 3: Guest Owner AM D n

2. Connect to the firmware and request the extended report.

let mut fw: Firmware = Firmware::open () .unwrap () ;

let (extended report, certificates): (AttestationReport, Vec<CertTableEntry>) =
fw.get ext report (None, Some (unique data), 0)

3. Parse the ARK, ASK, and VCEK obtained from the AMD Secure Processor using the VirTEE/SEV library.
// Assumes all certificates are in PEM format (for simplicity).
let certs: Chain = Chain::from cert table pem(certificates) .unwrap () ;

4. Proceed with standard attestation report Root of Trust verification, skipping the HTTP requests to the AMD Key
Distribution Server. See "Requesting and Attesting a Standard Attestation Report” on page 7.

3.2.3 Requesting a Derived Key

There are many use cases when a guest owner may want to generate a unique encryption key that was derived from the
hardware Root of Trust. The guest can request that the key derivation be made dependent on several TCB-related
parameters that allow the guest to re-derive the key only when the same parameter(s) are provided. To do this:

1. Construct a DerivedKey as per the specification:
let request: DerivedKey = DerivedKey::new(false, GuestFieldSelect(l), 0, 0, 0);

2. Connect to the firmware and request a derived key:
let mut fw: Firmware = Firmware::open () .unwrap () ;

let derived key: [u8; 32]= fw.get derived key (None, request) .unwrap() ;

58217-1.2 13

AM D n SEV-SNP Platform Attestation Using VirTEE/SEV

This page intentionally left blank.

14 58217-1.2

	SEV-SNP Platform Attestation Using VirTEE/SEV
	Audience
	Author
	Introduction
	Platform Owner
	2.1 System Requirements
	2.2 API Capabilities
	2.2.1 Request the Status of the AMD Secure Processor
	2.2.2 Load New Extended Configurations
	2.2.3 Request Existing Extended Configurations

	Guest Owner
	3.1 System Requirements
	3.2 API Capabilities
	3.2.1 Requesting and Attesting a Standard Attestation Report
	3.2.2 Requesting and Attesting an Extended Attestation Report
	3.2.3 Requesting a Derived Key

