AMDA1

AMD L1

AQOCL User Guide

Publication # 57404 Revision # 4.1
Issue Date August 2023

Advanced Micro Devices {\

AMDA1

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, Windows Server, Visual Studio,and DirectX are registered trademarks of Microsoft
Corporation.

MMX is a trademark of Intel Corporation.
OpenCL is a trademark of Apple Inc. used by permission by Khronos.
PCle is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.

Manufactured under license from Dolby Laboratories.

Rovi Corporation

This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

AMDA1

57404 Rev.4.1 August 2023

AOCL User Guide

Contents
Revision Historycoiuiiiiiiiiiiiiiiiitiinreneeenreosessssssssssssssnssnsons 11
Chapter 1 Introductionciiitiiiiiiiiiiitiieeenesesensoensssnsssnnsons 12
1.1 Feature Support MatrixXt e e 13
Chapter 2 Supported OS and Compilersccoitiiiiiiiiiiiiinrienrenrnnnnns 16
2.1 Operating SYStEIMS . . .o vttt ettt e 16
2.2 Compilers 16
2.3 LABrary . e 16
2.4 Message Passing Interface (MPI) i .. 16
2.5 Programming Language 16
2.6 Build UtIIties 17
Chapter 3 Installing AOCLttt ittt resesssessosnsesnsssnssons 18
3.1 Building from Source 18
3.2 Installing AOCL Binary Packages 18
3.2.1 Using Master Package i 18
322 Using Library Package i 20
323 Using Debian and RPM Packages 20
3.2.4 Using Windows Packages i 22
Chapter4 AOCL-BLAS ..ttt ittt i ittt tttteetenenrncnessencnsncnnas 24
4.1 Installation on Linuxo 24
4.1.1 Build AOCL-BLAS from Source 24
4.1.2 Using Pre-built Binaries 26
4.2 Application Development Using AOCL-BLAS 26
4.2.1 API Compatibility Layers (Calling AOCL-BLAS) 26
422 API Compatibility - Advance Optionsccvvirinnn... 28
423 Linking Application with AOCL-BLAS 28
4.2.4 AOCL-BLAS UsageinFortran iiian... 29
4.2.5 AOCL-BLAS Usage in Cottt et 31
4.3 Migrating/Porting 35
44 Using AOCL-BLAS Library Features 0., 36
Contents 3

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023
4.4.1 Dynamic Dispatch 36
4.4.2 AOCL-BLAS - Running the Test Suite 39
443 Testing/Benchmarking 40
444 AOCL-BLAS Utility APIs e 42

4.5 Debugging and Troubleshooting iiiiiiirenenon.. 42
4.5.1 Debugging Build Using GDB 42
4.5.2 Viewing Logso 43
453 Checking AOCL-BLAS Operation Progress 47

4.6 Build AOCL-BLAS from Source on Windows 49
4.6.1 Building AOCL-BLAS using GUI i, 50
4.6.2 Building AOCL-BLAS using Command-line Arguments 53
4.6.3 Building and Running the Test Suite 54

4.7 LPGEMM in AOCL-BLAS e 55
4.7.1 Add-onin AOCL-BLAS 55
4.7.2 API Naming and Argumentsoitt it 55
4.7.3 Post-operations 55
4.7.4 Supported APIsinaocl gemm 56
4.7.5 Enabling aocl gemm Add-on 57
4.7.6 Sample Application 1 57
4.7.7 Sample Application 2 59

Chapter 5 AOCL-LAPACK ...ttt ittt iiittenenenesscnsnssanacasnas 62

5.1 Installing on LinuXo 62
5.1.1 Building AOCL-LAPACK from Source 62
5.1.2 Using Pre-built Libraries 65

52 Usage on LiNUXottt e e e 66
5.2.1 Use by Applicationsuiiiii it 66

5.3 Building AOCL-LAPACK from Source on Windows 67
5.3.1 Building AOCL-LAPACK Using GUILo .. 67
5.3.2 Building AOCL-LAPACK using Command-line Arguments 70
533 Building and Running Test Suite 71

5.4 Checking AOCL-LAPACK Operation Progress 71

4 Contents

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide
Chapter 6 AOCL-FFTW ...ttt iiitittienetteasecnesscnsacncnns 74
6.1 Installingo e 74

6.1.1 Building AOCL-FFTW from Source on Linux 74

6.1.2 Building AOCL-FFTW from Source on Windows 76

6.1.3 Using Pre-built Libraries i .. 80

6.2 USage ittt e e 80

6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW 80

6.2.2 Sample Programs for MPTFFTW 81

6.2.3 Additional Options i e 81

Chapter 7 AOCL-LibMttt it ittt tttteetenrensenssnssnsannnns 82
7.1 Library Contentsiutntit it e et 82

7.2 Installation 85

7.2.1 Installing the Pre-Built Binarieson Linux &5

7.2.2 Building AOCL-LibMon Linuxt 86

7.2.3 Building AOCL-LibM on Windows 87

7.3 Using AOCL-LibMo e e 88
Chapter 8 AOCL-ScaLLAPACK ittt ittt tentonsonssnssnssnsnns 90
8.1 Installation 90

8.1.1 Building AOCL-ScaLAPACK from Source on Linux 90

8.1.2 Using Pre-built Libraries 93

8.2 USagE ..o 93

8.3 Building AOCL-ScalLAPACK from Source on Windows 94

8.3.1 Building AOCL-ScaLAPACK Using GUIL 94

8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments 97

833 Building and Running the Individual Tests 97

8.4 Checking AOCL-ScaLAPACK Operation Progress 98

8.5 Additional Features 99
Chapter 9 AOCL-RNG ittt ittt ittt tsesessssssssssssssassnsons 100
9.1 Installation e 100

9.2 Using AOCL-RNG Libraryon Linux 101

9.3 Using AOCL-RNG Libraryon Windowscciiiiirinen... 101

Contents 5

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023
Chapter 10 AOCL-SecureRNGttt iiiiiiirietenrensnenenscannens 102
10.1 Installation 102

L0.2 S ittt 102

10.3 Using AOCL-SecureRNG Library on Windows 103
Chapter 11 AOCL-SParseoueiieiietnerneressessessssssssnssnssnssnssnsas 105
11.1 Installation 107

11.1.1 Building AOCL-Sparse from Source on Linux 107

11.1.2 Simple Testot 109

11.1.3 Using Pre-built Libraries 110

11.2 Building AOCL-Sparse on Linux, 110

11.2.1 Use by Applicationsttt 110

11.3 Building AOCL-Sparse on Windowso i, 113

11.3.1 Building AOCL-Sparse Using GUI 114

11.3.2 Building AOCL-Sparse using Command-line Arguments 115

11.4 Running an Individual AOCL-Sparse Test, 117

11.4.1 Runthe Teston Linux, 117

11.4.2 Run the teston Windows i 118

Chapter 12 AOCL-LibMemcoiiiiiiiiiiiiiiiiiitiittnteneensensensensnnnes 119
12.1 Building AOCL-LibMem for Linux 119

12.2 Running an Applicationttt 121

12.3 Running an Application with Tunables 121

12.3.1 Default State 122

12.3.2 Tuned State 122

Chapter 13 AOCL-Cryptographycoitiiiiiiiiiiiiiiieieierirnenenenannnns 125
13,1 RequiremMentstirinitet ettt et 126

13.2 Installation 126

13.2.1 Building AOCL-Cryptography from Source on Linux 126

13.2.2 Building AOCL-Cryptography from Source on Windows 127

13.3 Using AOCL-Cryptography in a Sample Application 129

13.3.1 Compiling and Running Examples 129

13.3.2 AOCL-Cryptography Library Provider for OpenSSL 129

6 Contents

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide
13.3.3 Integrating AOCL Libraries with Applications that Use IPP 129

Chapter 14 AOCL-CompPressioncoeiieiieieeeneeeesesensssssnssnssnssnses 130
14.1 Installation 130

14.1.1 Using Pre-built Libraries 130

14.1.2 Building from Source 131

14.2 Running AOCL-Compression Test Benchon Linux 131

14.3 Running AOCL-Compression Test Bench on Windows 132

144 APIReference 133

14.4.1 Unified Standardized API Set 133

14.4.2 Interface Data Structures i 133

14.4.3 Library Return Error Codes 135

14.4.4 Native APIso 135

14.4.5 Example Test Program 138

14.5 Optional Optimization OptionSo vttt e e en 139
Chapter 15 AOCL-ULIS ...t iiiiiiiiiiiiiiiiitiitttaseseeresasaseseasasnsanens 141
I5.1 Requirementsiiuintnti ettt et 141

15.2 Clone and Build the AOCL-Utils Library 142

15.3 Using AOCL-UtIlso e e 142

15.3.1 CAPIExample e 142

15.3.2 CHAPIExample 143

1533 Building on Windows 143

1534 Buildingon Linux 144

15.3.5 OULPUL .ot 145

Chapter 16 Linking AOCL to Applicationsc.citiiiiiitiiiirienenenananns 146
16.1 High-performance LINPACK Benchmark (HPL) 146

16.1.1 Configuring HPL.dat 146

16.1.2 Running the Benchmark 147

16.2 MUMPS Sparse Solver Library 148

16.2.1 Enabling AOCL with MUMPS 149

Chapter 17 AOQOCL Tuning Guidelinescciiiiiiiiiiiiiiinrenreneenennnns 154
17.1 AOCL-BLAS Thread Control 154

Contents 7

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023
17.1.1 AOCL-BLAS Initialization 154

17.1.2 Runtime 155

17.2 AOCL DYNAMIC . ..ottt ettt et et e e e et e ettt 157

17.2.1 Limitations 158

17.3 AOCL-BLAS DGEMM Multi-thread Tuning 158

17.3.1 Library Usage Scenariosuutitet et 158

17.3.2 Architecture Specific Tuning i 159

17.4 AOCL-BLAS DGEMM Block-size Tuningc.uuiuiniennn... 160

17.5 Performance Suggestions for Skinny Matrices 162

17.6 AOCL-LAPACK Multi-threading 162

17.7 AOCL-FFTW Tuning Guidelinesottt .. 162
Chapter 18 SuUppoOrtcutiiitiiiiiiiereneeeseetoessssssossssssssssnsssnsas 165
Chapter 19 Referencesoueiieiiiiiiiieinerneeeeeesenscnssnssnssnssnses 166
4 N 1 1) 111 . 167
Check AMD Server Processor Architecture 167

ONLINUX . .o 167

On WINdowsot e 167

Application NOteSt 168

AOCL-BLAS . . 168

AOCL-FFETW. . e e 168

8 Contents

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide
List of Tables

Table 1. AOCL Feature Support Matrix - 1 e 13
Table 2. AOCL Feature Support Matrix - 2ot ettt 14
Table 3. AOCL-BLAS API Compatibility Layers, 27
Table 4. AOCL-BLAS API Compatibility - Advance Optionso..... 28
Table 5. AOCL-BLAS Application - Link Optionst 28
Table 6. Porting to AOCL-BLAS 36
Table 7. AOCL-BLAS Utility APISo e e 42
Table 8. Callback Parametersot 48
Table 9. CMake Config Options oottt e e et e 51
Table 10. GEMM APIs and Supported Post-ops 56
Table 11. Utility APIsinaocl gemm Add-on 0. .. 56
Table 12. AOCL-LAPACK Config Options.ttt e 67
Table 13. AOCL-LAPACK Progress Feature Callback Function Parameters 72
Table 14. AOCL-FFTW Config Optionsttt 77
Table 15. Compiler and Type of Library 91
Table 16. AOCL-ScaLAPACK CMake Parameter List. 95
Table 17. AOCL-ScaLAPACK Progress Feature Callback Function Parameters 98
Table 18. Additional Features.t 99
Table 19. Compiler and Library Type.ot e e e s 108
Table 20. AOCL-Sparse - CMake Build Options. 108
Table 21. Application Implementationsttt 122
Table 22. Sample Threshold Settings i i 124
Table 23. AOCL-Cryptography - Linux Optionsttt 126
Table 24. AOCL-Cryptography - Windows Optionsccouitinininrnnnn .. 128
Table 25. Optional Optimization OptionS. v vttt e e eee 139
Table 26. Sample Scenarios - L. 155
Table 27. Sample Scenarios - 2.ttt e 156
Table 28. AOCL DYNamicCuti ittt e e et et et aeas 157

List of Tables 9

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023
List of Figures

Figure 1. Sample Run of Function Call Tracing, 45
Figure 2. Sample Run with Debug Logs Enabled 46
Figure 3. Debug Logs Showing Input Values of GEMM 47
Figure 4. Microsoft Visual Studio Prerequisites 49
Figure 5. CMake Source and Build Folders. 50
Figure 6. Set Generator and Compiler. i 51
Figure 7. CMake Configure and Generate Project Settings. 53
Figure 8. AOCL-LAPACK CMake Configurationsc..iiiuiinennenn.n.. 70
Figure 9. AOCL-FFTW CMake Config Options.ottt 79
Figure 10. AOCL-ScaLAPACK CMake Optionso.uininininnnininenen... 96
Figure 11. AOCL-ScaLAPACK CMake Config Optionscuuriirennennennnn. 96
Figure 13. AOCL-Sparse CMake Config Options.ouitntn i 115
10 List of Figures

AMDA1

57404 Rev.4.1 August 2023

Revision History

AOCL User Guide

Date Revision | Description
August 2023 4.1 * Added Chapter 15
* Added sections 4.7, 8.5, 11.4, 14.1.1, and 14.1.2
November 2022 | 4.0 * Added sections 9.3, 10.3,17.1.2.1, and 17.6
* Updated section 4.4.1.3
* Added Chapter 14
* Removed the chapter AOCL-Spack recipes
July 2022 32 * Added chapters 12 and 13, sections 5.4, 8.4, and 16.1
* Added Multi-thread support information in chapter 11
December 2021 | 3.1 Initial version

Revision History

11

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 1 Introduction

AMD Optimizing CPU Libraries (AOCL) are a set of numerical libraries optimized for AMD “Zen”-
based processors, including EPYC™, RyzenTM ThreadripperTM, and RyzenTM. This document
provides instructions on installing and using all the AMD optimized libraries.

AOCL is comprised of the following libraries:

* AOCL-BLAS is a portable software framework for performing high-performance Basic Linear
Algebra Subprograms (BLAS) functionality.

* AOCL-LAPACK is a portable library for dense matrix computations that provides the
functionality present in the Linear Algebra Package (LAPACK).

* AOCL-FFTW (Fastest Fourier Transform in the West) is a comprehensive collection of fast C
routines for computing the Discrete Fourier Transform (DFT) and various special cases.

* AOCL-LibM (AMD Math Library) is a software library containing a collection of basic math
functions optimized for x86-64 processor based machines.

* AOCL-Utils is a library which provides APIs to check the available CPU features/flags, cache
topology, and so on of AMD "Zen"-based CPUs.

* AOCL-ScaLAPACK is a library of high-performance linear algebra routines for parallel
distributed memory machines. It depends on external libraries including BLAS and LAPACK for
linear algebra computations.

*+ AOCL-RNG (AMD Random Number Generator) is a pseudo-random number generator
library.

* AOCL-SecureRNG is a library that provides APIs to access the cryptographically secure random
numbers generated by the AMD hardware random number generator.

* AOCL-Sparse is a library containing the basic linear algebra subroutines for sparse matrices and
vectors optimized for AMD “Zen”-based CPUs.

* AOCL-LibMem is AMD’s optimized implementation of memory manipulation functions for
AMD “Zen”-based CPUs.

* AOCL-Cryptography is AMD’s optimized implementation of cryptographic functions.

* AOCL-Compression is a software framework of various lossless data compression and
decompression methods tuned and optimized for AMD “Zen”-based CPUs.

All the above libraries are open-source except AOCL-RNG.

12 Introduction Chapter 1

AMDA1

57404 Rev.4.1

1.1

August 2023

Feature Support Matrix

AOCL User Guide

Following tables summarize the list of supported features and dependencies for the AOCL libraries:

Table 1. AOCL Feature Support Matrix - 1
Library\Feature AVX512 Dynamic Dispatcher Vector Precision
Yes Yes Yes Single, Double,
Complex, Double
GAUSIER AL Complex, Mixed
Precision
No Partially (requires AVX2 | Not applicable | Single, Double,
AOCL-LAPACK support) Complex, Double
Complex
Yes Yes for Linux with GCC | Yes Single, Double,
and AOCC. No for Long-double, Quad
Windows with Clang.
SO EHE MSVC compiler has not
been used on Windows.
Yes Yes Yes Single, Double,
AOCL-LibM Complex, Double
Complex
AOCL-Sparse Partial (for Partial (for SpMV) Yes Single, Double
SpMV)
Yes Yes, GCC and AOCC on | Not applicable | Not applicable
AOCL- .
Crvptogranh Linux; Clang on
yptography Windows.
AVXS512 Yes, GCC and AOCC on | Yes Not applicable
instructions have | Linux; Clang on
AOCL- not bgen used. Windows.
Combression But, library can
= be built with -
mavx512f
compiler option.
AOCL-RNG Partial Yes Not applicable | Single, Double
AOCL- Not applicable Not applicable Not applicable | Not applicable
SecureRNG
Dependent on the | Dependent on the Not applicable | Single, Double,
AOCL- underlying BLAS | underlying BLAS and Complex, Double
ScaLAPACK and LAPACK LAPACK libraries Complex
libraries
Chapter 1 Introduction 13

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023
Table 1. AOCL Feature Support Matrix - 1
Library\Feature AVX512 Dynamic Dispatcher Vector Precision
AOCL-LibMem | Yes No Yes Not applicable
AOCL-Utils Not applicable Not applicable Not applicable | Not applicable
Table 2. AOCL Feature Support Matrix - 2
Library\Feature glibe Single-threaded Multi-threaded MPI
Dependency
Yes Yes Yes No
AOCL-BLAS
AOCL-LAPACK Yes Yes Yes No
Yes Yes Yes Yes
AOCL-FFTW
AOCL-LibM Yes Yes No No
AOCL-Sparse | Yes Yes Partial (for SpMV) No
AOCL- Yes Yes No No
Cryptography
Yes Yes No No
AOCL-
Compression
AOCL-RNG Yes Yes No No
AOCL- No Yes No No
SecureRNG
AOCL- Yes Yes, dependent on the Yes, dependent on the Yes
underlying BLAS and underlying BLAS and
ScaLAPACK . Y
LAPACK libraries LAPACK libraries
AOCL-LibMem | Yes Yes No No
AOCL-Utils | Yes Yes No No
14 Introduction Chapter 1

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Dynamic Dispatch facilitates building a single binary compatible with all the AMD “Zen”
architectures. At the runtime, this feature enables optimizations specific to the detected AMD “Zen”
architecture.

You can find the flags to enable/disable (the applicable features in 7able I and Table 2) in the
individual library sections.

Additionally, AMD provides Spack (https://spack.io/) recipes for installing AOCL-BLAS, AOCL-
LAPACK, AOCL-ScaLAPACK, AOCL-LibM, AOCL-FFTW, AOCL-Sparse, and AOCL-Utils
libraries.

For more information on the AOCL release and installers, refer the AMD Developer Central (https://
www.amd.com/en/developer/aocl.html).

For any issues or queries on the libraries, send an email to foolchainsupport@amd.com.

To determine the underlying architecture of your AMD system, refer to Check AMD Server
Processor Architecture.

Chapter 1 Introduction 15

https://spack.io/
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 2 Supported OS and Compilers

This section lists the supported operating systems, compilers, and prerequisites for AOCL 4.1. This
release has been validated on the following:

Note: For the supported compiler versions and prerequisites of a specific library, refer to the
corresponding sections.

2.1 Operating Systems

« Ubuntu® 20.04 LTS and 22.04 LTS

« Red Hat® Enterprise Linux® (RHEL) 9.0 and 8.6
* SUSE Linux Enterprise Server (SLES) 15 SP3
* Windows Server 2019

« Windows® 10
* Windows 11 Pro

2.2 Compilers

+ GCC122and13.1
+ AOCC3.2,4.0,and 4.1

« LLVM™ 15and 16
2.3 Library

* glibc 2.28 and 2.35
* OpenSSL 3.0.0 through 3.0.7

24 Message Passing Interface (MPI)
Open MPI 4.1.4
2.5 Programming Language

* Python versions 3.4, 3.6, 3.8, and 3.9
e Perl5.14 and 5.34

16 Supported OS and Compilers Chapter 2

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

2.6 Build Utilities

* GNU Make 4.3
+ CMake 3.20.2, 3.22.1, and 3.26.2
* Microsoft Visual Studio 2019 (build 16.8.7)/2022 (build 17.3.2)

Chapter 2 Supported OS and Compilers 17

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 3 Installing AOCL

3.1 Building from Source

You can download the following open-source libraries of AOCL from GitHub and build from source:
* AOCL-BLAS (https.//github.com/amd/blis)

* AOCL-LAPACK (https://github.com/amd/libflame)

* AOCL-FFTW (https.//github.com/amd/amd-ffiw)

* AOCL-LibM (https://github.com/amd/aocl-libm-ose)

* AOCL-ScaLAPACK (https://github.com/amd/aocl-scalapack)

* AOCL-Sparse (https://github.com/amd/aocl-sparse)

* AOCL-Cryptography (https://github.com/amd/aocl-crypto)

* AOCL-Compression (https.//github.com/amd/aocl-compression)
* AOCL-LibMem (https://github.com/amd/aocl-libmem)

* AOCL-Utils (https://github.com/amd/aocl-utils)

The details on installing from source for each library is explained in the later sections. For more
information on Spack-based installation of AOCL libraries, refer to AMD Developer Central (https://
www.amd.com/en/developer/spack/spac-aocl. html).

3.2 Installing AOCL Binary Packages

The section describes the procedure to install AOCL binaries on Linux and Windows.

3.2.1 Using Master Package

Complete the following steps to install the AOCL library suite:

1. Download the AOCL tar packages from the Download (Attps://www.amd.com/en/developer/
aocl-html#downloads) section to the target machine.

2. Use the command tar -xvf <aocl-linux-<compiler>-4.1.0.tar.gz> to untar the package.

The installer file install.sh is available in aocl-linux-<compiler>-4.1.0.

18 Installing AOCL Chapter 3

https://github.com/amd/blis

https://github.com/amd/libflame
https://github.com/amd/amd-fftw
https://github.com/amd/aocl-libm-ose
https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-sparse
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/spack/spac-aocl.html
https://www.amd.com/en/developer/spack/spac-aocl.html
https://github.com/amd/aocl-crypto
https://github.com/amd/aocl-compression
https://github.com/amd/aocl-libmem
https://github.com/amd/aocl-utils

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

3. Run ./install.sh to install the AOCL package (all libraries) to the default INSTALL PATH: /home/
<username>/aocl/4.1.0/<compiler>, where the compiler value is aocc or gcc.

Use install.sh to print the usage of the script. A few supported options are:
-h — Print the help.
-t — Custom target directory to install libraries.

-1

Library to be installed.
-i — Select LP64/ILP64 libraries to be set as default.

4. To install the AOCL package in a custom location, use the installer with the option: -t
<CUSTOM_PATH>. For example, ./install.sh -t /home/<username>.

5. You can use the master installer to install the individual library out of the master package. The
library names used are blis, libflame, libm, scalapack, rng, secrng, fftw, compression, crypto, and
sparse. You can do one of the following:

» To install a specific library, use the option: -1 <Library name>. For example, ./install.sh -1
blis.

* Install the individual library in a path of your choice. For example, ./install.sh -t /home/amd
-1 libm.

6. AOCL libraries support the following two integer types:

» LP64 libraries and header files are installed in /INSTALL PATH/lib LP64 and /
INSTALL PATH/include LP64 respectively.

» ILP64 libraries and header files are installed in /INSTALL PATH/lib ILP64 and /
INSTALL PATH/include ILP64 respectively.

Note: AOCL-Compression supports only LP64; AOCL-FFTW supports LP64 and ILP64 in
single binary using a different set of APIs.

By default, LP64 libraries and header files are available in /INSTALL PATH/lib and /
INSTALL PATH/include respectively.

Suffix ./install.sh with -1 <1p64/ilp64> tO:

* Set the LP64 libraries as the default libraries, use the installer with the option: -i 1pe4. For
example, ./install.sh -t /home/amd -1 blis -i 1pé4.

This installs only AOCL-BLAS library in the path /home/amd and sets LP64 AOCL-BLAS
libraries as the default.

» Set ILP64 libraries as the default use the installer with the option: -i ilpea. For example, ./
install.sh -i ilp64.

This installs all AOCL libraries in the default path and sets ILP64 libraries as the default.

Chapter 3 Installing AOCL 19

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

3.2.2 Using Library Package

Refer to the AOCL home page (https.//www.amd.com/en/developer/aocl. html#downloads) to
download the individual library binaries from the respective pages.

For example, AOCL-BLAS and AOCL-LAPACK tar packages are available in the BLAS library
page (https://www.amd.com/en/developer/aocl/blas.html).

3.2.3 Using Debian and RPM Packages

The Debian and RPM packages of AOCL are available in the Download section (https.//
www.amd.com/en/developer/aocl. html#downloads).

The package name used in the following installation procedure is based on the ‘gcc’ build. For the
AOCC build, you can replace ‘gcc’ with ‘aocc’.

Installing Debian Package
Complete the following steps to install the AOCL Debian package:
1. Download the AOCL 4.1 Debian package to the target machine.

2. Check the installation path before installing.
$ dpkg -c aocl-linux-gcc-4.1.0_1 amd64.deb
3. Install the package.

$ sudo dpkg -i aocl-linux-gcc-4.1.0_1 amd64.deb
Oor
$ sudo apt install ./aocl-linux-gcc-4.1.0_1 amd64.deb

Note: You must have the sudo privileges to perform this action.

4. Display the installed package information along with the package version and a short description.
$ dpkg -s aocl-linux-gcc-4.1.0

5. List the contents of the package.
$dpkg -L aocl-linux-gcc-4.1.0

6. AOCL libraries support the following two integer types:

» LP64 libraries and header files are installed in /INSTALL PATH/lib LP64 and /
INSTALL PATH/include LP64 respectively.

» [LP64 libraries and header files are installed in /INSTALL PATH/lib ILP64 and /
INSTALL PATH/include ILP64 respectively.

20 Installing AOCL Chapter 3

https://www.amd.com/en/developer/aocl/blas.html
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Note: AOCL-Compression supports only LP64; AOCL-FFTW supports LP64 and ILP64 in
single binary using a different set of APIs.

By default, LP64 libraries and header files are available in /INSTALL PATH/lib and /
INSTALL PATH/include respectively, where:

» INSTALL PATH: /opt/AMD/aocl/aocl-linux-<compiler>-4.1.0/<compiler>
* Compiler: aocc or gcc

For example, INSTALL PATH for aocc compiler is:
/opt/AMD/aocl/aocl-linux-aocc-4.1.0/aocc

To change the default library path to ILP64 / LP64, use the script as follows:

cd /opt/AMD/aocl/aocl-linux-<compiler>-4.1.0/aocc
sudo bash set_aocl_interface_symlink.sh <ilp64 / 1p64>

Uninstalling Debian package

Execute one of the following commands to uninstall the AOCL Debian package:

$ sudo dpkg -r aocl-linux-gcc-4.1.0

or

$ sudo apt remove aocl-linux-gcc-4.1.0

Installing RPM Package
Complete the following steps to install the AOCL RPM package:

1.
2.

Download the AOCL 4.1 RPM package to the target machine.

Install the package.

$ sudo rpm -ivh aocl-linux-gcc-4.1.0-1.x86_64.rpm

Note: You must have the sudo privileges to perform this action.

Display the installed package information along with the package version and a short description.
$ rpm -qi aocl-linux-gcc-4.1.0.x86_64

List the contents of the package.

$ rpm -ql aocl-linux-gcc-4.1.0

AOQOCL libraries support the following two integer types:

» LP64 libraries and header files are installed in /INSTALL PATH/lib _LP64 and /
INSTALL PATH/include LP64 respectively.

» ILP64 libraries and header files are installed in /INSTALL PATH/lib ILP64 and /
INSTALL PATH/include ILP64 respectively.

Chapter 3 Installing AOCL 21

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Note: AOCL-Compression supports only LP64; AOCL-FFTW supports LP64 and ILP64 in
single binary using a different set of APIs.

By default, LP64 libraries and header files are available in /INSTALL PATH/lib and /
INSTALL PATH/include respectively.

Where,

* INSTALL PATH: /opt/AMD/aocl/aocl-linux-<compiler>-4.1.0/<compiler>
* Compiler: aocc or gcc

For example, INSTALL PATH for aocc compiler is:
Jopt/AMD/aocl/aocl-linux-aocc-4.1.0/aocc

To change the default library path to ILP64 / LP64, use the script as follows:

cd /opt/AMD/aocl/aocl-linux-<compiler>-4.1.0/aocc
sudo bash set_aocl_interface_symlink.sh <ilp64 / 1p64>

Uninstalling RPM package

Execute the following command to uninstall the AOCL RPM package:

$ rpm -e aocl-linux-gcc-4.1.0

3.24 Using Windows Packages

Installing a Windows Package

Complete the following steps to install the AOCL Windows package:

1.

N v AW

Download the AOCL Windows installer from the Download (https.//www.amd.com/en/developer/
aocl.html#downloads) section.

Double-click the executable.

The installation wizard is displayed.

Click the Next button.

Accept the License Agreement and click the Next button.
Select the libraries to be installed and the destination folder.
Click the Install button to begin the installation.

Click the Finish button to complete the installation.

22

Installing AOCL Chapter 3

https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Uninstalling a Windows Package
Complete the following steps to uninstall the AOCL Windows binaries:
1. Double-click the AOCL Windows installer.
2. Click the Remove button.
Alternatively, you can also use the Add or remove programs option in Windows.

3. Click the Finish button to complete the uninstallation.

Chapter 3 Installing AOCL 23

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter4 AOCL-BLAS

AOCL-BLAS is a high-performant implementation of the Basic Linear Algebra Subprograms
(BLAS). The BLAS was designed to provide the essential kernels of matrix and vector computation
and are the most commonly used computationally intensive operations in dense numerical linear
algebra. Select kernels have been optimized for the AMD “Zen”-based processors, for example,
AMD EPYC™, AMD RyzenTM, AMD RyzenTM ThreadripperTM processors by AMD and others.

AOCL_BLAS is developed as a forked version of BLIS (https.//github.com/flame/blis), which is
developed by members of the Science of High-Performance Computing (SHPC) group in the Institute
for Computational Engineering and Sciences at The University of Texas at Austin and other
collaborators (including AMD). All known features and functionalities of BLIS are retained and
supported in AOCL-BLAS library, along with the standard BLAS and CBLAS interfaces. C++
template interfaces for the BLAS functionalities are also included.

4.1 Installation on Linux

You can install AOCL-BLAS from source or pre-built libraries.

4.1.1 Build AOCL-BLAS from Source

GitHub URL: https://github.com/amd/blis
You can use the following ways to build AOCL-BLAS using the configure/make method:

» auto — This configuration generates a binary optimized for the build machine’s AMD “Zen” core
architecture. This is useful when you build the library on the target system. Starting from the
AOCL-BLAS 2.1 release, the auto configuration option enables selecting the appropriate build

configuration based on the target CPU architecture. For example, for a build machine using the 1%
Gen AMD EPYC™ (code name "Naples") processor, the zen configuration will be auto-selected.

For a build machine using the 24 Gen AMD EPYC™ processor (code name "Rome"), the zen2
configuration will be auto-selected. From AOCL-BLAS 3.0 forward, zen3 will be auto-selected

for the 3™ Gen AMD EPYC™ processor (code name "Milan"). From AOCL-BLAS 4.0 forward,
zend will be auto-selected for the 4" Gen AMD EPYC™ processors (code name "Genoa" or
"Bergamo").

» zen — This configuration generates a binary compatible with AMD “Zen” architecture and is
optimized for it. The architecture of the build machine is not relevant.

» zen2 — This configuration generates binary compatible with AMD “Zen2” architecture and is
optimized for it. The architecture of the build machine is not relevant.

» zen3 — This configuration generates binary compatible with AMD “Zen3” architecture and is
optimized for it. The architecture of the build machine is not relevant.

24 AOCL-BLAS Chapter 4

https://github.com/amd/blis
https://github.com/flame/blis

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

» zen4 — This configuration generates binary compatible with AMD “Zen4” architecture and is
optimized for it. The architecture of the build machine is not relevant.

* amdzen — The library built using this configuration generates a binary compatible with and
optimized for AMD “Zen”, AMD “Zen2”, AMD “Zen3”,and AMD “Zen4” architectures. The
architecture of the build machine is not relevant. The architecture of the target machine is checked
during the runtime, based on which, the relevant optimizations are picked up automatically.

This feature is also called Dynamic Dispatch. For more information, refer “Dynamic Dispatch”
on page 36.

Depending on the target system and the build environment, you must enable/disable the appropriate
configure options. The following sub-sections provide instructions for compiling AOCL-BLAS. For
a complete list of the options and their descriptions, use the command ./configure --help.

4.1.1.1 Single-thread AOCL-BLAS

Complete the following steps to install a single-thread AOCL-BLAS:
1. Clone the AOCL-BLAS Git repository (https.//github.com/amd/blis.git).

2. Configure the library as required:
GCC (Default)

$./configure --enable-cblas --prefix=<your-install-dir> auto

AOCC
$./configure --enable-cblas --prefix=<your-install-dir> --complex-return=intel CC=clang
CXX=clang++ auto

3. To build the library, use the command “$ make>.

4. To install the library on build machine, use the command “$ make install”.

4.1.1.2 Multi-thread AOCL-BLAS

Complete the following steps to install a multi-thread AOCL-BLAS:
1. Clone the AOCL-BLAS Git repository (https.//github.com/amd/blis.git).

2. Configure the library as required:
GCC (Default)

$./configure --enable-cblas --enable-threading=[Mode] --prefix=<your-install-dir> auto

AOCC
$./configure --enable-cblas --enable-threading=[Mode] --prefix=<your-install-dir> --complex-
return=intel CC=clang CXX=clang++ auto

[Mode] values can be openmp and no. "no" will disable multi-threading.
To build the library, use the command “make”.

4. To install the library on build machine, use the command “make install”.

Chapter 4 AOCL-BLAS 25

https://github.com/amd/blis.git
https://github.com/amd/blis.git

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

4.1.1.3 Verifying AOCL-BLAS Installation
The AOCL-BLAS source directory contains the test cases which demonstrate the usage of AOCL-
BLAS APIs.

