
Advanced Micro Devices

TensorFlow-ZenDNN User Guide

Publication # 57301 Revision # 4.0
Issue Date January 2023

© 2023 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Contents 3

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Contents

Revision History .6

Chapter 1 Installing ZenDNN with TensorFlow .7

1.1 Binary Release Setup .7

1.1.1 Conda .7

1.1.2 TensorFlow v2.10 .8

Chapter 2 Directory Structure .9

Chapter 3 High-level Overview .10

Chapter 4 TensorFlow CNN Benchmarks .11

Chapter 5 TensorFlow v2.10 .14

Chapter 6 Environment Variables .15

Chapter 7 Tuning Guidelines .18

7.1 System .18

7.2 Environment Variables .18

7.3 Thread Wait Policy .19

7.4 Thread Affinity .19

7.5 Non-uniform Memory Access .20

7.5.1 numactl .20

7.5.2 Concurrent Execution .21

7.6 Transparent Huge Pages .21

7.7 Batch Size .22

7.8 Memory Allocators .22

7.8.1 TCMalloc .22

7.8.2 JEMalloc .22

7.8.3 Usage .23

Chapter 8 Convolution Algo Logic .24

Chapter 9 Limited Precision Support .25

Chapter 10 License .26

Chapter 11 Technical Support .27

4 List of Figures

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

List of Figures

Figure 1. ZenDNN Library. .10

List of Tables 5

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

List of Tables

Table 1. ZenDNN Environment Variables-Generic .15

Table 2. ZenDNN Environment Variables-Optimization .16

Table 3. System Specification. .18

Table 4. Convolution Algo Logic .24

6 Revision History

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

Revision History

Date Revision Description

January 2023 4.0 • Updated supported TensorFlow versions.
• Added section 1.1.1.
• Added sections 7.3 through 7.8.
• Updated chapters 8 and 9.

June 2022 3.3 Updated supported TensorFlow versions.
December 2021 3.2 • Updated the supported TensorFlow version.

• Removed the obsolete environment variables.
August 2021 3.1 Updated supported TensorFlow versions.
April 2021 3.0 Initial version.

Chapter 1 Installing ZenDNN with TensorFlow 7

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Chapter 1 Installing ZenDNN with TensorFlow

Note: Refer to the ZenDNN v4.0 User Guide before starting the installation.

In this release, ZenDNN library is supported for TensorFlow v2.10. This is a baseline release for
TensorFlow v2.10 with:

• FP32 support

• Only AMD UIF INT8 model support

• Limited support for BF16 on AMD UIF ResNet50 and VGG16

• INT16 is not supported

1.1 Binary Release Setup

This section describes the procedure to setup the ZenDNN binary release for TensorFlow v2.10.

1.1.1 Conda

Complete the following steps to setup Conda:

1. Refer to Anaconda documentation (https://docs.anaconda.com/anaconda/install/linux/) to install
Anaconda on your system.

2. Create and activate a Conda environment which will house all the TF-ZenDNN specific
installations:

Ensure that you install the TF-ZenDNN package corresponding to the Python version with which
you created the Conda environment.

Note: If there is any conda environment named tf-2.10-zendnn-v4.0-rel-env already present,
delete the conda environment tf-2.10-zendnn-v4.0-rel-env (using command conda
remove --name tf-2.10-zendnn-v4.0-rel-env --all) before running scripts/
TF_ZenDNN_setup_release.sh.

3. It is recommended to use the naming convention:

conda create -n tf-v2.10-zendnn-v4.0-rel-env python=3.8

conda activate tf-v2.10-zendnn-v4.0-rel-env

tf-v2.10-zendnn-v4.0-rel-env

https://docs.anaconda.com/anaconda/install/linux/

8 Installing ZenDNN with TensorFlow Chapter 1

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

4. Install all the necessary dependencies:

Note: For binary packages built with Python v3.7, it is recommended to use numpy v1.21.6
(numpy==1.21.6).

1.1.2 TensorFlow v2.10

Complete the following steps to install the ZenDNN binary release:

1. Copy the zipped release package to the local system being used. The name of the release package
will be similar to TF_v2.10_ZenDNN_v4.0_Python_v3.8.zip.

