AMD RANDOM NUMBER GENERATOR Library

Version 4.1

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change
without notice. While every precaution has been taken in the preparation of this document, it
may contain technical inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced Micro Devices, Inc.
makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect
to the operation or use of AMD hardware, software or other products described herein. No
license, including implied or arising by estoppel, to any intellectual property rights is granted
by this document. Terms and limitations applicable to the purchase or use of AMD’s products
are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro
Devices, Inc.

NAG, NAGWare, and the NAG logo are registered trademarks of The Numerical Algorithms
Group Ltd.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

© 2003-2023 Advanced Micro Devices, Inc., Numerical Algorithms Group Ltd.
All rights reserved.

AMD Random Number Generator Library

Contents

1 INtrodUCtiON...ccciceieceeieceecerceccecesceccsceccscesceccscesceccscescscescese 4

2 General Information 000 5

2.1
2.2
2.3
2.4

LIDIary PaCKage.ceoueiieiieeitee bbb bbb b bbb 5
FOrtran and C INTEITACEScoiiuiieiee ettt e 5
Example programs calling AOCL-RNG Library routings..........ccccceoovvivvieneiiennnreneseseeeeseneens 5
AOCL-RNG lIbrary VEISION APccviieieieieeiese ettt st st sneenae e 5

3 Random Number Generatorsc.cccccceceeeecececcecececescececscecece 0

3.1

3.2

3.3

4

S el C LT g 1C] 1= (0] £ TP 6
3.1.1 Initialization of the Base GENEIALOISc.ecivveiiiee ettt sbes s sree e saee s 7
3.1.2 Calling the Base GENEIALOISccvcverieriereeiesesiesreesee e sreeeestesresseeseesresresseessesresseeneeseeses 13
IR N B NP A G T 1 [ol CT=T 1 1 (o 14
3.1.4 WiIchmann-Hill GENEIALONccviiiie ettt et e e s sree e sabe e 15
I T Y, (=Y 1=] TS LTS 1 TR 15
3.1.6 SIMD-oriented Fast MErsenNE TWISTENccovviiiiiiiiiii ettt 16
3.1.7 L’Ecuyer’s Combined Recursive GENerator..............ccuvirrirreieineniseesesnesreesie s 17
3.1.8 BIUM-BIUM-SUD GENEIALONveiivieiitii ettt sree e sabe e 17
3.1.9 USer SUPPHEA GENEIALOIS. .. .c.veviiieeeeeierie e eee e ste ettt st ra et sreenaenaesresreenee e e 17

MUILIPIE SEFEAMS ...ttt e testesre e enresreeneeeenrens 21
3.2.1 USING DIffErent SEEAS.......civeieieiireeeie et sresre e nee e 22
3.2.2 USINg Different GENEIALOrScoeiveiierieiieieee sttt s eens 22
KT B (] o A 4 1=T: Uo OSSR 22
K I S I Lo I oo o1 oo OSSR 25

DiStrIDULION GENEIALOISvviiiviie et cetee ettt ettt e et e s st e e st e e st e s st e s e sbeeesabeesabesssbesesbbeesabesans 28
3.3.1 Continuous Univariate DiStriDULIONSccecivviiiiii it 28
3.3.2 Discrete Univariate DiStriBULIONSocviiiiiiiii et 56
3.3.3 Continuous Multivariate DiStFIDULIONScovviiiiiiiiie e 80
3.3.4 Discrete Multivariate DiStriBULIONScooviiiiiiiiiii e 92

ReEfEreIICES .cceeeeeinieeieccecercecececcecercoccscescacesceccscescsccscescss 94

AMD Random Number Generator Library
1 Introduction

The AMD AOCL-RNG Library is a set of pseudorandom number generators and statistical
distribution functions tuned specifically for AMD64 platform processors. The routines are
available via both Fortran and C interfaces.

The AOCL-RNG Library is a comprehensive set of statistical distribution functions which
are founded on various underlying uniform distribution generators (base generators) including
L’Ecuyer’s combined recursive generator MRG32k3a and two implementations of Mersenne Twister.
In addition, there are hooks which allow you to supply your own preferred base generator if it

is not already included in the library. All RNG functionality and interfaces are described in the
following sections.

AMD Random Number Generator Library

2 General Information

2.1 Library Package

The AMD AOCL-RNG library is available on the AMD Developer website as both a tar file and via
a Windows-based installer. It works on Linux and Windows 10 & 11 operating systems. For details
on installation, please refer to the latest AOCL User Guide on AMD Optimizing CPU Libraries

(AOCL) | AMD.

2.2 Fortran and C interfaces

All routines come with both Fortran and C interfaces. Here we document how a C programmer
should call AOCL-RNG routines.

In C code that uses AOCL-RNG routines, be sure to include the header file <rng.h>, which
contains function prototypes for all AOCL-RNG C interfaces. The header file also contains C
prototypes for the Fortran interfaces, thus the C programmer could call the Fortran interfaces
from C, though there is little reason to do so.