To execute the tests, navigate to the AOCL-BLAS source directory and run the following command:

$ make check

Execute the AOCL-BLAS C++ Template API tests as follows:
$ make checkcpp

4.1.2 Using Pre-built Binaries

AOCL-BLAS library binaries for Linux are available at the following URL:
https://www.amd.com/en/developer/aocl/blas. html

Also, the AOCL-BLAS binary can be installed from the AOCL master installer tar file (https://
www.amd.com/en/developer/aocl.html).

The master installer includes the following:

» Single threaded and multi-threaded AOCL-BLAS binaries.

* Binaries built with amdzen config with LP64 and ILP64 integer support.

* Multi-threaded AOCL-BLAS binary (libblis-mt) built with OpenMP threading mode.

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master
Package” on page 18.

4.2 Application Development Using AOCL-BLAS

This section explains the different types of APIs provided by AOCL-BLAS. It describes how to call
them and link with the library.

4.2.1 API Compatibility Layers (Calling AOCL-BLAS)

AOCL-BLAS supports various API compatibility layers. The following sub-sections explain these
layers with source code examples.

The standard BLAS/CBLAS layers allows portability between various libraries.

AOCL-BLAS also includes BLIS APIs that provide more flexibility and control to help achieve the
best performance in some situations.

26 AOCL-BLAS Chapter 4

https://www.amd.com/en/developer/aocl/blas.html
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

AMDA1

57404 Rev.4.1

August 2023

AOCL User Guide

The following table lists all the supported layers and the configure options to control them, with the

default setting in bold:
Table 3. AOCL-BLAS API Compatibility Layers
AP.I - Header Configuration
Compatibility . . Usages
Files Option
Layer
BLAS (Fortran) | Not --enable-blas Use this option when calling AOCL-BLAS from
applicable | --disable-blas | Fortran applications.
API Name Format: DGEMM
BLAS (C) blis.h --enable-blas Use this option when calling AOCL-BLAS from C
--disable-blas application using BLAS type parameters.
API Name Format: dgemm
CBLAS cblas.h --enable-cblas Use this option when calling AOCL-BLAS from C
(Implies -- application using CBLAS type parameters.
enable-blas)
--disable-cblas
API Name Format: cblas dgemm
BLIS-C blis.h Default This is AOCL-BLAS library specific (non-standard)
Non-standard interface, it provides most flexibility in calling
AOCL-BLAS for best performance. However, these
applications will not be portable to other BLAS/
CBLAS compatible libraries.
API Name Format: bli_gemm
API Name Format: blis_gemm_ex
BLIS — CPP blis.hh Default This is AOCL-BLAS library specific (non-standard)
Non-standard C++ interface. This interface follows same parameter
order as CBLAS. However, these applications will
not be portable to other BLAS/CBLAS compatible
libraries.
API Name Format: blis::gemm

Chapter 4

AOCL-BLAS

27

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

4.2.2 API Compatibility - Advance Options

The API compatibility can be further extended to meet additional requirements for input sizes
(ILP64) and different ways in which complex numbers are handled. The following table explains
such options:

Table 4. AOCL-BLAS API Compatibility - Advance Options

Configuration
Feature Do Usages
ILP64 --blas-int-size=SIZE | This option can be used to specify the integer types used in external
Support BLAS/CBLAS interfaces.
Accepted Values:
ILP64 - SIZE = 64
LP64 - SIZE = 32 (Default)
Complex --complex- The complex numbers can be returned through registers or the hidden
Number return=gnu|intel parameter.
retum Based on the way application is calling the API, the library must be
handling configured to match the return value receptions.
gnu = return complex values through registers
intel = return complex values through hidden parameter.
For more information and example, refer “Returning Complex
Numbers” on page 35.

4.2.3 Linking Application with AOCL-BLAS

The AOCL-BLAS library can be linked statically or dynamically with the user application. It has a
separate binary for single-threaded and multi-threaded implementation.

The basic build command is as following:
gcc test_blis.c -I<path-to-AOCL-BLAS-header> <link-options> -o test_blis.x

The following table explains different options depending on a particular build configuration:
Table 5. AOCL-BLAS Application - Link Options

Application Type | Linking Type Link Options
Single-threaded Static <path-to-AOCL-BLAS-1library>/libblis.a -1m -lpthread
Single-threaded Dynamic -L<path-to-AOCL-BLAS-1library> -1blis -1m -lpthread
Multi-threaded Static <path-to-AOCL-BLAS-1library>/libblis-mt.a -1m -fopenmp
Multi-threaded Dynamic -L<path-to-AOCL-BLAS-library> -1blis-mt -1lm -fopenmp

28 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

4.2.3.1 Example - Dynamic Linking and Execution

AOCL-BLAS can be built as a shared library. By default, the library is built as both static and shared
libraries. Complete the following steps to build a shared lib version of AOCL-BLAS and link it with
the user application:

1. During configuration, enable the support for the shared lib using the following command:

./configure --disable-static --enable-shared zen

2. Link the application with the generated shared library using the following command:

gcc CBLAS_DGEMM_usage.c -I path/to/include/aocl-blas/ -L path/to/libblis.so -1lblis -1m -
lpthread -o CBLAS_DGEMM_ usage.Xx

3. Ensure that the shared library is available in the library load path. Run the application using the
following command (for this demo we will use the BLAS DGEMM usage.c):

$ export LD_LIBRARY_PATH="path/to/libblis.so”

$./BLAS_DGEMM_usage.Xx

a =

1.000000 2.000000
3.000000 4.000000
b =

5.000000 6.000000
7 .000000 8.000000
c =

19.000000 22.000000
43.000000 50.000000

4.2.4 AOCL-BLAS Usage in Fortran

AOCL-BLAS can be used with the Fortran applications through the standard BLAS API.

Chapter 4 AOCL-BLAS 29

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

4.2.4.1 Using BLAS API in Fortran

For example, the following Fortran code does a double precision general matrix-matrix
multiplication. It calls the ' DGEMM' BLAS API function to accomplish this. A sample command to
compile and link it with the AOCL-BLAS library is shown in the following code:

| File: BLAS_DGEMM_usage.f
! Example code to demonstrate BLAS DGEMM usage

program dgemm_usage

implicit none

EXTERNAL DGEMM

DOUBLE PRECISION, ALLOCATABLE :: a(:,:)
DOUBLE PRECISION, ALLOCATABLE :: b(:,:)
DOUBLE PRECISION, ALLOCATABLE :: c(:,:)

INTEGER I, J, M, N, K, lda, ldb 1ldc
DOUBLE PRECISION alpha, beta

HK%%

Q

2
M
M
a=M
1db=K
ldc=M

alpha=1.0
beta=0.0

ALLOCATE (a(1da,K), b(ldb,N), c(1ldc,N))

a=RESHAPE((/ 1.0, 3.0, &
2.0, 4.0 /), &
(/1da,K/))

b=RESHAPE((/ 5.0, 7.0, &
6.0, 8.0 /), &
(/1db,N/))

WRITE(*,*) ("a =")
DO I = LBOUND(a,1), UBOUND(a,1)

WRITE(*,*) (a(I,J), J=LBOUND(a,2), UBOUND(a,2))
END DO
WRITE(*,*) ("b =")
DO I = LBOUND(b,1), UBOUND(b,1)

WRITE(*,*) (b(I,J), J=LBOUND(b,2), UBOUND(b,2))
END DO

CALL DGEMM('N','N',M,N,K,alpha,a,lda,b,1ldb,beta,c,1ldc)
WRITE(*,*) ("c =")
DO I = LBOUND(c,1), UBOUND(c,1)

WRITE(*,*) (c(I,J), J=LBOUND(c,2), UBOUND(c,2))
END DO

end program dgemm_usage

30 AOCL-BLAS Chapter 4

AMDA1
57404 Rev.4.1 August 2023 AOCL User Guide

A sample compilation command with gfortran compiler for the code above:
gfortran -ffree-form BLAS DGEMM_usage.f path/to/libblis.a

4.2.5 AOCL-BLAS Usage in C

The AOCL-BLAS library supports standard BLAS, CBLAS, and BLIS APIs. They can be called
from C or C++ programs. BLAS and CBLAS examples are available at:
https://github.com/amd/blis/blob/master/docs/BLISObjectAPl.md

Details on the BLIS interfaces are available at:

https://github.com/amd/blis/blob/master/docs/BLISTypedAPIl. md
4.2.5.1 Using BLAS APl in C

Following is the C version of the Fortran code in section 4.2.4. It uses the standard BLAS API.
The following process takes place during the execution of the code:

1. The matrices are transposed to account for the row-major storage of C and the column-major
convention of BLAS (inherited from Fortran).

2. The function arguments are passed by address again to be in line with Fortran conventions.

3. There is a trailing underscore in the function name (‘'dgemm ') as BLAS APIs require Fortran
compilers to add a trailing underscore.

Chapter 4 AOCL-BLAS 31

https://github.com/amd/blis/blob/master/docs/BLISObjectAPI.md
https://github.com/amd/blis/blob/master/docs/BLISTypedAPI.md

AMDA1

AOCL User Guide

57404 Rev. 4.1

August 2023

4. "blis.h" is included as a header. A sample command to compile it and link with the AOCL-BLAS
library is also shown in the following code:
// File: BLAS_DGEMM_usage.c
// Example code to demonstrate BLAS DGEMM usage
#include<stdio.h>
#include "blis.h"
#tdefine DIM 2
int main() {
double a[DIM * DIM] = { 1.0, 3.0, 2.0, 4.0 };
double b[DIM * DIM] = { 5.0, 7.0, 6.0, 8.0 };
double c[DIM * DIM];
int I, J, M, N, K, 1lda, 1ldb, ldc;
double alpha, beta;
M = DIM;
N = M;
K = M;
lda = M;
1db = K;
ldc = M;
alpha = 1.0;
beta = 0.90;
printf("a = \n");
for (I =0; I <M; I++) {
for (3 =0; J<K; J++) {
printf("%f\t", a[J * K + I]);
¥
printf("\n");
¥
printf("b = \n");
for (I =0; I<K; I ++) {
for ((J =0; J <N; J++) {
printf("%f\t", b[J * N + I]);
¥
printf("\n");
}
dgemm_("N","N",&M, &N, &K,&alpha,a,&lda,b,&ldb,&beta,c,&ldc);
printf(“c = \n");
for (I =0; I <M; I++) {
for (3 =0; J <N; J++) {
printf("%f\t", c[J * N + I]);
¥
printf("\n");
¥
return 0;
}
32 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

A sample compilation command with a gcc compiler for the code above:
gcc BLAS _DGEMM_usage.c -Ipath/to/include/aocl-blas/ -lpthread -1m path/to/libblis.a

4.2.5.2 Example Application - Using AOCL-BLAS with CBLAS API

This section contains an example application written in C code using the CBLAS API for DGEMM.
The following process takes place during the execution of the code:
1. The CBLAS Layout option is used to choose row-major layout which is consistent with C.

2. The function arguments are passed by value.

Chapter 4 AOCL-BLAS 33

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

3. "cblas.h" is included as a header. A sample command to compile it and link with the AOCL-
BLAS library is also shown in the following code:

// File: CBLAS_DGEMM_usage.c

// Example code to demonstrate CBLAS DGEMM usage
#include<stdio.h>

#include "cblas.h"

#define DIM 2

int main() {

double a[DIM * DIM]
double b[DIM * DIM] =
double c[DIM * DIM];
int I, J, M, N, K, 1lda, 1ldb, 1ldc;
double alpha, beta;

{ 1.0, 2.0, 3.0, 4.0 };
{5.0, 6.0, 7.0, 8.0 };

)

M = DIM;
N=M
K = M;
lda = M
ldb = K;
ldc M
alpha =
beta = 0.0;

printf("a =
for (I = 0;
for (J = 0;
printf("%f\t"
}
printf("\n");
}
printf("b =
for (I 0;
for (J = 0;
printf("%f\t"
¥
printf("\n");
}

¢—|-\-

(o

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, alpha, a, lda, b, 1ldb, beta,
c, ldc);

printf("c =
for (I =0;
for (J = 0;
printf("%f\t"
}

printf("\n");
}

return 0;

34 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Note: To get the CBLAS API with AOCL-BLAS, you must provide the flag '--enable-cblas' to the
‘configure’ command while building the AOCL-BLAS library.

A sample compilation command with a gcc compiler for the code above is as follows:

gcc CBLAS_DGEMM_usage.c -Ipath/to/include/aocl-blas/ -lpthread -1m path/to/libblis.a

4.2.5.3 Returning Complex Numbers
The GNU Fortran compiler (gfortran), AOCC (Flang), and Intel Fortran compiler (ifort) have different
requirements for returning complex numbers from the C functions as follows:

* GNU (gfortran)/AOCC (Flang) compiler returns complex numbers using registers. Thus, the
complex numbers are returned as the return value of the function itself.

 Intel® (ifort) compiler returns complex numbers using hidden first argument. The caller must pass
the pointer to the return value as the first parameter.

gfortran Example:

* Configure Option:

--complex-return=gnu

 API Call:

ret_value = cdotc_(&n, x, &incx, y, &incy);
ifort example:

* Configure Option:

-—complex-return=intel

 API Call:

cdotc_(&ret_value, &n, x, &incx, y, &incy);

This feature is currently enabled only for cdotx and zdotx APIs.

4.3 Migrating/Porting

The application written for MKL, OpenBLAS or any other library using standard BLAS or CBLAS
interfaces can be ported to AOCL-BLAS with minimal or no changes.

Complete the following steps to port from BLAS or CBLAS to AOCL-BLAS:
1. Update the source code to include the correct header files.

2. Update the build script or makefile to use correct compile or link option.

Chapter 4 AOCL-BLAS 35

AMDA1

AOCL User Guide

57404 Rev. 4.1

The following table lists the compiler and linker options to use while porting to AOCL-BLAS:

August 2023

Table 6. Porting to AOCL-BLAS
AOCL-BLAS
MKL OpenBLAS
Single-threaded | Multi-threaded
Header File | mkl.h cblas.h blis.h/cblas.h blis.h/cblas.h
-lmkl_intel Ip64 -lopenblas -lm -Iblis - -lm -fopenmp
-lmkl_core Ipthread -Iblis-mt
Link Opti -
I PPRONS |1kl blacs_intelmpi_ilp64
-lmkl_intel thread

4.4 Using AOCL-BLAS Library Features

4.4.1 Dynamic Dispatch
Starting from AOCL 3.1, AOCL-BLAS supports Dynamic Dispatch feature. It enables you to use the
same binary with different code paths optimized for different architectures.

44.1.1 Purpose

Before Dynamic Dispatch, the user had to build different binaries for each CPU architecture, that is,
AMD “Zen”, AMD “Zen2”, and AMD “Zen3” architectures. Furthermore, when building the
application, users had to ensure that they used the correct AMD “Zen’-based library as needed for the
platform. This becomes challenging when using AOCL-BLAS on a cluster having nodes of different
architectures.

Dynamic Dispatch addresses this issue by building a single binary compatible with all the AMD
“Zen” architectures. At the runtime, the Dynamic Dispatch feature enables optimizations specific to
the detected AMD “Zen” architecture.

4.4.1.2 On non-AMD “Zen” Architectures

The Dynamic Dispatch feature supports AMD “Zen”, AMD “Zen2”, AMD “Zen3”, and AMD
“Zen4” architectures in a single binary. However, it also includes the support for standard x86
architecture. The generic architecture uses a pure C implementation of the APIs and does not use any
architecture-specific features.

The specific compiler flags used for building the library with generic configuration are:
-02 -funsafe-math-optimizations -ffp-contract=fast -Wall -Wno-unused-function -Wfatal-errors

Note: As no architecture specific optimization and vectorized kernels are enabled, performance with
the generic architecture may be significantly lower than the architecture-specific
implementation.

36 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

4.4.1.3 Using Dynamic Dispatch

Building AOCL-BLAS

Dynamic Dispatch must be enabled while building the AOCL-BLAS library. This is done by building
the library for amdzen configuration as explained in “Build AOCL-BLAS from Source” on page 24.

Code Path Information

Dynamic Dispatch can print debugging information on the selected code path. This is enabled by
setting the environment variable BLIS_ ARCH_DEBUG=1.

Architecture Selection at Runtime

For most use cases, Dynamic Dispatch will detect the underlying architecture and enable appropriate
code paths and optimizations.

However, AOCL-BLAS can be forced to use a specific architecture by setting the environment
variable BLIS ARCH_TYPE as follows:
BLIS_ARCH_TYPE=value <AOCL-BLAS linked application>

Where, value = {zen4, zen3, zen2, zen, generic}
You must note the following:
* The code path names are not case sensitive.

* AOCL-BLAS 3.2 and earlier used an enumeration number (across all the supported AOCL-BLAS
architecture code paths) to select the code path. The enumeration number could change from
release to release as new code paths are added. Thus, it is recommended to avoid setting
BLIS ARCH_TYPE based on the enumeration number and use a meaningful name as shown
above.

* Specifying a particular code path will completely override the automatic selection and thus, the
following scenarios are possible:

— A code path unavailable in the AOCL-BLAS build is being used. This will result in an error
message from the AOCL-BLAS library which will then abort.

— A code path executes instructions unavailable on the processor being used, for example, trying
to run the AMD “Zen4” code path (which may use AVX512 instructions) on a AMD “Zen3”
or older system. If this happens, the program may stop with an "illegal instruction" error. This
may be routine and problem size dependent.

In some circumstances, AOCL-BLAS aborting on an error from BLIS ARCH TYPE being set
incorrectly may not be acceptable. If you are building AOCL-BLAS from source, there are two

Chapter 4 AOCL-BLAS 37

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

options to mitigate this issue. One is to change the environment variable used from
BLIS ARCH_TYPE to another name, for example:

./configure --enable-cblas --prefix=<your-install-dir> -rename-blis-arch-
type=MY_BLIS_ARCH_TYPE amdzen
. make aocl-blas library
. compile program linking with aocl-blas
export BLIS_ARCH_TYPE=zen3
export MY_BLIS_ARCH_TYPE=zen2
./program.exe

This will cause program.exe (which uses AOCL-BLAS) to ignore the setting of BLIS ARCH_TYPE
to zen3. Instead, it will take the value of MY BLIS ARCH TYPE and use the zen2 code path.
Alternatively, the mechanism to allow manual selection of code path can be disabled:

./configure --enable-cblas --prefix=<your-install-dir> --disable-blis-arch-type amdzen

In this case, Dynamic Dispatch will still occur among the included code paths. However, only by
automatic selection based on the code architecture.

Model Selection at Runtime

Recent AMD “Zen” generations have added more diverse choices of core designs and cache
characteristics. For example, Milan and Milan-X variants at AMD “Zen3”; Genoa, Bergamo, and
Genoa-X variants at AMD “Zen4”. Some AOCL-BLAS APIs may be tuned differently for these
different models. The appropriate model will be selected automatically by Dynamic Dispatch.
However, AOCL can be forced to use a specific model by setting the environment variable

BLIS MODEL TYPE as follows:

BLIS_MODEL_TYPE=value <AOCL-BLAS linked application>
where value = {Milan, Milan-X, Genoa, Bergamo, Genoa-X}
Note the following:

» Different model values correspond to specific BLIS ARCH_TYPE values (either set
automatically or explicitly by the user). Thus, Milan and Milan-X correspond to AMD “Zen3”;
Genoa, Bergamo, and Genoa-X correspond to AMD “Zen4”.

* Incorrect values of BLIS MODEL TYPE do not cause an error, the default model type for the
selected architecture will be used.

* The number of APIs that have different optimizations by model type is currently very small.
Setting this environment variable may provide consistent results across different models if
consistency is a higher priority than best performance.

As with BLIS ARCH_TYPE, when building BLAS from source, the name of the environment
variable used to set the model type can be changed, for example:

./configure --enable-cblas --prefix=<your-install-dir> -rename-blis-model-
type=MY_BLIS MODEL_TYPE amdzen

38 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Disabling the mechanism to allow the manual section of BLAS architecture will also disable the
mechanism to allow the manual section of the model.

./configure --enable-cblas --prefix=<your-install-dir> --disable-blis-arch-type amdzen
Dynamic Dispatch on non-AMD Architectures

Previous AOCL-BLAS releases identified the processor based on Family, Model, and other cpuid
features, and selected the appropriate code path based on the preprogrammed choices. With Dynamic
Dispatch, an unknown processor would fall through to the slow "generic" code path, although users
could override this by setting BLIS ARCH_TYPE to a suitable value.

In AOCL-BLAS 4.1, additional cpuid tests based on AVX2 and AVX512 instruction support are used
to enable AMD “Zen3” or AMD “Zen4” code paths to be selected by default on suitable processors
(current or future AMD/Intel processors). The AMD “Zen3” or AMD “Zen4” code paths are not (re-)
optimized specifically for these different architectures, but should perform better than the slow
"generic" code path.

To be more specific:
* AVX2 support requires AVX2 and FMA3.
* AVXS512 support requires AVX512 F, DQ, CD, BW, and VL.

4.4.2 AOCL-BLAS - Running the Test Suite

The AOCL-BLAS source directory contains a test suite to verify the functionality of AOCL-BLAS
and BLAS APIs. The test suite invokes the APIs with different inputs and verifies that the results are
within the expected tolerance limits.

For more information, refer https.://github.com/amd/blis/blob/master/docs/Testsuite.md.

4.4.2.1 Multi-thread Test Suite Performance

Starting from AOCL-BLAS 3.1, the dynamic selection of number of threads is supported. If the
number of threads are not specified, AOCL-BLAS uses the maximum number of threads equal to the
number of cores available on the system. A higher number of threads result in better performance for
medium to large size matrices found in practical use cases.

However, the higher number of threads results in poor performance for very small sizes used by the
test and check features. Hence, you must specify the number of threads while running the test/test
suite.

The recommended number of threads to run the test suite is 1 or 2.
Running Test Suite

Execute the following command to invoke the test suite:
$ OMP_NUM_THREADS=2 make test

Chapter 4 AOCL-BLAS 39

https://github.com/amd/blis/blob/master/docs/Testsuite.md

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The sample output from the execution of the command is as follows:

$:~/blis$ OMP_NUM_THREADS=2 make test
Compiling obj/zen3/testsuite/test_addm.o
Compiling obj/zen3/testsuite/test_addv.o

<<< More compilation output >>>

Compiling obj/zen3/testsuite/test_xpbym.o

Compiling obj/zen3/testsuite/test_xpbyv.o

Linking test_libblis-mt.x against 'lib/zen3/libblis-mt.a -1m -lpthread -fopenmp -1lrt'
Running test_libblis-mt.x with output redirected to ‘output.testsuite’
check-blistest.sh: All BLIS tests passed!

Compiling obj/zen3/blastest/cblatl.o

Compiling obj/zen3/blastest/abs.o

<<< More compilation output >>>

Compiling obj/zen3/blastest/wsfe.o

Compiling obj/zen3/blastest/wsle.o

Archiving obj/zen3/blastest/libf2c.a

Linking cblatl.x against 'libf2c.a lib/zen3/libblis-mt.a -1m -lpthread -fopenmp -1rt'
Running cblatl.x > 'out.cblatl'’

<<< More compilation output >>>

Linking zblat3.x against 'libf2c.a lib/zen3/libblis-mt.a -1lm -lpthread -fopenmp -1rt'
Running zblat3.x < './blastest/input/zblat3.in' (output to 'out.zblat3')
check-blastest.sh: All BLAS tests passed!

4.4.3 Testing/Benchmarking

The AOCL-BLAS source has an API specific test driver and this section explains how to use it for a
specific set of matrix sizes.

The source file for this driver is test/test gemm.c and the executable is test/test gemm_blis.x.
Complete the following steps to execute the GEMM tests on specific inputs:
Enabling File Inputs

By default, file input/output is disabled (instead it uses start, end, and step sizes). To enable the file
inputs, complete the following steps:

1. Open the file test/test gemm.c.
2. Uncomment the following two macros at the start of the file:

a. #define FILE_IN_OUT
b. #define MATRIX_INITIALISATION

Building Test Driver

Execute the following commands to build the test driver:

$ cd tests
$ make blis

40 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Creating an Input File

The input file accepts matrix sizes and strides in the following format. Each dimension is separated by
a space and each entry is separated by a new line.

For example, mkncs_acs_bcs_c. Where:

* Matrix A is of size m x k

* Matrix Bisof sizek xn

* Matrix Cis of size m x n

This test application (test_gemm.c) assumes column-major storage of matrices.

The valid values of CS_A, CS B, and CS_C for a GEMM operation C = beta*C + alpha* A * B, are
as follows:

*« CS A>m
« CS B>=k
+ CS C>m
Running the Tests

Execute the following commands to run the tests:

$ cd tests
$./test_gemm_blis.x <input file name> <output file name>

An execution sample (with the test driver) for GEMM is as follows:

$ cat inputs.txt

200 100 100 200 200 200

10 4 1 100 100 100

4000 4000 400 4000 4000 4000

$./test_gemm_blis.x inputs.txt outputs.txt

~vnnnnnnns BLAS S m k n cs_a cs b cs_C gflops
data_gemm_blis 200 100 100 200 200 200 27.211
data_gemm_blis 10 4 1 100 100 100 0.027
data_gemm_blis 4000 4000 400 4000 4000 4000 45.279
$ cat outputs.txt
m k n cs_a cs_b cs_c gflops
200 100 100 200 200 200 27.211
10 4 1 100 100 100 0.027
4000 4000 400 4000 4000 4000 45.279

Chapter 4 AOCL-BLAS 41

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

4.4.4 AOCL-BLAS Utility APIs

This section explains some of the AOCL-BLAS APIs used to get the AOCL-BLAS library
configuration information and for configuring optimization tuning parameters.

Table 7. AOCL-BLAS Utility APIs
API Usages

bli_info get version str Returns the version string in
the form of “AOCL-BLIS
4.1.0 Build yyyyddmm”.

bli_info get enable openmp Returns true if OpenMP/
bli_info get enable pthreads pthreads are enabled and false
bli_info get enable threading otherwise.

bli_thread get num threads! Returns the default number of

threads used for the
subsequent BLAS calls.

bli_thread set num_threads(dim_t | Sets the number of threads for

n_threads)! the subsequent BLAS calls.
bli_thread set ways(Sets the number of threads for
dim _tjc, different levels of
dim_t pe parallelization as per
di - GotoBLAS five loops
m tic, .
. architecture.
dim_t jr,
dim_t ir)!
Notes:

1. Refer https://github.com/amd/blis/blob/master/docs/Multithreading. md#tspecifying-multithreading

4.5 Debugging and Troubleshooting

4.5.1 Debugging Build Using GDB

The AOCL-BLAS library can be debugged on Linux using GDB. To enable the debugging support,
build the library with the --enable-debug flag. Use following commands to configure and build the
debug version of AOCL-BLAS:

$ cd blis_src

$./configure --enable-cblas --enable-debug auto
$ make -j

Use the following commands to link the application with the binary and build application with debug
support:
$ cd blis_src

$ gcc -g -00 -lpthread -1m -I<path-to-AOCL-BLAS-header> <path-to-AOCL-BLAS-library>/libblis.a
test_gemm.c -o test_gemm_blis.x

42 AOCL-BLAS Chapter 4

https://github.com/amd/blis/blob/master/docs/Multithreading.md#specifying-multithreading

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

You can debug the application using gdb. A sample output of the gdb session is as follows:

$ gdb ./test_gemm_blis.x
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-12.el8

Reading symbols from ./test _gemm_blis.x...done.

(gdb) break bli_gemm_small

Breakpoint 1 at @x677543: file kernels/zen/3/bli_gemm_small.c, line 110.
(gdb) run

Starting program: /home/dipal/work/blis_dtl/test/test_gemm_blis.x

Using host libthread_db library "/1lib64/libthread_db.so.1".

BLIS Library version is : AOCL BLIS 3.1

Breakpoint 1, bli_gemm_small (alpha=ex7fffffffcf40, a=0x2471b30, b=0x7fffffffdice,
beta=0x2465400 <BLIS_ZERO>,
c=0x4fe66e <bli_obj equals+300>, cntx=0x7fffffffb320, cntl=0x0) at kernels/zen/3/
bli_gemm_small.c:110
110 {
(gdb) bt
#0 bli_gemm_small (alpha=ex7fffffffcf40, a=0x2471b30, b=0x7fffffffdlco, beta=0x2465400
<BLIS_ZERO>,
c=0x4fe66e <bli_obj_equals+300>, cntx=0x7fffffffb320, cntl=0x0) at kernels/zen/3/
bli gemm _small.c:110
#1 Ox00000000007caab6 in bli_gemm_front (alpha=@x7fffffffdlce, a=0x7fffffffdi2e,
b=0x7fffffffdoge,
beta=ox7fffffffcfed, c=0Ox7fffffffcf40, cntx=0x2471b30, rntm=0x7fffffffce50, cntl=0x0)
at frame/3/gemm/bli_gemm_front.c:83
#2 0Ox00000000005bafd42 in bli_gemmnat (alpha=0x7fffffffdlce, a=ex7fffffffdize,
b=ex7fffffffdese,
beta=ox7fffffffcfed, c=0x7fffffffcf40, cntx=0x2471b30, rntm=0x7fffffffce50)
at frame/ind/oapi/bli_13 nat_oapi.c:83
#3 0x0000000000547432 in dgemm_ (transa=ex7fffffffd363 "N\320\a", transb=ox7fffffffd362
"NN\320\a",
m=0x7fffffffd36c, n=0x7fffffffd364, k=ox7fffffffd368, alpha=0x24733c0, a=0x7ffff53e2040,
lda=ex7fffffffd378,
b=0x7ffff355d040, ldb=0x7fffffffd374, beta=0x2473340, c=0x7ffff16d8040, ldc=0x7fffffffd370)
at frame/compat/bla_gemm.c:559
#4 ©x0000000000413alc in main (argc=1, argv=Ox7fffffffdo988) at test_gemm.c:321
(gdb)

4.5.2 Viewing Logs

The AOCL-BLAS library provides Debug and Trace features:

* Trace Log identifies the code path taken in terms of the function call chain. It prints the
information on the functions invoked and their order.

* Debug Log prints the other debugging information, such as values of input parameters, content,
and data structures.

The key features of this functionality are as follows:

» Can be enabled/disabled at compile time.

Chapter 4 AOCL-BLAS 43

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

* When these features are disabled at compile time, they do not require any runtime resources and
that does not affect the performance.

* Compile time option is available to control the depth of trace/log levels.
» All the traces are thread safe.

» Performance data, such as execution time and gflops achieved, are also printed for xGEMM APIs.

4.5.2.1 Function Call Tracing

The function call tracing is implemented using hard instrumentation of the AOCL-BLAS code. Here,
the functions are grouped as per their position in the call stack. You can configure the level up to
which the traces must be generated.

Complete the following steps to enable and view the traces:
1. Enable the trace support as follows:
a. Modify the source code to enable tracing.
Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

b. Change the following macro from 0 to 1:
#define AOCL_DTL_TRACE_ENABLE)

2. Configure the trace depth level.

a. Modify the source code to specify the trace depth level.
Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h
b. Change the following macro as required. Beginning with Level 5 should be a good

compromise in terms of details and resource requirement. The higher the level, the deeper is
the call stack. A lower level reduces the depth of the call stack used for a trace generation.

#define AOCL_DTL_TRACE_LEVEL AOCL_DTL_LEVEL_TRACE_5
3. Build the library as explained in “Build AOCL-BLAS from Source” on page 24.

44 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

4. Run the application to generate the trace data.
The trace output file for each thread is generated in the current folder.

The following figure shows a sample running the call tracing function using the test gemm
application:

~/projects/blis_work/blis_gemm_trace/test [amd-staging-rome-2.2 1-1|+ 2]
17:51 § rm * . Etxt * rawfile

rm: cannot remove '*.txt': No such file or directory

rm: cannot remove '*.rawfile': No such file or directory
~/projects/blis_work/blis_gemm_trace/test [amd-staging-rome-2.2 t-1|+ 2]
17:51 $ export BLIS_NUM_THREADS=4
~/projects/blis_work/blis_gemm_trace/test [amd-staging-rome-2.2 1-1|+ 2]
17:51 $./test_gemm_blis.x

data_gemm_blis(1, 1:4) [1eee 1000 1000 69.27];

data_gemm_blis(2, 1:4) = [20ee 2000 2000 53.31 1|;
~/projects/blis_work/blis_gemm_trace/test [amd-staging-rome-2.2 1-1|+ 2.4]
17:51 § l1s -1 * £xt

-rw-rw-r-- 1 dipal dipal 6428 Jun 1@ 17:51 P21175_T21175_aocldtl_trace.txt
-rw-rw-r-- 1 dipal dipal 6142 Jun 10 17:51 P21175_T21176_aocldtl_trace.txt
-rw-rw-r-- 1 dipal dipal 6142 Jun 16 17:51 P21175_T21177_aocldtl_trace.txt
-rw-rw-r-- 1 dipal dipal 6142 Jun 10 17:51 P21175_T21178_aocldtl_trace.txt
~/projecis/blis_work/blis_gemm_trace/test [amd-staging-rome-2.2 1:1|+ 2.4]
17:51 &

Figure 1. Sample Run of Function Call Tracing

The trace data for each thread is saved in the file with appropriate naming conventions. The . £xt
extension is used to signify the readable file:

P<process id> T<thread id>_aocldtl trace.txt
5. View the trace data.

The output of the call trace is in a readable format, you can open the file in any of the text editors.
The first column shows the level in call stack for the given function.

4.5.2.2 Debug Logging

The debug logging works very similar to the function call tracing and uses the same infrastructure.
However, it can be enabled independent of the trace feature to avoid cluttering of the overall
debugging information. This feature is primarily used to print the input values of the AOCL-BLAS
APIs. Additionally, it can also be used to print any arbitrary debugging data (buffers, matrices, arrays,
or text).

Complete the following steps to enable and view the debug logs:
1. Enable the debug log support as follows:

a. Modify the source code to enable debug logging.
Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

Chapter 4 AOCL-BLAS 45

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

b. Change the following macro from 0 to 1:
#define AOCL_DTL_LOG_ENABLE)

2. Configure the trace depth level.

a. Modify the source code to specify the debug log depth level.
Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

b. Change the following macro as required. Beginning with Level 5 should be a good
compromise in terms of details and resource requirement. The higher the level (maximum is
10), the deeper is the call stack. A lower level reduces the depth of the call stack used for a
trace generation.

#define AOCL_DTL_TRACE_LEVEL AOCL_DTL_LEVEL_TRACE_5
3. Build the library as explained in “Build AOCL-BLAS from Source” on page 24.
4. Run the application to generate the trace data.
The trace output files for each thread is generated in the current folder.