2. Execute the following commands:

a. unzip TF_v2.10_ZenDNN_v4.0_Python_v3.8.zip
b. cd TF_v2.10_ZenDNN_v4.0_Python_v*/
c. source scripts/TF_ZenDNN_setup_release.sh

This installs the TensorFlow wheel package provided in the zip file.

Note: Ensure that it is sourced only from the folder
TF_v2.10_ZenDNN_v4.0_Python_v*/.

The release binaries for TensorFlow v2.10 are now compiled with manylinux2014 and they provide
compatibility with some older Linux distributions. The support for docker releases has been
discontinued.

The Python release binaries are tested with the recent Linux distributions such as:

• Ubuntu 20.04 and later

• RHEL 9.0 and later

C++ Interface will work on operating systems (with glibc version 2.31 or later) such as:

• Ubuntu 20.04 and later

• RHEL 9.0 and later

pip install --upgrade pyparsing

pip install --upgrade appdirs

pip install --upgrade --no-deps --force-reinstall --no-cache-dir numpy==1.23.2 absl-py

pip install -U pip six wheel importlib-metadata setuptools mock future

pip install -U keras_applications --no-deps

pip install -U keras_preprocessing --no-deps

Chapter 2 Directory Structure 9

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Chapter 2 Directory Structure

The release folder consists of a TensorFlow wheel (.whl), LICENSE and THIRD-PARTY-
PROGRAMS files, and the following directory:

• scripts contains scripts to set up the environment and run benchmarks

10 High-level Overview Chapter 3

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

Chapter 3 High-level Overview

The following is a high-level block diagram for the ZenDNN library, which uses the AOCL-BLIS
library internally:

Figure 1. ZenDNN Library

In the current release, ZenDNN is integrated with TensorFlow, PyTorch, and ONNX Runtime.

Chapter 4 TensorFlow CNN Benchmarks 11

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Chapter 4 TensorFlow CNN Benchmarks

The benchmark scripts provide performance benchmarking at the TensorFlow level, printing latency
and throughput results for AlexNet, GoogLeNet, InceptionV3, InceptionV4, ResNet50, ResNet152,
VGG16, and VGG19 models.

Complete the following steps:

1. Download the TensorFlow CNN benchmarks repository from GitHub:

https://github.com/tensorflow/benchmarks.git

2. Export the environment variable BENCHMARKS_GIT_ROOT with the path to the benchmarks
repository:

For latency, execute the following commands:

1. cd TF_v2.10_ZenDNN_v4.0_Python_v*/

2. source scripts/zendnn_TF_env_setup.sh

3. source scripts/tf_cnn_benchmarks_latency.sh

For throughput, execute the following commands:

1. cd TF_v2.10_ZenDNN_v4.0_Python_v*/

2. source scripts/zendnn_TF_env_setup.sh

3. source scripts/tf_cnn_benchmarks_throughput.sh

To run the individual models rather than the entire suite, execute the following commands:

Replace <NPS> with the following based on your number of NUMA nodes. Execute the command
lscpu to identify the number of NUMA nodes for your machine:

• If you have 1 NUMA node, replace <NPS> with 0

• If you have 2 NUMA nodes, replace <NPS> with 0-1

• If you have 4 NUMA nodes, replace <NPS> with 0-3

Replace <model_name> with one of the following options:

cd $ZENDNN_PARENT_FOLDER

git clone https://github.com/tensorflow/benchmarks.git $ZENDNN_PARENT_FOLDER/bench-
marks

export BENCHMARKS_GIT_ROOT=$ZENDNN_PARENT_FOLDER/benchmarks

cd $BENCHMARKS_GIT_ROOT/scripts/tf_cnn_benchmarks/

numactl --cpunodebind=<NPS> --interleave=<NPS> python tf_cnn_benchmarks.py --
device=cpu --model=<model_name> --data_format=NHWC --batch_size=$BATCH_SIZE --
num_batches=100 --num_inter_threads=1 --num_intra_threads=64 --nodistortions

https://github.com/tensorflow/benchmarks.git

12 TensorFlow CNN Benchmarks Chapter 4

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

• For AlexNet, replace <model_name> with alexnet

• For GoogLeNet, replace <model_name> with googlenet

• For InceptionV3, replace <model_name> with inception3

• For InceptionV4, replace <model_name> with inception4

• For ResNet50, replace <model_name> with resnet50

• For ResNet152, replace <model_name> with resnet152

• For VGG16, replace <model_name> with vgg16

• For VGG19, replace <model_name> with vgg19

While executing the commands, make a note of the following:

• For optimal settings, refer to the Tuning Guidelines section. Current setting refers to 96C, 2P,
SMT=ON configuration.

