

TensorFlow-ZenDNN Plug-in User Guide

Publication # CSG-1

Revision # **0.1**

Issue Date March 2023

© 2023 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Dolby Laboratories, Inc.

Manufactured under license from Dolby Laboratories.

Rovi Corporation

This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E, GREENWOOD VILLAGE, COLORADO 80111.

Contents

Revision His	story	
Chapter 1 Installing TensorFlow-ZenDNN Plug-in		
1.1	TensorFlow-ZenDNN Plug-in Setup	
1.	.1.1 TensorFlow v2.12	
Chapter 2	High-level Overview	
Chapter 3	TensorFlow-ZenDNN Plug-in v0.1	
Chapter 4 Environment Variables		
Chapter 5	Tuning Guidelines	
5.1	System	
5.2	Environment Variables	
Chapter 6	Blocked Format Support	
6.1	Optimal Interleaving Setting	
Chapter 7	License	
Chapter 8	Technical Support	

List of Figures	List	of	Fig	ures
------------------------	------	----	-----	------

TensorFlow-ZenDNN Plug-in User Guide

List of Tables

Table 1.	ZenDNN Environment Variables-Generic	10
Table 2.	ZenDNN Environment Variables-Optimization	11
Table 3.	System Specification	12

CSG-1 Rev. 0.1 March 2023

Revision History

Date	Revision	Description
March 2023	0.1	Initial version.

Chapter 1 Installing TensorFlow-ZenDNN Plugin

Note: Refer to the ZenDNN v3.3 User Guide before starting the installation.

1.1 TensorFlow-ZenDNN Plug-in Setup

This section describes the procedure to setup the TensorFlow-ZenDNN plug-in for TensorFlow v2.12.

1.1.1 TensorFlow v2.12

Complete the following steps to install the TensorFlow-ZenDNN plug-in:

1. Install TensorFlow v2.12:

```
pip install tensorflow-cpu==2.12.0
```

- 2. Download the TensorFlow-ZenDNN plug-in wheel file from the *Community supported TensorFlow builds*.
- 3. Install TensorFlow-ZenDNN plug-in:

```
pip install tensorflow_zendnn_plugin-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux-
2014 x86 64.whl
```

- 4. Set the following environment variables to enable ZenDNN for inference:
 - TF ENABLE ZENDNN OPTS=1
 - TF ENABLE ONEDNN OPTS=0

By default, TensorFlow is shipped with oneDNN enabled.

The release binaries for TensorFlow-ZenDNN plug-in v0.1 are compiled with manylinux2014 and they provide compatibility with some older Linux distributions.

The release binaries are tested with the recent Linux distributions such as:

- Ubuntu 20.04 and later
- RHEL 9.0 and later

To run a sample with the installed TensorFlow-ZenDNN plug-in, follow the instructions in *Unified Inference Frontend (UIF) 1.1 User Guide - Run a CPU Example*.

Chapter 2 High-level Overview

The following is a high-level block diagram for the TensorFlow-ZenDNN plug-in package which utilizes ZenDNN as the core inference library:

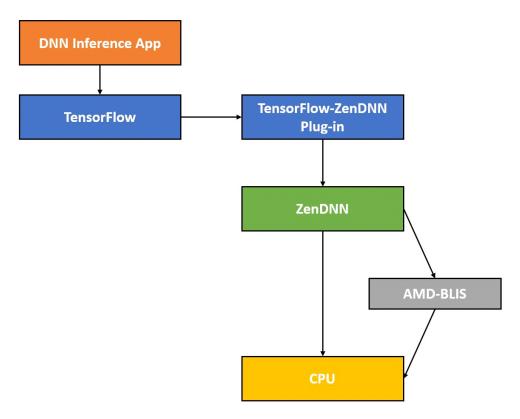


Figure 1. TensorFlow-ZenDNN Plug-in

TensorFlow-ZenDNN Plug-in v0.1 Chapter 3

TensorFlow-ZenDNN plug-in v0.1 is the first release with Pluggable device approach of TensorFlow:

- This plug-in is supported for TensorFlow v2.12 and later.
- It is integrated with ZenDNNv3.3 as the core inference library and compiled with GCC v9.3.1.
- As compared to the current TensorFlow-ZenDNN direct integration releases, this release provides:
 - On par performance for models, such as RefineDet, Inception, and VGG variants.
 - Sub-optimal performance for models, such as ResNet, MobileNet and EfficientNet.

Chapter 4 Environment Variables

TensorFlow-ZenDNN plug-in uses the following environment variables to tune performance and control logs:

Table 1. ZenDNN Environment Variables-Generic

Environment Variable	Default Value/User Defined Value
ZENDNN_LOG_OPTS	ALL:0
TF_ZEN_PRIMITIVE_REUSE_DISABLE	False
ZENDNN_ENABLE_MEMPOOL	The default value is set to 1, you can provide the value 0 to disable it. 1 is for Node-based MEMPOOL and 2 is for Graph-based MEMPOOL.
ZENDNN_PRIMITIVE_CACHE_CAPACITY	The default value is set to 1024, you can modify it as required
ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE	0
TF_ENABLE_ZENDNN_OPTS	Default value is set to 0. Set it to 1 along with TF_ENABLE_ONEDNN_OPTS=0 for enabling ZenDNN for inference. You can set it to 0 when you want to enable vanilla training and inference.
TF ENABLE_ONEDNN_OPTS	Default value is set to 1. By default, TensorFlow is shipped with oneDNN optimizations enabled. Hence, set it to 0 when you enable ZenDNN.