The following figure shows a sample running of AOCL-BLAS with the debug logs enabled using
the test gemm application:

~/projects/blis_work/blis_gemm_trace/test [amd-staging-milan-3.@|+ 3
©9:52 $ rm *.txt

~/projects/blis_work/blis_gemm_trace/test [amd-staging-milan-3.0|+ 3
©9:52 $./test_gemm blis.x

BLIS Library version is : AOCL-3.0

data gemm aocl(1, 1:4) = [1000 1eee 1eee 98.03]:

data_gemm_aocl(2, 1:4) = [2000 2000 2000 100.55];
~/projects/blis_work/blis_gemm_trace/test [amd-staging-milan-3.0|+ 3
©9:52 $ 1s -al *.txt

-rw-rw-r-- 1 dipal dipal 582 Nov 9 ©9:52 P18597_T@_aocldtl log.txt
~/projects/blis _work/blis_gemm trace/test [amd-staging-milan-3.@|+ 3
09:52 $ ||

Figure 2. Sample Run with Debug Logs Enabled

The debug logs for each thread are saved in the file with appropriate naming conventions. The .#x¢
extension is used to signify the readable file:

P<process id> T<thread id>_aocldtl log.txt

46 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

5. View the debug logs.

The output of the debug logs is in a readable format, you can open the file in any of the text
editors. The following figure shows the sample output for one of the threads of test gemm
application:

[1$ cat P3163792_T0_aocldtl log.txt
dgemm_ nt=1 37.278ms 53.651gflops D N N 1000 1000 1000 0.900000 0.000000 1000 1000 -1.100000 0.000000 1000

dgemm_ nt=1 1353.014ms 11.825gflops D N N 2000 2000 2000 0.900000 0.000000 2000 2000 -1.100000 0.000000 2000
[1$

Figure 3. Debug Logs Showing Input Values of GEMM

4.5.2.3 Usages and Limitations

The debug and trace logs have the following usages and limitations:
* When tracing is enabled, there could be a significant drop in the performance.

* Only a function that has the trace feature in the code can be traced. To get the trace information
for any other function, the source code must be updated to add the trace/log macros in them.

* The call trace and debug logging is a resource-dependent process and can generate a large size of
data. Based on the hardware configuration (the disk space, number of cores and threads) required
for the execution, logging may result in a sluggish or non-responsive system.

4.5.3 Checking AOCL-BLAS Operation Progress

The AOCL libraries may be used to perform lengthy computations (for example, matrix
multiplications and solver involving large matrices). These operations/computations may go on for
hours.

AOCL Progress feature provides mechanism for the application to check the computation progress.
The AOCL libraries (AOCL-BLAS and AOCL-LAPACK) periodically updates the application with
progress made through a callback function.

Usage

The application must define the callback function in a specific format and register it with the AOCL
library.

Callback Definition

The callback function prototype must be as defined as given follows:

int AOCL_BLIS_progress(
const char* const api,
const int lapi,

const dim_t progress,

const dim_t current_thread,
const dim_t total_threads

)

However, you can modify the function name as per your preference.

Chapter 4 AOCL-BLAS 47

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The following table explains different parameters passed to the callback function:
Table 8. Callback Parameters

Parameter Purpose
api Name of the API running currently
lapi Length of the API name string (*api)
progress Linear progress made in current thread presently
current_thread Current thread ID
total threads Total number of threads used to performance the operation
Callback Registration

The callback function must be registered with the library for reporting the progress. Each library has
its own callback registration function. The registration can be done by calling:

AOCL_BLIS_set_progress(AOCL_progress); // for AOCL-BLAS
Example

The library only invokes the callback function at appropriate intervals, it is up to the user to consume
this information appropriately. The following example shows how to use it for printing the progress to
a standard output:

int AOCL_BLIS_progress(

const char* const api,

const int lapi,

const dim_t progress,

const dim_t current_thread,

const dim_t total_threads

)

{

printf("\n%s, total thread = %11d, processed %11d element by thread %11d.",
api, total_threads, progress, current_thread);

return 90;

}
Register the callback with:

AOCL_BLIS_set_progress(AOCL_progress); // for AOCL-BLAS

The result is displayed in following format (output truncated):

BLIS_NUM_THREADS=5 ./test_gemm_blis.x

dgemm, total thread = 5, processed 11796480 element by thread 4.
dgemm, total thread = 5, processed 17694720 element by thread O.
dgemm, total thread = 5, processed 5898240 element by thread 2.
dgemm, total thread = 5, processed 20643840 element by thread @.
dgemm, total thread = 5, processed 14745600 element by thread 3.
dgemm, total thread = 5, processed 14745600 element by thread 4.

48 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Limitations

» The feature only shows if the operation is progressing or not, it doesn't provide an estimate/
percentage compilation status.

* A separate callback must be registered for AOCL-BLAS, AOCL-LAPACK, and AOCL-
ScaLAPACK.

4.6 Build AOCL-BLAS from Source on Windows

GitHub URL: https://github.com/amd/blis

AOCL-BLAS uses CMake along with Microsoft Visual Studio for building binaries from the sources
on Windows. The following sections explain the GUI and command-line schemes of building the
binaries and test suite.

Prerequisites
* Windows 10/11 or Windows Server 2019/2022

*+ LLVM 13/14 for AMD “Zen3” and AMD “Zen4” support (or LLVM 11 for AMD “Zen2”
support)

* LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this
plugin enables linking Visual Studio with the installed LLVM toolchain)

* (CMake 3.0 through 3.23.3
* Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.3.2)
* Microsoft Visual Studio tools (as shown in Figure 4):

— Python development
— Desktop development with C++: C++ Clang-Cl for v142 build tool (x64/x86)

Workloads Individual components Language packs Installation locations

Web & Cloud (4,
@ Installation details

@ ASP.NET and web development = / Azure development ~ Optional
Build web applications using ASP.NET Core, ASP.NET, : Azure $DKs, tools, and projects for developing cloud apps MSVC v142 - VS 2019 C++ X64/x86 build t...
HTML/JavaScript, and Containers including Docker supp... ; and creating resources using .NET Core and .NET Frame... Windows 10 SDK (10.0.19041.0)

Just-In-Time debugger
C++ profiling tools
C++ CMake tools for Windows

Python development Node.js development . .
Editing, debugging, interactive development and source Build scalable network applications using Nodejs, an Co+ ATL for latest v142 build tools (x86 &
control for Python. asynchronous event-driven JavaScript runtime. Test Adapter for Boost.Test

Test Adapter for Google Test
Live Share
IntelliCode
C++ AddressSanitizer
C++ MFC for latest v142 build tools (x36.

Desktop & Mobile (5)

- ™ Fim i v
1) NET desktop development) V] Il 1 Desktop development with C:++ v] C4+/CLI support for v142 build tools (Late...
== Build WPF, Windows Forms, and console applications == Build modern C++ apps for Windows using tools of your DU o A
using C#, Visual Basic, and F# with .NET Core and .NET Fr choice, including MSVC, Clang, CMake, or MSBuild. ++ Modules for v il 10015 {304, B
C++ Clang tools for Windows (11.0.0 - x64.
Javascript diagnostics
IncrediBuild - Build Acceleration
mE Universal Windows Platform development Mobile development with .NET Windows 10 SDK (10.0.18362.0)
MM Create applications for the Universal Windows Platform Build cross-platform applications for i0S, Android or Windows 10 SDK (10.0.17763.0)
with C#, VB, or optionally C++, Windows using Xamarin. Windows 10 SDK (10.0.17134.0)

Figure 4. Microsoft Visual Studio Prerequisites

Chapter 4 AOCL-BLAS 49

https://github.com/amd/blis

AMDA1

AOCL User Guide

4.6.1 Building AOCL-BLAS using GUI

4.6.1.1 Preparing Project with CMake GUI

Complete the following steps in the CMake GUI:

57404 Rev. 4.1

August 2023

1. Set the source (folder containing AOCL-BLAS source code) and build (folder in which the
project files will be generated, for example, out) folder paths as shown in the following figure:

A CMake 3.19.0-rc3 - CA\AMDVAOCL-Windows\blis/out - O pd

File Tools Options Help

Where is the source code: |C:,fAMD;’AOCL—Windnws{hhs | Browse Source...
Preset: <custom=

Where to build the binaries: |C:/AMD,-’AOCL—WindnwsIh\\s,fnut v | Browse Build...
Search: | [] crouped [] Advanced | Add Entry Remove Entry Environment...
Name Value

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate Open Project | Current Generator: None

Figure 5. CMake Source and Build Folders

It is not recommended to use the folder named build since build is usedby Linux build system.

2. Click on the Configure button to prepare the project options.

50 AOCL-BLAS

Chapter 4

AMDA1

57404 Rev.4.1 August 2023

AOCL User Guide

3. Set the generator to Visual Studio 16 2019 or Visual Studio 17 2022 and the compiler to
ClangCl or LLVM as shown in the following figure:
? X
Specify the generator for this project
Visual Studio 16 2019 v
Optional platform for generator(if empty, generator uses: x64)
[x64 v
Optional toolset to use (argument to -T)
|CIangCI ‘
(@) Use default native compilers
() Specify native compilers
O Specify toolchain file for cross-compiling
() Specify options for cross-compiling
Figure 6. Set Generator and Compiler
4. Update the options based on the project requirements. All the available options are listed in the
following table:
Table 9. CMake Config Options
Feature CMake Parameter

AMD CPU architecture

AOCL_BLIS_FAMILY:STRING=zen/zen2/zen3

Enable verbose mode

ENABLE VERBOSE=ON

Shared library

BUILD SHARED LIBS=ON

Static library

BUILD SHARED LIBS=OFF
ENABLE AOCL DYNAMIC=OFF

Debug/Release build type

CMAKE BUILD TYPE=Debug/Release

Dynamic Dispatcher

AOCL BLIS FAMILY:STRING=amdzen

Enable single threading

ENABLE MULTITHREADING=OFF
ENABLE AOCL_DYNAMIC=0OFF

Enable multi-threading with OpenMP
and AOCL dynamic enabled

ENABLE_MULTITHREADING=ON
ENABLE_OPENMP=0ON
ENABLE_AOCL_DYNAMIC=ON

Enable multi-threading with OpenMP
and AOCL dynamic disabled

ENABLE MULTITHREADING=ON
ENABLE OPENMP=ON
ENABLE AOCL DYNAMIC=OFF

Enable BLAS/CBLAS support

ENABLE BLAS=ON
ENABLE CBLAS=ON

Chapter 4

AOCL-BLAS

51

AMDA1

AOCL User Guide

Table 9. CMake Config Options

57404 Rev. 4.1

Feature

CMake Parameter

Enable 32-bit integer size in BLIS and
BLAS APIs

BLIS ENABLE ILP64=OFF
ENABLE INT TYPE SIZE=OFF

Enable 64-bit integer size in BLIS and
BLAS APIs

BLIS_ENABLE_ILP64=ON
ENABLE INT TYPE SIZE=ON

Flags that are enabled by default

ENABLE JRIR SLAB
ENABLE PBA POOLS
ENABLE SBA POOLS
ENABLE_MIXED DT

ENABLE MIXED DT EXTRA MEM
ENABLE_SUP_HANDLING
ENABLE PRAGMA OMP_SIMD

Flags that are disabled by default

ENABLE JRIR RR
ENABLE_MEM_TRACING
ENABLE_MEMKIND
ENABLE_SANDBOX

Use APIs without trailing underscore

ENABLE NO _UNDERSCORE_API

Enable uppercase APIs

ENABLE UPPERCASE API

Absolute path to the OpenMP library,
including the library name

OpenMP _libomp LIBRARY

Disable forced code path selection
using the environment variable

BLIS ARCH TYPE

DISABLE BLIS ARCH_TYPE

August 2023

52

AOCL-BLAS

Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

5. To generate the Microsoft Visual Studio project in the out folder, click on the Generate button as
shown in the following figure:

A CMake 3.20.2 - C:\UsersWorkspace\Chandru\AOCL_Of The_Month\Test - X
File Tools Options Help

e Of The_Monthbis_40 | [Browse sowe...

‘ Of The_MonthTest v | Browse Buld...

Search: | oowes [Jatonced | G addeny ‘ ‘x Remove Entry | Envronment..

N

DISABLE BLIS ARCH_TYPE

]
]
]
]
]

Configure | | Generate OpenProject | Current Generator: Visual Studio 16 2019

Figure 7. CMake Configure and Generate Project Settings
4.6.1.2 Building the Project in Visual Studio GUI

Complete the following steps in the Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on
page 50.

2. To generate AOCL-BLAS binaries, build the AOCL-LibBlis-Win project.
The library files will generate in the bin folder based on the project settings.
For example, blis/bin/Release/AOCL-LibBlis-Win.dll or AOCL-LibBlis-Win.lib

4.6.2 Building AOCL-BLAS using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as well.
The corresponding steps are described in the following sections.

4.6.2.1 Configuring the Project in Command Prompt

In the AOCL-BLAS project folder, create a folder out. Open the command prompt in this directory
and run the following command to configure the project:

cmake -S .. -B . -G "Visual Studio 16 2019" -DCMAKE_BUILD_TYPE=Release

-DAOCL_BLIS FAMILY:STRING=amdzen -DBUILD_ SHARED_ LIBS=ON -DENABLE_MULTITHREADING=ON
-DENABLE_OPENMP=ON -DENABLE_COMPLEX_RETURN_INTEL=ON -DOpenMP_libomp LIBRARY="C:\Program
Files\LLVM\1lib\1libomp.1lib"

-DENABLE_AOCL_DYNAMIC=ON -TClangCL

Chapter 4 AOCL-BLAS 53

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

You can refer Table 9 and update the parameter options in the command according to the project
requirements.

4.6.2.2 Building the Project in Command Prompt

Open command prompt in the blis\out directory. Invoke CMake with the build command with release
or debug option. For example:

cmake --build . --config Release

The library files would be generated in the Release or Debug folder based on the project settings.

4.6.3 Building and Running the Test Suite

The Microsoft Visual Studio projects for individual tests and the test suite are generated as a part the
CMake generate step. You can build the test projects from Microsoft Visual Studio GUI or command
prompt as described in the previous sections.

If you prefer to build the application or the test suite executable with the pre-built static library (from
the package) on Windows, both the instances of "#define BLIS ENABLE SHARED" must be
commented out in the header file blis. h.

4.6.3.1 Running Individual Tests

Copy the relevant input files for the tests from blis\bench to the blis\bin\release folder. Run the tests
from the command prompt as follows:

Release> TestGemm.exe inputgemm.txt output.txt

4.6.3.2 Running the Test Suite

Copy the input files input.global. general and input.global.operations for the tests from blis\test to the
release folder. The tests can be run from command prompt as follows:

Release> test_libblis.exe

4.6.3.3 Running Multi-thread Tests

Complete the following steps to run the multi-thread tests:

1. Copy the relevant input files for the tests from blis\testsuite or blis\bench to the blis\bin\release
folder.

2. Copy libomp.lib and libomp.dll respectively from the Microsoft Visual Studio folders
\WC\Tools\LIvm\lib and \V'C\Tools\LIvm\bin to the blis\bin\release folder.

3. Set the threading environment variables in the same command prompt session as the test runs.

For example:

Release> set BLIS_NUM_THREADS=x (x could be no of threads)
Release> set OMP_PROC_BIND=spread
Release> TestGemm.exe inputgemm.txt output.txt

54 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

4.7 LPGEMM in AOCL-BLAS

4.7.1 Add-on in AOCL-BLAS

An add-on in AOCL-BLAS provides additional APIs, operations, and/or implementations that may
be useful to certain users. It can be a standalone extension of AOCL-BLAS that does not depend on
any other add-on, although add-ons may utilize existing functionality or kernels within the core
framework.

An add-on should never provide APIs that conflict with the interfaces belonging to the BLIS typed or
object API. Thus, a properly constructed/functioning add-on would never interfere with or change the
core BLIS functionality or the standard BLAS and CBLAS APIs.

Low Precision GEMM (LPGEMM) APIs are added as an add-on feature with the name aocl gemm
in AOCL-BLAS 4.1 which are used in Inference of Deep Neural Networks (DNN) applications. For
example, Low Precision DNN uses the input as image pixels that are unsigned 8-bit (u8) and
quantized pre-trained weights of signed 8-bits (s8) width. They produce signed 32-bit or downscaled/
quantized 8-bit output.

At the same time, these APIs are expected to utilize the architecture features such as AVX512VNNI
instructions designed to take the inputs in u8, s8; produce an output in s32 and produce high
throughput. Similarly, AVX512BF16 based instructions expects input in Brain Floating Point
(bfloat16) type to provide higher throughput with less precision than 32-bit.

4.7.2 API Naming and Arguments

LPGEMM APIs starts with the prefix "aocl gemm " and follows the data type of input matrix A, B,
Accumulation type, and output matrix C.

For example, aocl gemm u8s8s320s32() API expects input matrix is unsigned 8bit (u8) and signed 8
bit (s8), accumulation type is signed 32-bit (s32) and output matrix type is signed 32-bit (o s32).

4.7.3 Post-operations

The low precision GEMM operations are highly useful in Al applications, where the precision
requirements can be traded with performance. In DNN applications element-wise operations, such as
adding bias, clip the output, ReLU, and GeLU are performed on the GEMM output which are referred
here as post-operations (post-ops).

In LPGEMM, these post-ops are fused with the GEMM operation to avoid loading of data again into
registers and thereby, improving the performance. In the LPGEMM APIs, an additional argument is
added for the user to provide information about the post-ops needed to perform after the GEMM
operation.

Chapter 4 AOCL-BLAS 55

AMDA1

AOCL User Guide

57404 Rev.4.1 August 2023

4.7.4 Supported APIs in aocl_gemm

4.7.4.1 GEMM APIs and Supported Post-ops

Table 10. GEMM APIs and Supported Post-ops

F;:lt‘lcli‘les API/Pos-ops Add | pery | PRel | GeLU | GeLU- | Down | (.,
Required bias u -Tanh Erf Scale
aocl gemm u8s8s320s32 Yes | Yes Yes Yes Yes No Yes
aocl gemm u8s8s320s8 Yes | Yes Yes Yes Yes Yes Yes
AVXSI2VNNI aocl gemm s8s8s320s32 Yes | Yes Yes Yes Yes No Yes
aocl gemm_s8s8s320s8 Yes | Yes Yes Yes Yes Yes Yes
aocl gemm u8s8s160s16 Yes | Yes Yes Yes Yes No Yes
aocl gemm u8s8s160s8 Yes | Yes Yes Yes Yes Yes Yes
AVX2 aocl gemm_ s8s8s160s16 Yes | Yes Yes Yes Yes No Yes
aocl _gemm_s8s8s160s8 Yes | Yes Yes Yes Yes Yes Yes
aocl gemm_ bfl16bfl16f320f32 | Yes | Yes Yes Yes Yes No Yes
AVX512BF16 aocl gemm_bf16bfl16f320bf16 | Yes | Yes Yes Yes Yes Yes Yes
AVXS512 aocl_gemm_ f{32{32f320f32 Yes | Yes Yes Yes Yes No Yes

4.7.4.2 Utility APIs in aocl_gemm Add-on

LPGEMM APIs supports reordering the entire input matrix before calling GEMM and on the go
packing, where GEMM API takes care of packing of matrix internally. The following utility APIs are
used to reorder input weight matrix before calling GEMM:

Table 11. Utility APIs in aocl_

gemm Add-on

API

Description

aocl get reorder buff size XXX
XXXXX()

Returns buffer size required to reorder an input matrix, where
XXXXXXXX corresponds to each of the data type combinations
specified in 7able 10. For example, u8s8s320s32.

aocl reorder XXXXXXXX ()

Reorders the given input and writes into output buffer.

aocl_gelu tanh f32()

Performs tanh operation on each element of the given input buffer and
writes in the output buffer.

aocl_gelu erf f32()

Performs tanh operation on each element of the given input buffer and
writes in the output buffer.

aocl_softmax_ f32()

Performs tanh operation on each element of the given input buffer and
writes in the output buffer.

56

AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

4.7.5 Enabling aocl_gemm Add-on

Enabling aocl gemm add-on while building AOCL-BLAS from Source:
* Building with GCC:

$./configure -a aocl_gemm --enable-cblas --enable-threading=0Openmp
--prefix=<your-install-dir> CC=gcc CXX=g++ [auto | amdzen]

* Building with AOCC:

$./configure -a aocl_gemm --enable-cblas --enable-threading=openmp
--prefix=<your-install-dir> CC=clang CXX=clang++ [auto | amdzen]

* The aocl gemm add-on feature is not supported on Windows.
» Refer to blis.h file for all the prototypes of LPGEMM APIs.

* Some LPGEM APIs are supported only when the architecture features, such as avx512vnni and
avx512bf16 are available in the machine as mentioned in 7able 10. The APIs returns without
doing anything when those features are not available.

4.7.6 Sample Application 1

The following sample application is to use the LPGEMM APIs without post-ops:

//%$gcc test LPGEMM.c -o test_lpgemm -I/aocl-blis_install directory/include/blis
//-L/aocl-blis_install directory/lib/ -1blis-mt -1m

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "BLIS.h"
// Example program to demonstrate LPGEMM API usage.

// aocl_gemm_u8s8s320s32 (A:uint8_t, B:int8_t, C:int32_t) used here.
int main()

{
dim_t m = 1024;
dim_t n = 1024;
dim_t k = 1024;

// Leading dimensions for row major matrices.
dim_t 1lda = k;
dim_t 1db = n;
dim_t ldc = n;

Chapter 4 AOCL-BLAS 57

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

uint8_t* a = (uint8_t*) bli_malloc_user(sizeof(uint8_t) * m * k);
int8_t* b = (int8_t*) bli_malloc_user(sizeof(int8 t) * n * k);
int32_t* ¢ = (int32_t*) bli_malloc_user(sizeof(int32_t) * m * n);

// Functions to fill the matrices with data can be added here.

int32_t alpha = 2;
int32_t beta = 9;

char storage = 'r'; // Row major. Use 'c' for column major.
char transa = 'n'; // No transpose. Transpose not supported.
char transb = 'n';

char reordera = 'n';

char reorderb ‘r'; // Reorder B matrix, equal to packing entire B matrix.

aocl_gemm_u8s8s320s32

(
storage, transa, transb,
m, n, K,
alpha,
a, lda, reordera,
b, 1ldb, reorderb,
beta,
c, ldc,
NULL
)
if (a != NULL)
{
bli_free_user(a);
)i
if (b !'= NULL)
{
bli free user(b);
¥
if (¢ != NULL)
{
bli_free_user(c);
¥
return 0;

58 AOCL-BLAS Chapter 4

AMDA1
57404 Rev.4.1 August 2023 AOCL User Guide

4.7.7 Sample Application 2

The following sample application is to use the LPGEMM Downscale APIs with post-ops:

//%$gcc test_lpgemm.c -o test LPGEMM -I/aocl-blis_install directory/include/blis
//-L/aocl-blis_install_directory/1lib/ -1BLIS-mt -1m

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "BLIS.h"

// Example program to demonstrate LPGEMM downscale API with post-ops usage.
// aocl_gemm_u8s8s320s8 (A:uint8_t, B:int8 t, C:int8_t) used here.

// 3 post-ops - bias + gelu_tanh + clip used here.

int main()

{
dim_t m = 1024;
dim_t n = 1024;

dim_t k = 1024;

// Leading dimensions for row major matrices.

dim_t 1lda = k;
dim_t 1db = n;
dim_t 1ldc = n;

uint8 t* a = (uint8_t*) bli_malloc_user(sizeof(uint8 t) * m * k);
int8_t* b = (int8_t*) bli_malloc_user(sizeof(int8 t) * n * k);
int8_t* ¢ = (int8_t*) bli_malloc_user(sizeof(int8 t) * m * n);

// Functions to fill the matrices with data can be added here.
int32_t alpha = 2;
int32_t beta = 9;

char storage = 'r'; // Row major. Use 'c' for column major.

char transa = 'n'; // No transpose. Transpose not supported.

char transb = 'n';

char reordera = 'n';

char reorderb = 'r'; // Reorder B matrix, equal to packing entire B matrix.

// Initialize post-ops struct.

aocl post_op* post_ops = NULL;

post_ops = (aocl post_op*) malloc(sizeof(aocl post op));
// Downscale parameters need to be passed as a post-op, even

Chapter 4 AOCL-BLAS 59

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

// if a downscale specific api is invoked.
dim_t max_post_ops_seq_length = 4; // bias+gelu_tanh+clip+downscale
post_ops->seq_vector = (AOCL_POST OP_TYPE*)
malloc
(
max_post_ops_seq_length *
sizeof(AOCL_POST_OP_TYPE)
)s
// Bias
post_ops->seq_vector[@] = BIAS;
// Need to output accumulation (int32_t) type for bias.
post_ops->bias.bias = malloc(n * sizeof(int32_t));
// Add function to fill bias array here.
post_ops->seq_vector[1] = ELTWISE; // For gelu_tanh
post_ops->seq_vector[2] = ELTWISE; // For clip
// 2 element wise post-ops, need to allocate dynamically.
post_ops->eltwise = malloc(2 * sizeof(aocl post op_eltwise));

// Gelu tanh.
post_ops->eltwise
post_ops->eltwise

(->is_power_of_2 = FALSE;
(

(post_ops->eltwise

(

(

0)

@)->scale_factor = NULL;

@)->algo.alpha = NULL;
post_ops->eltwise + 0)
post_ops->eltwise + 0)

->algo.beta = NULL;
->algo.algo_type = GELU_TANH;

+ 4+ + + +

// Clip.

(post_ops->eltwise + 1)->is _power_of_2 = FALSE;

(post_ops->eltwise + 1)->scale_factor = NULL;

// Min bound is represented by alpha.

(post_ops->eltwise + 1)->algo.alpha = malloc(sizeof(int32_t));

// Max bound is represented by beta.

(post_ops->eltwise + 1)->algo.beta = malloc(sizeof(int32_t));

//Set some min/max bounds.

((int32_t) (post_ops->eltwise + 1)->algo.alpha) = (int32_t) (-64);
((int32_t) (post_ops->eltwise + 1)->algo.beta) = (int32_t) (3);
(post_ops->eltwise + 1)->algo.algo_type = CLIP;

// Downscale

post_ops->seq_vector[3] = SCALE;
post_ops->sum.is_power_of_2 = FALSE;
post_ops->sum.scale_factor = NULL;

post_ops->sum.buff = NULL;

post_ops->sum.zero_point = NULL;

post_ops->sum.scale_factor = malloc(n * sizeof(float));

60 AOCL-BLAS Chapter 4

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

// Add function to fill downscale array here.
post_ops->seq_length = 4;
aocl _gemm_u8s8s320s8
(

storage, transa, transb,

m, n, k,

alpha,

a, lda, reordera,

b, 1ldb, reorderb,

beta,

c, ldc,

post_ops

)5

if (post_ops->sum.scale_factor != NULL)
{ free(post_ops->sum.scale_factor); }

if ((post_ops->eltwise + 1)->algo.alpha != NULL)
{ free((post_ops->eltwise + 1)->algo.alpha); }

if ((post_ops->eltwise + 1)->algo.beta != NULL)
{ free((post_ops->eltwise + 1)->algo.beta); }

if (post_ops->eltwise != NULL)
{ free(post_ops->eltwise); }

if (post_ops->bias.bias != NULL)
{ free(post_ops->bias.bias); }

if (post_ops->seq_vector != NULL)
{ free(post_ops->seq_vector); }

if (post_ops != NULL)
{ free(post_ops); }

if (a != NULL)
{ bli_free_user(a); }

if (b = NULL)
{ bli free user(b); }

if (c != NULL)
{ bli_free_user(c); }

return 0;

Chapter 4 AOCL-BLAS 61

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

Chapter5 AOCL-LAPACK

AOCL-LAPACK is a high performant implementation of Linear Algebra PACKage (LAPACK).
LAPACK provides routines for solving systems of linear equations, least-squares problems,
eigenvalue problems, singular value problems, and the associated matrix factorizations. It is
extensible, easy to use, and available under an open-source license. Applications relying on standard
Netlib LAPACK interfaces can utilize AOCL-LAPACK with virtually no changes to their source
code. AOCL-LAPACK supports C, Fortran, and C++ template interfaces (for a subset of APIs) for
the LAPACK APIs.

AOCL-LAPACK is based on libFLAME, which was originally developed by current and former
members of the Science of High-Performance Computing (SHPC) group in the Institute for
Computational Engineering and Sciences at The University of Texas at Austin under the project name
libflame. The upstream libFLAME repository is available on GitHub (https.//github.com/flame/
libflame). AMD is actively optimizing key routines in libFLAME as a part of the AOCL-LAPACK
library, for AMD “Zen”-based architectures in the "amd" fork of libFLAME hosted on AMD GitHub.

From AOCL 4.1, AOCL-LAPACK is compatible with LAPACK 3.11.0 specification. In combination
with the AOCL-BLAS library, which includes optimizations for the AMD “Zen”-based processors,
AOCL-LAPACK enables running high performing LAPACK functionalities on AMD platforms.

5.1 Installing on Linux

AOCL-LAPACK can be installed from source or pre-built binaries.

5.1.1 Building AOCL-LAPACK from Source

GitHub URL: https://github.com/amd/libflame

Note: Building AOCL-LAPACK does not require linking to AOCL-BLAS or any other BLAS library.
The applications which use AOCL-LAPACK must link to AOCL-BLAS (or other BLAS
libraries) for the BLAS functionalities.

Prerequisites

The following dependencies must be met for installing AOCL-LAPACK:
» Target CPU ISA supporting AVX2 and FMA

* Python versions 3.4 and 3.6

* GNU Make 4.2

* GCC, gt++, and Gfortran (versions 12.2 through 13.1)

* AOCL-Utils library

62 AOCL-LAPACK Chapter 5

https://github.com/amd/libflame
https://shpc.oden.utexas.edu/
https://www.oden.utexas.edu/
https://www.oden.utexas.edu/
https://www.utexas.edu/
https://github.com/flame/libflame
https://github.com/flame/libflame

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Build Steps

From AOCL 4.1, AOCL-LAPACK supports compiling the library using CMake build system in
addition to the existing configure script method on Linux. Both the approaches to build the library are
explained in this section.

Complete the following steps to build AOCL-LAPACK from source:
1. Clone the Git repository (https://github.com/amd/libflame.git).

2. Compile AOCL-LAPACK source.

Method 1: Using Configure/Makefile

1. Run the configure script. An example below shows the recommended options to be used when
compiling on AMD “Zen”-based processors.

— With GCC (default)
Using 32-bit Integer (LP64)
$./configure --enable-amd-flags --prefix=<your-install-dir>

Using 64-bit Integer (ILP64)

$./configure --enable-amd-flags -enable-ilp64 --prefix=<your-install-dir>

— With AOCC

$ export CC=clang
$ export FC=flang
$ export FLIBS="-1lflang"

Using 32-bit Integer (LP64)
$./configure --enable-amd-aocc-flags --prefix=<your-install-dir>
Using 64-bit Integer (ILP64)

$./configure --enable-amd-aocc-flags -enable-ilp64 --prefix=<your-install-dir>
2. Make and install using the following commands:

$ make -j
$ make install

By default, without the configure option prefix, the library will be installed in SHOME/flame.
Method 2: Using CMake

1. Create a new build directory, for example, newbuild:

$ mkdir newbuild
$ cd newbuild

Chapter 5 AOCL-LAPACK 63

https://github.com/amd/libflame.git

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

2. Run the following command to configure the project:

— With GCC (default):
Using 32-bit Integer (LP64)

cmake ../ -DENABLE_AMD_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-install-dir>

Using 64-bit Integer (ILP64)

cmake ../ -DENABLE_ILP64=ON -DENABLE_AMD_ FLAGS=ON -DCMAKE_INSTALL_ PREFIX=<your-install-
dir>

— With AOCC:

export CC=clang

export CXX=clang++
export FC=flang

export FLIBS="-1lflang"

Using 32-bit Integer (LP64)
cmake ../ -DENABLE_AMD_AOCC_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-install-dir>

Using 64-bit Integer (ILP64)
cmake ../ -DENABLE_ILP64=ON -DENABLE_AMD_AOCC_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-
install-dir>

Shared library is turned on by default. To generate static library, provide the additional option:
-DBUILD SHARED LIBS=OFF

3. Compile the library using the following command:
cmake --build . -j

or

make -j
This will generate libflame.a/libflame.so library in the /ib directory
Linking with AOCL-Utils Library

AOCL-LAPACK requires the AOCL-Ultils static library "libaoclutils" for certain functions including
CPU architecture detection at runtime. The AOCL-LAPACK build system, by default, automatically
links with libaoclutils library. It is done by downloading the source of libaoclutils from AMD GitHub,
compiling it and linking/merging with the AOCL-LAPACK library. However, you can provide an
external path for libaoclutils binary and header files through separate flags. In this scenario, the build
system will use the user provided library and does not download libaoclutils source.

For Configure/Makefile build system to explicitly set the libaoclutils path, set the flags as follows:

$ export CFLAGS="-I<path to libaoclutils include directory>"
$ configure <standard recommended flags as mentioned earlier>
$ make LIBAOCLUTILS_ LIBRARY_PATH="<path to libaoclutils library>" -j

64 AOCL-LAPACK Chapter 5

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

For CMake build system to explicitly set libaoclutils path, set the flags
LIBAOCLUTILS LIBRARY PATH and LIBAOCLUTILS INCLUDE PATH as follows:

$ cmake ../ -DENABLE_AMD_ FLAGS=ON -DCMAKE_INSTALL PREFIX=<your-install-dir> -
DLIBAOCLUTILS_ LIBRARY_PATH=<path to libaoclutils library> -DLIBAOCLUTILS_INCLUDE_PATH=<path to
libaoclutils header files>

Additional Notes on Configuration Options

1. By default, the configuration options --enable-amd-flags and --enable-amd-aocc-flags enable
multi-threading using OpenMP for the selected APIs in AOCL-LAPACK. To disable multi-
threading, use the configure option --enable-multithreading=no.

Example:
$./configure --enable-amd-flags --enable-multithreading=no

or

$./configure --enable-amd-aocc-flags --enable-multithreading=no

Similarly, for CMake, use the flag ENABLE MULTITHREADING to set multi-threading ON/
OFF.

2. To support binary portability across different architectures, the default compiler flags are set to -
mtune=native -mavx2 -mfma -03.