C interfaces to the library routines differ from Fortran interfaces in the following respects:
The Fortran interface names are appended by an underscore

The C interfaces contain no workspace arguments; all workspace memory is allocated
internally.

Scalar input arguments are passed by value in C interfaces. Fortran interfaces pass all
arguments (except for character string length arguments that are normally hidden from
Fortran programmers) by reference.

Most arguments that are passed as character string pointers to Fortran interfaces are passed
by value as single characters to C interfaces. The character string length arguments of
Fortran interfaces are not required in the C interfaces.

2.3 Example programs calling AOCL-RNG Library routines

The /examples subdirectory of the top AOCL-RNG Library installation directory contains
example programs showing how to call the RNG routines, along with a CMakeL.ists.txt to build
and run them using cmake. Examples of calling both Fortran and C interfaces are included. The
/performance subdirectory contains a couple of timing programs designed to show the
performance of the library when running on your machine. Again, the CMakeLists.txt in the
/examples subdirectory may be used to build and run them using cmake. Note that all results
generated by timing programs will vary depending on the load on your machine at runtime.
Refer to /exampless/README to get the build instructions and dependent libraries to run
example programs.

2.4 AOCL-RNG library version API

const char* get_rngversion(void);

This API returns the AOCL-RNG library version. The library version has the format
[<Library Name> <Version> Build <Build Date>], for example
AOCL-RNG 4.0.0 Build 20221110.

https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

AMD Random Number Generator Library

3 Random Number Generators

Within the context of this document, a base random number generator (BRNG) is a
mathematical algorithm that, given an initial state, produces a sequence (or stream) of variates
(or values) uniformly distributed over the semi-open interval (0,1]. Note that this definition means
that the value 1.0 may be returned, but the value 0.0 will not. The period of the BRNG is defined as
the maximum number of values that can be generated before the sequence starts to repeat. The
initial state of a BRNG is often called the seed.

A pseudorandom number generator (PRNG) is a BRNG that produces a stream of variates that
are independent and statistically indistinguishable from a random sequence. A PRNG has several
advantages over a true random number generator in that the generated sequence is repeatable, has
known mathematical properties and is usually much quicker to generate. A quasi-random number
generator (QRNG) is like a PRNG but the variates generated are not statistically independent, being
designed to give a more even distribution in multidimensional space. Many books on statistics and
computer science have good introductions to PRNGs and QRNGs, see for example Knuth [1] or
Banks [2]. All the BRNGs supplied in the AOCL-RNG library are PRNGs.

In addition to standard PRNGs, some applications require cryptographically secure generators.
A PRNG is said to be cryptographically secure if there is no polynomial-time algorithm which, on
input of the first I bits of the output sequence, can predict the (I + 1)st bit of the sequence with
probability significantly greater than 0.5. This is equivalent to saying there exists no polynomial-
time algorithm that can correctly distinguish between an output sequence from the PRNG and a
truly random sequence of the same length with probability significantly greater than 0.5 [3].

A distribution generator is a routine that takes variates generated from a BRNG and
transforms them into variates from a specified distribution, for example the Gaussian (Normal)
distribution.

The AOCL-RNG library contains six base generators, and twenty-three distribution generators.
In addition, users can supply a custom-built generator as the base generator for all the distribution
generators.

The base generators were tested using the Big Crush, Small Crush and Pseudo Diehard test
suites from the TestUO1 software library [8].

3.1 Base Generators

The six base generators (BRNGs) supplied with the AOCL-RNG library are: the NAG basic
generator [4], a series of Wichmann-Hill generators [5], the Mersenne Twister [6], L’Ecuyer’s
combined recursive generator MRG32k3a [7], the Blum-Blum-Shub generator [3] and the SFMT
(SIMD-oriented Fast Mersenne Twister) generator [9].

Some of the generators have been slightly modified from their usual form to make them
consistent with each other. For instance, the Wichmann-Hill generators in standard form may
return exactly 0.0 but not exactly 1.0. In this library, we return 1.0 x to convert the value x
into the semi-open interval (0, 1] without affecting any other randomness properties. The
original Mersenne Twister algorithm returns exactly zero about one time in a few billion; the
AOCL-RNG implementation returns a tiny non-zero number as surrogate for zero. The same
is also true for SFMT.

AMD Random Number Generator Library

If a single stream of variates is required, it is recommended that the Mersenne Twister base
generator is used. This generator combines speed with good statistical properties and an
extremely long period. SFMT provides all the features of Mersenne Twister but with better speed.

The NAG basic generator is another quick generator suitable for generating a single stream.
However, it has a shorter period than the Mersenne Twister and being a linear congruential
generator, its statistical properties are not as good.

If 273 or fewer multiple streams with a period of up to 28° are required, then it is recommended
that the Wichmann-Hill generators are used. For more streams or multiple streams with a longer
period, it is recommended that the L’Ecuyer combined recursive generator is used in combination
with the skip ahead routine. Generating multiple streams of variates by skipping ahead is generally
quicker than generating the streams using the leap-frog method.