• If the following warning is displayed on the terminal, it can be ignored. During the environment
setup, there is an optional script to gather information about hardware, OS, Kernel, and BIOS and
it requires a few utilities (lscpu, lstopo-no-graphics, dmidecode, and so on) to be present. If these
utilities are not present, you may encounter the following warning(s):
scripts/gather_hw_os_kernel_bios_info.sh

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: _HW_LSTOPO_NUM_L2CACHE/_HW_LSTOPO_PACKAGES: division by 0 (error token is
"_HW_LSTOPO_PACKAGES")

bash: _HW_LSTOPO_NUM_L3CACHE/_HW_LSTOPO_PACKAGES: division by 0 (error token is
"_HW_LSTOPO_PACKAGES")

sudo: dmidecode: command not found

sudo: dmidecode: command not found

sudo: dmidecode: command not found

Chapter 4 TensorFlow CNN Benchmarks 13

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

• If a warning similar to the following appears during benchmark runs, configure your
GOMP_CPU_AFFINITY setting to match the number of CPU cores supported by your machine:

For example, if your CPU has 24 cores, your GOMP_CPU_AFFINITY should be set as "export
GOMP_CPU_AFFINITY=0-23".

OMP: Warning #181: OMP_PROC_BIND: ignored because GOMP_CPU_AFFINITY is defined

OMP: Warning #123: Ignoring invalid OS proc ID 48

OMP: Warning #123: Ignoring invalid OS proc ID 49

.

.

.

OMP: Warning #123: Ignoring invalid OS proc ID 63

14 TensorFlow v2.10 Chapter 5

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

Chapter 5 TensorFlow v2.10

In this release of ZenDNN:

• ZenDNN library is supported for TensorFlow v2.10.

• AMD Unified Inference Frontend (UIF) optimized models are supported. For the model details,
refer to the AMD UIF documentation.

• TensorFlow v2.10 wheel file is compiled with GCC v9.3.1.

• TensorFlow v2.10 is expected to deliver similar or better performance as compared to TensorFlow
v2.9.

Chapter 6 Environment Variables 15

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Chapter 6 Environment Variables

ZenDNN uses the following environment variables to setup paths and control logs:
Table 1. ZenDNN Environment Variables-Generic

Environment Variable Default Value/User Defined Value

ZENDNN_LOG_OPTS ALL: 0
ZENDNN_PARENT_FOLDER Path to unzipped release folder
TF_ZEN_PRIMITIVE_REUSE_DISABLE False
ZENDNN_ENABLE_MEMPOOL The default value is set to 1, you can provide the

value 0 to disable it. 1 is for Graph-based
MEMPOOL and 2 is for Node-based MEMPOOL.

ZENDNN_PRIMITIVE_CACHE_CAPACITY The default value is set to 1024, you can modify it
as requireda.

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE 0
OMP_DYNAMIC FALSE
ZENDNN_INFERENCE_ONLY Default value is set to 1. ZenDNN does not

currently support training. You can set it to 0 when
you want to enable vanilla training and inference.

16 Environment Variables Chapter 6

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

The following is a list of environment variables to tune performance:
Table 2. ZenDNN Environment Variables-Optimization

Environment Variable Default Value/User Defined Value

OMP_NUM_THREADS The default value is set to 96. You can set it as per
the number of cores in the user systema.

OMP_WAIT_POLICY ACTIVE
OMP_PROC_BIND FALSE
GOMP_CPU_AFFINITY Set it as per the number of cores in the system being

used. For example, use 0-95 for 96-core server.
ZENDNN_TENSOR_POOL_LIMIT The default value is set to 32. For

ZENDNN_ENABLE_MEMPOOL=2, you can
modify to 256 for CNNs and 1024 for NLP models
for optimal performance.