This requires AVX2 and Fused Multiply Accumulate (FMA) support from the target CPU as
mentioned in the Prerequisites section.

For enabling further optimizations, such as enabling AVX, AVX2, FMA, or AVX512 depending on
the ISA supported on the target CPU, you can use the configure option --enable-optimizations to set
the desired optimization flags that will override the default flags.

For example, on a AMD “Zen4”-based processor, you can set 'znver4' flag for improved performance:

$./configure --enable-amd-flags --enable-optimizations="-march=znver4 -03"
or
$./configure --enable-amd-flags --enable-optimizations="-march=native -03"

Ensure that the compiler you use supports 'znver4' flag.

5.1.2 Using Pre-built Libraries

You can find the AOCL-LAPACK library binaries for Linux at the following URL:
https://www.amd.com/en/developer/aocl. html#libflame

Also, the AOCL-LAPACK binary can be installed from the AOCL master installer tar file available at
the following URL:

https://www.amd.com/en/developer/aocl.html

The tar file includes pre-built binaries of the other AMD libraries as explained in "Using Master
Package" on page 18.

Chapter 5 AOCL-LAPACK 65

https://www.amd.com/en/developer/aocl.html#libflame
https://www.amd.com/en/developer/aocl.html#libflame
https://www.amd.com/en/developer/aocl.html

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

5.2 Usage on Linux

The AOCL-LAPACK source directory contains test cases which demonstrate the usage of AOCL-
LAPACK APIs.

From AOCL 3.2, a separate test suite is included for the LAPACK interfaces. Currently, it has test
cases for a few AOCL-LAPACK APIs. More test cases will be added in future releases. The test suite
validates the APIs and displays performance numbers. The configuration files for input supports
testing for a range of input sizes and different parameter values. For more information on this test
suite, refer to the ReadMe.txt file in the directory fest/main.

5.2.1 Use by Applications

To use AOCL-LAPACK in your application, link with AOCL-LAPACK and AOCL-BLAS library
while building the application.

AOCL-LAPACK 4.1 and later have dependency on libstdc++ library. Hence, you must link
libstdc++(-Istdc++) when using AOCL-LAPACK library.

An example program demonstrating the usage of AOCL-LAPACK is located at libflame/test/
example. This directory contains example source file showing the usage of AOCL-LAPACK library
functions.

Use the included CMake script to compile and execute the program. You can test it on both Linux and
Windows.

1. Move to installed examples directory:

$ cd test/example

2. Configure the build system:

$ mkdir build

$ cd build

$ cmake .. -DEXT_BLAS_LIBRARY_DEPENDENCY_PATH=< path to blas library> -
DEXT_LAPACK_LIBRARY_PATH=<path to AOCL-LAPACK library> -DEXT_BLAS_LIBNAME=blas_1lib_name -
DEXT_LAPACK_LIBNAME=lapack_lib_name -DEXT_FLAME_HEADER_PATH=<path to AOCL-LAPACK header file
FLAME . h>

Example:

$ cmake .. -DEXT_BLAS_LIBRARY_DEPENDENCY_PATH=/home/user/blis -DEXT_LAPACK_LIBRARY_PATH=/home/
user/libflame -DEXT_BLAS_ LIBNAME=1libblis-mt.a -DEXT_LAPACK_LIBNAME=1libflame.a -
DEXT_FLAME_HEADER_PATH=/home/user/aocl/include

3. Compile the sample applications:

For Linux
$ cmake --build . or make
For Windows

$ cmake --build .

66 AOCL-LAPACK Chapter 5

AMDA1

57404 Rev.4.1

4. Run the application

For Linux

August 2023

$./test_dgetrf.x

For Windows

cd Debug

$ test_dgetrf.exe

5.3 Building AOCL-LAPACK from Source on Windows

AOCL User Guide

AOCL-LAPACK (https://github.com/amd/libflame) uses CMake along with Microsoft Visual Studio
for building binaries from the source on Windows. The following sections explain the GUI and
command-line schemes of building the binaries and test suite.

Prerequisites

Refer to the Prerequisites sub-section in "Build AOCL-BLAS from Source on Windows" on page 49.
5.3.1 Building AOCL-LAPACK Using GUI

5.3.1.1 Preparing Project with CMake GUI

Complete the following steps in the CMake GUI:

1. Set the source (folder containing AOCL-LAPACK source code) and build (folder in which the
project files will be generated, for example, out) folder paths. It is not recommended to use the
folder named build as a folder with that name exists at the top of AOCL-LAPACK source tree.

2. Click on the Configure button to prepare the project options.
Set the generator to Visual Studio 17 2022 and the compiler to ClangCl or LLVM.

4. Update the options based on the project requirements. All the available options are listed in the
following table:

Table 12. AOCL-LAPACK Config Options

Feature CMake Parameter(s)
Shared library BUILD _SHARED LIBS=ON
Static library BUILD _SHARED LIBS=OFF

Chapter 5

AOCL-LAPACK 67

https://github.com/amd/libflame

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023
Table 12. AOCL-LAPACK Config Options
Feature CMake Parameter(s)

Flags enabled by default

BUILD SHARED LIBS
ENABLE WINDOWS_BUILD
ENABLE AMD FLAGS
ENABLE BLAS EXT GEMMT

ENABLE MULTITHREADING

ENABLE WRAPPER

ENABLE BLISI USE OF FLA MALLOC
ENABLE BUILTIN LAPACK2FLAME
ENABLE_EXT LAPACK_INTERFACE
ENABLE_INTERNAL ERROR_CHECKING
ENABLE NON_CRITICAL CODE
ENABLE_PORTABLE_TIMER
INCLUDE_LAPACKE

Enable AMD optimized path

ENABLE AMD OPT=ON

Note: It is automatically set to ON when ENABLE AMD FLAGS is ON.

32-bit integer size

ENABLE ILP64=0OFF

64-bit integer size

ENABLE ILP64=ON

BLAS library path

CMAKE_EXT BLAS LIBRARY DEPENDENCY PATH=<pa

th to BLAS library>

BLAS library name

EXT BLAS LIBNAME=BLAS Library Name

Enable invoking ‘void’ return based
interface for BLAS functions DOTC
and DOTU

ENABLE F2C DOTC=ON

Enable “void’ return type for AOCL-
LAPACK functions such as cladiv/
zladiv

ENABLE_VOID RETURN_COMPLEX_ FUNCTION=ON

Enables multithreading

ENABLE MULTITHREADING=ON

68

AOCL-LAPACK

Chapter 5

AMDA1

57404 Rev.4.1 August 2023

AOCL User Guide

Table 12. AOCL-LAPACK Config Options

Feature

CMake Parameter(s)

On Windows, setting
ENABLE AMD FLAGS flag
internally enables:

« ENABLE BLAS EXT GEMMT

« ENABLE AMD_OPT

« ENABLE BUILTIN LAPACK2FLA
ME

« ENABLE_EXT LAPACK_INTERF
ACE

« ENABLE _F2C DOTC

« ENABLE _VOID RETURN_COMP
LEX_FUNCTION

« ENABLE_MULTITHREADING

ENABLE AMD FLAGS=ON

Set external libaoclutils library path

LIBAOCLUTILS LIBRARY_ PATH=<path to libaoclutils
library>

Set external libaoclutils header path

LIBAOCLUTILS INCLUDE PATH=<path to libaoclutils
header files path>

Enable main test suite

BUILD_TEST=ON (ensure that BUILD LEGACY_TEST is not
set)

Enable legacy test suite

BUILD LEGACY_TEST=ON (ensure that BUILD TEST is not
set)

Set BLAS library header path

BLAS HEADER PATH (needed for main test suite)

Enable Netlib test suite

BUILD NETLIB TEST=ON

5. Provide the path to the BLAS library. It will be used at the linking stage while building the test

suite.

Chapter 5

AOCL-LAPACK

69

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

6. To generate the Microsoft Visual Studio project in the out folder, click on the Generate button as
shown in the following figure:

File Tools Options Help

Where is the source code: | C:/UserWorkspaces/ mmmmmlibflame/lioflame Browse Source.

Preset:

Where to build the binaries: | C:/

V| | Browse Build..
Search: | | [crouped [Advanced | 4 Add Entry | |+ Remove Entry | |Environment.
Name
API_CALL_CONVENTION
BLAS_HEADER PATH
BUILD_LEGACY_TEST
BUILD_NETLIBTEST
BUILD_SHARED _LIBS
BUILD_TEST
CMAKE_CONFIGURATION TYPES

g
5

2%
¢
:

KT

bugiRelease;MinSizeRelRelWithDebinfo
UserWorkspaces\Muggige blis\blis\bin\Release
Program Files («86)/A0CL-LibFLAME-Win

CMAKE_EXT_BLAS_LIBRARY_DEPENDENC...
CMAKE_INSTALL_PREFIX
ENABLE_AMD_FLAGS

ENABLE_AMD_OPT

ENABLE_AOCL DTL
ENABLE_AUTODETECT_F77_UNDERSCORI...

noo
L2

ENABLE_BLAS3 FRNTEND_CNTL TREES
ENABLE_BLAS_EXT_GEMMT

ENABLE BLIS1_USE_OF_FLA_MALLOC
ENABLE_BUILTIN_BLAS
ENABLE_BUILTIN_LAPACK2FLAME
ENABLE_CBLAS_INTERFACES
ENABLE_DEFAULT_BLKSZ

[TTTREITIRCIK]

Press Configure to update and display new values in red, then press Generate to generate selected build files.
Configure Ger

Open Project | Current Generator: Visual Studio 16 2019
om sy

PACK_COMPLEX_STRUCTURE;BLIS1_ENASLE_WINDOWS_BUILD;HAVE_LAPACK_CONFIG_H;FLA E

Figure 8. AOCL-LAPACK CMake Configurations

5.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in the Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in "Preparing Project with CMake GUI" on
page 67.

2. To generate AOCL-LAPACK binaries, build the AOCL-LibFLAME-Win project.
The library files will generate in the lib folder based on the project settings.

For example, libflame/lib/Release/AOCL-LibFLAME-Win-dll.dll or AOCL-LibFLAME-Win-
dllLlib

5.3.2 Building AOCL-LAPACK using Command-line Arguments

The project configuration and build procedures can also be triggered from the command prompt. The
corresponding steps are described in the following sections.

70 AOCL-LAPACK Chapter 5

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

5.3.2.1 Configuring the Project in Command Prompt

In the AOCL-LAPACK project folder, create a folder out. Open the command prompt in this
directory and run the following command to configure the project:

cmake -S .. -B . Example for building ILP64 mode binaries:

cmake -S .. -B . -G "Visual Studio 17 2022" -DCMAKE_BUILD TYPE=Release -DBUILD_SHARED_LIBS=ON -
DEXT_BLAS_LIBNAME="AOCL-LibBlis-Win-MT-d11l.1ib" -
DCMAKE_EXT_BLAS_LIBRARY_DEPENDENCY_PATH="<path to AOCL-BLAS library>" -DENABLE_ILP64=ON -
DENABLE_AMD_FLAGS=ON -TLLVM -DBUILD_TEST=OFF -DBUILD_NETLIB_TEST=OFF -DENABLE_WRAPPER=ON -
DOpenMP_libomp_LIBRARY="C:\Program

Files\LLVM\1lib\1libomp.lib"

You can refer to 7Table 12 and update the parameter options according to the project requirements.

5.3.2.2 Building the Project in Command Prompt

Open a command prompt in the /ibflame\out directory. Invoke CMake with the build command with
release or debug option. For example:

cmake --build . --config Release

The library files would be generated in the Release or Debug folder based on the project settings.

5.3.3 Building and Running Test Suite

The Microsoft Visual Studio project for the test suite is generated as a part the CMake generate step.
You can build the test projects from the Microsoft Visual Studio GUI or the command prompt as
described in the previous sections.

As mentioned in Table 12, enable "BUILD TEST" to build a new main test suite of AOCL-
LAPACK. To build a legacy test suite, set "BUILD LEGACY TEST".

Note: Both main test suite and legacy test suites must not be enabled together in the same build due
to certain incompatible flag settings between the 2 projects.

5.4 Checking AOCL-LAPACK Operation Progress

AOCL libraries perform tasks that can be computationally expensive. The AOCL Progress feature
provides a mechanism, for a selected set of APIs, for the calling application to check how far a
computation has progressed through a callback function.

Usage

The application must define the aocl fla progress or callback function in a specific format and
register this callback function with the AOCL-LAPACK library.

Chapter 5 AOCL-LAPACK 71

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The callback function prototype must be defined as follows:

int aocl _fla_progress(const char* const api,
const integer lenapi,

const integer* const progress,

const integer* const current_thread,

const integer* const total_threads)

However, you can change the function name as per your preference.

The following table explains AOCL-LAPACK Progress feature callback function parameters:
Table 13. AOCL-LAPACK Progress Feature Callback Function Parameters

Parameter Purpose
api Name of the API running currently
lenapi Length of the API name character buffer
progress Linear progress made in the current thread so far
current _thread Current thread ID
total threads Total number of threads used to perform the operation

Callback Registration

The callback function must be registered with the library to report the progress. Each library has its
own callback registration function. The registration is done by calling:

aocl_fla_set_progress(test_progress);

Example:

int aocl_fla_progress(const char* const api,const integer lenapi,const integer* const
progress,const integer* const current_thread,const integer* const total_threads)
{

printf("In AOCL FLA Progress thread %11d", at API %s, progress %11d total threads=
%11d\n", *current_thread, api, *progress,*total_threads);

return 0;

}

or

int test_progress(const char* const api,const integer lenapi,const integer * const
progress,const integer *const current_thread,const integer *const total_threads)
{

printf("In AOCL Progress thread %11d", at API %s, progress %11d total threads=
%11d\n", *current_thread, api, *progress,*total_threads);

return 0;

}

Register the callback with:
aocl fla_set_progress(test_progress);

72 AOCL-LAPACK Chapter 5

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Limitations

On Windows, aocl fla progress is not supported when using AOCL-LAPACK. Hence, the callback
function must be registered through aocl fla set progress.

Chapter 5 AOCL-LAPACK 73

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 6 AOCL-FFTW

AMD optimized version of Fast Fourier Transform Algorithm (FFTW) is a comprehensive collection
of fast C routines for computing the Discrete Fourier Transform (DFT) and various special cases
thereof that are optimized for AMD EPYC™ and other AMD “Zen”-based processors. It is an open-
source implementation of FFTW. It can compute transforms of real and complex valued arrays of
arbitrary size and dimension.

6.1 Installing

AOCL-FFTW can be installed from the source or pre-built binaries.

6.1.1 Building AOCL-FFTW from Source on Linux

Complete the following steps to build AOCL-FFTW for AMD EPYC™ processor based on the
architecture generation:

1. Download the latest stable release of AOCL-FFTW (https://github.com/amd/amd-fftw).

2. Depending on the target system and build environment, you must enable/disable the appropriate
configure options. Set PATH and LD LIBRARY PATH to the MPI installation. In the case of
building for AMD Optimized FFTW library with AOCC compiler, you must compile and setup
OpenMPI with AOCC compiler.

Complete the following steps to compile it for EPYC™ processors and other AMD “Zen”-based
processors:

74 AOCL-FFTW Chapter 6

https://github.com/amd/amd-fftw

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Note: For a complete list of options and their description, type ./configure --help.

With GCC (default)

Double Precision FFTW libraries

$./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-amd-opt --enable-amd-mpifft --enable-dynamic-
dispatcher --prefix=<your-install-dir>

Single Precision FFTW libraries

$./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-single --enable-amd-opt --enable-amd-mpifft --
enable-dynamic-dispatcher --prefix=<your-install-dir>

Long double FFTW libraries

$./configure --enable-shared --enable-openmp --enable-mpi --enable-long-double --
enable-amd-opt --enable-amd-mpifft --enable-dynamic-dispatcher --prefix=<your-install-
dir>

Quad Precision FFTW libraries

$./configure --enable-shared --enable-openmp --enable-quad-precision --enable-amd-opt
--enable-dynamic-dispatcher --prefix=<your-install-dir>

With AOCC

Double Precision FFTW libraries

$./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-amd-opt --enable-amd-mpifft --enable-dynamic-
dispatcher --prefix=<your-install-dir> CC=clang F77=flang FC=flang

Single Precision FFTW libraries

$./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-single --enable-amd-opt --enable-amd-mpifft --
enable-dynamic-dispatcher --prefix=<your-install-dir> CC=clang F77=flang FC=flang

Long double FFTW libraries

$./configure --enable-shared --enable-openmp --enable-mpi --enable-long-double --
enable-amd-opt --enable-amd-mpifft --enable-dynamic-dispatcher --prefix=<your-install-
dir> CC=clang F77=flang FC=flang

Quad FFTW libraries

$./configure --enable-shared --enable-openmp --enable-quad-precision --enable-amd-opt
--enable-dynamic-dispatcher --prefix=<your-install-dir> CC=clang F77=flang FC=flang

AMD optimized fast planner is added as an extension to the original planner to improve the
planning time of various planning modes in general and PATIENT mode in particular.

The configure user option --enable-amd-fast-planner when given in addition to -enable-amd-opt

enables this new fast planner.

Chapter 6 AOCL-FFTW

75

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

An optional configure option AMD ARCH is supported, that can be set to the CPU architecture
values, such as auto, znverl, znver2, znver3,or znver4 for AMD EPYC™ and other AMD “Zen”-
based processors.

Additional config and build options to enable specific optimizations are covered in the section
“AOCL-FFTW Tuning Guidelines” on page 162.

A dynamic dispatcher feature has been added to build a single portable optimized library for
execution on a wide range of x86 CPU architectures. Use the--enable-dynamic-dispatcher
configure option to enable this feature on Linux-based systems. The configure option --enable-
amd-opt 1s the mandatory master optimization switch that must be set for enabling other optional
configure options, such as:

— --enable-amd-mpifft

— --enable-amd-mpi-vader-limit

— --enable-amd-trans

— --enable-amd-fast-planner

— --enable-amd-top-n-planner

— --enable-amd-app-opt
- --enable-dynamic-dispatcher

Build the library:

$ make

Install the library in the preferred path:

$ make install

Verify the installed library:

$ make check

6.1.2 Building AOCL-FFTW from Source on Windows

AOCL-FFTW uses CMake along with Microsoft Visual Studio for building binaries from the sources
on Windows. This section explains the GUI and command-line schemes for building the binaries and
test suite.

Prerequisites

The following prerequisites must be met:

Windows 10/11 and Windows Server 2019/2022

A suitable MPI library installation along with the appropriate environment variables on the host
machine

LLVM 13/14 for AMD “Zen3” support

LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this
plugin enables linking Visual Studio with the installed LLVM tool-chain)

76

AOCL-FFTW Chapter 6

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

CMake versions 3.0 through 3.23.3

MPI compiler

Microsoft Visual Studio 2019 build 16.8.7
Microsoft Visual Studio tools

— Python development
— Desktop development with C++: C++ Clang-Cl for build tool (x64 or x86)

6.1.2.1 Using CMake GUI to Build

Complete the following steps in the CMake GUI:

1.

Set the source (folder containing FFTW source code) and build (folder in which the project files
will be generated, for example, out) folder paths.

Click on the Configure button to prepare the project options.

Set the generator to Visual Studio 16 2019 or Visual Studio 17 2022 and the compiler to
ClangCl or LLVM.

Update the options based on the project requirements. All the available options are listed in the
following table:

Table 14. AOCL-FFTW Config Options

Feature CMake Parameters
Build type (Release or Debug mode) CMAKE BUILD_ TYPE=Release/Debug
AMD CPU architecture (AMD “Zen”/AMD “Zen2”/ | AMD_ARCH: STRING=znverl/znver2/znver3/
AMD “Zen3”/AMD “Zen4”) znver4
Shared library without multithreading BUILD_SHARED_ LIBS=ON

ENABLE OPENMP=0OFF
ENABLE THREADS=OFF

Shared library with multithreading BUILD_SHARED LIBS=ON

ENABLE OPENMP=0ON

Static library without multithreading BUILD SHARED LIBS=OFF

ENABLE OPENMP=0OFF

Static library with multithreading BUILD SHARED LIBS=OFF

ENABLE OPENMP=0ON

Use Threads instead of OpenMP for multithreading | ENABLE THREADS=0ON

WITH_COMBINED THREADS=ON

Use both Threads and OpenMP for multithreading ENABLE THREADS=ON

ENABLE OPENMP=0ON

Chapter 6 AOCL-FFTW 77

AMDA1

AOCL User Guide

Table 14. AOCL-FFTW Config Options

57404 Rev. 4.1

August 2023

Feature

CMake Parameters

Flags for enhanced instruction set support

ENABLE _SSE=ON
ENABLE_SSE2=ON
ENABLE AVX=ON
ENABLE_AVX2=ON
ENABLE_AVX512=ON

Flags for single and long double

ENABLE FLOAT=ON
ENABLE LONG DOUBLE=ON

Build tests directory and generate test applications

BUILD TESTS=ON

Enables MPI lib

ENABLE MPI=ON

Enables AMD optimizations

ENABLE AMD OPT=ON

Enables AMD MPI FFT optimizations

ENABLE AMD MPIFFT=ON

ENABLE AMD MPI VADER LIMIT: ON

Enables AMD optimized transpose

ENABLE AMD TRANS=ON

Enables AMD optimizations for HPC/Scientific
applications

ENABLE AMD APP_OPT: ON

78 AOCL-FFTW

Chapter 6

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Note: ENABLE QUAD PRECISION is currently not supported on Windows.

Select the available and recommended options as follows:

A

Wihara IS She source coce: | CoAMDIACCL_Wineows Tl Bl S
Prasat:

Where to build the binaries: | CHAMDYACCL Windovesfftw) oul * Browss Bulc
Soarce | [[cmpes [Jesorced o astenry | 3 fomove enry Ersarmames

Mirna

AMD_ARCH

BUILD_SHARED LIES
UILD_TESTS

Tograms Files/L LV bing/ ivm-lib.eme
TYPE
_COMFIGURATION_TYPES
CMAKE_INSTALL_PREFIX
CMAKE_NM

H
5
5
y
A

T
o
Iy
DEABLE FORTRAN |
FMARLE_AMD_APP_OPT |
EMABLE_ABD FAST PLANNER]
ENABLE_AMD_MPIFFT |
EMABLE_ARD_MP| VADER_LIMIT]
ENABLE_AMD OPT |
EMAELE_Ab |
]
[
s
u
0
|
L
O
05 [
ENABLE VERBOSE_ MODE =
LIEM_LIBRARY LB LB RARY-MOTFOUND
WITH_COMEBIMED THREADS 0
Press Configure |0 updste and disglay new values I red, then press Generate bo generale selected bulld fles.
Configue Generme pen Preject Cument Generaion: Vsl Sthudio 16 2019

Enabl
Configuring done

<

Figure 9. AOCL-FFTW CMake Config Options

5. Click the Generate button and then Open Project.

6.1.2.2 Using Command-line Arguments to Build

Complete the following steps to trigger the project configuration and build procedures from the
command prompt:

1.

In the AOCL-FFTW project folder, create a folder out. Open the command prompt in this
directory and run the following command to configure the project:

cmake .. -DBUILD_TESTS=ON -D[other optionsl] -D[other options2] -T ClangCl -G "Visual Studio
16 2019" && cmake --build . --config Release

Refer Table 14 and update the parameter options in the command according to the project
requirements.

The library files would be generated in the Release or Debug folder based on the project settings.

To verify the installed library, copy the test scripts from \win\tests to \out\Release and run python
fftw_check.py.

Chapter 6 AOCL-FFTW 79

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

6.1.3 Using Pre-built Libraries

The AOCL-FFTW library binaries for Linux and Windows are available at the following URL.:
https://'www.amd.com/en/developer/aocl/fftw.html

The AOCL-FFTW binary for Linux and Windows can also be installed from the AOCL master
installer (tar packages for Linux and zip packages for Windows) available at the following URL:

https://www.amd.com/en/developer/aocl.html

The tar and zip files include pre-built binaries of other AMD libraries as explained in “Using Master
Package” on page 18.

Note: The pre-built libraries are prepared on a specific platform having dependencies related to OS,
Compiler (GCC, Clang), MPI, Visual studio, and GLIBC. Your platform must adhere to the
same versions of these dependencies to use the pre-built libraries.

6.2 Usage

Sample programs and executable binaries demonstrating the usage of AOCL-FFTW APIs and
performance benchmarking are available in fests/ and mpi/ directories for Linux and out/Release
directory for Windows.

6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW

To run single-threaded test, execute the following command:

$ bench -opatient -s [i|o][r|c][f|b]l<size>

Where,

* i/o means in-place or out-of-place. Out of place is the default.

* r/c means real or complex transform. Complex is the default.

* {/b means forward or backward transform. Forward is the default.

» <size> is an arbitrary multidimensional sequence of integers separated by the character 'x'.

Check the tuning guidelines for single-threaded test execution in “AOCL-FFTW Tuning Guidelines”
on page 162.

To run multi-threaded test, execute the following command:
$bench -opatient -onthreads=N -s [i|o][r|c][f|b]l<size>
Where, N is number of threads.

Check the tuning guidelines for multi-threaded test execution in the section “AOCL-FFTW Tuning
Guidelines” on page 162.

80 AOCL-FFTW Chapter 6

https://www.amd.com/en/developer/aocl/fftw.html
https://www.amd.com/en/developer/aocl.html

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

6.2.2 Sample Programs for MPI FFTW

$mpirun -np N mpi-bench -opatient -s [i]|o][r]|c][f|b]<size>

Where, N is the number of processes.
Check the tuning guidelines for MPI test execution in the section “AOCL-FFTW Tuning Guidelines”
on page 162.

6.2.3 Additional Options

®* -owisdom

On startup, read wisdom from the file wis.dat in the current directory (if it exists).

On completion, write accumulated wisdom to wis.dat (overwriting if file exists).

This bypasses the planner next time onwards and directly executes the read plan from wisdom.
® --verify <problem>

Verify that AOCL-FFTW is computing correctly. It does not output anything unless there is an
error.

° -v<n>
Set verbosity to <n> or 1 if <n> is omitted. -v2 will output the created plans.

Notes:
1. The names of windows FFTW test bench application has .exe extension (bench.exe and mpi-
bench.exe).

2. The folder /win/tests/ includes Windows benchmark scripts for single-threaded, multi-
threaded and MPI FFT execution for standard sizes. A README file is also provided with
the instructions to run these benchmark scripts.

To display the AOCL version number of AOCL-FFTW library, application must call the following
FFTW API ffiw_aoclversion().

The test bench executables of AOCL-FFTW support the display of AOCL version using the --info-
all option.

Chapter 6 AOCL-FFTW 81

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 7 AOCL-LibM

AOCL-LibM is a high-performant implementation of LibM, the standard C library of basic floating-
point mathematical functions. It includes many of the functions from the C99 standard. Single and
double precision versions of the functions are provided, all optimized for accuracy and performance,
including a small number of complex functions. There are also a number of vector and fast scalar
variants provided, in which a small amount of the accuracy has been traded for greater performance.

7.1 Library Contents

A list of the scalar functions present in the library is provided below.

Note: An ‘“‘f”at the end of the function name indicates that it is single-precision, otherwise, it is
double-precision. They can be called by a standard C99 function and naming convention and
must be linked with AOCL-LibM before standard libm.

For example:

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/AOCL-LibM_library
$ clang -Wall -std=c99 myprogram.c -o myprogram -L<Path to AOCL-LibM Library> -lalm -1m

or

$ gcc -Wall -std=c99 myprogram.c -o myprogram -L<Path to AOCL-LibM Library> -lalm -1m
» Trigonometric
cosf, cos, sinf, sin, tanf, tan, sincosf, and sincos
* Inverse Trigonometric
acosf, acos, asinf, asin, atanf, atan, atan2f, and atan2
* Hyperbolic
coshf, cosh, sinhf, sinh, tanhf, and tanh
» Inverse Hyperbolic
acoshf, acosh, asinhf, asinh, atanhf, and atanh
» Exponential and Logarithmic

— expf, exp, exp2f, exp2, exp10f, exp10, expm1f, and expml
— logf, log, log10f, log10, log2f, log2, loglpf, and loglp

— logbf, logb, ilogbf, and ilogb

— modff, modf, frexpf, frexp, Idexpf, and ldexp

— scalbnf, scalbn, scalblnf, and scalbln

82 AOCL-LibM Chapter 7

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide
¢ Error
erff and erf

* Power and Absolute Value
— powf, pow, fastpow, cbrtf, cbrt, sqrtf, sqrt, hypotf, and hypot
— fabsfand fabs

* Nearest Integer

— cellf, ceil, floorf, floor, truncf, and trunc
— rintf, rint, roundf, round, nearbyintf, and nearbyint
— Irintf, Irint, lrintf, and llrint
— lroundf, Iround, llroundf, and llround
* Remainder

fmodf, fmod, remainderf, and remainder
* Manipulation
— copysignf, copysign, nanf, nan, finitef, and finite
— nextafterf, nextafter, nexttowardf, and nexttoward
e Maximum, Minimum, and Difference

fdimf, fdim, fmaxf, fmax, fminf, and fmin

A fast version of AOCL-LibM is available in the library /ibalmfast.so. This library contains faster
variants of the scalar functions acos, asin, asinf, atan, atanf, erf, erff, exp, expf, log, logf, powf, tan,
and tanf. These functions can be accessed by directly linking to this library before libalm.so, can be
selected by setting LD PRELOAD=/path-to/libalmfast.so or enabled through the use of certain flags
by the AOCC compiler. For more information, refer to the AOCC 4.1 user guide.

AOCL-LibM includes the vector variants for the core math functions: power, exponential,
logarithmic, and trigonometric. A few caveats on the vector variants are as follows:

* The vector variants trade off some of the accuracy for increased performance, but should
nevertheless have a maximum ULP error no greater than 4.0.

* While these routines take advantage of the AMD64 architecture for performance, some
improvement is also made by sacrificing error handling and argument checking.

* Abnormal inputs may produce unpredictable results. It is therefore the responsibility of the caller
of these routines to ensure that their arguments are valid.

» The vector variants do not set the IEEE error codes and hence, the user code must not rely on
them.

» The vector routines must be invoked using the C intrinsics or from the x86 assembly.

The vector variants can be enabled by using the AOCC compiler with the -ffast-math flag. You can
also call these functions directly; if doing so, you must take care to avoid losing portability. As these

Chapter 7 AOCL-LibM 83

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

functions accept arguments in __ m128, ml128d, m256, m256d, m512and mS512d types,
you must manually pack and later unpack to and from the appropriate data type.

The following naming convention is used:

amd_vr<type><vec_size>_ <func>

where,

* v -—vector

* r—real

e a-—array

» <type> - ‘s’ for single precision and ‘d’ for double precision

+ <vec_size> -4, 8, or 16 for single-precision; 2, 4, or 8 for double-precision
+ <func> - function name, such as ‘exp’ and ‘expf’

For example, a single precision 4 element version of exp has the signature:

_ m128 amd_vrs4_expf (__m128 x);
The list of available vector functions is as follows:

Note: All these functions have an 'amd_' prefix, but this has been omitted in the following list for
brevity.

» Exponential

— vrs8 _expfand vrs§8 exp2f
— vrsd_expf, vrsd_exp2f, vrs4 expl0f, and vrs4 expmlf
— vrsa_expf, vrsa_exp2f, vrsa_exp10f, and vrsa_expm1f
— vrd2_exp, vrd2_exp2, vrd2 expl0, vrd2_expml, vrd4 exp, and vrd4 exp2
— vrda_exp, vrda_exp2, vrda_expl0, and vrda_expml
— vrsl6_expfand vrs16_exp2f
— vrd8 exp and vrd8 exp2
* Logarithmic
— vrs8 logf, vrs8 log2f, and vrs8 logl0f
— vrs4 logf, vrs4 log2f, vrs4 logl0f, and vrs4 loglpf
— vrd4_log and vrd4 log2
— vrsa_logf, vrsa log2f, vrsa logl0f, and vrsa_loglpf
— vrd2 log, vrd2 log2, vrd2 logl0, and vrd2 loglp
— vrda log, vrda log2, vrda logl0, vrda loglp
— vrsl6_logf, vrs16_log2f, and vrs16_logl0f
— vrd8 log and vrd8 log2

84 AOCL-LibM Chapter 7

AMDA1

57404 Rev.4.1 August 2023

* Trigonometric

— vrs4d_cosf, vrs8 cosf, vrs4 sinf, and vrs8_sinf

— vrsa_cosf, vrsa_sinf, and vrsa_sincosf

— vrd4 sin, vrd4 cos, vrd4 _tan, and vrd4_sincos

— vrd2 cos, vrd2_sin, vrd2_tan, and vrd2_sincos

— vrda_cos, vrda_sin, and vrda_sincos

— vrsl6_cosf, vrs16_sinf, and vrs16_tanf

— vrd8 cos, vrd8_sin, vrd8 tan, and vrd8 sincos
* Inverse Trigonometric

— vrs4 acosf, vrs4_asinf, and vrs8_asinf
— vrs4 atanf, vrs8 atanf, and vrd2 atan
— vrsl6_atanf, vrs16_asinf, and vrs16_acosf
— vrd8 atan and vrd8_asin
* Hyperbolic

— vrs4_coshf and vrs4_tanhf
— vrs8 coshf and vrs8 tanhf
— vrsl6_tanhf

* Power

— vrs4_powf, vrd2_pow, vrd4 pow, vrs8 powf, and vrsa powf
— vrsl6_powf and vrd8 pow
* Error
— vrs4_erft, vrd2_erf, vrs8_erff, and vrd4_erf
— vrdl6_erffand vrd8 erf
* Vector Array Arithmetic Functions
— vrsa_addf, vrsa_addfi, vrda_add, and vrda addi
— vrsa_subf, vrsa_subfi, vrda_sub, and vrda_subi
— vrsa_mulf, vrsa_mulfi, vrda_mul, and vrda_muli
— rsa_divf, vrsa_divfi, vrda_div, and vrda_divi

7.2 Installation

7.2.1 Installing the Pre-Built Binaries on Linux

The AOCL-LibM binary for Linux is available at the following URL:

https://www.amd.com/en/developer/aocl/libm.html

AOCL User Guide

Chapter 7 AOCL-LibM

85

https://www.amd.com/en/developer/aocl/libm.html

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The AOCL-LibM library can also be installed from the AOCC and GCC compiled AOCL master
installer tar files available on AMD Developer Central (https://www.amd.com/en/developer/
aocl.html).

The tar and zip files include pre-built binaries of other AOCL libraries as explained in Using Master
Package.