The Blum-Blum-Shub generator should only be used if a cryptographically secure generator is
required. This generator is extremely slow and has poor statistical properties when used as a base
generator for any of the distributional generators. Alternatively, a separate library AOCL-
SecureRNG provides APIs to access the cryptographically secure random numbers generated by the
AMD x86 hardware based RNG. Further details on AOCL-SecureRNG can be found at
https://developer.amd.com/wp-
content/resources/AMD%20Secure%20Random%20Number%20Generator%20L ibrary%202.0%20-

Whitepaper.pdf

3.1.1 Initialization of the Base Generators

A random number generator must be initialized before use. Three routines are supplied within the
library for this purpose: DRANDINITIALIZE, DRANDINITIALIZEBBS and
DRANDINITIALIZEUSER. Of these, DRANDINITIALIZE is used to initialize all the supplied
base generators, DRANDINITIALIZEBBS supplies an alternative interface to
DRANDINITIALIZE for the Blum-Blum-Shub generator, and DRANDINITIALIZEUSER allows
the user to register and initialize their own base generator.

Both double and single precision versions of all RNG routines are supplied. Double precision names
are prefixed by DRAND, and single precision by SRAND. Note that if a generator has been initialized
using the relevant double precision routine, then the double precision versions of the distribution
generators must also be used, and vice versa. This even applies to generators with no double or single
precision parameters; for example, a call of DRANDDISCRETEUNIFORM must be preceded by a call
to one of the double precision initializers (typically, DRANDINITIALIZE).

No utilities for saving, retrieving or copying the current state of a generator have been provided.
All the information on the current state of a generator (or stream, if multiple streams are being
used) is stored in the integer array STATE and as such this array can be treated as any other integer
array, allowing for easy copying, restoring etc.

The statistical properties of a sequence of random numbers are only guaranteed within the
sequence, and not between sequences provided by the same generator. Therefore, it is likely that
repeated initialization will render the numbers obtained less, rather than more, independent. In most
cases, there should only be a single call to one of the initialization routines per application, and this
call must be made before any variates are generated. One example of where multiple initializations
may be required is briefly touched upon in Section 3.2 [Multiple Streams].

https://developer.amd.com/wp-content/resources/AMD%20Secure%20Random%20Number%20Generator%20Library%202.0%20-Whitepaper.pdf
https://developer.amd.com/wp-content/resources/AMD%20Secure%20Random%20Number%20Generator%20Library%202.0%20-Whitepaper.pdf
https://developer.amd.com/wp-content/resources/AMD%20Secure%20Random%20Number%20Generator%20Library%202.0%20-Whitepaper.pdf

AMD Random Number Generator Library
In order to initialize the Blum-Blum-Shub generator a number of additional parameters, as well as

an initial state (seed), are required. Although this generator can be initialized through the
DRANDINITIALIZE routine it is recommended that the DRANDINITIALIZEBBS routine is used
instead.

AMD Random Number Generator Library
DRANDINITIALIZE / SRANDINITIALIZE

Initialize one of the six supplied base generators; NAG basic generator, Wichmann-Hill generator,
Mersenne Twister, L’Ecuyer’s combined recursive generator (MRG32k3a), the Blum-Blum-Shub
generator, or the SFMT (SIMD-oriented Fast Mersenne Twister) generator.

(Note that SRANDINITIALIZE is the single precision version of DRANDINITIALIZE. The
argument lists of both routines are identical except that any double precision arguments of
DRANDINITIALIZE are replaced in SRANDINITIALIZE by single precision arguments, i.e.
type REAL in Fortran or type float in C).

DRANDINITIALIZE (GENID,SUBID,SEED,LSEED,STATE, [SUBROUTINE]
LSTATE,INFO)
INTEGER GENID [Input]

On input: a numerical code indicating which of the six base generators to initialize.
1 = NAG basic generator (Section 3.1.3 [NAG Basic Generator]).
2 = Wichmann-Hill generator (Section 3.1.4 [Wichmann-Hill Generator]).
3 = Mersenne Twister (Section 3.1.5 [Mersenne Twister]).

4 = L’Ecuyer’s Combined Recursive generator (Section 3.1.7 [L.’Ecuyer’s Combined
Recursive Generator]).

5 = Blum-Blum-Shub generator (Section 3.1.8 [Blum-Blum-Shub Generator])
6 = SFMT (SIMD-oriented Fast Mersenne Twister) (Section 3.1.6 [SIMD-oriented
Fast Mersenne Twister]).

Constraint: 1< GENID < 6.

INTEGER SUBID [Input]
On input: if GENID = 2, then SUBID indicates which of the 273 Wichmann-Hill
generators to use. If GENID = 5 then SUBID indicates the number of bits to use (v)
from each iteration of the Blum-Blum-Shub generator. In all other cases, SUBID is
not referenced.

Constraint: If GENID = 2 then 1< SUBID < 273.