ZENDNN_INT8_SUPPORT The default value is set to 0. You can modify it to 1
to enable the INT8 data type support. This works
only with ZENDNN_CONV_ALGO=4.
Note: This environment variable is not required for AMD

UIF models.

ZENDNN_TF_CONV_ADD_FUSION_SAFE The default value is set to 0. You can modify it to 1
to enable Conv, Add fusion. Currently it is safe to
enable this switch for resnet50v1_5, resnet101, and
inception_resnet_v2 models only.

ZENDNN_GEMM_ALGO The default value is 3. You can modify it to one of
the following:
• 0 = Auto
• 1 = BLIS path
• 2 = partial-BLIS
• 3 = ZenDNN jit path
• 4 = ZenDNN partial jit path
Note: Auto is an experimental feature.

ZENDNN_CONV_ALGO Decides the convolution algorithm to be used in
execution and the possible values are:
• 1 = im2row followed by GEMM
• 2 = WinoGrad (fallback to im2row GEMM for

unsupported input sizes)
• 3 = Direct convolution with blocked inputs and

filters
• 4 = Direct convolution with blocked filters
The default value is set to 1.

ZENDNN_LOG_OPTS=FWK:4 Dump graph after ZenDNN rewrites pass for all the
TensorFlow models.

Chapter 6 Environment Variables 17

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Note: There are a few other environment variables that are initialized by the setup script, however
these are not applicable for the binary release setup.

When source scripts/zendnn_TF_env_setup.sh is invoked, the script initializes all the environment
variables except the one(s) which must be set manually. The environment variables
ZENDNN_PARENT_FOLDER is initialized relative to the unzipped release folder. To ensure that
the paths are initialized correctly, it is important that the script is invoked from the unzipped release
folder.

TF_ENABLE_ZENDNN_OPTS The default value is set to 1 and ZenDNN code path
will be used. You can modify it to 0 to use native
TensorFlow code path.

a. You must set these environment variable explicitly.

Table 2. ZenDNN Environment Variables-Optimization
Environment Variable Default Value/User Defined Value

18 Tuning Guidelines Chapter 7

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

Chapter 7 Tuning Guidelines

The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance.
The details for the environment variables used on a 4th Gen AMD EPYCTM server to achieve the
optimal performance numbers are as follows:

7.1 System

A system with the following specifications has been used:

OS Used: Ubuntu 20.04.02 LTS

7.2 Environment Variables

The following environment variables have been used:

ZENDNN_LOG_OPTS=ALL:0

TF_ENABLE_ONEDNN_OPTS=0

TF_ENABLE_ZENDNN_OPTS=1

OMP_NUM_THREADS=96

OMP_WAIT_POLICY=ACTIVE

OMP_PROC_BIND=FALSE

OMP_DYNAMIC=FALSE

ZENDNN_ENABLE_MEMPOOL=1

ZENDNN_GEMM_ALGO=3

ZENDNN_TENSOR_POOL_LIMIT=32

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE=0

ZENDNN_CONV_ALGO=1

Table 3. System Specification
Model name 4th Gen AMD EPYCTM 9654P 96-Core Processor
DPU MHz Up to 3.7 GHz
No of Cores 96
1P/2P 1
SMT: Thread(s) per Core 2
Mem-Dims 12x64 GB

Chapter 7 Tuning Guidelines 19

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

ZENDNN_PARENT_FOLDER=/home/<user_id>/my_work

BENCHMARKS_GIT_ROOT=/home/<user_id>/my_work/benchmarks

ZENDNN_PRIMITIVE_CACHE_CAPACITY=1024

ZENDNN_INT8_SUPPORT=0

ZENDNN_INFERENCE_ONLY=1

ZENDNN_TF_CONV_ADD_FUSION_SAFE=0

Other than the ZENDNN environment variables, there are a few other parameters that influence the
memory policy across the nodes, thread binding to the available physical cores. Considerable
performance improvements may be achieved by setting these parameters carefully. Following
sections describe the behavior and possible value for these parameters.

7.3 Thread Wait Policy

OMP_WAIT_POLICY environment variable provides options to the OpenMP runtime library based
on the expected behavior of the waiting threads. It can take the abstract values PASSIVE and
ACTIVE. The default value is ACTIVE. When OMP_WAIT_POLICY is set to PASSIVE, the
waiting threads will be passive and will not consume the processor cycles. Whereas, setting it to
ACTIVE will consume processor cycles.