7.2.2 Building AOCL-LibM on Linux

Software requirements for compilation:

* GCC versions 9.2 through v13.1

* Glibc versions 2.29 through v2.31

* Clang 12.0.0 (AOCC 3.0) through Clang 14.0.0 (AOCC 4.0)
* Virtualenv with Python 3.6 or later

* SCons versions 3.1.1 or later

* libstdet++ (required for AOCL-Utils)

Refer to Chapter 3 to install the AOCL-Ultils library. Then, complete the following steps to compile
AOCL-LibM:

1. Download source from GitHub (https://github.com/amd/aocl-libm-ose).
2. Navigate to the LibM folder and checkout to the branch aocl-4.1:

cd aocl-libm-ose
git checkout aocl-4.1

3. Create a virtual environment:

virtualenv -p python3 .venv3

4. Activate the virtual environment:

source. venv3/bin/activate

5. Install SCons:

pip install scons

6. Compile AOCL-LibM:

Basic build command: scons --aocl_utils_install path=<libaoclutils library path>
Additional Flags

Build in parallel: -j<number of parallel builds>

Installation: install --prefix=<path to install>

Compiler selection: ALM_CC=<gcc/clang executable path> ALM_CXX=<g++/clang++ executable path>
Verbosity: --verbose=1

Debug mode build: --debug_mode=1ibs

86 AOCL-LibM Chapter 7

https://github.com/amd/aocl-libm-ose
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

AMDA1
57404 Rev.4.1 August 2023 AOCL User Guide

7. The libraries (static and dynamic) will be compiled and generated in the following location:
aocl-libm-ose/build/aocl-release/src/

If the above installation option is used, the libraries will also be copied to the directory <path to
install>/lib.

7.2.3 Building AOCL-LibM on Windows

Minimum software requirements for compilation:
* Windows 10/11 or Windows Server 2019/2022

* LLVM compiler V14.0 for AMD “Zen3” or AMD “Zen4” support (or LLVM compiler V11.0 for
AMD “Zen2” support)

* Microsoft Visual Studio 2019 build 16 or 2022 build 17
* Windows SDK Version 10.0.19041.0

* Virtualenv with Python 3.6 or later

* SCons 4.4.0

* libstdc++ (required for AOCL-Uftils)

Refer to Chapter 3 to install the AOCL-Utils library. Then, complete the following steps to install
AOCL-LibM:

1. Download source from GitHub (Attps.//github.com/amd/aocl-libm-ose).
2. Navigate to the folder:
cd aocl-libm-ose

3. Install virtualenv:
pip install virtualenv

4. Initialize the environment for correct architecture using Visual Studio vcvarsall.bat file using
following command:

"C:\Program Files (x86)\Microsoft Visual
Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat" amdé64

5. Activate virtual environment and install SCons inside:

virtualenv -p python .venv3
.venv3\Scripts\activate
pip install scons

Chapter 7 AOCL-LibM 87

https://github.com/amd/aocl-libm-ose

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

6. Build the project using clang compiler:

Basic build command: scons ALM_CC=<clang-cl executable path> ALM_CXX=<clang-cl executable path>
--aocl utils_install path="<libaoclutils library path>"

Additional Flags

Build in parallel: -j<number of parallel builds>
Verbosity: --verbose=1
Debug mode build: --debug_mode=libs

For example:

scons -j32 ALM_CC="C:\PROGRA~1\LLVM\bin\clang-cl.exe" ALM_CXX="C:\PROGRA~1\LLVM\bin\clang-
cl.exe" --verbose=1

The static (/ibalm-static.lib) and dynamic (libalm.dll and libalm.lib) libraries are compiled and
generated in the following location:

aocl-libm-ose/build/aocl-release/src/

7.3 Using AOCL-LibM

To use AOCL-LibM in your application, complete the following steps:
1. Include ‘math.h’ as a standard way to use the C Standard library math functions.
2. Link in the appropriate version of the library in your program.

The Linux libraries may have a dependency on the system math library. When linking AOCL-LibM,
ensure that it precedes the system math library in the link order, that is, -1alm must appear before -1m.
The explicit linking of the system math library is required when using the GCC or AOCC compilers.
Such explicit linking is not required with the g++ compiler (for C++).

Example: myprogram.c

#include <stdio.h>
#include <math.h>

int main() {
float £ = 3.14fF;
printf ("%f\n", expf(f));
return 0;

}

To use AOCL-LibM scalar functions, use the following commands:

$ export LD_LIBRARY_PATH=<Path to libalm.so>:$LD_LIBRARY_PATH

$ cc -Wall -std=c99 myprogram.c -o myprogram -L<Path to libalm.so> -lalm -1m (cc can be ‘gcc’ or
‘clang’).

$./myprogram

You can use the vector calls by adding the compiler flag -ffast-math.

88 AOCL-LibM Chapter 7

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

You can also call the functions directly, which requires manual packing and unpacking. To do so, you
must include the header file amdlibm vec.h. The following program shows such an example. For
simplicity, the size and other checks are omitted.

Example: myprogram.c

##define AMD LIBM VEC_EXTERNAL H
#tdefine AMD_LIBM_VEC_EXPERIMENTAL
#include “amdlibm_vec.h”

_ m128 vrs4_expf (__ml128 x);

_ m128
test_expf_v4s(float *ip, float *out)

{
__ml1l28 ip4 = _mm_set_ps(ipl[3], ipl[2], ipl[1], ipl[e]);
__m128 op4 = vrsd_expf(ip4);
_mm_store_ps(&out[0], op4d);

return op4;

}

You can compile myprogram.c as follows:

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/AOCL-LibM
$ clang -Wall -std=c99 -ffastmath myprogram.c -o myprogram -L<path to libalm.so> -lalm -1m

For more details on usage, refer to the examples folder in the release package, which contains
example source code and a makefile.

Chapter 7 AOCL-LibM 89

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 8 AOCL-ScaLAPACK

AOCL-ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed
memory machines. It can be used to solve linear systems, least squares problems, eigenvalue
problems, and singular value problems. AOCL-ScaLAPACK is optimized for AMD “Zen”-based
processors. It depends on the external libraries BLAS and LAPACK; thus, the use of AOCL-BLAS
and AOCL-LAPACK is recommended.

8.1 Installation

AOCL-ScaLAPACK can be installed from source or pre-built binaries.

8.1.1 Building AOCL-ScaLAPACK from Source on Linux

GitHub URL: https://github.com/amd/aocl-scalapack
Prerequisites

Building AOCL-ScalLAPACK library requires linking to the following libraries installed using pre-
built binaries or built from source:

« AOCL-BLAS
*+ AOCL-LAPACK
+ AOCL-Utils
* An MPI library (validated with OpenMPI library)
Complete the following steps to build AOCL-ScaLAPACK from source:
1. Clone the GitHub repository (https://github.com/amd/aocl-scalapack.git).
2. Execute the command:
$ cd scalapack
3. CMake as follows:

a. Create a new directory. For example, build:

$ mkdir build
$ cd build

b. Set PATH and LD LIBRARY PATH appropriately to the MPI installation.
c. Run cmake command based on the compiler and the type of library generation required.

Note: AOCL-LAPACK 4.1 version and later has dependency on libstdc++ library. Hence, user
must link libstdc++(-Istdc++) while specifying the path for LAPACK LIBRARIES in the
CMake flags.

90 AOCL-ScalLAPACK Chapter 8

https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-scalapack.git

AMD

e

57404 Rev.4.1

Table 15.

August 2023

AOCL User Guide

Compiler and Type of Library

Compiler

Library
Type

Threading

Command
[<>] - use if ILP64 binary required

GCC

Static

Single-thread
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis.a" -
DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-LAPACK
library>/

libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=0OFF [-D DENABLE_ILP64=0ON]

Multi-thread
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis-mt.a" -
DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-LAPACK
library>/

libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -

DUSE_OPTIMIZED LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON]

Shared

Single-thread
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis.so" -
DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-Utils
library>/

libaoclutils.so <path to AOCL-LAPACK library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=0ON]

Multi-thread
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis-mt.so" -
DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-Utils
library>/

aoclutils.so <path to AOCL-LAPACK library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -

DUSE_OPTIMIZED LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON]

Chapter 8

AOCL-ScalLAPACK

91

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Table 15. Compiler and Type of Library

i Command
Compiler Library Threading . . .
Type [<>] - use if ILP64 binary required
AOCC Static Single-thread $ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-

AOCL-BLAS fopenmp <path to AOCL-BLAS library>/libblis.a" -
DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-LAPACK
library>/

libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=0OFF [-D DENABLE_ILP64=0ON]

Multi-thread $ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
AOCL-BLAS fopenmp <path to AOCL-BLAS library>/libblis-mt.a" -
DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-LAPACK
library>/

libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -

DUSE_OPTIMIZED LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON]

Shared Single-thread $ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
AOCL-BLAS fopenmp <path to AOCL-BLAS library>/libblis.so" -
DLAPACK_LIBRARIES="-1stdc++ <path to aocc built AOCL-
Utils library>/

libaoclutils.so <path to AOCL-LAPACK library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=0ON]

Multi-thread $ cmake .. -DBUILD_SHARED_ LIBS=ON -DBLAS_LIBRARIES="-
AOCL-BLAS fopenmp <path to AOCL-BLAS library>/libblis-mt.so" -
DLAPACK_LIBRARIES="-1lstdc++ <path to aocc built
AOCL_utils library>/

libaoclutils.so <path to AOCL-LAPACK library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -

DUSE_OPTIMIZED LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON]

On Linux, the inbuilt communications sub-module of ScaLAPACK, called Basic Linear Algebra
Communication Subprograms (BLACS), exposes the API symbols in lower case with underscore
format.

You can build AOCL-ScaLAPACK with an external BLACS library on Linux using the following
configure option:

Example: To build static library with external BLACS library:

$ cmake .. -DBUILD_ SHARED_ LIBS=OFF -DBLAS_ LIBRARIES="-fopenmp <path to AOCL-BLAS library>/
libblis-mt.a" -DLAPACK_LIBRARIES="-1lstdc++ <path to AOCL-LAPACK library>/libflame.a" -
DBLACS_LIBRARIES=<path to BLACS library>/1ibBLACS.a -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -DUSE_OPTIMIZED_ LAPACK_BLAS=OFF

You can build AOCL-ScaLAPACK with Intel MPI and ICC compiler tool chain using the following
configure option.

92 AOCL-ScalLAPACK Chapter 8

AMDA1
57404 Rev.4.1 August 2023 AOCL User Guide

Example: To build a static library with Intel MPI and ICC compiler:

cmake .. -DBUILD_SHARED LIBS=OFF -DBLAS_LIBRARIES="-fopenmp <path to AOCL-BLAS library>/
libblis-mt.a" -DLAPACK_LIBRARIES="-lstdc++ -fopenmp <path to AOCL-LAPACK library>/libflame.a" -
DCMAKE_C_COMPILER=mpiicc -DCMAKE_Fortran_COMPILER=mpiifort -DUSE_OPTIMIZED_LAPACK_BLAS=0OFF;

d. Ensure CMake locates AOCL-LAPACK and AOCL-BLAS libraries. On completion, a
message, “LAPACK routine dgesv is found: 1 similar to the following in CMake output is
displayed:

-- CHECKING BLAS AND LAPACK LIBRARIES

-- --> LAPACK supplied by user is <path>/libflame.a.

-- --> LAPACK routine dgesv is found: 1.

-- --> LAPACK supplied by user is WORKING, will use <path>/libflame.a.
-- BLAS library: <path>/libblis.a

-- LAPACK library: <path>/libflame.a

e. Compile the code:
$ make -j

When the building process is complete, the AOCL-ScaLAPACK library is created in the lib directory.
The test application binaries are generated in the <aocl-scalapack>/build/TESTING folder.

8.1.2 Using Pre-built Libraries

AOCL-ScaLAPACK library binaries for Linux are available at the following URL:
https://www.amd.com/en/developer/aocl/scalapack.html

Also, AOCL-ScaLAPACK binary can be installed from the AOCL master installer tar file available at
the following URL:

https://'www.amd.com/en/developer/aocl.html

The tar file includes pre-built binaries of other AMD Libraries as explained in “Using Master
Package” on page 18.

8.2 Usage

You can find the applications demonstrating the usage of ScaLAPACK APIs in the TESTING
directory of ScaLAPACK source package:

$ cd scalapack/TESTING

Chapter 8 AOCL-ScalLAPACK 93

https://www.amd.com/en/developer/aocl/LAPACK.html
https://www.amd.com/en/developer/aocl.html

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

8.3 Building AOCL-ScaLAPACK from Source on Windows

GitHub URL: Attps://github.com/amd/aocl-scalapack

AOCL-ScaLAPACK uses CMake along with Microsoft Visual Studio for building the binaries from
the sources on Windows. The following sections explain the GUI and command-line schemes of
building the binaries and test suite.

Prerequisites

The following prerequisites must be met:

* AOCL-BLAS, AOCL-LAPACK, and AOCL-Uftils librariess
* Windows10/11 or Windows Server 2019/2022

« LLVM 15/16

* LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this
plug-in enables linking Microsoft Visual Studio with the installed LLVM tool-chain)

* (CMake versions 3.0 through 3.23.3

* MPI compiler

* Fortran 90 compiler

* Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.3.2)
* Microsoft Visual Studio tools

— Python development
— Desktop development with C++: C++ Clang-Cl for v142 build tool (x64 or x86)

8.3.1 Building AOCL-ScaLAPACK Using GUI
8.3.1.1 Preparing Project with CMake GUI

Complete the following steps to prepare the project with CMake GUI:

1. Set the source (folder containing aocl-scalapack source code) and build (folder in which the
project files will be generated, for example, out) folder paths. It is not recommended to use the
folder named build as a folder with that name exists at the top of AOCL-LAPACK source tree.

2. Click on the Configure button to prepare the project options.
3. Set the generator to Visual Studio 17 2022 and the compiler to ClangCl or LLVM.

94 AOCL-ScalLAPACK Chapter 8

https://github.com/amd/aocl-scalapack

AMDA1

57404 Rev.4.1 August 2023

AOCL User Guide

4. Update the options based on the project requirements. All the available options are listed in the

following table:
Table 16.

AQOCL-ScaLAPACK CMake Parameter List

Build Feature

CMake Command

Select debug or Release mode build

CMAKE_BUILD_TYPE=Debug/Release

Shared library BUILD_SHARED_LIBS=ON
BUILD_STATIC_LIBS=OFF
Static library BUILD_STATIC_LIBS=ON

BUILD_SHARED_LIBS=0FF

Provide external BLAS/AOCL-BLAS
library

BLAS_LIBRARIES
=<Path to BLAS/AOCL-BLAS 1lib>

Provide external LAPACK/AOCL-
LAPACK library

LAPACK_LIBRARIES
=<Path to lapack/AOCL-LAPACK lib>

Integer bit length:
* ON => 64-bit integer length
» OFF => 32-bit integer length

ENABLE_ILP64

Flags disabled by default

USE_OPTIMIZED_LAPACK_BLAS

Chapter 8

AOCL-ScalLAPACK

95

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

5. Select the available and recommended options as follows:

CMake 3.21.1 - C/AMD/AOCL-Windows/aocl-scalapack/out — X
P
File Tools Options Help

Where is the source code: | C:/AMD/AOCL-Windows/aock-scalapack | | Browse Source..

Preset: <custom>

Where to buld the binaries: ‘ C:/AMD/AOCL-Windows/aock-scalapack/out] -] | Browse Buid...

Search: | Dierowed [ClAdvanced |df AddEntry | | RemoveEntry |Environment..
Name Value

Figure 10. AOCL-ScaLAPACK CMake Options

A CMake 3.21.1 - C/AMD/AOCL-Windows/aodl-scalapack/out -
file Tools Options Help

Where is the source code: | C;/AMD/AOCL-Wii -scalapack | Browse Source
Preset: <custom> v
Where to build the binaries: ‘ C:/AMD/AOCL-Windows/aocl-scalapack/out v ‘ Browse Build.

--> MPI C Compiler : C:/Program Files (x86)/Intel/oneAPI/mpi/2021.3.0/bin/mpicc.bat

--> C Compiler : C:/Program Files (x86)/Intel/oneAPI/mpi/2021.3.0/bin/mpicc.bat

--> MPI Fortran Compiler : C:/Program Files (x86)/Intel/oneAPI/mpi/2021.3.0/bin/mpiifort.bat
--> Fortran Compiler : C:/Program Files (x86)/Intel/oneAPI/mpi/2021.3.0/bin/mpiifort.bat

Compiling and Building BLACS INSTALL Testing to set correct variables
Configure in the INSTALL directory successful
Build in the BLACS INSTALL directory successful

Testing FORTRAN_MANGLING
CDEFS set to UpCase

ENABLE_SET_LIB VERSION : OFF

—--> BLACS supplied by user is NOT WORKING, will use BLACS source code for building aocl-scalapack
CHECKING BLAS AND LAPACK LIBRARIES

--> LAPACK supplied by user is C:/AMD/AOCL-Windows/aocl-scalapack/out/lib/liblapack.lib.

Looking for Fortran dgesv

Looking for Fortran dgesv - not found

—-> LAPACK routine dgesv is found: .

—--> LAPACK and BLAS were not found. Reference LAPACK and BLAS will be downloaded and installed
BLAS library: C:/AMD/AOCL-Windows/aocl-scalapack/out/lib/libblas.lib

ibrary: C:/AMD/AOCL-Windows/aocl-scalapack/out/lib/liblapack.lib

Figure 11. AQOCL-ScaLAPACK CMake Config Options
6. Click the Generate button and then Open Project.

8.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on
page 94.

96 AOCL-ScalLAPACK Chapter 8

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

2. To generate the AOCL-ScaLAPACK binaries, build the ScaLAPACK project. The library files
would be generated in the folder out based on the project settings.

For example:
aocl-scalapack/out/lib/Release/scalapack.lib
aocl-scalapack/out/Testing/Release/scalapack.dll

8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as
follows:

8.3.2.1 Configuring the Project in Command Prompt

Complete the following steps to configure the project using the command prompt:
1. Inthe ScaLAPACK project folder, create a folder out.

2. Open the command prompt in that directory and run the following command:

cmake -S .. -B . -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release
-DBUILD_SHARED_LIBS=0N

-DBUILD_STATIC_LIBS=OFF -DBLAS_LIBRARIES="<path to AOCL-BLAS library>/AOCL-
LibBlis-Win-MT-d11.1ib"

-DLAPACK_LIBRARIES="<path to AOCL-LAPACK library>/AOCL-LibFLAME-Win-MT-d11.1ib"

Refer to Table 16 to update the parameter options in the command according to the project
requirements.

8.3.2.2 Building the Project in Command Prompt

Complete the following steps to build the project using the command prompt:
1. Open command prompt in the aocl-scalapack/out directory.
2. Invoke CMake with the build command and release or debug option. For example:
cmake --build . --config Release
The library files would be generated inside the folder Release or Debug based on the project settings.

On Windows, the inbuilt communications submodule of ScaL APACK, called Basic Linear Algebra
Communication Subprograms(BLACS), exposes the API symbols in upper case without underscore
format.

8.3.3 Building and Running the Individual Tests

Microsoft Visual Studio projects for the individual tests are generated as part of the CMake generate
step. Refer the previous sections to build the test projects from Microsoft Visual Studio GUI or
command prompt.

Chapter 8 AOCL-ScalLAPACK 97

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The test application binaries are generated in the folder <aocl-scalapack>/out/Testing/Release or
<aocl-scalapack>/out/Testing/Debug based on the project settings. Run the tests from the command
prompt as follows:

Release> mpiexec xcbrd.exe
8.4 Checking AOCL-ScalLAPACK Operation Progress

AOCL libraries perform tasks that can be computationally expensive. The AOCL Progress feature
provides a mechanism, for a selected set of APIs, for the application to check how far a computation
has progressed through a callback function.

Usage

The application must define a callback function in a specific format and register this callback function
with the AOCL-ScaLAPACK library.

The callback function prototype must be defined as follows:

int aocl_scalapack_progress(

const char* api,

const integer *lenapi,

const integer *progress,

const integer *mpi_rank,

const integer *total mpi_processes

)
The following table explains AOCL-ScalLAPACK Progress feature callback function parameters:
Table 17. AOCL-ScaLAPACK Progress Feature Callback Function Parameters

Parameter Purpose
api Name of the API running currently
lenapi Length of the API name character buffer
progress Linear progress made in the current thread so far
mpi_rank Current process rank
total mpi_processes Total number of processes used to perform the operation

Callback Registration

The callback function must be registered with the library to report the progress:
aocl_scalapack_set_progress(aocl_scalapack_progress);

Example:

int AOCL_progress(const char* const api, const int *lenapi, const int *progress,
const int *mpi_rank, const int *total_mpi_processes)

{
printf("In AOCL Progress MPI Rank: %i API: %s progress: %i MPI processes: %i\n",
*mpi_rank, api, *progress,*total_mpi_processes);
return 0;
}

98 AOCL-ScalLAPACK Chapter 8

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Limitation

Currently, AOCL-ScaLAPACK progress feature is supported only on Linux.
8.5 Additional Features

The additional features supported at runtime through the environment variable setting are as follows:
Table 18. Additional Features

Feature Description Environment Variable OS Support

Trace Enable function call trace for double data | AOCL_SLL TRACE Linux, Windows
type APIs.

Log Enable logging of input argument values | AOCL_SL LOG Linux, Windows
of double data type APIs.

AOCL Progress | Check how far a computation has AOCL_SL PROGRESS | Linux, Windows
progressed through a callback function for
3 major factorization APIs (LU, QR,
Cholesky) for all data type variants

Example:
+ export AOCL SL LOG=I in Linux enables the log file at run time.
* set AOCL SL. PROGRESS=1 in Windows enables the AOCL Progress feature at run time.

Chapter 8 AOCL-ScalLAPACK 99

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 9 AOCL-RNG

The AMD Random Number Generator (AOCL-RNG) library is a pseudorandom number generator
library. It provides a comprehensive set of statistical distribution functions and various uniform
distribution generators (base generators) including Wichmann-Hill, Mersenne Twister, and SIMD-
based Fast Mersenne Twister (SFMT). The library contains six base generators and twenty-three
distribution generators. In addition, you can supply a custom-built generator as the base generator for
all the distribution generators.

9.1 Installation

Note: AOCL-RNG can only be installed from pre-built binaries.
The AOCL-RNG binary is available at the following URL:
https://www.amd.com/en/developer/aocl/rng-library.html

Also, AOCL-RNG binary can be installed from the AOCL master installer tar file available at the
following URL:

https://www.amd.com/en/developer/aocl.html

The tar file includes pre-built binaries of other AMD libraries as explained in "Using Master
Package" on page 18.

To install the AOCL-RNG binary for Windows, refer to "Using Windows Packages" on page 22.
rng_amd.dll and rng amd.lib are a part of the dynamic library and rng amd-static.lib is a static
library.

As the AOCL-RNG library has a dependency on the AOCL-LibM and AOCL-BLAS libraries, note
the following:
* To install AOCL-LibM binary for linux and Windows, refer to "Installation" on page 85.

* To install AOCL-BLAS binary for linux and Windows, refer to "Using Pre-built Binaries" on
page 26.

* Those libraries must be linked with the application.

Set the runtime library search path (using the environment variable LD LIBRARY PATH) before
running the application as follows:

$ export LD_LIBRARY_PATH=<path-to-aocl-1libm-library-libamdlibm.so>:<path-to-aocl-blas-1library-
libblis.so>:$LD_LIBRARY_PATH

100 AOCL-RNG Chapter 9

https://www.amd.com/en/developer/aocl/rng-library.html
https://www.amd.com/en/developer/aocl.html

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

9.2 Using AOCL-RNG Library on Linux

To use the AOCL-RNG library in your application, link the library while building the application.
The following is a sample Makefile for an application that uses the AOCL-RNG library:

RNGDIR := <path-to-AOCL-RNG-library>

CC := gcc

CFLAGS := -I$(RNGDIR)/include

//CFLAGS For ILP64 case

//CFLAGS := -I$(RNGDIR)/include -DINTEGER64

CLINK := $(CC)

CLINKLIBS := -lamdlibm -1blis -lgfortran -1lm -1lrt -1dl

LIBRNG := $(RNGDIR)/1lib/librng_amd.so

//Compile the program

$(CC) -c $(CFLAGS) test_rng.c -o test_rng.o

//Link the library

$(CLINK) test_rng.o $(LIBRNG) $(CLINKLIBS) -o test_rng.exe

For more information, refer the examples directory in the AOCL-RNG library install location.

9.3 Using AOCL-RNG Library on Windows

Complete the following steps to use AOCL-RNG library on Windows:
1. Create a 64-bit console app project in Visual Studio 17 2022.
2. Use the following navigation to select Clang-cl compiler:

Project >Properties >Configuration Properties >General >Platform Toolset >LLVM(Clang-
cl)

3. Use example/* sources as a reference to find the RNG API call flow.

4. Include the AOCL-RNG header file (rng.h) and call required AOCL-RNG APIs in Windows
application.

5. Copy the AOCL-RNG header file (rng.h) and AOCL-RNG dll library (rng_amd.dll and
rng_amd.lib) to the same project folder.

6. Copy AOCL-LibM DLL library (libalm.dll and libalm.lib) to the same project folder.

7. Copy AOCL-BLAS single-threaded DLL library (4AOCL-LibBlis-Win-dll.dll and AOCL-LibBlis-
Win-dll.1ib) to the same project folder.

8. Use the following navigation to add WIN64 preprocessor definition:
Project >Properties >C/C++ >Preprocessor >Preprocessor Definitions
9. Compile and then run the application.
10. You may create Fortran based project in similar manner and compile it using ifort compiler.

11. You can also compile your application using AOCL-RNG static library (rng_amd-static.lib).

Chapter 9 AOCL-RNG 101

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 10 AOCL-SecureRNG

AOCL-SecureRNG is a library that provides the APIs to access the cryptographically secure random
numbers generated by the AMD hardware based RNG. These are high quality robust random numbers
designed for the cryptographic applications. The library makes use of RDRAND and RDSEED x86
instructions exposed by the AMD hardware. The applications can just link to the library and invoke a
single or a stream of random numbers. The random numbers can be of 16-bit, 32-bit, 64-bit, or
arbitrary size bytes.

10.1 Installation

The AOCL-SecureRNG library can be downloaded from following URL:
https://www.amd.com/en/developer/aocl/rng-library.html

Also, AMD SecureRNG can be installed from the AOCL master installer tar file available at the
following URL:

https://www.amd.com/en/developer/aocl.html

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master
Package” on page 18.

To install the AOCL-SecureRNG binary for Windows, refer to “Using Windows Packages” on
page 22. amdsecrng.dll and amdsecrng.lib are a part of the dynamic library and amdsec-static.lib is a
static library.

10.2 Usage

The following source files are included in the AOCL-SecureRNG package:

* include/secrng.h — A header file that has declaration of all the library APIs.
» src_lib/secrng.c — Contains the implementation of the APIs.

» src_test/secrng test.c — Test application to test all the library APIs.

* Makefile — To compile the library and test the application.

You can use the included makefile to compile the source files and generate dynamic and static
libraries. Then, you can link it to your application and invoke the required APIs.

102 AOCL-SecureRNG Chapter 10

https://www.amd.com/en/developer/aocl/rng-library.html
https://www.amd.com/en/developer/aocl.html

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

The following code snippet shows a sample usage of the library API:

//Check for RDRAND instruction support
int ret = is_RDRAND_supported();
int N = 1000;

//If RDRAND supported
if (ret == SECRNG_SUPPORTED)

{
uint64_t rng64;

//Get 64-bit random number
ret = get_rdrandé64u(&rngé4, 0);

if (ret == SECRNG_SUCCESS)
printf("RDRAND rng 64-bit value %lu\n\n", rngé4d);
else
printf("Failure in retrieving random value using RDRAND!\n");

//Get a range of 64-bit random values
uint64_t* rngé6d_arr = (uint64_t*) malloc(sizeof(uint64_t) * N);

ret = get_rdrand64u_arr(rngé4_arr, N, 0);

if (ret == SECRNG_SUCCESS)

{
printf("RDRAND for %u 64-bit random values succeeded!\n", N);
printf("First 10 values in the range : \n");
for (int i = 0; 1 < (N > 10? 10 : N); i++)
printf("%lu\n", rng64_arr[i]);
}
else
printf("Failure in retrieving array of random values using RDRAND!\n");

}

else

{
}

In the example, get_rdrande4u is invoked to return a single 64-bit random value and get_rdrandé4u_arr
is used to return an array of 1000 64-bit random values.

10.3 Using AOCL-SecureRNG Library on Windows

printf("No support for RDRAND!\n");

Complete the following steps to use AOCL-SecureRNG library on Windows:
1. Create a 64-bit console app project in Visual Studio 17 2022.
2. Use the following navigation to select Clang-cl compiler:

Project >Properties >Configuration Properties >General >Platform Toolset >LLVM(Clang-
cl)

3. Use secrng test.c as a reference to find the AOCL-SecureRNG API call flow.

Chapter 10 AOCL-SecureRNG 103

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

4. Include the AOCL-SecureRNG header file (secrng.h) and call required AOCL-SecureRNG APIs
under window application.

5. Copy the AOCL-SecureRNG header file (secrng.h) and AOCL-SecureRNG DLL library
(amdsecrng.dll and amdsecrng.lib) to same project folder.

6. Compile and then run the application.
7. You may create Fortran based project in similar manner and compile it using ifort compiler.

8. You can also compile your application using AOCL-SecureRNG static library (amdsecrng-
static.lib).

104 AOCL-SecureRNG Chapter 10

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Chapter 11 AOCL-Sparse

AOCL-Sparse is a library containing basic linear algebra subroutines for sparse matrices and vectors.
It is designed to be used with C and C++.

The current functionality of AOCL-Sparse is organized in the following categories:

» Sparse Level 3 functions describe the operations between a matrix in sparse format and a matrix
in dense/sparse format.

» Sparse Level 2 functions describe the operations between a matrix in sparse format and a vector in
dense format.

* Sparse Solver functions that perform matrix factorization and solution phases.

* Analysis and execute functionalities for performing optimized Sparse Matrix-Dense Vector
multiplication and Sparse Solver.

* Sparse Format Conversion functions describe operations on a matrix in sparse format to obtain a
different matrix format.

The list of supported functions is as follows:
* Sparse Level 3

— aoclsparse xcsrmm (single and double precision)
— aoclsparse_xcsr2m (single and double precision)
* Sparse Level 2

— aoclsparse xcsrmv (single and double precision)
— aoclsparse xellmv (single and double precision)
— aoclsparse xdiamv (single and double precision)
— aoclsparse xbsrmv (single and double precision)
— aoclsparse xcsrsv (single and double precision)
— aoclsparse_xtrsv (single and double precision)
— aoclsparse_dmv (double precision)

* Sparse Solvers

— aoclsparse xilu smoother

— aoclsparse xilu0

— aoclsparse _itsol d rci_solve (double precision)
— aoclsparse _itsol s rci_solve (single precision)
— aoclsparse _itsol d solve (double precision)

— aoclsparse _itsol s solve (single precision)

Chapter 11 AOCL-Sparse 105

AMDA1

AOCL User Guide

* Sparse Auxiliary

aoclsparse get version
aoclsparse create mat descr
aoclsparse destroy mat_descr
aoclsparse copy mat_descr
aoclsparse set mat fill mode
aoclsparse get mat fill mode
aoclsparse set mat diag type
aoclsparse get mat diag type
aoclsparse destroy mat_csr
aoclsparse_destroy

aoclsparse create xcsr (single and double precision)

* Conversion

aoclsparse csr2ell _width

aoclsparse xcsr2ell (single and double precision)
aoclsparse csr2dia_ndiag

aoclsparse xcsr2dia (single and double precision)
aoclsparse csr2bsr nnz

aoclsparse xcsr2bsr (single and double precision)
aoclsparse xcsr2csc (single and double precision)
aoclsparse_xcsr2dense (single and double precision)

* Analysis

aoclsparse_set mv_hint
aoclsparse set lu_smoother hint
aoclsparse set mm_hint
aoclsparse set 2m_hint
aoclsparse optimize

57404 Rev. 4.1

August 2023

Notes:

1. aoclsparse create mat csr is not available from AOCL-Sparse 3.2 release. You can use the
new function aoclsparse create (s/d)csr for creating a new matrix structure.

2. aoclsparse destroy _mat_csr will be deprecated soon. You can use the new function
aoclsparse_destroy for destroying the matrix structure and free internally allocated
memory.

106 AOCL-Sparse Chapter 11

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Multi-thread Support

AOCL-Sparse provides multi-thread support for specific APIs through OpenMP by default. You can
set the total number of threads using the environment variables AOCLSPARSE NUM_ THREADS
(recommended) or OMP_NUM THREADS. If both environment variables are set, AOCL-Sparse
library gives higher precedence to AOCLSPARSE NUM_ THREADS. If neither variable is set, the
default number of threads is 1. The list of functions with multi-thread support are as follows:

* aoclsparse_xcsrmv (single and double precision)

» aoclsparse_xellmv (single and double precision)

* aoclsparse_dmv (double precision)

For more information on performing multi-thread runs, refer “Simple Test” on page 109.

For more information on the AOCL-Sparse APIs, refer AOCL-Sparse_API Guide.pdf'in the docs
folder (https://github.com/amd/aocl-sparse).

11.1 Installation

11.1.1 Building AOCL-Sparse from Source on Linux

The following prerequisites must be met:

+ Git

* (CMake versions 3.11 through 3.25

* Boost library versions 1.65 through 1.77

Complete the following steps to build different packages of the library, including dependencies and
test application:

1. Install AOCL-BLAS and AOCL-LAPACK.
2. Define the environment variable AOCL_ROOT to point to AOCL Libs installation:

export AOCL_ROOT=/opt/aocl

For the cases where AOCL_ROQOT cannot be exported by placing both AOCL-BLAS and AOCL-
LAPACK libraries in the same path, you can use the following variables during the CMake
configuration to point to the AOCL-BLAS or AOCL-LAPACK libraries and headers:

« AOCLSPARSE BLIS LIB

« AOCLSPARSE FLAME LIB

* AOCLSPARSE BLIS INCLUDE DIR

+ AOCLSPARSE FLAME INCLUDE DIR
3. Download the latest release of AOCL-Sparse (https://github.com/amd/aocl-sparse).
4. Clone the Git repository (https://github.com/amd/aocl-sparse.git).