INTEGER SEED(LSEED) [Input]

On input: if GENID # 5, then SEED is a vector of initial values for the base generator.
These values must be positive integers. The number of values required depends on the
base generator being used. The NAG basic generator requires one initial value, the
Wichmann-Hill generator requires four initial values, the L’Ecuyer combined recursive
generator requires six initial values, the Mersenne Twister and SFMT requires 624
initial values. If the number of seeds required by the chosen generator is > LSEED,
then SEED(1) is used to initialize the NAG basic generator. This is then used to
generate all of the remaining seed values required. In general, it is best not to set all the
elements of SEED to anything too obvious, such as a single repeated value or a simple
sequence. Using such a seed array may lead to several similar values being created in a
row when the generator is subsequently called. This is particularly true for the
Mersenne Twister and SFMT generators.

AMD Random Number Generator Library

In order to initialize the Blum-Blum-Shub generator (i.e. if GENID = 5), two large
prime values, p and g are required, as well as an initial value s. As p, g and s can be

of an arbitrary size, these values are expressed as a polynomial in B, where B = 224,
For example, p can be factored into a polynomial of order [, with p = p1 +
B+ p3B*+ -+ p B! The elements of SEED should then be set to the
following:

+ SEED(1) =1,

+ SEED(2) to SEED(l, + 1) = p1 to pi,

+ SEED(l,+ 2) =14

« SEED(lp +3) to SEED(lp + I3 +2) = q1 to q

« SEED(lp+ lg+3) =1

« SEED(lp + Iy +4) to SEED(lp + Iy + Is + 3) = s1 tO si

Constraint: If GENID #5, then SEED(i) >0, i=1,2, ...
If GENID = 5then, SEED must take the values described above.

INTEGER LSEED [Input/Output]
On input: either the length of the seed vector, SEED, or a value <= 0.
On output: if LSEED < 0 on input, then LSEED is set to the number of initial values
required by the selected generator and the routine returns. Otherwise LSEED is left
unchanged.

INTEGER STATE(LSTATE) [Output]
On output: the state vector required by all of the supplied distributional and
base generators.

INTEGER LSTATE [Input/Output]
On input: either the length of the state vector, STATE, or a value <= 0.
On output: if LSTATE <= 0 on input, then LSTATE is set to the minimum length of
the state vector STATE for the base generator chosen and the routine returns.
Otherwise LSTATE is left unchanged.
Constraint: LSTATE <=0 or the minimum length for the chosen base generator, given

by:

q

GENID =1: LSTATE= 16,
GENID =2: LSTATE= 20,
GENID =3: LSTATE= 633,

GENID =4: LSTATE= 61,
GENID =5: LSTATE - L+ 4 + s+ 6, where [, [y and s are the order of
the polynomials used to express the parameters p, g and s respectively.

GENID =6: LSTATE= 637

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = - i on exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then either or both of LSEED and/or LSTATE have
been set to the required length for vectors SEED and STATE respectively. Of the two
variables LSEED and LSTATE, only those which had an input value <= 0 will have
been set. The STATE vector will not have been initialized. If INFO = 0 then the state
vector, STATE, has been successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Beta distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Beta distribution CALL
DRANDBETA(N,AB,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDINITIALIZEBBS / SRANDINITIALIZEBBS

Alternative initialization routine for the Blum-Blum-Shub generator. Unlike the other base
generators supplied with the library, the Blum-Blum-Shub generator requires two additional
parameters, p and g, as well as an initial state, s. The parameters p, g and s can be of an arbitrary
size. In order to avoid overflow, these values are expressed as a polynomial in B, where B = 224,
For example, p can be factored into a polynomial of order [,, with

p=p +mB+pBi+ . +p pB'P*‘. Similarly, g = q1 + @B+ B>+ - + g B'qq*' and
s=si+B+s3B*+ +5 B!,

(Note that SRANDINITIALIZEBBS is the single precision version of
DRANDINITIALIZEBBS. The argument lists of both routines are identical except that any double
precision arguments of DRANDINITIALIZEBBS are replaced in SRANDINITIALIZEBBS by
single precision arguments, i.e. type REAL in Fortran or type float in C).

DRANDINITIALIZEBBS (NBITS,LP,P,1.0,0,LS,S,STATE, LSTATE, [SUBROUTINE]
INFO)
INTEGER NBITS [Input]

On input: the number of bits, v, to use from each iteration of the Blum-Blum-Shub
generator. If NBITS < 1 then NBITS = 1. If NBITS > 15 then NBITS = 15.

INTEGER LP [Input]
On input: the order of the polynomial used to express p ().
Constraint: 1 < LP < 25.

INTEGER P(LP)

[Input]
On input: the coefficients of the polynomial used to express p. P(i) = pi,i=1
to .
Constraint: 0 < P () <2 *

INTEGER LQ [Input]
On input: the order of the polynomial used to express g (L). P
Constraint: 1 < LQ <25.

INTEGER Q(LQ)

[Input]
On input: the coefficients of the polynomial used to express q. Q(?) = gi, i=1
to .
Constraint: 0 < Q () <2 *

INTEGER LS [Input]
On input: the order of the polynomial used to express s (Is). P
Constraint: 1 < LS < 25.