Table 2. ZenDNN Environment Variables-Optimization

Environment Variable	Default Value/User Defined Value
OMP_NUM_THREADS	Set it as per the number of cores in the user system ^a .
OMP_DYNAMIC	Set it to FALSE for optimal performance ^a .
OMP_PROC_BIND	Set it to FALSE for optimal performance ^a .
GOMP_CPU_AFFINITY	Set it as per the number of cores in the system being used ^a .
ZENDNN_TENSOR_POOL_LIMIT	The default value is set to 32. You can modify it to 256 for optimal performance.
ZENDNN_BLOCKED_FORMAT	The default value is set to 0. You can modify it to 1 to enable the Blocked Format support.
ZENDNN_NHWC_BLOCKED	The default value is set to 0. You can modify it to 1 to enable implicit Blocked Format support.
ZENDNN_GEMM_ALGO	The default value is 0. ZenDNN library offers several execution paths tailored for different workloads. The value 0 represents ZenDNN GEMM path. You can modify it to 1 to enable BLIS path or 2 for partial-BLIS execution.

a. You must set these environment variables explicitly.

Chapter 5 Tuning Guidelines

The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance. The details for the environment variables used on a 4th Gen AMD EPYCTM server to achieve the optimal performance numbers are as follows:

5.1 System

A system with the following specifications has been used:

Table 3. System Specification

Model name	4 th Gen AMD EPYC TM 9654P 96-Core Processor
DPU MHz	Up to 3.7 GHz
No of Cores	96
1P/2P	1
SMT: Thread(s) per Core	2
Mem-Dims	12x64 GB

OS Used: Ubuntu 20.04.02 LTS

5.2 Environment Variables

The following environment variables have been used:

ZENDNN LOG OPTS=ALL:0

OMP NUM THREADS=96

OMP_WAIT_POLICY=ACTIVE

OMP PROC BIND=FALSE

OMP DYNAMIC=FALSE

ZENDNN ENABLE MEMPOOL=1

ZENDNN GEMM ALGO=0

ZENDNN TENSOR POOL LIMIT=32

ZENDNN TENSOR BUF MAXSIZE ENABLE=0

ZENDNN BLOCKED_FORMAT=0

ZENDNN_NHWC_BLOCKED=0

ZENDNN PRIMITIVE CACHE CAPACITY=1024

TF_ENABLE_ZENDNN_OPTS=1
TF_ENABLE_ONEDNN_OPTS=0
GOMP_CPU_AFFINITY=0-95

The environment variables OMP NUM THREADS, OMP WAIT POLICY,

OMP_PROC_BIND, and GOMP_CPU_AFFINITY can be used to tune performance. For optimal performance, the Batch Size must be a multiple of the total number of cores (used by the threads). On a 4th Gen AMD EPYCTM server (configuration: AMD EPYCTM 9654P 96-Core, 2P, and SMT=ON) with the above environment variable values, OMP_NUM_THREADS=96 and GOMP_CPU_AFFINITY=0-95 yield the best throughput numbers for a single socket.

Batch Size is a sensitive factor for the throughput performance of any model. The following formula could be used to calculate the optimal **Batch Size**:

Batch Size = number_of_physical_cores * batch_factor

batch factor may vary from 8-32. Usually, the value 32 gives the optimal performance.

A few of the models (for example, publicly available ResNet50) gain performance with Transparent Huge Pages settings (THP). THP can be enabled as a sudo user using the following command:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

Chapter 6 Blocked Format Support

ZenDNN supports the Beta version of Blocked Format. It is also known as *nChw8c* format, which may provide optimized performance for some ML workloads. This can be enabled with the environment variables **ZENDNN_BLOCKED_FORMAT** (explicit) or **ZENDNN NHWC BLOCKED** (implicit) as follows:

export ZENDNN BLOCKED FORMAT=1

With this format, an Op that operates on BLOCKED format requires explicit reordering of input buffer from NHWC to BLOCKED (nChw8c) when the input is not in BLOCKED format.

export ZENDNN NHWC BLOCKED=1

With this format, an Op that operates on BLOCKED format handles reordering of input buffer from NHWC to BLOCKED (nChw8c) when the input is not in BLOCKED format.

The environment variable must be set to 0 or unset altogether to fall back to the default path (NHWC) again.

6.1 Optimal Interleaving Setting

Optimal performance of several ZenDNN workloads is observed when interleaving is enabled in conjunction with the NPS4 mode.

A sample command line to run a Python code with 96C in NPS4 mode is as follows:

export GOMP_CPU_AFFINITY=0-95 && export ZENDNN_BLOCKED_FORMAT=1 && export OMP_NUM_THREADS=96 && numactl --cpunodebind=0-3 --interleave=0-3 python workload.py

Chapter 7 License

TensorFlow-ZenDNN plug-in is licensed under Apache License Version 2.0. Refer to the "LICENSE" file for the full license text and copyright notice.

This distribution includes third party software governed by separate license terms.

3-clause BSD license:

- Xbyak (https://github.com/herumi/xbyak)
- Googletest (https://github.com/google/googletest)
- Instrumentation and Tracing Technology API (https://github.com/intel/ittapi)

Apache License Version 2.0:

- oneDNN (https://github.com/oneapi-src/oneDNN)
- Xbyak_aarch64 (https://github.com/fujitsu/xbyak_aarch64)
- TensorFlow (https://github.com/tensorflow/tensorflow)

Boost Software License, Version 1.0:

Boost C++ Libraries (https://www.boost.org/)

BSD 2-Clause license:

Caffe (https://github.com/BVLC/caffe)

This third-party software, even if included with the distribution of the Advanced Micro Devices software, may be governed by separate license terms, including without limitation, third-party license terms, and open-source software license terms. These separate license terms govern use of the third-party programs as set forth in the THIRD-PARTY-PROGRAMS file.

Chapter 8 Technical Support

Please email *zendnnsupport@amd.com* for questions, issues, and feedback.