Chapter 11 AOCL-Sparse 107

https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse.git

AMDA1

AOCL User Guide

5. Run the command:

cd aocl-sparse

6. Create the build directory and change to it:

$ mkdir -p build/release
cd build/release

7. Run CMake as per the required compiler and library type:

57404 Rev. 4.1

August 2023

Table 19. Compiler and Library Type
. Librar ILP 64
Compiler y Command
Type Support
G++ Static OFF (Default) |cmake ../.. -DBUILD_SHARED_LIBS=OFF
(Default)
ON cmake ../.. -DBUILD_SHARED_LIBS=OFF -DBUILD_ILP64=ON
Shared OFF (Default) |cmake ../..
(Default)
ON $ cmake ../.. -DBUILD_ILP64=ON
AOCC Static OFF (Default) |cmake ../.. -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_SHARED_LIBS=OFF
ON cmake ../.. -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_SHARED_LIBS=OFF -DBUILD_ILP64=0N
Shared OFF (Default) |cmake ../.. -DCMAKE_CXX_COMPILER=clang++
(Default)
ON $ cmake ../..-DCMAKE_CXX_COMPILER=clang++ -
DBUILD_ILP64=0ON

8. Following CMake build options are applicable for Windows and Linux systems:

Table 20.

AOCL-Sparse - CMake Build Options

Build Option

Feature

CMAKE INSTALL PREFIX

The default install path is /opt/aoclsparse/

Use -DCMAKE _INSTALL PREFIX=<path> to choose the custom path.

CMAKE BUILD TYPE

» Release => Release Library (Default)
* Debug => Debug Library

CMAKE CXX COMPILER

Use -DCMAKE CXX COMPILER=clang++ for AOCC builds

BUILD SHARED LIBS

* OFF => Build Static Library

* ON => Build Dynamic/Shared library (Default)

108

AOCL-Sparse

Chapter 11

AMDA1

57404 Rev.4.1 August 2023

AOCL User Guide

Table 20. AOCL-Sparse - CMake Build Options

Build Option

Feature

BUILD ILP64

Integer length:
» OFF => 32-bit integer length (Default)
* ON => 64-bit integer length

SUPPORT OMP

Multi-threading using OpenMP:

* OFF => Disable OpenMP
* ON => Enable OpenMP (Default)

USE_AVX512

* OFF => Dynamically selects kernels (AVX2 and AVX512) for SpMV
(Default)
* ON => Enables AVX512 kernels for SpMV and TRSV

BUILD CLIENTS BENCHM
ARKS

* OFF => Disable building benchmarks (Default)
* ON => Build client benchmarking (requires Boost library)

BUILD CLIENTS SAMPLES

* OFF => Disable building sparse API examples
* ON => Enable building sparse examples for SPMV, CSR2M, DTRSV,
CG, and GMRES (Default)

BUILD UNIT TESTS

* OFF => Unit tests are not built

* ON => Unit testing is built and new target "test" is activated, this target
should be used to test the correctness of the compiled library. It runs all
the available executable targets and checks for success/failure of each
test.

BUILD DOCS

* ON => Build PDF and HTML documentation, this adds a new target
"docs" (requires Linux and modern LaTeX distribution)
* OFF => Does not activate the docs target (Default)

9. Build the AOCL-Sparse library:

$ make -j$(nproc)

10. Install AOCL-Sparse to the directory /opt/aoclsparse or a custom path:

$ make install

11.1.2 Simple Test

After compiling the library with benchmarks, run the following AOCL-Sparse examples to test the

installation:

1. Navigate to the test binary directory:

$ cd aocl-sparse/build/release/tests/staging

2. Ensure that the shared library is available in the library load path:

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:<path/to/libaoclsparse.so>

Chapter 11

AOCL-Sparse 109

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

3. Run CSR-SPMYV on a randomly generated matrix to execute the aocl-sparse example:

$./aoclsparse-bench --function=csrmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 --
verify=1

4. Run multi-threaded (4 threads) CSR-SPMV on a randomly generated matrix:

AOCLSPARSE_NUM_THREADS=4 numactl --physcpubind=4,5,6,7 ./aoclsparse-bench --function=csrmv --
precision=d --sizem=1000 --sizen=1000 --sizennz=4000 --verify=1

11.1.3 Using Pre-built Libraries

You can find the AMD optimized AOCL-Sparse source files at the following URL:
https://github.com/amd/aocl-sparse/releases

You can install the AOCL-Sparse binaries using the packages available at the following URL:
https://www.amd.com/en/developer/aocl/sparse.html

Also, you can install AOCL-Sparse binary from the AOCL master installer tar file available at the
following URL:

https://www.amd.com/en/developer/aocl.html

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master
Package” on page 18.

Note: For Windows pre-built binaries, only dynamic library is supported. Support for static library
linking will be added in future releases.

11.2 Building AOCL-Sparse on Linux

You can find the sample programs demonstrating the usage of AOCL-Sparse APIs in the AOCL-
Sparse source tests directory:

$ cd aocl-sparse/tests/examples

The sample programs are built as a part of AOCL-Sparse's CMake build system by enabling the flag
BUILD CLIENTS SAMPLES and the binaries are located in <build directory>/tests/examples.

11.2.1 Use by Applications

To use AOCL-Sparse in your application, link the library while building the application. Configure
the install directory using CMAKE INSTALL PREFIX and install the libraries using CMake build
command:

cmake --build . --target install --config Release

Provide this install directory as the path to aocl sparse header and library.

110 AOCL-Sparse Chapter 11

https://github.com/amd/aocl-sparse/releases
https://www.amd.com/en/developer/aocl/sparse.html
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Export the paths to AOCL-BLAS and AOCL-LAPACK library or headers in LD LIBRARY PATH
and PATH variables:

export LD_LIBRARY_PATH=<path-to-aocl-blas-library>:<path-to-aocl-lapack-
library>:$LD_LIBRARY_PATH

export PATH=<path-to-aocl-blas-headers>:<path-to-aocl-lapack-headers>:$PATH

Examples to Build Sample Applications

SPMV:
g++ sample_spmv.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

CSR2M:
g++ sample_csr2m.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test _aoclsparse.x

TRSV:
g++ sample_dtrsv.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

CG example using Reverse Communication Interface(RCI):
g++ sample_itsol_d_cg rci.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

CG example using Direct Interface:
g++ sample_itsol_d_cg.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

GMRES example using Reverse Communication Interface(RCI):

g++ sample_itsol_d_gmres_rci.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-
library>/

-laoclsparse -o test_aoclsparse.x

GMRES example using Direct Interface:
g++ sample_itsol_d_gmres.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

Chapter 11 AOCL-Sparse 111

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The following is a sample cpp file depicting the AOCL-Sparse spmv API usage:

//file :sample_spmv.cpp
#include "aoclsparse.h"
#include <iostream>

#tdefine M 5
#define N 5
#define NNZ 8

int main(int argc, char* argv[])

{
aoclsparse_operation trans = aoclsparse_operation_none;
double alpha = 1.0;
double beta = 0.0;

3

// Print aoclsparse version
std::cout << aoclsparse_get version() << std::endl;

// Create matrix descriptor

aoclsparse_mat_descr descr;

// aoclsparse_create_mat_descr set aoclsparse_matrix_type to aoclsparse_matrix_type_general
// and aoclsparse_index_base to aoclsparse_index_base_ zero.
aoclsparse create _mat_descr(&descr);

aoclsparse_index_base base = aoclsparse_index_base_zero;

// Initialise matrix

// 1 @ 0 2 o

// © 3 o @ 0o

// @ @ 4 o 0

// @ 5 0 6 7

// 6 o o o 8

aoclsparse_int csr_row_ptr[M+1] = {0, 2, 3, 4, 7, 8};
aoclsparse_int csr_col_ind[NNZ]= {o, 3, 1, 2, 1, 3, 4, 4};
double csr_val[NNZ] = {1, 2, 3, 4, 5, 6, 7, 8};

aoclsparse_matrix A;
aoclsparse_create_dcsr(A, base, M, N, NNZ, csr_row_ptr, csr_col_ind, csr_val);

// Initialise vectors
double x[N] = { 1.0, 2.0, 3.9, 4.0, 5.0};
double y[M];

//to identify hint id(which routine is to be executed, destroyed later)
aoclsparse_set_mv_hint(A, trans, descr, 1);

112 AOCL-Sparse Chapter 11

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

// Optimize the matrix, "A"
aoclsparse_optimize(A);

std::cout << "Invoking aoclsparse dmv..";
//Invoke SPMV API (double precision)
aoclsparse_dmv(trans,

&alpha,

A,

descr,

std::cout << "Done." << std::endl;

std::cout << "Output Vector:" << std::endl;

for(aoclsparse_int i=0;i < M; i++)
std::cout << y[i] << std::endl;

aoclsparse_destroy mat_descr(descr);
aoclsparse_destroy(A);
return 0;

}
A sample compilation command with the GCC compiler for the above code:

export LD_LIBRARY_PATH=$LD LIBRARY_PATH:<path-to-aocl-blas-1library>:<path-to-aocl-lapack-
library>:<path-to-aocl-sparse-library>

g++ sample_csrmv.cpp -I<path-to-aocl-sparse-header> -L<path-to aocl-sparse-library> -
laoclsparse -o test_aoclsparse.x

11.3 Building AOCL-Sparse on Windows

GitHub URL: https://github.com/amd/aocl-sparse

AOCL-Sparse uses CMake along with Microsoft Visual Studio for building binaries from the sources
on Windows. The following sections explain the GUI and command-line schemes of building the
binaries and test suite.

Prerequisites

For more information, refer to the Prerequisites sub-section in section “Build AOCL-BLAS from
Source on Windows” on page 49.

Chapter 11 AOCL-Sparse 113

https://github.com/amd/aocl-sparse

AMDA1

AOCL User Guide

11.3.

1 Building AOCL-Sparse Using GUI

11.3.1.1 Preparing Project with CMake GUI

Complete the following steps to prepare the project with CMake GUI:

1. Install AOCL-BLAS and AOCL-LAPACK.

2. To link with dependent BLAS and LAPACK libraries, define the following CMake variables
during configuration:

Launch CMake GUI using the Windows command line:

AOCLSPARSE BLIS LIB
AOCLSPARSE FLAME LIB
AOCLSPARSE BLIS INCLUDE DIR
AOCLSPARSE FLAME INCLUDE DIR

cmake-gui

57404 Rev.4.1 August 2023

3. Set the source (folder containing the AOCL-Sparse source code) and build (folder in which the
project files will be generated) folder paths. It is not recommended to use the folder named build
as it is already used for Linux build system.

4. Click on the Configure button to prepare the project options.

Set the generator to Visual Studio 17 2022 and the platform toolset to clangCI:

? X

A

Specify the generator for this project
Visual Studio 17 2022 v
Optional platform for generator (if empty, generator uses: x64)

[xe4 |
Optional toolset to use (argument to -T)

|dangCL| |

(®) Use default native compilers

() Specify native compilers

() specify toolchain file for cross-compiling
() specify options for cross-compiling

Figure 12. Specify Generator

114

AOCL-Sparse

Chapter 11

AMDA1
57404 Rev.4.1 August 2023 AOCL User Guide

6. Update the options based on the project requirements. All the available options are listed in
Table 20.Select the available and recommended options as follows:

BUILD_CLIENTS_BENCHMARKS

[]
]
]
]
]
L]
]
L]

Figure 13. AOCL-Sparse CMake Config Options

Note: Currently, only single-threaded builds are supported. Multi-Threaded support will be
added in future release.

7. Click the Generate button and then Open Project.
11.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in Microsoft Visual Studio GUI:

1. Open the AOCL-Sparse Visual Studio project from the build folder using the aoclsparse.sin file
or the Open Project button in CMake GUI.

2. To generate the AOCL-Sparse binaries, choose the appropriate build configuration Debug or
Release and then build the AOCL-Sparse project. The library files would be generated at
<build _dir>\library\Release.

For example:
aocl-sparse/build/library/Release/aoclsparse.dll

aoclsparse.lib

11.3.2 Building AOCL-Sparse using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as
follows:

11.3.2.1 Configuring the Project in Command Prompt

Complete the following steps to configure the project using command prompt:
1. Install AOCL-BLAS and AOCL-LAPACK.

Chapter 11 AOCL-Sparse 115

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

2. To link with dependent BLAS and LAPACK libraries, define the following CMake variables
during configuration:

— AOCLSPARSE BLIS LIB
— AOCLSPARSE FLAME LIB
— AOCLSPARSE BLIS INCLUDE DIR
— AOCLSPARSE FLAME INCLUDE DIR
In the AOCL-Sparse project folder, create a folder out.
4. Open the command prompt in the out directory and run the following command:

cmake .. -T ClangCL -G "Visual Studio 17 2022" -DCMAKE_CXX_ COMPILER=ClangCl -
DCMAKE_INSTALL_PREFIX="<aoclsparse install path>" -DSUPPORT OMP=OFF -DAOCL_LIBFLAME="Lapack/
Library/with/path" -DAOCL_LIBFLAME_INCLUDE DIR="path/to/Lapack/Headers" -DAOCL_BLIS LIB="Blas/
Library/with/path" -DAOCL_BLIS_INCLUDE_DIR="path/to/Blas/Headers"

Refer to Table 20 to update the parameter options in the command according to the project
requirements.

Note: Currently, only single-threaded builds are supported. Multi-Threaded support will be
added in future release.

11.3.2.2 Building the Project in Command Prompt

Complete the following steps to build the project using command prompt:
1. Open command prompt in the aocl-sparse/out directory.
2. Export the paths to the AOCL-BLAS and AOCL-LAPACK libraries:
set PATH=path\to\Lapack\Dynamic\library;path\to\BLAS\Dynamic\library;%PATH%
3. Export the paths to the AOCL-Sparse (from the build directory) that will be generated in step 5:

set PATH=<build _dir>/library/Release;%PATH%

4. If unit tests are enabled (BUILD UNIT TESTS=ON), then export the path to the GoogleTest
libraries (from the build directory) that will be generated in step 5:

set PATH=<build_dir>/lib/Release;<build_dir>/bin/Release;%PATH%

5. Invoke CMake with the build command and release or debug option. For example:

cmake --build . --config Release

The library files would be generated inside the folder Release or Debug based on the project settings.

11.3.2.3 Building and Running the Test Suite

1. Microsoft Visual Studio projects for the individual tests are generated as a part of CMake generate
step. Refer to the previous sections to build the test projects from Microsoft Visual Studio GUI or
command prompt.

116 AOCL-Sparse Chapter 11

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

2. Assuming that BUILD UNIT TESTS was enabled during CMake configuration/build steps,
AOCL-Sparse unit tests (gtests and ctests) can be run for LP/STATIC and ILP/STATIC
configurations in a single threaded configuration:

cd <build_directory>
ctest -V

Note: Other configurations, such as Multi-threading and DYNAMIC builds are not yet
supported.

11.4 Running an Individual AOCL-Sparse Test

The AOCL-Sparse executable accepts 2 types of inputs, namely randomly generated matrix data and
matrices in Matrix Market format (mtx). The MTX inputs can be downloaded from SuiteSparse
Matrix Collection website (https.//sparse.tamu.edu/). Usage of both the type of inputs is shown
below.

11.4.1 Run the Test on Linux

Complete the following steps to run the test on Linux:

1. Export the paths to AOCL-BLAS and AOCL-LAPACK libraries and headers in the
LD _LIBRARY_ PATH and PATH variables:

export LD_LIBRARY_PATH=<path-to-aocl-blas-library>:<path-to-aocl-lapack-library>:<path-to-
aocl-SPARSE-1library>:$LD_LIBRARY_PATH

export PATH=<path-to-aocl-BLAS-headers>:<path-to-aocl-LAPACK-headers>:<path-to-aocl-SPARSE-
headers>:$PATH

2. Navigate to the AOCL-Sparse executable and run the test from the command prompt as follows:

Random Data:
./aoclsparse-bench.exe --function=optmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000
-verify=1

MTX Input:
./aoclsparse-bench.exe --function=optmv --precision=d --mtx=LFAT5.mtx --verify=1

3. Run the multi-threaded (4 threads) CSR-SPMYV on a randomly generated matrix:

export AOCLSPARSE_NUM_THREADS=4
./aoclsparse-bench.exe --function=csrmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000
--verify=1

Chapter 11 AOCL-Sparse 117

https://sparse.tamu.edu/

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

11.4.2 Run the test on Windows

Complete the following steps to run the test on Windows:

1. Export the paths to AOCL-BLAS and AOCL-LAPACK libraries and headers in the PATH
variable:
set PATH=<path-to-aocl-blas-library>;<path-to-aocl-lapack-library>;<path-to-aocl-SPARSE-

library>;<path-to-aocl-blas-headers>;<path-to-aocl-lapack-headers>;<path-to-aocl-SPARSE-
headers>; %PATH%

2. Navigate to the AOCL-Sparse executable and run the test from the command prompt as follows:

Random Data:

.\aoclsparse-bench.exe --function=optmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000
-verify=1

MTX Input:
./aoclsparse-bench.exe --function=optmv --precision=d --mtx=LFAT5.mtx --verify=1

3. Run the multi-threaded (4 threads) CSR-SPMV on a randomly generated matrix:

set AOCLSPARSE_NUM_THREADS=4

.\aoclsparse-bench.exe --function=csrmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000
--verify=1

118 AOCL-Sparse Chapter 11

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Chapter 12 AOCL-LibMem

AOCL-LibMem is a Linux library of data movement and manipulation functions (such as memcpy()
and strcpy()) highly optimized for AMD Zen micro-architecture. This library has multiple
implementations of each function that can be chosen based on the application requirements as per
alignments, instruction choice, threshold values, and tunable parameters. It supports AVX2 and

AV X512 CPU features. By default, it will choose the best fit implementation based on the underlying
micro-architectural support for CPU features and instructions.

This release of the AOCL-LibMem library supports the following functions:
* memcpy

* mempcpy

* memmove

* memset

* memcmp

* strcpy

12.1 Building AOCL-LibMem for Linux

Minimum software requirements for compilation:

+ GCC122
+ AOCC4.0
* Python 3.6
+ CMake 3.10

Complete the following steps to build AOCL-LibMem for Linux:

1. Download and install the AOCL master installer (aocl-linux-<compiler>-<version>.tar.gz) from:
https://'www.amd.com/en/developer/aocl.html

2. Locate the aocl-libmem folder in the root directory.

3. Create build directory:

$ mkdir build
$ cd build

Chapter 12 AOCL-LibMem 119

https://www.amd.com/en/developer/aocl.html

AMDA1

AOCL User Guide

57404 Rev.4.1 August 2023

4. Configure for one of the following builds as required:

Shared Library Configuration:
- GCC

#
$

+» #

v H

Default Native Build
cmake -D CMAKE_C_COMPILER=gcc

../aocl-1ibmem

Cross Compiling AVX2 Binary on AVX512 Machine

cmake -D CMAKE_C_COMPILER=gcc

-D ALMEM_ARCH=avx2 ../aocl-libmem

Cross Compiling AVX512 Binary on AVX2 Machine

cmake -D CMAKE_C_COMPILER=gcc

Enabling Tunable Parameters
cmake -D CMAKE_C_COMPILER=gcc

— AOCC (Clang)

#
$

#
$
#
$

#
$

Default Native Build

-D ALMEM_ARCH=avx512 ../aocl-libmem

-D ENABLE_TUNABLES=Y ../aocl-libmem

cmake -D CMAKE_C_COMPILER=clang ../aocl-libmem

Cross Compiling AVX2 Binary on AVX512 Machine
cmake -D CMAKE_C_COMPILER=clang -D ALMEM_ARCH=avx2 ../aocl-libmem

Cross Compiling AVX512 Binary

on AVX2 Machine

cmake -D CMAKE_C_COMPILER=clang -D ALMEM_ARCH=avx512 ../aocl-libmem

Enabling Tunable Parameters

cmake -D CMAKE_C_COMPILER=clang -D ENABLE_TUNABLES=Y ../aocl-libmem

Static Library Configuration:
- GCC

#
$

» H# +» #

+» #

Default Native Build
cmake -D CMAKE_C_COMPILER=gcc

-D BUILD_SHARED LIBS=N ../aocl-libmem

Cross Compiling AVX2 Binary on AVX512 Machine

cmake -D CMAKE_C_COMPILER=gcc

Cross Compiling AVX512 Binary
cmake -D CMAKE_C_COMPILER=gcc

Enabling Tunable Parameters
cmake -D CMAKE_C_COMPILER=gcc

-D ALMEM_ARCH=avx2 -D BUILD_SHARED_LIBS=N ../aocl-libmem

on AVX2 Machine
-D ALMEM_ARCH=avx512 -D BUILD_SHARED_LIBS=N ../aocl-libmem

-D ENABLE_TUNABLES=Y -D BUILD_SHARED_LIBS=N ../aocl-libmem

120

AOCL-LibMem Chapter 12

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

— AOCC (Clang)

Default Native Build
$ cmake -D CMAKE_C_COMPILER=clang -D BUILD_SHARED LIBS=N ../aocl-libmem

Cross Compiling AVX2 Binary on AVX512 Machine
$ cmake -D CMAKE_C_COMPILER=clang -D ALMEM_ARCH=avx2 -D BUILD_SHARED_LIBS=N ../aocl-libmem

Cross Compiling AVX512 Binary on AVX2 Machine
$ cmake -D CMAKE_C_COMPILER=clang -D ALMEM_ARCH=avx512 -D BUILD_SHARED_LIBS=N ../aocl-
libmem

Enabling Tunable Parameters
$ cmake -D CMAKE_C_COMPILER=clang -D ENABLE_TUNABLES=Y -D BUILD_SHARED_LIBS=N ../aocl-

libmem
5. Build:
$ cmake --build .
6. Install:

$ make install
After compilation:
* The shared library file libaocl-libmem.so will be saved in <build/lib/shared>.
» The static library file libaocl-libmem.a will be saved in <build/lib/static>.

Note: Dynamic Dispatcher is not supported. Hence, it is recommended not to load/run the AVX512
library on a non-AVX512 machine as it will lead to crash due to unsupported instructions.

12.2 Running an Application

The applications can preload the AOCL-LibMem shared library to replace the standard c library
memory functions for better performance gains on AMD “Zen” micro-architectures.

To run the application, preload the /ibaocl-libmem.so generated from the build procedure above:

$ LD_PRELOAD=<path to build/lib/shared/libaocl-libmem.so> <executable> <params>
12.3 Running an Application with Tunables

LibMem built with tunables enabled exposes two tunable parameters that will help you select the
implementation of your choice:

 LIBMEM OPERATION: Instruction based on alignment and cacheability

+ LIBMEM_ THRESHOLD: The threshold for ERMS and Non-Temporal instructions
Following two states are possible with this library based on the tunable settings:

* Default State: None of the parameters is tuned.

* Tuned State: One of the parameters is tuned with a valid option.

Chapter 12 AOCL-LibMem 121

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

12.3.1 Default State

In this state, none of the parameters are tuned; the library will pick up the best implementation based
on the underlying AMD “Zen” micro-architecture.

Run the application by preloading the tunables enabled libaocl-libmem.so:

$ LD_PRELOAD=<path to build/lib/shared/libaocl-libmem.so> <executable> <params>

12.3.2 Tuned State

In this state, one of the parameters is tuned by the application at run time. The library will choose the
implementation based on the valid tuned parameter at run time. Only one of the tunable can be set to
a valid set of format/options as described in Table 21.

12.3.2.1 LIBMEM_OPERATION

You can set the tunable LIBMEM_ OPERATION as follows:

LIBMEM_OPERATION=<operations>,<source_alignment>,<destination_alignmnet>

Based on this option, the library chooses the best implementation based on the combination of move
instructions, alignment of the source and destination addresses.

Valid Options

+ <operations> = [avx2|avx512|erms]

* <source alignment> = [blw|d|q[x|y|n]

* <destination alignmnet> = [b|w|d|q|x|y|n]

Use the following table to select the right implementation for your application:
Table 21. Application Implementations

Application Requirement | LIBMEM OPERATION Instructions Side-effects

Vector unaligned source and de | [avx2|avx512],b,b Load:VMOVDQU; |None

stination Store: VMOVDQU

Vectoraligned source and desti |[avx2[avx512],y,y Load:VMOVDQA; |Unaligned source

nation Store: VMOVDQA | and/or destination
address will lead
to crash

Vectoraligned source and [avx2|avx512],y,[blw|d|qx] |Load:VMOVDQA; |None

unaligned destination Store:VMOVDQU

Vector unaligned source andali |[avx2|avx512],[b|w|d|qx], y | Load:VMOVDQU; |None

gned destination Store: VMOVDQA

122 AOCL-LibMem Chapter 12

AMDA1

57404 Rev.4.1 August 2023

Table 21.

Application Implementations

AOCL User Guide

source and destination

Application Requirement | LIBMEM OPERATION Instructions Side-effects
Vector non temporal load and | [avx2[avx512],n,n Load:VMOVNTDQ | Unaligned source
store A; and/or

Store: VMOVNTDQ | destination address
will lead to crash
Vector non temporal load [avx2|avx512],n,[blw|d|q|x| |Load:VMOVNTDQ |None
yl A;
Store: VMOVDQU
Vector non temporal store [avx2|avx512],[blw|d|q|x|y], | Load:VMOVDQU; |None
n Store: VMOVNTDQ
Rep movs unaligned source or |erms,b,b REP MOVSB None
destination
Rep movs word aligned source | erms,w,w REP MOVSW Data corruption or
and destination crash if the length is
not a multiple of 2
Rep movs double word aligned | erms,d,d REP MOVSD Data corruption or
source and destination crash if the length is
not a multiple of 4
Rep movs quad word aligned |erms,q,q REP MOVSQ Data corruption or

crash if the length is
not a multiple of 8

Note: A best-fit solution for the underlying micro-architecture will be chosen if the tunable is in an

invalid format.

For example, to use only avx2-based move operations with both unaligned source and aligned

destination addresses:

$ LD_PRELOAD=<build/lib/shared/libaocl-1ibmem.so> LIBMEM_OPERATION=avx2,b,y <executable>

12.3.2.2

LIBMEM_THRESHOLD

You can set the tunable LIBMEM_ THRESHOLD as follows:

LIBMEM_THRESHOLD=<repmov_start_threshold>,<repmov_stop_threshold>,<nt_start_threshold>,

<nt_stop_threshold>

Based on this option, the library will choose the implementation with tuned threshold settings for
supported instruction sets: {vector, rep mov, non-temporal}.

Valid Options

* <repmov_start threshold> = [0, +ve integers]

* <repmov_stop threshold> = [0, +ve integers, -1]

* <nt start threshold>= [0, +ve integers]

Chapter 12

AOCL-LibMem

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

* <nt stop_threshold> = [0, +ve integers, -1]
Where, -1 refers to the maximum length.

Refer the following table for the sample threshold settings:
Table 22. Sample Threshold Settings

LIBMEM _THRESHOLD | Vector Range | RepMov Range Non-Temporal Range

0,2048,1048576,-1 (2049, 1048576) |[0,2048] [1048576, max value of unsigned long
long)

0,0,1048576,-1 [0,1048576) [0,0] [1048576, max value of unsigned long
long)

Note: A system configured threshold will be chosen if the tunable is in an invalid format.

For example, to use **REP MOVE** instructions for a range of 1KB to 2KB and non_temporal
instructions for a range of 512 KB and above:

$ LD_PRELOAD=<build/lib/shared/libaocl-1ibmem.so> LIBMEM_THRESHOLD=1024,2048,524288, -1
<executable>

124 AOCL-LibMem Chapter 12

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Chapter 13 AOCL-Cryptography

AOCL-Cryptography is a library consisting of the core cryptographic functions optimized for AMD
“Zen” micro-architecture. This library has multiple implementations of different:

* Advanced Encryption Standard (AES) encryption/decryption ciphers
» Secure Hash Algorithms (SHA-2 and SHA-3)
* Cipher and Hash based Message Authentication Code (MAC) algorithms

» Elliptic-curve Diffie-Hellman (ECDH) and Rivest, Shamir, and Adleman (RSA) key generation
functions

The AOCL-Cryptography library has the following functions:
* AES encrypt/decrypt routines for the following cipher schemes:

— Cipher Block Chaining (CBC)

— Cipher Feedback (CFB)

— Output Feedback (OFB)

— Counter (CTR)

— Galois/Counter Mode (GCM)

— Ciphertext Stealing Mode (XTS)

— Counter with Cipher Block Chaining Message Authentication Code (CCM)
» SHA-2 digest routines for the following schemes:

— SHA2 224
— SHA2 256
— SHA2 384
— SHA2 512
* SHA-3 digest routines for the following schemes:

— SHA3 224, SHA3 256, SHA3 384, and SHA3 512
— SHAKEI128 and SHAKE256
* Hash-based Message Authentication Code (HMAC) routines for the following schemes:

— HMAC _SHA2 224, HMAC SHA2 256, HMAC SHA?2 384, and HMAC SHA2 512
— HMAC SHA3 224, HMAC SHA3 256, HMAC SHA3 384, and HMAC SHA3 512
* Cipher-based Message Authentication Code (CMAC) routines for the following schemes:

— CMAC_AES 128
— CMAC_AES 192
— CMAC_AES 256

Chapter 13 AOCL-Cryptography 125

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

* AES - SIV (Synthetic 1V)
+ ECDH x25519 key exchange functions:

— Generate Public Key
— Compute Secret Key
« RSA

— Encrypt with public Key
— Decrypt with private Key
Note: Only non-padded mode is supported in AOCL 4.1 release.

13.1 Requirements

« (CMake3.14

+ GCCII.1.0

* OpenSSL v3.0.0 through 3.0.7
* Clang 15 on Windows

* AOCL-Utils library

* For more information on supported Linux operating systems, refer to Operating Systems library.

13.2 Installation

13.2.1 Building AOCL-Cryptography from Source on Linux

Complete the following steps to build AOCL-Cryptography from source on Linux:
GitHub URL: https://github.com/amd/aocl-crypto

Clone the repository aocl-crypto.

cd aocl-crypto

mkdir build

cd build

S e

Run the configure command cmake ../ using the following options:
Table 23. AOCL-Cryptography - Linux Options

Option Description
ALCP_ENABLE EXAMPLES (ON/OFF) Compile the example code
CMAKE BUILD TYPE (Debug/Release) Specify the build type
ENABLE AOCL_CPUID (ON/OFF) Enable CPUID functions from the AOCL-Utils library
AOCL_CPUID_INSTALL DIR AOCL-Utils installation path

126 AOCL-Cryptography Chapter 13

https://github.com/amd/aocl-crypto

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Table 23. AOCL-Cryptography - Linux Options

Option Description
OPENSSL INSTALL DIR OpenSSL (3.0.0 or later) installation path
CMAKE _INSTALL PREFIX AOCL-Cryptography installation path
ALCP_SANITIZE (ON/OFF) Enable sanitizers (asan, tsan, and so on)
AOCL_COMPAT LIBS Supported values= ipp,openssl/ipp/openssl

Enable compilation of IPP OpenSSL provider libraries.

Notes:
1. This CMake option is supported only with the GCC compiler
in 4.1 release.

2. The IPP header files should be added to the
CPLUS INCLUDE PATH environment variable (working
version for IPP is 2021 7).

3. OpenSSL provider support is not yet enabled for ECDH,
RSA, and SIV functions.

4. IPP provider support is not yet enabled for ECDH, RSA, SIV,
and CCM functions.

ALCP_ENABLE DOXYGEN Values: ON/OFF

Enable Doxygen documentation generation.

Note: Doxygen version supported: v1.9.6 or later.

7. make -j$(nproc)

8. make install

Testing Examples

1. Navigate to the installed directory.

2. Ensure that AOCL and OpenSSL lib directories are added to LD LIBRARY PATH and
LIBRARY_ PATH environment variables:

export LD_LIBRARY_PATH=<path to aocl crypto lib>:<path to OpenSSL 1ib>:$LD_LIBRARY_PATH;
export LIBRARY_PATH=<path to aocl crypto lib>:<path to OpenSSL 1lib>:$LIBRARY_PATH;

3. make

4. Run the executables generated in ./bin/<module>. For example, ./bin/mac/hmac.

13.2.2 Building AOCL-Cryptography from Source on Windows
AOCL-Cryptography requires CMake and Microsoft Visual Studio for building the binaries from the
sources on Windows.

Prerequisites

* (CMake versions 3.0 through 3.26.1

Chapter 13 AOCL-Cryptography 127

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

* Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.5.3)
* Desktop development with C++: C++ Clang-tools for windows (x64 or x86)

* LLVM plug-in for Microsoft Visual Studio (if the latest version of LLVM is installed separately,
this plug-in enables linking Microsoft Visual Studio with the installed LLVM toolchain)

» Install OpenSSL (3.0.0 or later) and add openssl\bin path to the PATH environment variables, if

not set

Configure and Build

1. Clone the repository aocl-crypto.

2. Open Command Prompt or PowerShell.

3. cd aocl-crypto
4. mkdir build

5. Run cmake configure using the following options:
Table 24. AOCL-Cryptography - Windows Options
Option Description

CMAKE BUILD TYPE (Debug/Release) Specify the build type

ALCP_ENABLE EXAMPLES (ON/OFF) Compile the example code

ENABLE AOCL_CPUID (ON/OFF) Enable CPUID functions fromthe AOCL-Utils library
AOCL _CPUID_INSTALL DIR AOCL-Utils installation path

OPENSSL INSTALL DIR OpenSSL (3.0.0 or later) installation path

-A (platform) x86/x64

-B (build directory) Build

-T (toolset) ClangCl/LLVM

-G (specify generator) Visual Studio 17 2022/ Visual Studio 16 2019

6. build the library:

--config=release/debug
PS>cmake --build ./build --config=release

1
.

Testing Examples

1. Navigate to the build directory.

2. Ensure that the /ib/Release directory is added to PATH environment variables.
3. Ifnot set already, add openss!\bin path to the PATH environment variables.