INTEGER S(L.S)

[Input]
On input: the coefficients of the polynomial used to express s. S(i) = si,i=1
to L.
Constraint: 0 < S(3) <2 *
INTEGER STATE(*) [Output]

On output: the initial state for the Blum-Blum-Shub generator with parameters
P,Q,S and NBITS.

AMD Random Number Generator Library

INTEGER LSTATE [Input/Output]
On input: either the length of the state vector, STATE, or a value <= 0.
On output: if LSTATE <= 0 on input, then LSTATE is set to the minimum length of
the state vector STATE for the parameters chosen, and the routine returns. Otherwise
LSTATE is left unchanged.

Constraint: LSTATE< 0 or LSTATE = [+ [+ s+ 6

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LSTATE has been set to the required length
for the STATE vector. If INFO = 0 then the state vector, STATE, has been successfully
initialized.

3.1.2 Callingthe Base Generators

With the exception of the Blum-Blum-Shub generator, there are no interfaces for direct access to the
base generators. All the base generators return variates uniformly distributed over the semi-open interval
(0, 1]. This functionality can be accessed using the uniform distributional generator
DRANDUNIFORM, with parameter A = 0.0 and parameter B = 1.0. The base generator used is, as
usual, selected during the initialization process (see Section 3.1.1 [Initialization of the Base
Generators]).

To directly access the Blum-Blum-Shub generator, use the routine DRANDBLUMBLUMSHUB.

AMD Random Number Generator Library

DRANDBLUMBLUMSHUB / SRANDBLUMBLUMSHUB
Allows direct access to the bit stream generated by the Blum-Blum-Shub generator.

(Note that SRANDBLUMBLUMSHUB is the single precision version of
DRANDBLUMBLUMSHUB. The argument lists of both routines are identical except that any
double precision arguments of DRANDBLUMBLUMSHUB are replaced in
SRANDBLUMBLUMSHUB by single precision arguments, i.e. type REAL in Fortran or type float
in C).

DRANDBLUMBLUMSHUB (i, STATE, X, TNFO) [SUBROUTINE]
INTEGER N [Input]

On input: number of variates required. The total number of bits generated is 24N.
Constraint: N > 0.

INTEGER STATE(*) [Input/Output]
The STATE vector holds information on the state of the base generator being used and
as such its minimum length varies. Prior to caling DRANDBLUMBLUMSHUB
STATE must have been initialized. See Section 3.1.1 [Initialization of the Base
Generators], for information on initialization of the STATE variable.

On input: the current state of the base generator.
On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector holding the bit stream. The least significant 24 bits of
each of the X (i) contain the bit stream as generated by the Blum-Blum-Shub
generator. The least significant bit of X (1) is the first bit generated, the second least
significant bit of X(1) is the second bit generated etc.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

3.1.3 NAG Basic Generator

The NAG basic generator is a linear congruential generator (LCG) and, like all LCGs, has
the form:
Xi = arxi—1 mod m,

X
u = ,
my
where the w;, =1, 2, - - - form the required sequence.

The NAG basic generator takes ai = 13'3 and my = 2°°, which gives a period of
approximately 2°7. This generator has been part of the NAG numerical library [4] since Mark
6 and as such has been widely used. It suffers from no known problems, other than those due
to the lattice structure inherent in all LCGs, and even though the period is relatively short
compared to many of the newer generators, it is sufficiently large for many practical problems.

AMD Random Number Generator Library

3.1.4 Wichmann-Hill Generator

The Wichmann-Hill [5] base generator uses a combination of four linear congruential
generators (LCGs) and has the form:

wi = arwi—1 mod my
Xi = axi—1 mod my
Yi = a3yi—1 mod m3 z
= a4zi—1 mod mu

Wi Xi i Zi
w=("+ =+ u + ")modl,
m mp ms ma
where the u;, =1, 2, - - - form the required sequence. There are 273 sets of parameters,
{ai, mi 1 i=1, 2, 3, 4}, to choose from. These values have been selected so that the resulting

generators are independent and have a period of approximately 28° [5].

3.1.5 Mersenne Twister
The Mersenne Twister [6] is a twisted generalized feedback shift register generator. The algorithm
is as follows:

Set some arbitrary initial values x1, x2, - + -, xr, each consisting of w bits.

Letting
0 Iw—]

= B)
A Qv Qw-1+"

where Iy—1isthe (w — 1) x (w — 1) identity matrix and each of the ai,i =1 to w takea
value of either 0 or 1 (i.e. they can be represented as bits). Define

— w:(+1)) (:1)
Xor = (Xs @ (xiw " |x+1)A),

where x(i"vz('“”\x(i'f]) indicates the concatenation of the most significant (upper) w — [
bits of x; and the least significant (lower) 1 bits of xj+1.

Perform the following operations sequentially:

Z= Xi+r @ (XG+r>» 1)
z=z® ((z « t2) AND m)
z=z® ((z « t3) AND mp)
z=z® (z» ta)

Uj+r = Z/(ZW - 1):
where t1, tz, t3 and 4 are integers and m; and m; are bit-masks and “>>t” and “<<t” represent

a t-bit shift right and left respectively, is bitwise exclusive or (xor) operation and “AND” is
a bitwise and operation.