Note: For ZenDNN stack, setting OMP_WAIT_POLICY to ACTIVE may give better performance.

7.4 Thread Affinity

To improve ZenDNN performance, the behavior of OpenMP thread can be guarded precisely with
thread affinity settings. A thread affinity defined at start up cannot be modified or changed during
runtime of the application. Following are the ways through which you can bind the requested
OpenMP threads to the physical CPUs:

• GOMP_CPU_AFFINITY environment variable binds threads to the physical CPUs, for
example:

export GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"

This command will bind the:

– Initial thread to CPU 0
– Second thread to CPU 3
– Third and fourth threads to CPU 1 and CPU 2 respectively
– Fifth thread to CPU 4
– Sixth through tenth threads to CPUs 6, 8, 10, 12, and 14 respectively
Then, it will start the assigning back from the beginning of the list.

export GOMP_CPU_AFFINITY="0" binds all the threads to CPU 0.

20 Tuning Guidelines Chapter 7

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

• Kmp affinity belongs to LLVM OpenMP runtime library and is used by setting appropriate values
for the environment variable KMP_AFFINITY. It has the following syntax:

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Example:

export KMP_AFFINITY='verbose,respect,granularity=fine,compact,1,0 binds threads as
close as possible to the master thread but on a different core. Once each core is assigned with one
OpenMP thread, the remaining OpenMP threads are assigned in the same order as before, but on
different thread context.

Among the two, KMP_AFFINITY takes highest precedence followed by
GOMP_CPU_AFFINITY. If none of the two is set, the host system will defer the assignment of
threads to CPUs. Given the same thread binding (see example below), it is expected that both the
affinity settings would give the same performance.

Example:

Following affinity settings should give the same thread bindings:

– export GOMP_CPU_AFFINITY=0-95
– export KMP_AFFINITY='verbose,respect,granularity=fine,compact,1,0'

7.5 Non-uniform Memory Access

7.5.1 numactl

numactl provides options to run processes with specific scheduling and memory placement policy. It
can restrict the memory binding and process scheduling to specific CPUs or NUMA nodes:

• --cpunodebind=nodes: Restricts the process to specific group of nodes.

• --physcpubind=cpus: Restricts the process to specific set of physical CPUs.

• --membind=nodes: Allocates the memory from the nodes listed. The allocation fails if there is not
enough memory on the listed nodes.

• --interleave=nodes: Memory will be allocated in a round robin manner across the specified nodes.
When the memory cannot be allocated on the current target node, it will fall back to the other
nodes.

Example:

If <tensorflow_script> is the application that needs to run on the server, then it can be triggered using
numactl settings as follows:

The interleave option of numactl works only when the number nodes allocated for a particular
application is more than one. cpunodebind and physcpubind behave the same way for ZenDNN stack,
whereas interleave memory allocation performs better than membind.

numactl --cpunodebind=0-3 -membind=0-3 python <tensorflow_script>

Chapter 7 Tuning Guidelines 21

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

7.5.2 Concurrent Execution

As every application, AI workload requires special considerations during performance tuning to get
the best out of the non-uniform memory access (NUMA) enabled machine. Improvement in
performance can be achieved by carefully analyzing memory access time, memory bandwidth, and
congestion on the shared bus. These factors depend on how far away the allocated memory and the
process that requested the memory are in the NUMA system. In NUMA machines, the local memory
access is faster as compared to the remote memory access. Consider the following workload:

Performance can be optimized by partitioning the workload into multiple data shards and then
running concurrently on more than one NUMA node. Following example shows the concurrent
execution across 4 NUMA nodes:

The number of concurrent executions can be increased beyond 4 nodes. The following formula can be
used to decide the number of concurrent executions to be triggered at a time:

This can also be extended to even cores. However, these details should be verified by the user
empirically.

7.6 Transparent Huge Pages

Transparent Huge Pages (THPs) are a Linux kernel feature for memory management to improve
performance of the application by efficiently using processor's memory-mapping hardware. THP
should reduce the overhead of the Translation Lookaside Buffer. User must login as a sudo user to
enable or disable THP settings. It operates mainly in two modes:

• always: You can run the following command to set THP to ‘always’:

In this mode, the system kernel tries to assign huge pages to the processes running on the system.