4. Run the executables generated in .\examples\<module>\Release*.exe.

Example: .\examples\cipher\Release\aes-ccm.exe

128 AOCL-Cryptography Chapter 13

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

13.3 Using AOCL-Cryptography in a Sample Application

A few pointers for using AOCL-Cryptography in a sample application:

+ For using the encrypt/decrypt routines, use the header file in the test application:
include/alcp/alcp.h
An example to use the cipher routines can be found in:
aocl-crypto/examples/cipher

» For using the digest routines, use the header file:
include/alcp/digest.h
An example to use the digest routines can be found in:

aocl-crypto/examples/digest

13.3.1 Compiling and Running Examples

Complete the following steps to compile and run the AOCL-Cryptography examples from the
downloaded packages:

1. Download and untar the aocl-crypto package.

2. cd amd-crypto
3. make
4

. To run example applications (for digest):

LD_LIBRARY_PATH=<path to aocl crypto lib>:<path to openssl 1lib> ./bin/digest/sha2_384 example

13.3.2 AOCL-Cryptography Library Provider for OpenSSL

For more information on usage instructions, refer to the following URL:

https://github.com/amd/aocl-crypto/blob/main/docs/compat/openssl.pdf
13.3.3 Integrating AOCL Libraries with Applications that Use IPP

For more information, refer to the following URL:

https://github.com/amd/aocl-crypto/blob/main/docs/compat/ipp.pdf

Chapter 13 AOCL-Cryptography 129

https://github.com/amd/aocl-crypto/blob/main/docs/compat/openssl.pdf
https://github.com/amd/aocl-crypto/blob/main/docs/compat/ipp.pdf

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 14 AOCL-Compression

AOCL-Compression is a software framework of various lossless data compression and
decompression methods tuned and optimized for AMD “Zen”-based CPUs. This library suite
supports the following:

* Linux and Windows platforms.

» 174, zlib/deflate, 1zma, zstd, bzip2, snappy, and Iz4hc optimized compression and decompression
methods.

* A unified standardized API set and the existing native APIs of the respective methods.

* Dynamic dispatcher feature that executes the most optimal function variant implemented using
Function Multi-versioning and hence, offering a single optimized library portable across different
x86 CPU architectures.

* Atest suite is provided for validation and performance benchmarking of the supported
compression and decompression methods. The test suite also supports the benchmarking of IPP
compression methods, such as 1z4, 1z4hc, bzip2, and zlib on the Linux-based platforms.

* The library build framework offers CTest based testing of the test cases that are implemented
using GTest and the library test suite.

* A Python-based performance benchmarking automation script is provided for benchmarking
needs.

* Doxygen based documentation covering library's API level details.

* Custom build options supported to exclude the unnecessary compression methods from the
library build for achieving a lower code footprint.

14.1 Installation

14.1.1 Using Pre-built Libraries

The library and test bench binary for Linux and Windows can be installed from one of the following:
* AOCL-Compression page (https.//developer.amd.com/amd-aocl/aocl-compression/)

* AOCL master installer: tar and zip packages for Linux and Windows respectively (https.//
developer.amd.com/amd-aocl/)

130 AOCL-Compression Chapter 14

https://developer.amd.com/amd-aocl/aocl-compression/
https://developer.amd.com/amd-aocl/

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

14.1.2 Building from Source

Complete the following steps to build AOCL-Compression from source:

1. Download the AOCL-Compression source package from GitHub (https://github.com/amd/aocl-
compression).

2. Follow the steps in the README file to build the library for Linux or Windows.

While building with AOCC 4.1, disable the CMake configuration option
ENABLE STRICT WARNINGS to avoid reporting of warnings related to -wstrict-prototypes -Wno-
deprecated-non-prototype as €rrors.

It is recommended to use the unified APIs of the library, but the native APIs of the respective
compression methods can be directly used by the applications. The compiled and installed package of
the library that is generated has the known issue of missing out a few header files. You must copy the
following header files to the compiled package folder aoc/ compression/include that is created at the
installed path based on the prefix option:

* algos/lzma/7zTypes.h
* algos/snappy/snappy-stubs-public.h
* algos/zlib/zconf.h

14.2 Running AOCL-Compression Test Bench on Linux

Test bench supports several options to validate, benchmark, or debug the supported compression
methods. It uses the unified API set to invoke the compression methods supported by AOCL-
Compression. It can also invoke and benchmark some of the IPP's compression methods.

To check the various options supported by the test bench, use one of the following commands:

aocl_compression_bench -h
or
aocl_compression_bench --help

Use the following command for an example to run the test bench and validate the outputs from all the
supported compression and decompression methods for a given input file:

aocl_compression_bench -a -t <input filename>

Use the following command for an example to run the test bench and check the performance of a
particular compression and decompression method for a given input file:

aocl _compression_bench -ezstd:5:0 -p <input filename>

Here, 5 is the level and 0 is the additional parameter to specify the custom window size for the ZSTD
method.

To run the test bench with error/debug/trace/info logs, use the command:

aocl_compression_bench -a -t -v <input filename>

Chapter 14 AOCL-Compression 131

https://github.com/amd/aocl-compression
https://github.com/amd/aocl-compression

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Here, you can pass -v with a number such as v<n> that can take the following values:
* 1 for Error (default)

+ 2 for Info

* 3 for Debug

* 4 for Trace

To test and benchmark the performance of IPP's compression methods, use the test bench option -c
along with the other relevant options (as explained above).

Currently, IPP's 1z4, 1z4hc, bzip2, and zlib methods are supported by the test bench.

Complete the following steps:

1. Set the library path environment variable (export LD LIBRARY PATH on Linux) to point to the
installed IPP library path.

Alternatively, you can also run vars.sh that comes along with the IPP installation to setup the
environment variable.

2. Download 1z4-1.9.3, zlib-1.2.11, and bzip2-1.0.8 source packages.
3. Apply IPP's patch files as follows:

patch -pl <"path to corresponding patch file">

4. Build the patched IPP 1z4, bzip2, and zlib libraries as per the steps in the IPP README files (in
the corresponding patch file locations) for these compression methods.

5. Set the library path environment variable (export LD _LIBRARY PATH on Linux) to point to the
patched IPP 1z4, bzip2, and zlib libraries.

6. Run the test bench to benchmark IPP library methods as follows:

aocl_compression_bench -a -p -c <input filename>
aocl_compression_bench -elz4 -p -c <input filename>
aocl _compression_bench -elz4hc -p -c <input filename>
aocl_compression_bench -ezlib -p -c <input filename>
aocl_compression_bench -ebzip2 -p -c <input filename>

For more information, refer to the README file available with the source package in GitHub (https:/
/github.com/amd/aocl-compression).

14.3 Running AOCL-Compression Test Bench on Windows

Test bench on Windows supports all the user options as on Linux, except for the -c option to link and
test the IPP's compression methods. For more information, refer to “Running AOCL-Compression
Test Bench on Linux” on page 131.

132 AOCL-Compression Chapter 14

https://github.com/amd/aocl-compression
https://github.com/amd/aocl-compression

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

To set and launch the test bench with a specific user option:
1. Go to project aocl _compression_bench > Properties > Debugging.
2. Specify the user options and the input test file.

For more information, refer to the README file available with the source package at GitHub (https:/
/github.com/amd/aocl-compression).

14.4 API Reference

14.4.1 Unified Standardized API Set

//Interface API to compress data
int64_t aocl 1lc_compress(aocl compression_desc *handle,
aocl _compression_type codec_type);

//Interface API to decompress data
int64_t aocl_llc_decompress(aocl_compression_desc *handle,
aocl_compression_type codec_type);

//Interface API to setup the compression method
void aocl_llc_setup(aocl_compression_desc *handle,
aocl_compression_type codec_type);

//Interface API to destroy the compression method
void aocl 1llc_destroy(aocl compression_desc *handle,
aocl_compression_type codec_type);

//Interface API to get compression library version string
const char *aocl_llc_version(void);

14.4.2 Interface Data Structures

//Types of compression methods supported
typedef enum
{

LZ4 = 0,

LZ4HC,

LZMA,

BZIP2,

SNAPPY,

ZLIB,

ZSTD,

AOCL_COMPRESSOR_ALGOS_NUM
} aocl_compression_type;

Chapter 14 AOCL-Compression 133

https://github.com/amd/aocl-compression
https://github.com/amd/aocl-compression

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

typedef struct

{

char *inBuf; /**< Pointer to input buffer data =
char *outBuf; /**< Pointer to output buffer data */
char *workBuf; /**< Pointer to temporary work buffer */
size t inSize; /**< Input data length 2/
size t outSize; /*¥*< Output data length */
size_t level; /**< Requested compression level */
size_t optVar; /**< Additional variables or parameters */
int numThreads; /**< Number of threads available for multi-threading */
int numMPIranks; /**< Number of available multi-core MPI ranks */
size t memLimit; /**< Maximum memory limit for compression/decompression */
int measureStats; /*¥*< Measure speed and size of compression/decompression */
uint64_t cSize; /**< Size of compressed output */
uint64_t dSize; /**< Size of decompressed output */
uint64_t cTime; /**< Time to compress input =
uint64_t dTime; /**< Time to decompress input */
float cSpeed; /**< Speed of compression */
float dSpeed; /**< Speed of decompression */
int optOofef; /**< Turn off all optimizations */
int optlLevel; /**< Optimization level: \n

@ - non-SIMD algorithmic optimizations, \n

1 - SSE2 optimizations, \n

2 - AVX optimizations, \n

3 - AVX2 optimizations, \n

4 - AVX512 optimizations */
int printDebuglLogs; /**< Print debug logs &/

} aocl_compression_desc;

134 AOCL-Compression Chapter 14

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

14.4.3 Library Return Error Codes

typedef enum

{
ERR_UNSUPPORTED_METHOD = -3, ///<compression method not supported by the library
ERR_EXCLUDED_METHOD, ///<compression method excluded from this library build
ERR_COMPRESSION_FAILED, ///<failure in compression/decompression

ERR_COMPRESSION_INVALID_OUTPUT ///<invalid compression/decompression output
} aocl_error_type;

14.4.4 Native APIs

//bzip2 Interface API to compress data
int BZ2_bzBuffToBuffCompress(

char* dest,
unsigned int* destlLen,
char* source,
unsigned int sourcelen,
int blockSize100k,
int verbosity,
int workFactor
)

//bzip2 Interface API to decompress data
int BZ2_bzBuffToBuffDecompress (

char* dest,

unsigned int* destlLen,

char* source,

unsigned int sourcelen,

int small,

int verbosity
)s

Chapter 14 AOCL-Compression 135

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

//1z4 Interface API to compress data
int LZ4_compress_default(
const char* src,
char* dst,
int srcSize,
int dstCapacity
)

//1z4 Interface API to decompress data
int LZ4_decompress_safe (

const char* src,

char* dst,

int compressedSize,

int dstCapacity

)s

//1z4hc Interface API to compress data
int LZ4_compress HC(
const char* src,
char* dst,
int srcSize,
int dstCapacity,
int compressionLevel

)5

//1z4hc Interface API to decompress data
int LZ4_decompress_safe (

const char* src,

char* dst,

int compressedSize,

int dstCapacity

)

//1lzma Interface API to compress data

int LzmaEncode(

Byte *dest, SizeT *destLen, const Byte *src, SizeT srclLen,

const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig

)

//1lzma Interface API to decompress data

int LzmaDecode(

Byte *dest, SizeT *destLen, const Byte *src, SizeT *srclLen,

const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc

)

136 AOCL-Compression Chapter 14

AMDA1

57404 Rev.4.1 August 2023

//snappy Interface API to compress data
void RawCompress(

const char* input,

size_t input_length,

char* compressed,

size_t* compressed_length

)5

//snappy Interface API to decompress data

bool RawUncompress(

const char* compressed, size_t compressed_length,
char* uncompressed

)5

//z1lib Interface API to compress data

Int compress2(

unsigned char *dest, unsigned long *destLen,

const unsigned char *source, unsigned long sourcelen,
int level

)5

//z1lib Interface API to decompress data

int uncompress(

unsigned char *dest, unsigned long *destlLen,

const unsigned char *source, unsigned long sourcelen

)5

//zstd Interface API to compress data
size t ZSTD_compress_advanced(
ZSTD_CCtx* cctx,

void* dst, size_t dstCapacity,

const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params

)5

//zstd Interface API to decompress data
size_t ZSTD_decompressDCtx(

ZSTD_DCtx* dctx,

void* dst, size_t dstCapacity,

const void* src, size_t srcSize

)5

AOCL User Guide

Chapter 14 AOCL-Compression

137

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

14.4.5 Example Test Program

The following test program shows the sample usage and calling sequence of aocl-compression APIs
to compress and decompress a test input:

#include <stdio.h>
#include "aocl compression.h"

int main (int argc, char **argv)
{
aocl _compression_desc aocl_compression_ds;
aocl _compression_desc *aocl compression_handle = &aocl compression_ds;
FILE *inFp = NULL;
int file_size = 0;
char *inPtr = NULL, *compPtr = NULL, *decompPtr = NULL;
int64_t resultComp = @, resultDecomp = 0;

if (argc < 2)

{
printf("Provide input test file path\n");
return -1;

)i

inFp = fopen(argv[1l], "rb");

fseek(inFp, OL, SEEK_END);

file size = ftell(inFp);

rewind(inFp);

// One of the compression methods as per aocl_compression_type
aocl_compression_type method = LZ4;
aocl_compression_handle->level = 0;

aocl _compression_handle->optVar = 0;

aocl _compression_handle->printDebuglogs = 0;
aocl_compression_handle->inSize = file_size;
aocl_compression_handle->outSize = (file_size + (file_size / 6) + (16 * 1024));
inPtr = (char *)calloc(1, aocl compression_handle->inSize);
compPtr = (char *)calloc(1l, aocl_compression_handle->outSize);
decompPtr = (char *)calloc(1, aocl_compression_handle->inSize);
aocl_compression_handle->inBuf = inPtr;

aocl _compression_handle->outBuf = compPtr;

file_size = fread(inPtr, 1, file_size, inFp);

// 1. setup and create a handle
aocl_1llc_setup(aocl_compression_handle, method);

// 2. compress
resultComp = aocl_1llc_compress(aocl_compression_handle, method);

if (resultComp <= 0)

{
printf("Compression: failed\n");
goto error_exit;

}

printf("Compression: done\n");

138 AOCL-Compression Chapter 14

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

// decompress
aocl _compression_handle->inSize = resultComp;
aocl_compression_handle->outSize = file_size;
aocl_compression_handle->inBuf = compPtr;
aocl_compression_handle->outBuf = decompPtr;

resultDecomp = aocl 1llc_decompress(aocl compression_handle, method);

if (resultDecomp <= @)
{

printf("Decompression Failure\n");
goto error_exit;

}

printf("Decompression: done\n");

// destroy handle
aocl_1lc_destroy(aocl_compression_handle, method);
error_exit:
if (inPtr)
free(inPtr);
if (compPtr)
free(compPtr);
if (decompPtr)
free(decompPtr);
return 0;

}

To build this example test program on a Linux system using GCC or AOCC, you must specify the
aocl_compression.h header file and link the libaocl compression.so file as follows:

gcc test.c -I<aocl_compression.h file path> -L <libaocl_compression.so file path> -
laocl_compression

14.5 Optional Optimization Options

Some additional optimization options are supported in the library that can give performance benefits
based on specific test conditions. These optional features are not enabled by default and must be
turned on depending on their need:

Table 25. Optional Optimization Options

Option Description

AOCL_LZ4 OPT PREFETCH BACKWARDS Enable LZ4 optimizations related to backward
prefetching of data (Disabled by default)

SNAPPY MATCH_SKIP OPT Enable Snappy match skipping optimization
(Disabled by default)

LZ4 FRAME FORMAT SUPPORT Enable building LZ4 with Frame format and API
support (Enabled by default)

AOCL _LZ4AHC DISABLE PATTERN ANALYSIS | Disable Pattern Analysis in LZ4HC for level 9
(Enabled by default)

Chapter 14 AOCL-Compression 139

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Table 25. Optional Optimization Options

Option Description

AOCL_ZSTD 4BYTE LAZY2 MATCH_FINDER | Enable 4-byte comparison for finding a potential
better match candidate with Lazy2 compressor

(Disabled by default)

AOCL_TEST COVERAGE Enable GTest and AOCL test bench based CTest
suite (Disabled by default)

BUILD DOC Build documentation for this library (Disabled by
default)

ZLIB_ DEFLATE FAST MODE 2 Enable optimization for deflate fast using

Z_FIXED strategy. Do not combine with
ZLIB_DEFLATE FAST MODE 3 (Disabled by
default)

ZLIB DEFLATE FAST MODE 3 Enable ZLIB deflate quick strategy. Do not
combine with ZLIB_DEFLATE _FAST MODE 2
(Disabled by default)

AOCL _LZ4 MATCH_SKIP OPT LDS STRATI1 Enable LZ4 match skipping optimization strategy-1
based on a larger base step size applied for long
distance search (Disabled by default)

AOCL_LZ4 MATCH_SKIP OPT LDS STRAT2 Enable LZ4 match skipping optimization strategy-2
by aggressively setting search distance on top of
strategy-1. Recommended to be used with Silesia
corpus. (Disabled by default)

AOCL_EXCLUDE BZIP2 Exclude BZIP2 compression method from the
library build (Disabled by default)

AOCL_EXCLUDE LZ4 Exclude LZ4 compression method from the library
build. LZ4HC also gets excluded (Disabled by
default)

AOCL_EXCLUDE LZ4HC Exclude LZ4HC compression method from the
library build (Disabled by default)

AOCL_EXCLUDE LZMA Exclude LZMA compression method from the
library build (Disabled by default)

AOCL _EXCLUDE SNAPPY Exclude SNAPPY compression method from the
library build (Disabled by default)

AOCL_EXCLUDE ZLIB Exclude ZLIB compression method from the
library build (Disabled by default)

AOCL_EXCLUDE ZSTD Exclude ZSTD compression method from the

library build (Disabled by default)

140 AOCL-Compression Chapter 14

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Chapter 15 AOCL-Utils

AOCL-Utils provides a uniform interface to all the AOCL libraries to access the CPU features for
AMD CPUs. This library provides the following features:

* Core details

» Flags available/usable

» ISA available/usable

» Topology about L1/L2/L3 caches

AOCL-Utils is designed for integration with the other AOCL libraries. Each project has its own
mechanism to identify CPU and provide necessary features such as Dynamic Dispatch. The main
purpose of this library is to provide a centralized mechanism to update/validate and provide
information to the users.

This is the first release of the AOCL-Utils library and it supports the following functions:
» ISA available/usable
* API to check following features:

— SHA, AES, and VAES availability

— RDSEED and RDRAND availability

— AVX2 availability

— AVX512 foundation and sub-feature flags
* APIs for cache topology

Note: This library detects only the CPUs of AMD "Zen" architecture, there are no plans to add
support for other x86 implementations of other CPU vendors. Some of the utilities may fail or
behave in an unexpected manner on the predecessors of AMD "Zen" architecture.

15.1 Requirements

* CMAKE v3.15 or later

« GCCv12.2 or later

* Clang v15 or later

» Referto “Build Utilities ” on page 17 for Make and Microsoft Visual Studio versions

* For more information on the supported operating systems, refer to “Operating Systems” on
page 16

* stdct++ library must be linked when using the AOCL-Utils static binary

Chapter 15 AOCL-Utils 141

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

15.2 Clone and Build the AOCL-Utils Library

Complete the following steps to clone and build the AOCL-Ultils library:
1. Download the latest release of AOCL-Utils (https://github.com/amd/aocl-utils).
2. Clone the Git repository (https://github.com/amd/aocl-utils.git).

3. Run the command:

cd aocl-utils

4. For more information on the detailed steps to build and install AOCL-Utils (based on OS,
compilers, and so on) refer to the aoc/-utils/BUILD.md file.

Note: For installing the AOCL-Utils library with Spack on Linux-based environment, refer to
“Building from Source” on page 18.

15.3 Using AOCL-Utils

For this library, C++ is used for implementation. This library also provides C interfaces for the calls
from other C programs/libraries. After installing the AOCL-Utils library:

* For using the C++ routines, use the include/alci.h header file that has classes/members to get CPU
features, AMD "Zen" micro-architecture and cache information.

* For using the C routines:

— Useinclude/alci/arch.h to get the CPU features and AMD "Zen" micro-architecture information.
— Use include/alci/cache.h to get the Cache topology (L1, L2, and L3) information.

15.3.1 C API Example

Example: test ¢ application.c

#include "alci/arch.h"
#include "alci/alci.h"
#include <stdio.h>

int main(int argc, char **argv) {

if (alcpu_is _amd()) {

printf("Is CPU based on AMD Zen: true\n");
} else {

printf("Is CPU based on AMD Zen: false\n");

}

return 0;

142 AOCL-Utils Chapter 15

https://github.com/amd/aocl-utils
https://github.com/amd/aocl-utils.git

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

15.3.2 C++ API Example

Example: test cpp application.cc

#include "alci/cxx/alci.hh"
#include "alci/cxx/cpu.hh"
#include <stdio.h>

alci::Cpu Cpudata = alci::Cpu();

int main(int argc, char **argv) {

}

if (Cpudata.isAmd()) {

printf("Is CPU based on AMD Zen: true\n");
} else {

printf("Is CPU based on AMD Zen: false\n");

}

return 0;

15.3.3 Building on Windows

On Windows, you can build an application with the AOCL-Ultils library using Clang/Clang++
Compilers as follows:

l.
2.

Create a 64-bit console app C++ project in Microsoft Visual Studio 17 2022.

To select Clang-cl compiler, navigate to Project > Properties > Configuration Properties >
General > Platform Toolset > LLVM(Clang-cl) or llvm.

. Use test _c_application.c or test cpp_application.cc sources as a reference for the API call flow

of AOCL-Utils.
Add them into project using:

Project > Add Existing item > select test ¢ _application.c or test_cpp_application.cc from the
project source directory.

Include the AOCL-Ultils header files (such as include/alci/alci.h, include/alci/cxx/alci.hh, and so
on) and call the required AOCL-Utils APIs in the Windows application.

Update the include path in:

Project > Properties > C/C++ > General > Additional Include Directories

Update the AOCL-Ultils library path (where libaoclutils.lib or libaoclutils _static.lib exist) in:
Project > Properties > Linker > General > Additional Library Directories

Update the AOCL-Utils library name in:

Project > Properties > Linker > Input > Additional Dependencies (/ibaoclutils.lib or
libaoclutils_static.lib)

Chapter 15 AOCL-Utils 143

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

9.

10.

If AOCL-Utils dynamic library is used, copy the AOCL-Utils DLL library (/ibaoclutils.dll) to the
same project application folder.

Compile the project and run the application.

15.3.4 Building on Linux

On

Linux, you can build an application with the AOCL-Ultils library using:

GCC/G++ Compilers:

Export the libaoclutils binaries path into LD_LIBRARY_PATH variable.
export LD_LIBRARY_PATH=<path of libaoclutils binaries>:${LD_LIBRARY_PATH}

Using Static Library:

gcc -std=gnull test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries>
-1:1ibaoclutils.a -1lstdc++ -I<path of libaoclutils include directory>

g++ -std=gnu++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils
binaries> -1l:libaoclutils.a -I<path of libaoclutils include directory>

Using Dynamic/Shared Library:

gcc -std=gnull test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries>
-1:1libaoclutils.so -I<path of libaoclutils include directory>

g++ -std=gnu++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils
binaries> -1:1libaoclutils.so -I<path of libaoclutils include directory>

AOCC Clang/Clang++ Compilers:
Using Static Library:

clang -std=cl11 test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries>
-1:1libaoclutils.a -1lstdc++ -I<path of libaoclutils include directory>

clang++ -std=c++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils
binaries> -1:1ibaoclutils.a -I<path of libaoclutils include directory>

Using Dynamic/Shared Library:

clang -std=cll test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries>
-1:1ibaoclutils.so -I<path of libaoclutils include directory>

clang++ -std=c++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils
binaries> -1l:libaoclutils.so -I<path of libaoclutils include directory>

Similarly, to use AOCL-Utils in other libraries, link the AOCL-Utils binary using -L or -1 flag and

incl

ude the header files using -1 flag.

144

AOCL-Utils Chapter 15

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

15.3.5 Output

Finally, run test c_application.exe or test cpp_application.exe on system and that’ll give the
following output:

Is CPU based on AMD Zen: true for AMD Zen based CPU.
Is CPU based on AMD Zen: false for other non-AMD Zen based CPU.

Chapter 15 AOCL-Utils 145

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 16 Linking AOCL to Applications

This section provides examples of how AOCL can be linked with the HPL benchmark and MUMPS
sparse solver library.

16.1 High-performance LINPACK Benchmark (HPL)

HPL is a software package that solves a (random) dense linear system in double precision (64-bits)
arithmetic on distributed memory computers. It is a LINPACK benchmark that measures the floating-
point rate of execution for solving a linear system of equations.

To build an HPL binary from the source code, edit the MPxxx and LAxxx directories in your
architecture-specific Makefile to match the installed locations of your MPI and Linear Algebra
library. For AOCL-BLAS, use the F77 interface with F2CDEFS =-DAdd _ -DF77 INTEGER=int -
DStringSunStyle.

Use the multi-threaded AOCL-BLAS with the following configuration for an optimal performance:

./configure --enable-cblas -t openmp --disable-sup-handling --prefix=<path> auto

Setup HPL.dat before running the benchmark.

16.1.1 Configuring HPL.dat

HPL.dat file contains the configuration parameters. The important parameters are Problem Size,
Process Grid, and BlockSize.

* Problem Size (N) — For best results, the problem size must be set large enough to use 80-90% of
the available memory.

* Process Grid (P and Q) — P x Q must match the number of MPI ranks. P and Q must be as close
to each other as possible. If the numbers cannot be equal, Q must be larger.

* BlockSize (NB) — HPL uses the block size for the data distribution and for the computational
granularity. Set NB=240 for an optimal performance.

* Set BCASTs=2 — Increasing-2-ring (2rg) broadcast algorithm gives a better performance than
the default broadcast algorithm.

146 Linking AOCL to Applications Chapter 16

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

16.1.2 Running the Benchmark

The combination of multi-threading (through OpenMP library) and MPI is important to configure for
optimal performance. Set the number of MPI tasks to number of L3 caches in the system for optimal
performance.

The HPL benchmark typically produces a better single node performance number with the following
configurations depending on which generation of AMD EPYC™ processor is used:

2"d Gen AMD EPYC™ Processors (codenamed “Rome”)

A dual socket AMD EPYC 7742 system consists of 32 CCXs, each having an L3 cache and a total
of 2 x 64 cores (four cores per CCX). For maximum performance, use 32 MPI ranks with 4
OpenMP threads. Each MPI rank is bonded to 1 CCX and 4 threads per L3 cache.

Set the following flags while building and running the tests:

export BLIS_IC_NT=4
export BLIS_JC_NT=1

Execute the following command to run the test:

mpirun -np 32 --report-bindings --map-by ppr:1:13cache,pe=4 -x OMP_NUM_THREADS=4 -X
OMP_PROC_BIND=TRUE -x OMP_PLACES=cores ./xhpl

BLIS IC NT and BLIS JC NT parameters are set for DGEMM parallelization at each shared L3
cache to improve the performance further.

3" Gen AMD EPYC™ Processors (codenamed “Milan”)

The number of MPI ranks and maximum thread count per MPI rank depends on the specific
EPYC SKU. For better performance, bind each MPI rank to a CCX, if there are 4 OpenMP
threads. However, if 8 threads are used, then you should specify CCD instead of CCX.

Set the following flags while building and running the tests:

export BLIS_IC_NT=8
export BLIS_ JC_NT=1

Execute the following command to run the test:

mpirun -np 16 --report-bindings --map-by ppr:1:13cache,pe=8 -x OMP_NUM_THREADS=8 -Xx
OMP_PROC_BIND=TRUE -x OMP_PLACES=cores ./xhpl

Chapter 16 Linking AOCL to Applications 147

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

16.2 MUMPS Sparse Solver Library

MUItifrontal Massively Parallel Solver (MUMPS: http://mumps-solver.org/) is an open-source
package for solving systems of linear equations of the form:

Ax=Db

Where, A is a square sparse matrix that can be one of the following on distributed memory
computers:

* Unsymmetric
* Symmetric positive definite
* General symmetric

MUMPS implements a direct method based on a multi-frontal approach which performs the Gaussian
factorization:

A=LU

Where, L is a lower triangular matrix and U an upper triangular matrix.
If the matrix is symmetric then the factorization:

A=LDLT

Where, D is a block diagonal matrix performed.

The system Ax = b is solved in the following steps:

1. Analysis

During an analysis, preprocessing including re-ordering and a symbolic factorization are
performed. This depends on the external libs METIS, SCOTCH, and PORD (inside MUMPS
source). Apre denotes the preprocessed matrix.

2. Factorization

During the factorization, Apre = LU or Apre = LDLT, depending on the symmetry of the
preprocessed matrix, is computed. The original matrix is first distributed (or redistributed) onto
the processors depending on the mapping computed during the analysis. The numerical
factorization is then a sequence of dense factorization on the frontal matrices.

148 Linking AOCL to Applications Chapter 16

http://mumps-solver.org/

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

3. Solution
The solution xpre of:
LUxpre = bpre or LDLT xpre = bpre

Where, xpre and bpre are the transformed solution x and right-hand side b respectively. They are
associated to the preprocessed matrix Apre and obtained through the forward elimination step:

Ly = bpre or LDy = bpre

Followed by the backward elimination step:

Uxpre=yorLTxpre=y.

The solution xpre is finally processed to obtain the solution x of the original system Ax = b.

The AOCL libraries can be integrated with the MUMPS sparse solver to perform highly optimized
linear algebra operations on AMD “Zen”-based processors.

16.2.1 Enabling AOCL with MUMPS

16.2.1.1 Using Spack On Linux

Complete the following steps to enable AOCL with MUMPS on Linux:
1. Setup Spack on the target machine.

2. Link the AOCL libraries AOCL-BLAS, AOCL-LAPACK, and AOCL-ScaLAPACK while
installing MUMPS. Use the following Spack commands to install MUMPS with:

— gcc compiler:
$ spack install mumps ~amdblis “~amdlibflame ~amdscalapack

— aocc compiler:

$ spack install mumps “amdblis “~amdlibflame ~amdscalapack %aocc

— To use an external reordering library (for example, METIS), run the following command:

$ spack install mumps “~metis “amdblis “~amdlibflame “~amdscalapack

16.2.1.2 On Windows

GitHub URL: https://github.com/amd/mumps-build
Prerequisites
Ensure that the following prerequisites are met:

* CMake and Ninja Makefile Generator — Ensure that Ninja is installed/updated in the Microsoft
Visual Studio installation folder:

C:\Program Files (x86)\Microsoft Visual
Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja

Chapter 16 Linking AOCL to Applications 149

https://github.com/amd/mumps-build
C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja
C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja

AMDA1

AOCL User Guide

* Download the latest Binary Ninja from the URL:

https://github.com/ninja-build/ninja/releases

« Intel® oneAPI toolkit must include C, C++, Fortran Compilers, and MPI. For more information,

refer Intel documentation (Attps://www.intel.com/content/www/us/en/developer/articles/tool/
oneapi-standalone-components.html).

* Pre-built AOCL libraries for AOCL-BLAS, AOCL-LAPACK, and AOCL-ScaLAPACK.
» Ifreordering library is METIS, complete the following steps:

a.

Download the pre-built METIS library from SuiteSparse public repository (https.//
github.com/grup-gu/SuiteSparse.git).

Build METIS library from the metis folder:

cd SuiteSparse\metis-5.1.0

Define IDXTYPEWIDTH and REALTYPEWIDTH to 32 or 64 based on the required
integer size in metis/include/metis.h.

Configure:

cmake S . -B ninja_build_dir -G "Ninja" -DBUILD_SHARED_LIBS=0FF
-DCMAKE_BUILD_TYPE=Release -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON

Build the project:

cmake --build ninja_build_dir --verbose

The library metis.lib is generated in ninja_build dir\lib.

* Boost libraries on Windows:

Required to read the .mt#x files efficiently and quickly

Essential for the test application aoc! _amd.cpp that links to MUMPS libraries and measures the

performance for an Symmetric Positive Definite (SPD) .mtx file
Download the latest sources and bootstrap respectively from:
https://www.boost.org/users/download/

https://www.boost.org/doc/libs/1 81 0/more/getting started/windows.html#simplified-build-

from-source

Define BOOST_ROOT in tests/CMakeLists. txt

150

Linking AOCL to Applications Chapter 16

57404 Rev.4.1 August 2023

https://www.boost.org/users/download/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.boost.org/doc/libs/1_81_0/more/getting_started/windows.html#simplified-build-from-source
https://www.boost.org/doc/libs/1_81_0/more/getting_started/windows.html#simplified-build-from-source
https://github.com/grup-gu/SuiteSparse.git
https://github.com/ninja-build/ninja/releases

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Building MUMPS Sources
Complete the following steps to build the MUMPS sources on Windows:

1. Checkout the MUMPS build repository from AOCL GitHub (https://github.com/amd/mumps-
build).

2. Open Intel oneAPI command prompt for Intel 64 for Microsoft Visual Studio 2019 from
Windows search box.

3. Edit the default options in options.cmake in mumps/cmake/.

4. Remove any build directory if it exists already.

Chapter 16 Linking AOCL to Applications 151

https://github.com/amd/mumps-build

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

5. Configure the MUMPS project using Ninja:

cmake S . -B ninja_build_dir -G "Ninja" -DENABLE_AOCL=ON -DENABLE_MKL=OFF -DBUILD_TESTING=ON
-DCMAKE_INSTALL_PREFIX="</mumps/install/path>" -Dscotch=ON -Dopenmp=ON -DBUILD_SHARED_LIBS=OFF
-Dparallel=ON -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON -DCMAKE_BUILD_TYPE=Release
-DUSER_PROVIDED_BLIS_LIBRARY_PATH="<path/to/AOCL-BLAS/library/path>"
-DUSER_PROVIDED_BLIS_INCLUDE_PATH="<path/to/AOCL-BLAS/headers/path>"
-DUSER_PROVIDED_LAPACK_LIBRARY_PATH="<path/to/aocl-lapack/library/path>"

-DUSER_PROVIDED LAPACK_ INCLUDE_PATH="<path/to/aocl-lapack/headers/path>"
-DUSER_PROVIDED_SCALAPACK_LIBRARY_PATH="<path/to/scalapack/library/path>"
-DUSER_PROVIDED_METIS_LIBRARY_PATH="<path/to/metis/library/path>"
-DUSER_PROVIDED_METIS_INCLUDE_PATH="<path/to/metis/include/path>"
-DCMAKE_C_COMPILER="icx.exe" -DCMAKE_CXX_COMPILER="icx.exe"
-DCMAKE_Fortran_COMPILER="ifx.exe" -DBOOST_ROOT="<path/to/boost_1 77 ©>" -Dintsize64=0FF -
DUSER_PROVIDED_IMPILIB_ILP64 PATH="<path/to/boost>"

-DMUMPS_UPSTREAM_VERSION="5.5.1"

The following options are enabled in the command:

— -DENABLE_AOCL=0ON: <Enable AOCL Libraries>

— -DENABLE_MKL=0OFF: <Enable MKL Libraries>

— -DBUILD _TESTING=O0ON: <Enable Mumps linking to test application to test>

— -Dscotch=ON: <Enable Metis Library for Reordering>

— -Dopenmp=ON: <Enable Multithreading using openmp>

— -Dintsize64=0OFF: <Enable LP64 i.e., 32-bit integer size>

— -DBUILD_SHARED_LIBS=OFF: <Enable Static Library>

— -Dparallel=ON: <Enable Multithreading>

— -DCMAKE_VERBOSE_MAKEFILE:BOOL=0ON: <Enable verbose build log>

— -DCMAKE_BUILD_TYPE= Release: <Enable Release build>

— -DUSER_PROVIDED BLIS_LIBRARY_PATH= “<path/to/blas/lib>"

— -DUSER_PROVIDED BLIS INCLUDE_PATH= “<path/to/blas/header>"

— -DUSER_PROVIDED LAPACK_LIBRARY_PATH= “<path/to/lapack/lib >”

— -DUSER_PROVIDED LAPACK INCLUDE PATH= “<path/to/lapack/include/header
— -DUSER_PROVIDED SCALAPACK_LIBRARY_PATH= “<path/to/scalapack/lib
— -DUSER_PROVIDED METIS_LIBRARY= “<Metis/library/with/absolute/path >”
— -DUSER_PROVIDED METIS_LIBRARY_PATH= “<path/to/metis/lib>"

— -DUSER_PROVIDED METIS_INCLUDE_PATH= “<path/to/metis/header>"

— -DCMAKE_C_COMPILER= “<intel ¢ compiler>"

— -DCMAKE_Fortran COMPILER= “<intel fortran compiler>"

— -DBOOST_ROOT= “<path/to/BOOST/INSTALLATION>”

— -DUSER_PROVIDED IMPILIB_ILP64 PATH="<path/to/64-bit/Inte]l IMPI Library>"

— -DMUMPS_UPSTREAM_VERSION = “<valid/supported mumps source versions: 5.4.1,
5.5.0,and 5.5.1>”

152 Linking AOCL to Applications Chapter 16

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

6. Toggle/Edit the options in step 5 to get:
a. Debug or Release build
b. LP64 or ILP64 libs
c. AOCL or MKL Libs

7. Build the project:

cmake --build ninja_build _dir --config Release --target install --verbose

8. Run the executable in ninja_build dir\tests:

mpiexec -n 2 --map-by L3cache --bind-to core Csimple.exe
mpiexec -n 4 --map-by L3cache --bind-to core amd_aocl.exe sample.mtx 1 1 10

Chapter 16 Linking AOCL to Applications 153

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 17 AOCL Tuning Guidelines

This section provides tuning recommendations for AOCL.