AMD Random Number Generator Library

The wi+r : 1 =1, 2,.... then form a pseudorandom sequence, with 1 (0, 1) for all i. This

implementation of the Mersenne Twister uses the following values for the algorithmic
constants:

w =32

a = 0x9908b0df
=31

r=624

s =397

th=11

=7

t3 =15

ts =18

my = 0x9d2c5680
my = 0xefc60000

where the notation OxDD - - - indicates the bit pattern of the integer whose hexadecimal
representation is DD - - -

This algorithm has a period length of approximately 2'°:°37 — 1 and has been shown to
be uniformly distributed in 623 dimensions.

3.1.6 SIMD-oriented Fast Mersenne Twister

SIMD-oriented Fast Mersenne Twister (SFMT) [9] is a new variant of Mersenne Twister. SFMT is
a Linear Feedbacked Shift Register generator that generates 128-bit pseudorandom integers
recursively. The algorithm is as follows:

Set some arbitrary initial values Wo, W1, + - -, W1, each consisting of 128 bits.

Perform recursive operation:

g(Wo,..., WN-l) =WoA & WuB & Wn2C & Wna D

where Wo, Wy, ... are 128-bit integers and A, B, C, D are sparse 128x128 matrices over
(0,2) for which WA, WB, WC, WD can be computed. The degree of recursion IV is
[19937/128] = 156, and the linear transformations A, B, C, D are as follows.

128
WA = (w << 8) @ w; w is considered as a single 128-bit integer.

32
wB = (w >> 11) & (BFFFFFF6 BFFAFFFF DDFECB7F DFFFFFEF);
w is considered as a quadruple of 32-bit integers for right-shift operation.

wC = (w £2>88); w is considered as a single 128-bit integer.

32
wD = (w << 18); w is considered as a quadruple of 32-bit integer.

This algorithm has a period length of approximately 2'2:937 — 1 and has a better
equidistribution property than Mersenne Twister.

AMD Random Number Generator Library
3.1.7 L’Ecuyer’s Combined Recursive Generator

The base generator referred to as L’Ecuyer’s combined recursive generator is referred to as
MRG32k3a in [7] and combines two multiple recursive generators:

Xi = anXi— + anpXi—; + a;3xi—3 mod my
Yi = a1Yi—1 + a¥i—2 + ap3yi—3 mod my g;
= xi — yi mod my

_ Z
u = m ’
1
where the w, i=1, 2, - - - form the required sequence and a;1 =0, a2 = 1403580, a3 =

—810728, m1= 2 — 209, az1 = 527612, az2 =0, az3 = —1370589 and mp =2 >* — 22853,
Combining the two multiple recursive generators (MRG) results in sequences with better
statistical properties in high dimensions and longer periods compared with those generated from a

single MRG. The combined generator described above has a period length of approximately 2'°!

3.1.8 Blum-Blum-Shub Generator

The Blum-Blum-Shub pseudorandom number generator is cryptographically secure under the
assumption that the quadratic residuosity problem is intractable [3]. The algorithm consists of the
following:

Generate two large and distinct primes, p and g, each congruent to 3 mod 4. Define

m = pq.
:+ Select a seed s taking a value between 1 and m — 1, such that the greatest common
divisor between sand mis 1. Letxo=s?2modm.ForI=1,2, - - - generate:
x5 =x2_, modm
zi = v least significant bits of x;
where v> 1.
The bit-sequence z1, z2, z3, - - - is then the output sequence used.

3.1.9 User Supplied Generators

All of the distributional generators described in Section 3.3 [Distribution Generators], require a
base generator which returns a uniformly distributed value in the semi-open interval (0, 1] and
AOCL-RNG library includes several such generators (as detailed in Section 3.1). However, for
greater flexibility, the library routines allow the user to register their own base generator function.
This user-supplied generator then becomes the base generator for all the distribution generators.

A user supplied generator comes in the form of two routines, one to initialize the generator and
one to generate a set of uniformly distributed values in the semi-open interval (0, 1]. These two
routines can be named anything but are referred to as UINI for the initialization routine and UGEN
for the generation routine in the following documentation.

In order to register a user supplied generator, a call to DRANDINITIALIZEUSER must be
made. Once registered the generator can be accessed and used in the same manner as the
library supplied base generators. The specifications for DRANDINTIALIZEUSER, UINI and
UGEN are given below. See the example programs drandinitializeuser_example.f and
drandinitializeuser_c_example.c to understand how to use these routines.

AMD Random Number Generator Library

DRANDINITIALIZEUSER / SRANDINITIALIZEUSER

Registers a user supplied base generator so that it can be used with the AOCL-RNG
distributional generators.

(Note that SRANDINITIALIZEUSER is the single precision version of
DRANDINITIALIZEUSER. The argument lists of both routines are identical except that any
double precision arguments of DRANDINITIALIZEUSER are replaced in
SRANDINITIALIZEUSER by single precision arguments, i.e. type REAL in Fortran or type float
in C).