• madvise: You can run the following command to set THP to ‘madvise’:

In this mode, kernel only assigns huge pages to the individual processes memory areas.

numactl --cpunodebind=0-3 --membind=0-3 python <tensorflow_script>

numactl --cpunodebind=0 --membind=0 python <tensorflow_script> & numactl --cpuno-
debind=1 --membind=1 python <tensorflow_script> & numactl --cpunodebind=2 --membind=2
python <tensorflow_script> & numactl --cpunodebind=3 --membind=3 python <tensor-
flow_script>

Number Concurrent Executions = Number of Cores Per Socket / Numbers of Cores sharing L3
cache

echo always > /sys/kernel/mm/transparent_hugepage/enabled

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

22 Tuning Guidelines Chapter 7

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

You can use the following command to disable THP:

It is recommended to use the following THP setting for better performance:

• CNN models - ‘always’

• NLP models - ‘madvise’

7.7 Batch Size

Batch Size is a sensitive factor for the throughput performance of any model. The following formula
could be used to calculate the optimal Batch Size:

Batch factor may vary from 8-32. The value 32 may provide optimal performance. However, user
should verify this empirically.

7.8 Memory Allocators

Based on the model, if there is a requirement for a lot of dynamic memory allocations, a memory
allocator can be selected from the available allocators which would generate the most optimal
performance out of the model. These memory allocators override the system provided dynamic
memory allocation routines and use a custom implementation. They also provide the flexibility to
override the dynamic memory management specific tunable parameters (for example, logical page
size, per thread, or per-cpu cache sizes) and environment variables. The default configuration of these
allocators would work well in practice. However, you should verify empirically by trying out what
setting works best for a particular model after analyzing the dynamic memory requirements for that
model.

Most commonly used allocators are TCMalloc and JEMalloc.

7.8.1 TCMalloc

TCMalloc is a memory allocator which is fast, performs uncontended allocation and deallocation for
most objects. Objects are cached depending on the mode, either per-thread or per-logical CPU. Most
allocations do not need to take locks. So, there is low contention and good scaling for multi-threaded
applications. It has flexible use of memory and hence, freed memory can be reused for different
object sizes or returned to the operating system. Also, it provides a variety of user-accessible controls
that can be tuned based on the memory requirements of the workload.

7.8.2 JEMalloc

JEMalloc is a memory allocator that emphasizes fragmentation avoidance and scalable concurrency
support. It has a powerful multi-core/multi-thread allocation capability. The more cores the CPU has,
the more program threads, the faster JEMalloc allocates. JEMalloc classifies memory allocation

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Batch Size = number_of_physical_cores * batch_factor

Chapter 7 Tuning Guidelines 23

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

granularity better, leading to less lock contention. It provides various tunable runtime options, such as
enabling background threads for unused memory purging, allowing JEMalloc to utilize transparent
huge pages for its internal metadata, and so on.

7.8.3 Usage

You can install the TCMalloc/JEMalloc dynamic library and use LD_PRELOAD environment
variable as follows:

To verify if TCMalloc/JEMalloc memory allocator is in use, you can grep for tcmalloc/jemalloc in the
output of lsof command:

Before using TCMalloc:
export LD_PRELOAD=/path/to/TCMallocLib/

Before using JEMalloc:
export LD_PRELOAD=/path/to/JEMallocLib/

Or

Benchmarking command using TCMalloc:
LD_PRELOAD=/path/to/TCMallocLib/ < python benchmarking command>

Benchmarking command using JEMalloc:
LD_PRELOAD=/path/to/JEMallocLib/ < python benchmarking command>

lsof -p <pid_of_benchmarking_commad> | grep <tcmalloc/jemalloc>

24 Convolution Algo Logic Chapter 8

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

Chapter 8 Convolution Algo Logic

Convolution kernels take Input and Filter/Weights as arguments and return Output. The table below
describes the expected Layout for each of the convolution algorithms currently supported by
TensorFlow-ZenDNN.

Note: In the context of Filter Layouts, HWIO is equivalent to HWCN but with I instead of C
representing input channels and O instead of N representing output channels.