171 AOCL-BLAS Thread Control

Application can set the desired number of threads during AOCL-BLAS initialization and runtime as
explained below.

17.1.1 AQOCL-BLAS Initialization

During AOCL-BLAS initialization, the preferred number of threads by an application in the BLAS
routines can be set in multiple ways as follows:

* Dbli_thread set num threads(nt) AOCL-BLAS library API

* Valid value of BLIS NUM_THREADS environment variable
* omp_set num_threads(nt) OpenMP library API

* Valid value of OMP_NUM_THREADS environment variable

» If none of these is issued by an application, the number of logical cores would be used by the
AOCL-BLAS library as the preferred number of threads

If the number of threads is set in one or more possible ways, the order of precedence for AOCL would
be in the above mentioned order.

154 AOCL Tuning Guidelines Chapter 17

AMDA1

57404 Rev.4.1

August 2023

AOCL User Guide

The following table describes the sample scenarios for setting the number of threads during AOCL-

BLAS initialization:

Table 26. Sample Scenarios - 1
Number of
Threads Set
Sample Pseudo Code | Sample Command During Remarks
for Application Executed AOCL-
BLAS
Initialization
int main() $ 8 BLIS NUM_THREADS will have the
{ BLIS_NUM_THREADS=8 maximum precedence.
////pseudo ./my_blis program
:ggetgos;tsenu?npbee“fzf $./ 16 BLIS NUM_THREADS is not set and
bli
threads ////// my_bi1s_program hence, omp_set_num_threads(16) has
taken effect.
omp_set_num_threads(| g 16 BLIS NUM_THREADS is not set,
16); g . OMP_NUM_THREADS=4 omp_set num_threads(16) has taken effect
ij?%; /; ; // +/my_blis_program as it has more precedence than
return 0 OMP NUM THREADS.
}
$ 8 BLIS NUM THREADS is set to 8,
BLIS_NUM_THREADS=8 omp_set num_threads(nt) and
OMP_NUM_THREADS=4 OMP NUM_THREADS do not have any
./my_blis_program effect_ -
int main() $ 8 BLIS NUM_THREADS will have the
{ BLIS_NUM_THREADS=8 maximum precedence.
////pseudo ./my_blis program
code /11717 $./ 64 BLIS NUM_THREADS is not set,
jfi?;";j/;;// my_blis_program omp_set num_threads() is not issued, and
oturn 0 OMP_NUM_THREADS is not set,
} ’ Considering the number of logical cores to
be 64, number of threads is 64.
$ 4 BLIS NUM_ THREADS is not set,
OMP_NUM_THREADS=4 omp_set num_threads() is not issued, and
-/my_blis_program OMP_NUM THREADS is set to 4.
17.1.2 Runtime

Once the number of threads is set during AOCL-BLAS initialization, it will be used in subsequent
BLAS routine execution until the application modifies the number of threads (for example,

omp_set num_threads() API) to be used.

Chapter 17

AOCL Tuning Guidelines

155

AMDA1

AOCL User Guide

57404 Rev. 4.1

August 2023

The following table describes the sample scenarios for setting the number of threads during runtime:

Table 27. Sample Scenarios - 2
Sample Pseudo Code for | Sample Command m Value in Number of
Aobplication Executed Sequence of Threads for Remarks
PP Execution | this BLAS Call
int main() $./my_blis_program | 100 8 Application issued
{ omp set num_threa
////Pseudo code for ds(8)
sample usage of OpenMP
API to set number of 500 16 Application issued
threads in the omp_set num_threa
Application during Run ds(16)
Time////// - -
do { 200 8 Application re-issued
if(m < 500) omp_set num_threa
omp_set_num_threads(8); ds(8)
i N
500) im > 4000 32 Application issued
omp_set_num_threads(16); omp_set num_threa
ds(32)
3000) 1f(m >= 1000 16 Application re-issued
omp_set_num_threads(32); an)g)set_num_threa
dgemm_(); S
¥ 500 16 Application re-issued
while(test_case_counter-
0 omp set num_threa
111111111111 ds(16)
return @; 100 8 Application re-issued
} omp_set num_threa
ds(8)
17.1.2.1 Runtime Thread Control

AOCL-BLAS libraries that are multi-threaded using OpenMP parallelism provide two mechanisms
for the users to control the number of threads for AOCL-BLAS functions to use. These are the normal
OpenMP mechanisms and AOCL-BLAS specific environment variables and function calls. The
AOCL-BLAS specific mechanisms include the option to set the overall number of threads for AOCL-
BLAS to use or to set the threading specifically for the different loops within the AOCL-BLAS3
routines (for example, DGEMM). These are called the automatic and the manual ways respectively.
For more information, refer to:

https://github.com/amd/blis/blob/master/docs/Multithreading.md

156

AOCL Tuning Guidelines

Chapter 17

https://github.com/amd/blis/blob/master/docs/Multithreading.md

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

The order of precedence used in AOCL-BLAS, where set or called by the user, is as follows:
The AOCL-BLAS manual way values set using bli_thread set ways() by the application.
Valid value(s) of any of the BLIS * NT environment variables.

Value set using bli_thread set num_threads(nt) by the application.

Valid value set for the environment variable BLIS NUM_THREADS.

omp_set num_threads(nt) issued by the application.

Valid value set for the environment variable OMP_NUM_THREADS.

AT

The default number of threads used by the chosen OpenMP runtime library when
OMP _NUM_THREADS is not set.

Two other factors may override these settings:

1. OpenMP parallelism at higher level(s) in the code calling AOCL-BLAS, that is, the number of
active levels and the level at which the AOCL-BLAS call occurs.

2. The effect of AOCL Dynamic (if enabled), as described in the next section.

Note: AOCL 4.1 has improved support for calling AOCL-BLAS within nested OpenMP parallelism
compared to the previous releases. Hence, using the standard OpenMP mechanisms should be
sufficient for most of the use cases.

17.2 AOCL Dynamic

The AOCL dynamic feature enables AOCL-BLAS to dynamically change the number of threads.

This feature is enabled by default, however, it can be enabled or disabled at the configuration time
using the options --enable-aocl-dynamic and --disable-aocl-dynamic respectively.

You can also specify the preferred number of threads using the environment variables
BLIS NUM_THREADS or OMP_NUM THREADS, BLIS NUM THREADS takes precedence if
both of them are specified.

The following table summarizes how the number of threads is determined based on the status of
AOCL Dynamic and the user configuration using the variable BLIS NUM_THREADS:

Table 28. AOCL Dynamic

AOCL Dynamic | BLIS NUM_THREADS Number of Threads Used by AOCL-BLAS

Disabled Unset Number of Cores.

Disabled Set BLIS NUM_THREADS

Enabled? Unset Number of threads determined by AOCL Dynamic.

Enabled? Set Minimum of BLIS_ NUM_THREADS or the number of
threads determined by AOCL.

a. The AOCL dynamic feature currently supports only DGEMM, DGEMMT, DTRSM, DTRMM, and
DSYRK APIs. For the other APIs, the threads selection will be same as when AOCL Dynamic is disabled.

Chapter 17 AOCL Tuning Guidelines 157

AMDZ\
AOCL User Guide 57404 Rev.4.1 August 2023

17.2.1 Limitations

The AOCL Dynamic feature has the following limitations:
* Support only for OpenMP Threads

* Supports only DGEMM, ZGEMM, DTRSM, ZTRSM, DGEMMT, DSYRK, DTRMM, SGEMYV,
DSCAL, ZDSCAL, DDOT, and DAXPY APIs

» Specifying the number of threads more than the number of cores may result in deteriorated
performance because of over-utilization of cores

17.3 AOCL-BLAS DGEMM Multi-thread Tuning

A AOCL-BLAS library can be used on multiple platforms and applications. Multi-threading adds
more configuration options at runtime. This section explains the number of threads and CPU aftfinity
settings that can be tuned to get the best performance for your requirements.

17.3.1 Library Usage Scenarios

* The application and library are single-threaded:

This is straight forward - no special instructions needed. You can export

BLIS NUM_THREADS=1 indicating you are running AOCL-BLAS in a single-thread mode. If
both BLIS NUM_THREADS and OMP NUM THREADS are set, the former will take
precedence over the later.

» The application is single-threaded and the library is multi-threaded:

You can either use OMP_NUM_ THREADS or BLIS NUM THREADS to define the number of
threads for the library. However, it is recommend that you use BLIS NUM_THREADS.

Example:
$ export BLIS NUM_THREADS=128 // Here, AOCL-BLAS runs at 128 threads.

Apart from setting the number of threads, you must pin the threads to the cores using
GOMP_CPU_AFFINITY or numactl as follows:

$ BLIS_NUM_THREADS=128 GOMP_CPU_AFFINITY=0-127 <./application>
Or

$ BLIS_NUM_THREADS=128 GOMP_CPU_AFFINITY=0-127 numactl --i=all <./application>
$ BLIS_NUM_THREADS=128 numactl -C ©-127 --interleave=all <./test_application.x>

Note: For the Clang compiler, it is mandatory to use OMP_PROC BIND=true in addition to
the thread pinning (if numactl is used). For example, for a matrix size of 200 and 32
threads, if you run DGEMM without OMP PROC BIND settings, the performance
would be less. However, if you start using OMP _PROC BIND=true, the performance

158 AOCL Tuning Guidelines Chapter 17

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

would improve. This problem is not noticed with libgomp using gcc compiler. For the
gcc compiler, the processor affinity defined using numactl is sufficient.

* The application is multi-threaded and the library is running a single-thread:

When the application is running multi-thread and number of threads are set using
OMP_NUM_THREADS, it is mandatory to set BLIS NUM_THREADS to one. Otherwise,
AOCL-BLAS will run in multi-threaded mode with the number of threads equal to
OMP_NUM THREADS. This may result in a poor performance.

» The application and library are both multi-threaded:

This is a typical scenario of nested parallelism. To individually control the threading at
application and at the AOCL-BLAS library level, use both OMP_NUM_THREADS and
BLIS NUM_THREADS.

— The number of threads launched by the application is OMP_NUM THREADS.
— Each application thread spawns BLIS NUM_ THREADS threads.

— To get a better performance, ensure that Number of Physical Cores = OMP_NUM_THREADS
* BLIS NUM_THREADS.

Thread pinning for the application and the library can be done using OMP_PROC_BIND:
$ OMP_NUM_THREADS=4 BLIS_NUM_THREADS=8 OMP_PROC_BIND=spread,close <./application>
OMP_PROC_BIND=spread,close

At an outer level, the threads are spread and at the inner level, the threads are scheduled closer to
their master threads. This scenario is useful for a nested parallelism, where the application is
running at say OMP_NUM _ THREADS and each thread is calling multi-threaded AOCL-BLAS.

17.3.2 Architecture Specific Tuning

17.3.2.1 2" and 3" Gen AMD EPYC™ Processors

To achieve the best DGEMM multi-thread performance on 2"d Gen AMD EPYC™ processors
(codenamed "Rome") and 3" Gen AMD EPYC™ processors (codenamed "Milan”), execute one of
the following commands:

Thread Size up to 16 (< 16)

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT>./test_gemm_blis.x

Thread Size above 16 (>=16)

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x
17.3.2.2 18 Gen AMD EPYC™ Processors

To achieve the best DGEMM multi-thread performance on the 1% Gen AMD EPYC™ processors
(codenamed "Naples"), complete the following steps:

Chapter 17 AOCL Tuning Guidelines 159

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

The header file bli_family zen.h in the AOCL-BLAS source directory \\blis\config\zen defines certain
macros that help control the block sizes used by AOCL-BLAS.

The required tuning settings vary depending on the number threads that the application linked to
AOCL-BLAS runs.

Thread Size upto 16 (< 16)
1. Enable the macro BLIS ENABLE ZEN BLOCK SIZES in the file bli _family zen.h.

2. Compile AOCL-BLAS with multi-thread option as mentioned in “Multi-thread AOCL-BLAS” on
page 25.

Link the generated AOCL-BLAS library to your application and execute it.
4. Run the application:

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> ./test_gemm_blis.x
Thread Size above 16 (>=16)
1. Disable the macro BLIS ENABLE ZEN BLOCK SIZES in the file bli family zen.h.

2. Compile AOCL-BLAS with the multi-thread option as mentioned in “Multi-thread AOCL-
BLAS” on page 25.

3. Link the generated AOCL-BLAS library to your application.

4. Set the following OpenMP and memory interleaving environment settings:

OMP_PROC_BIND=spread
BLIS_NUM_THREADS = x // x> 16
numactl --interleave=all

5. Run the application.

Example:

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x
174 AOCL-BLAS DGEMM Block-size Tuning

AOCL-BLAS DGEMM performance is largely impacted by the block sizes used by AOCL-BLAS. A
matrix multiplication of large m, n, and k dimensions is partitioned into sub-problems of the specified
block sizes.

Many HPC, scientific applications, and benchmarks run on high-end cluster of machines, each with
multiple cores. They run programs with multiple instances through Message Passing Interface (MPI)
based APIs or separate instances of each program. Depending on whether the application using
AOCL-BLAS is running in multi-instance mode or single instance, the specified block sizes will have
an impact on the overall performance.

The default values for the block size in AOCL-BLAS GitHub repository (https://github.com/amd/
blis) is set to extract the best performance for such HPC applications/benchmarks, which use single-
threaded AOCL-BLAS and run in multi-instance mode on AMD EPYC™ AMD “Zen” core

160 AOCL Tuning Guidelines Chapter 17

https://github.com/amd/blis

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

processors. However, if your application runs as a single instance, the block sizes for an optimal
performance would vary.

The following settings will help you choose the optimal values for the block sizes based on the way
the application is run:

2nd Gen AMD EPYC™ Processors (codenamed "Rome"")

1. Open the file bli_family zen2.h in the AOCL-BLAS source:
$ cd “config/zen2/ bli_family_zen2.h”

2. For applications/benchmarks running in multi-instance mode and using multi-threaded AOCL-
BLAS, ensure that the macro AOCL_BLIS MULTIINSTANCE is set to 0. As of AOCL 2.x
release, this is the default setting. The HPL benchmark is found to generate better performance
numbers using the following setting for multi-threaded AOCL-BLAS:

#define AOCL_BLIS_MULTIINSTANCE 0
1t Gen AMD EPYC™ Processors (codenamed '""Naples')

1. Open the file bli_cntx_init zen.c under the AOCL-BLAS source:
$ cd “config/zen/bli_family zen.h”

2. Ensure the macro, BLIS ENABLE ZEN BLOCK SIZES is defined:

#define BLIS_ENABLE_ZEN_BLOCK_SIZES
Multi-instance Mode

For applications/benchmarks running in multi-instance mode, ensure that the macro
BLIS ENABLE SINGLE INSTANCE BLOCK SIZES is set to 0. As of AOCL 2.x release,
following is the default setting:

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES)
The optimal block sizes for this mode on AMD EPYC™ are defined in the file config/zen/
bli cntx_init zen.c:

bli blksz_init_easy(&blkszs[BLIS_MC], 144, 240, 144, 72);
bli blksz_init_easy(&blkszs[BLIS_KC], 256, 512, 256, 256);
bli_blksz_init_easy(&blkszs[BLIS_NC], 4080, 2040, 4080, 4080);

Single-instance Mode

For the applications running as a single instance, ensure that the macro

BLIS ENABLE SINGLE INSTANCE BLOCK SIZES is set to 1:

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES 1

The optimal block sizes for this mode on AMD EPYC™ are defined in the file config/zen/
bli_cntx_init zen.c:

bli_blksz_init_easy(&blkszs[BLIS_MC], 144, 510, 144, 72);
bli blksz_init_easy(&blkszs[BLIS_KC], 256, 1024, 256, 256);
bli_blksz_init_easy(&blkszs[BLIS_NC], 4080, 4080, 4080, 4080);

Chapter 17 AOCL Tuning Guidelines 161

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

17.5 Performance Suggestions for Skinny Matrices

AOCL-BLAS provides a selective packing for GEMM when one or two-dimensions of a matrix is
exceedingly small. Selective packing is only applicable when sup is enabled. For an optimal
performance:

C = beta*C + alpha*A*B

Dimension (Dim) of A - m x k Dim(B) - k x n Dim(c) - m X n
Assume row-major.

IF m >> n

$BLIS_PACK_A=1 ./test_gemm_blis.x - will give a better performance.

IF m << n

$BLIS_PACK_B=1 ./test_gemm_blis.x - will give a better performance.
17.6 AOCL-LAPACK Multi-threading

From AOCL 4.0 release, AOCL-LAPACK supports multi-threading using OpenMP in selected APIs.
This feature is enabled by default when AOCL-LAPACK is compiled with --enable-amd-flags or --
enable-amd-aocc-flags. However, you can disable multi-threading by setting --enable-
multithreading=no.

The selected LAPACK interface APIs that support multi-threading automatically choose optimal
number of threads. However, you can explicitly set the number of threads through the environment
variable or OpenMP runtime APIs. In such a scenario, the number of threads is selected as follows:

Thread Criteria Threads Used by API

User specified threads > AOCL-LAPACK AOCL-LAPACK computed optimal threads
computed optimal threads

User specified threads < AOCL-LAPACK User specified threads
computed optimal threads

17.7 AOCL-FFTW Tuning Guidelines

Following are the tuning guidelines to get the best performance out of AMD optimized FFTW:

162 AOCL Tuning Guidelines Chapter 17

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

* Use the configure option --enable-amd-opt to build the targeted library. This option enables all the
improvements and optimizations meant for AMD EPYC™ CPUs.

This is the mandatory master optimization switch that must be set for enabling any other optional
configure options, such as:

- --enable-amd-mpifft
- --enable-amd-mpi-vader-limit
- --enable-amd-trans
- --enable-amd-fast-planner
- --enable-amd-top-n-planner
- --enable-amd-app-opt
- --enable-dynamic-dispatcher
* When enabling the AMD CPU specific improvements with the configure option --enable-amd-opt,
do not use the configure option --enable-generic-simd128 Or --enable-generic-simd256.

* An optional configure option --enable-amd-trans is provided and it may benefit the performance
of transpose operations in the case of very large FFT problem sizes. This feature is to be used only
when running in single-thread and single instance mode.

» Use the configure option --enable-amd-mpifft to enable MPI FFT related optimizations. This is
provided as an optional parameter and will benefit most of the MPI problem types and sizes.

* An optional configure option --enable-amd-mpi-vader-limit that controls enabling of AMD's new
MPI transpose algorithms is supported. When using this configure option, you must set --mca
btl_vader_eager_limit appropriately (current preference is 65536) in the MPIRUN command.

* You can enable AMD optimized fast planner using the optional configure option --enable-amd-
fast-planner. You can use this option to reduce the planning time without much trade-off in the
performance. It is supported for single and double precisions.

* To minimize single-threaded run-to-run variations, you can enable the planner feature Top N
planner using configure option --enable-amd-top-n-planner. It works by employing WISDOM
feature to generate and reuse a set of top N plans for the given size (wherein the value of N is
currently set to 3). It is supported for only single-threaded execution runs.

* For best performance, use the PATIENT planner flag of FFTW.

A sample running of FFTW bench test application with PATIENT planner flag is as follows:

$./bench -opatient -s icf65536

Where, -s option is for speed/performance run and icf options stand for in-place, complex data-
type, and forward transform.

Chapter 17 AOCL Tuning Guidelines 163

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

When configured with --enable-openmp and running multi-threaded test, set the OpenMP variables
as:

set OMP_PROC_BIND=TRUE
OMP_PLACES=cores

Then, run the test bench executable binary using numactl as follows:

numactl --interleave=0,1,2,3 ./bench -opatient -onthreads=64 -s icf65536

Where, numactl --interleave=0,1,2,3 sets the memory interleave policy on nodes 0, 1, 2, and 3.
When running MPI FFTW test, set the appropriate MPI mapping, binding, and rank options.
For example, to run 64 MPI rank FFTW on a 64-core AMD EPYC™ processor, use:

mpirun --map-by core --rank-by core --bind-to core -np 64 ./mpi-bench -opatient -s icf65536

Use the configure option --enable-amd-app-opt to enable AMD’s application optimization layer in
AOCL-FFTW to help uplift performance of various HPC and scientific applications. For more
information, refer “AOCL-FFTW” on page 168.

To build a single portable optimized library that can run on a wide range of CPU architectures, a
dynamic dispatcher feature is implemented. Use --enable-dynamic-dispatcher configure option to
enable this feature for Linux-based systems. The set of x86 CPUs on which the single portable
library can work depends on the highest level of CPU SIMD instruction set with which it is
configured.

164

AOCL Tuning Guidelines Chapter 17

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Chapter 18 Support

For support options, the latest documentation, and downloads refer to AMD Developer Central
(https.//www.amd.com/en/developer/aocl.html).

Chapter 18 Support 165

https://www.amd.com/en/developer/aocl.html

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

Chapter 19 References

The following URLs have been used as references for this document:
» https://www.amd.com/en/developer/aocl.html

s http://www.netlib.org

* http://www.netlib.org/benchmark/hpl/

* https://dl.acm.org/citation.cfm?id=2764454

* https://github.com/flame/blis

s http://fftw.org/

* http://mumps-solver.org/

* https://spack.io/

166 References Chapter 19

https://www.amd.com/en/developer/aocl.html
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org
https://dl.acm.org/citation.cfm?id=2764454
https://github.com/flame/blis
http://fftw.org/
http://mumps-solver.org/
https://spack.io/
https://www.amd.com/en/developer/aocl.html

AMDA1

57404 Rev.4.1 August 2023 AOCL User Guide

Appendix

Check AMD Server Processor Architecture

On Linux

To identify your AMD processor's generation, perform the following steps on Linux:

1. Run the command:

$ lscpu
2. Check the values of CPU family and Model fields:

a. For 1% Gen AMD EPYC™ Processors (codenamed “Naples”), CPU Core AMD “Zen”
— CPU Family: 23
— Model: Values in the range <1 — 47>

b. For 2™ Gen AMD EPYC™ Processors (codenamed “Rome”), CPU Core AMD “Zen2”
— CPU Family: 23
— Model: Values in the range <48 — 63>

c. For 3" Gen AMD EPYC™ Processors (codenamed “Milan), CPU Core AMD “Zen3”
— CPU Family: 25
— Model: Values in the range <1 — 15>

d. For 4" Gen AMD EPYC™ Processors (codenamed “Genoa’), CPU Core AMD “Zen4”
— CPU Family: 25
— Model: Values in the range <16-31, 96-111, 120-123, 160-175>

On Windows

To identify your AMD processor's generation, perform the following steps on Windows:

1. Run the command in Windows Command Prompt:

wmic cpu get caption
2. Check the values of CPU family and Model fields:

a. For 1 Gen AMD EPYC™ Processors (codenamed “Naples”), CPU Core AMD “Zen”
— CPU Family: 23
— Model: Values in the range <1 — 47>

b. For 2" Gen AMD EPYC™ Processors (codenamed “Rome”), CPU Core AMD “Zen2”
— CPU Family: 23
— Model: Values in the range <48 — 63>

Appendix 167

AMDA1

AOCL User Guide 57404 Rev.4.1 August 2023

c. For 3" Gen AMD EPYC™ Processors (codenamed “Milan”), CPU Core AMD “Zen3”
— CPU Family: 25
— Model: Values in the range <1 — 15>

d. For 4" Gen AMD EPYC™ Processors (codenamed “Genoa’), CPU Core AMD “Zen4”
— CPU Family: 25
— Model: Values in the range <16-31, 96-111, 120-123, 160-175>

Application Notes

AOCL-BLAS

If you prefer to build the application or the test suite executable with the pre-built static library (from
the package) on Windows, both the instances of "#define BLIS ENABLE SHARED" must be
commented out in the header file blis.h.

AOCL-FFTW

* Quad precision is supported in AOCL-FFTW using the AOCC v2.2 compiler (AMD clang
version 10 onwards).

* Feature AMD application optimization layer has been introduced in AOCL-FFTW to uplift the
performance of various HPC and scientific applications.

— The configure option --enable-amd-app-opt enables this optimization layer and must be used
with the master optimization configure switch --enable-amd-opt mandatorily.

— This optimization layer is supported for complex and real (r2¢ and c2r) DFT problem types in
double and single precisions.

— Not supported for MPI FFTs, real r2r DFT problem types, Quad or Long double precisions, and
split array format.

168 Appendix

	Contents
	List of Tables
	List of Figures
	Revision History
	Chapter 1 Introduction
	1.1 Feature Support Matrix

	Chapter 2 Supported OS and Compilers
	2.1 Operating Systems
	2.2 Compilers
	2.3 Library
	2.4 Message Passing Interface (MPI)
	2.5 Programming Language
	2.6 Build Utilities

	Chapter 3 Installing AOCL
	3.1 Building from Source
	3.2 Installing AOCL Binary Packages
	3.2.1 Using Master Package
	3.2.2 Using Library Package
	3.2.3 Using Debian and RPM Packages
	3.2.4 Using Windows Packages

	Chapter 4 AOCL-BLAS
	4.1 Installation on Linux
	4.1.1 Build AOCL-BLAS from Source
	4.1.2 Using Pre-built Binaries

	4.2 Application Development Using AOCL-BLAS
	4.2.1 API Compatibility Layers (Calling AOCL-BLAS)
	4.2.2 API Compatibility - Advance Options
	4.2.3 Linking Application with AOCL-BLAS
	4.2.4 AOCL-BLAS Usage in Fortran
	4.2.5 AOCL-BLAS Usage in C

	4.3 Migrating/Porting
	4.4 Using AOCL-BLAS Library Features
	4.4.1 Dynamic Dispatch
	4.4.2 AOCL-BLAS - Running the Test Suite
	4.4.3 Testing/Benchmarking
	4.4.4 AOCL-BLAS Utility APIs

	4.5 Debugging and Troubleshooting
	4.5.1 Debugging Build Using GDB
	4.5.2 Viewing Logs
	4.5.3 Checking AOCL-BLAS Operation Progress

	4.6 Build AOCL-BLAS from Source on Windows
	4.6.1 Building AOCL-BLAS using GUI
	4.6.2 Building AOCL-BLAS using Command-line Arguments
	4.6.3 Building and Running the Test Suite

	4.7 LPGEMM in AOCL-BLAS
	4.7.1 Add-on in AOCL-BLAS
	4.7.2 API Naming and Arguments
	4.7.3 Post-operations
	4.7.4 Supported APIs in aocl_gemm
	4.7.5 Enabling aocl_gemm Add-on
	4.7.6 Sample Application 1
	4.7.7 Sample Application 2

	Chapter 5 AOCL-LAPACK
	5.1 Installing on Linux
	5.1.1 Building AOCL-LAPACK from Source
	5.1.2 Using Pre-built Libraries

	5.2 Usage on Linux
	5.2.1 Use by Applications

	5.3 Building AOCL-LAPACK from Source on Windows
	5.3.1 Building AOCL-LAPACK Using GUI
	5.3.2 Building AOCL-LAPACK using Command-line Arguments
	5.3.3 Building and Running Test Suite

	5.4 Checking AOCL-LAPACK Operation Progress

	Chapter 6 AOCL-FFTW
	6.1 Installing
	6.1.1 Building AOCL-FFTW from Source on Linux
	6.1.2 Building AOCL-FFTW from Source on Windows
	6.1.3 Using Pre-built Libraries

	6.2 Usage
	6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW
	6.2.2 Sample Programs for MPI FFTW
	6.2.3 Additional Options

	Chapter 7 AOCL-LibM
	7.1 Library Contents
	7.2 Installation
	7.2.1 Installing the Pre-Built Binaries on Linux
	7.2.2 Building AOCL-LibM on Linux
	7.2.3 Building AOCL-LibM on Windows

	7.3 Using AOCL-LibM

	Chapter 8 AOCL-ScaLAPACK
	8.1 Installation
	8.1.1 Building AOCL-ScaLAPACK from Source on Linux
	8.1.2 Using Pre-built Libraries

	8.2 Usage
	8.3 Building AOCL-ScaLAPACK from Source on Windows
	8.3.1 Building AOCL-ScaLAPACK Using GUI
	8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments
	8.3.3 Building and Running the Individual Tests

	8.4 Checking AOCL-ScaLAPACK Operation Progress
	8.5 Additional Features

	Chapter 9 AOCL-RNG
	9.1 Installation
	9.2 Using AOCL-RNG Library on Linux
	9.3 Using AOCL-RNG Library on Windows

	Chapter 10 AOCL-SecureRNG
	10.1 Installation
	10.2 Usage
	10.3 Using AOCL-SecureRNG Library on Windows

	Chapter 11 AOCL-Sparse
	11.1 Installation
	11.1.1 Building AOCL-Sparse from Source on Linux
	11.1.2 Simple Test
	11.1.3 Using Pre-built Libraries

	11.2 Building AOCL-Sparse on Linux
	11.2.1 Use by Applications

	11.3 Building AOCL-Sparse on Windows
	11.3.1 Building AOCL-Sparse Using GUI
	11.3.2 Building AOCL-Sparse using Command-line Arguments

	11.4 Running an Individual AOCL-Sparse Test
	11.4.1 Run the Test on Linux
	11.4.2 Run the test on Windows

	Chapter 12 AOCL-LibMem
	12.1 Building AOCL-LibMem for Linux
	12.2 Running an Application
	12.3 Running an Application with Tunables
	12.3.1 Default State
	12.3.2 Tuned State

	Chapter 13 AOCL-Cryptography
	13.1 Requirements
	13.2 Installation
	13.2.1 Building AOCL-Cryptography from Source on Linux
	13.2.2 Building AOCL-Cryptography from Source on Windows

	13.3 Using AOCL-Cryptography in a Sample Application
	13.3.1 Compiling and Running Examples
	13.3.2 AOCL-Cryptography Library Provider for OpenSSL
	13.3.3 Integrating AOCL Libraries with Applications that Use IPP

	Chapter 14 AOCL-Compression
	14.1 Installation
	14.1.1 Using Pre-built Libraries
	14.1.2 Building from Source

	14.2 Running AOCL-Compression Test Bench on Linux
	14.3 Running AOCL-Compression Test Bench on Windows
	14.4 API Reference
	14.4.1 Unified Standardized API Set
	14.4.2 Interface Data Structures
	14.4.3 Library Return Error Codes
	14.4.4 Native APIs
	14.4.5 Example Test Program

	14.5 Optional Optimization Options

	Chapter 15 AOCL-Utils
	15.1 Requirements
	15.2 Clone and Build the AOCL-Utils Library
	15.3 Using AOCL-Utils
	15.3.1 C API Example
	15.3.2 C++ API Example
	15.3.3 Building on Windows
	15.3.4 Building on Linux
	15.3.5 Output

	Chapter 16 Linking AOCL to Applications
	16.1 High-performance LINPACK Benchmark (HPL)
	16.1.1 Configuring HPL.dat
	16.1.2 Running the Benchmark

	16.2 MUMPS Sparse Solver Library
	16.2.1 Enabling AOCL with MUMPS

	Chapter 17 AOCL Tuning Guidelines
	17.1 AOCL-BLAS Thread Control
	17.1.1 AOCL-BLAS Initialization
	17.1.2 Runtime

	17.2 AOCL Dynamic
	17.2.1 Limitations

	17.3 AOCL-BLAS DGEMM Multi-thread Tuning
	17.3.1 Library Usage Scenarios
	17.3.2 Architecture Specific Tuning

	17.4 AOCL-BLAS DGEMM Block-size Tuning
	17.5 Performance Suggestions for Skinny Matrices
	17.6 AOCL-LAPACK Multi-threading
	17.7 AOCL-FFTW Tuning Guidelines

	Chapter 18 Support
	Chapter 19 References
	Appendix
	Check AMD Server Processor Architecture
	On Linux
	On Windows

	Application Notes
	AOCL-BLAS
	AOCL-FFTW