DRANDINITIALIZEUSER (UINI,UGEN,GENID,SUBID,SEED,LSEED,

STATE,LSTATE, INFO)

SUBROUTINE UINI
[Input]On input: routine that will be used to initialize the user supplied generator,
UGEN.

SUBROUTINE UGEN [Input]
On input: user supplied base generator.

INTEGER GENID [Input]

On input: parameter is passed directly to UINI. Its function therefore depends
on that routine.

INTEGER SUBID [Input]
On input: parameter is passed directly to UINI. Its function therefore depends
on that routine.

INTEGER SEED(LSEED) [Input]
On input: parameter is passed directly to UINI. Its function therefore depends
on that routine.

INTEGER LSEED [Input/Output]
On input: length of the vector SEED. This parameter is passed directly to
UINTI and therefore its required value depends on that routine. On
output: whether LSEED changes will depend on UINL.

INTEGER STATE(LSTATE) [Output]
On output: the state vector required by all the supplied distributional generators.
The value of STATE returned by UINI has some housekeeping elements appended to
the end before being returned by DRANDINITIALIZEUSER. See Section 3.1.9 [User
Supplied Generators], for details about the form of STATE.

INTEGER LSTATE [Input/Output]
On input: length of the vector STATE. This parameter is passed directly to
UINT and therefore its required value depends on that routine.
On output: whether LSTATE changes will depend on UINI. If LSTATE <=0 then it
is assumed that a request for the required length of STATE has been made. The value
of LSTATE returned from UINI is therefore adjusted to allow for housekeeping
elements to be added to the end of the STATE vector. This results in the value of
LSTATE returned by DRANDINITIALIZEUSER being 3 larger than that returned
by UINI.

AMD Random Number Generator Library

INTEGER INFO
On.output: INFO is an error indicator. DRANDINITIALIZEUSER will return a value
of 6 if the_value of LSTATE is between 1 and 3. Otherwise INFO is passed directly
back from UINI. It is recommended that the value of INFO returned by UINTI is kept
consistent with the rest of the AOCL-RNG library, that is if INFO = | on exit, the
i-th argument had an illegal value. If INFO = 1 on exit, then either, or both of
LSEED and / or LSTATE have been set to the required length for vectors SEED
and STATE respectively and the STATE vector has not have been initialized. If
INFO = 0 then the state vector, STATE, has been successfully initialized.

[Output]

Example:
C Generate 100 values from the Uniform distribution using
C a user supplied base generator
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,NSKIP,SEED(1),STATE(LSTATE)
INTEGER X(N)
DOUBLE PRECISION A,B
C Set the seed
SEED(1) = 1234
C Set the distributional parameters
A= 0.0D0
B =1.0D0
C Initialize the base generator. Here RNGNBOGND is a user
C supplied generator and RNGNBOINI is its initializer
CALL DRANDINITIALIZEUSER(RNGNBOINI,RNGNBOGND, 1,0,SEED,
LSEED,STATE,LSTATE,INFO)
C Generate N variates from the Univariate distribution
CALL DRANDUNIFORM(N,AB,STATE, X,LDX,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
UINI

Specification for a user supplied initialization routine.

UINI (GENID,SUBID,SEED,LSEED,STATE,LSTATE,INFO)

SUBROUTINE
INTEGER GENID :]

[Input]
On input: the ID associated with the generator. It may be used for anything you
like.

INTEGER SUBID [Input]
On input: the sub-1D associated with the generator. It may be used for anything
you like.

INTEGER SEED(LSEED) [Input]
On input: an array containing the initial seed for your generator.

On input: either the size of the SEED array, or a value < 1.

On output: if LSEED < 1 on entry, LSEED must be set to the required size of the
SEED array. This allows a caller of UINI to query the required size.

INTEGER STATE(LSTATE) [Output]
On output: if LSTATE < 1 on entry, STATE should be unchanged.

Otherwise, STATE is a state vector holding internal details required by your
generator. On exit from UINI, the array STATE must hold the following
information:

STATE(1) = ESTATE, where ESTATE is your minimum allowed size of array
STATE.

STATE(2) = MAGIC, where MAGIC is a magic number of your own choice. This can be
used by your routine UGEN as a check that UINI has previously been called.

STATE(3) = GENID

STATE(4) = SUBID

STATE(5) ... STATE(ESTATE-1) = internal state values required by your generator
routine UGEN; for example, the current value of your seed.

STATE(ESTATE) = MAGIC, i.e. the same value as STATE(2).

On input: either the size of the STATE array, or a value < 1.

On output: if LSTATE < 1 on entry, LSTATE should be set to the required size of the
STATE array, i.e. the value ESTATE as described above. This allows the caller of
UINI to query the required size.

Constraint: either LSTATE < 1 or LSTATE> ESTATE.

INTEGER INFO [Output]

On output: an error code, to be used in whatever way you wish; for example, to flag
an incorrect argument to UINI. If no error is encountered, UINI must set INFO to 0.

AMD Random Number Generator Library
UGEN
Specification for a user supplied base generator.