Table 4. Convolution Algo Logic
zenConvAlgoType ZENDNN_CONV_ALGO Input Layout Filter Layout Output Layout

GEMM 1 NHWC HWIO NHWC
WINOGRAD 2 NHWC HWIO NHWC
DIRECT1 3 nChw8c Ohwi8o nChw8c
DIRECT2 4 NHWC Ohwi8o/

Ohwi16o
NHWC

Chapter 9 Limited Precision Support 25

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Chapter 9 Limited Precision Support

Quantization is an active area of research and a popular compression technique to accelerate neural
network performance. Several competitive submissions from MLPerf (https://mlcommons.org/en/
inference-datacenter-10/) leverage lower precisions to showcase hardware capability.

A few of these quantized neural networks models and TensorFlow protobuf (pb) files are publicly
available. On AMD 4th Gen EPYCTM platforms, ZenDNN offers options to enable INT8 quantization
with AMD's UIF INT8 models. These models can be leveraged using AMD UIF benchmarking
scripts.

ZenDNN supports experimental version of BF16 with limited models of AMD UIF model Zoo.

To optimize performance, use the following environment variables:
export ZENDNN_CONV_ALGO=4

export ZENDNN_ENABLE_MEMPOOL=1/2

export ZENDNN_TENSOR_POOL_LIMIT=512

26 License Chapter 10

57301 Rev. 4.0 January 2023TensorFlow-ZenDNN User Guide

Chapter 10 License

ZenDNN is licensed under Apache License Version 2.0. Refer to the “LICENSE” file for the full
license text and copyright notice.

This distribution includes third party software governed by separate license terms.

3-clause BSD license:

• Xbyak (https://github.com/herumi/xbyak)

• Googletest (https://github.com/google/googletest)

• Instrumentation and Tracing Technology API (https://github.com/intel/ittapi)

Apache License Version 2.0:

• oneDNN (https://github.com/oneapi-src/oneDNN)

• Xbyak_aarch64 (https://github.com/fujitsu/xbyak_aarch64)

• TensorFlow (https://github.com/tensorflow/tensorflow)

Boost Software License, Version 1.0:

Boost C++ Libraries (https://www.boost.org/)

BSD 2-Clause license:

Caffe (https://github.com/BVLC/caffe)

This third-party software, even if included with the distribution of the Advanced Micro Devices
software, may be governed by separate license terms, including without limitation, third-party license
terms, and open-source software license terms. These separate license terms govern use of the third-
party programs as set forth in the THIRD-PARTY-PROGRAMS file.

https://github.com/herumi/xbyak
https://github.com/google/googletest
https://github.com/intel/ittapi
https://github.com/oneapi-src/oneDNN
https://github.com/fujitsu/xbyak_aarch64
https://github.com/tensorflow/tensorflow
https://www.boost.org/
https://github.com/BVLC/caffe

Chapter 11 Technical Support 27

TensorFlow-ZenDNN User Guide57301 Rev. 4.0 January 2023

Chapter 11 Technical Support

Please email zendnnsupport@amd.com for questions, issues, and feedback on ZenDNN.

	Contents
	List of Figures
	List of Tables
	Revision History
	Chapter 1 Installing ZenDNN with TensorFlow
	1.1 Binary Release Setup
	1.1.1 Conda
	1.1.2 TensorFlow v2.10

	Chapter 2 Directory Structure
	Chapter 3 High-level Overview
	Chapter 4 TensorFlow CNN Benchmarks
	Chapter 5 TensorFlow v2.10
	Chapter 6 Environment Variables
	Chapter 7 Tuning Guidelines
	7.1 System
	7.2 Environment Variables
	7.3 Thread Wait Policy
	7.4 Thread Affinity
	7.5 Non-uniform Memory Access
	7.5.1 numactl
	7.5.2 Concurrent Execution

	7.6 Transparent Huge Pages
	7.7 Batch Size
	7.8 Memory Allocators
	7.8.1 TCMalloc
	7.8.2 JEMalloc
	7.8.3 Usage

	Chapter 8 Convolution Algo Logic
	Chapter 9 Limited Precision Support
	Chapter 10 License
	Chapter 11 Technical Support