UGEN (N,STATE, X, INFO)

INTEGER N
On input: the number of random numbers to be generated. [Input]
INTEGER STATE(*)
On input: the internal state of your generator.
DOUBLE PRECISION X(N)

[SUBROUTINE]

[Input/Output]

[Output]
On output: the array of N uniform distributed random numbers, each in the
semi-open interval (0.0, 1.0], i.e. 1.0 is a legitimate return value, but 0.0 is not.

INTEGER INFO [Output]
On output: a flag which you can use to signal an error in the call of UGEN — for
example, if UGEN is called without being initialized by UINI.

3.2 Multiple Streams

It is often advantageous to be able to generate variates from multiple, independent, streams.
For example, when running a simulation in parallel on several processors. There are four ways
of generating multiple streams using the routines available in the AOCL-RNG library:

(a) Using different seeds

(b) Using different sequences

(c) Block-splitting or skipping ahead

(d) Leap frogging

The four methods are detailed in the following sections. Of the four, (a) should be avoided

in most cases, (b) is only really of any practical use when using the Wichmann-Hill generator
and is then still limited to 273 streams. Both block-splitting and leap-frogging work using the
sequence from a single generator, both guarantee that the different sequences will not overlap,
and both can be scaled to an arbitrary number of streams. Leap-frogging requires no a-priori

knowledge about the number of variates being generated, whereas block-splitting requires the
user to know (approximately) the maximum number of variates required from each stream.

Block-splitting requires no a-priori information on the number of streams required. In contrast
leap-frogging requires the user to know the maximum number of streams required, prior to
generating the first value.

It is known that, dependent on the number of streams required, leap-frogging can lead to
sequences with poor statistical properties, especially when applied to linear congruential generators
(see Section 3.2.4 [Leap Frogging] for a brief explanation). In addition, for more complicated
generators like a L’Ecuyer’s multiple recursive generator leap-frogging can increase the time
required to generate each variate compared to block-splitting. The additional time required by
block-splitting occurs at the initialization stage, and not at the variate generation stage. Therefore,
in most instances block-splitting would be the preferred method for generating multiple sequences.

AMD Random Number Generator Library

3.2.1 Using Different Seeds

A different sequence of variates can be generated from the same base generator by initializing the
generator using a different set of seeds. Of the four methods for creating multiple streams described
here, this is the least satisfactory. As mentioned in Section 3.1.1 [Initialization of the Base
Generators], the statistical properties of the base generators are only guaranteed within sequences,
not between sequences. For example, sequences generated from different starting points may
overlap if the initial values are not far enough apart. The potential for overlapping sequences is
reduced if the period of the generator being used is large. Although there is no guarantee of the
independence of the sequences, due to its extremely large period, using the Mersenne Twister with
random starting values is unlikely to lead to problems, especially if the number of sequences
required is small.

If the statistical properties of different sequences must be provable then one of the other
methods should be adopted.

3.2.2 Using Different Generators

Independent sequences of variates can be generated using different base generators for each
sequence. For example, sequence 1 can be generated using the NAG basic generator, sequence 2
using the L’Ecuyer’s Combined Recursive generator, sequence 3 using the Mersenne Twister. The
Wichmann-Hill generator implemented in the library is in fact a series of 273 independent
generators. The particular sub-generator being used can be selected using the SUBID variable (see
[DRANDINITIALIZE], for details). Therefore, in total, 277 independent streams can be generated
with each using an independent generator (273 Wichmann-Hill generators, and 4 additional base
generators).

3.2.3 Skip Ahead

Independent sequences of variates can be generated from a single base generator through the use
of block-splitting, or skipping-ahead. This method consists of splitting the sequence into k non-
overlapping blocks, each of length n, where n is larger than the maximum number of variates
required from any of the sequences. For example:

X1,X2,"**,Xn, Xn+l1,Xn+2, " ,Xon, X2n+1,X2n+2," " ,X3n, etc
block 1 block 2 block 3

where x1, x2, ... is the sequence produced by the generator of interest. Each of the k blocks
provides an independent sequence.

The block splitting algorithm therefore requires the sequence to be advanced by a large number
of places. Due to their form, this can be done efficiently for linear congruential generators and
multiple congruential generators. The AOCL-RNG library provides block-splitting for the NAG
Basic generator, the Wichmann-Hill generators and L’Ecuyer’s Combined Recursive generator.

AMD Random Number Generator Library

DRANDSKIPAHEAD / SRANDSKIPAHEAD
Advance a generator N places.

(Note that SRANDSKIPAHEAD is the single precision version of DRANDSKIPAHEAD. The
argument lists of both routines are identical except that any double precision arguments of
DRANDSKIPAHEAD are replaced in SRANDSKIPAHEAD by single precision arguments, i.e.
type REAL in Fortran or type float in C).

DRANDSKIPAHEAD (N,STATE,INFO) [SUBROUTINE]

INTEGER N
On input: number of places to skip ahead.
Constraint: N = 0.

INTEGER STATE(*)

[Input]

[Input/Output]
The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDSKIPAHEAD STATE must have
been initialized. See Section 3.1.1 [Initialization of the Base Generators], for information
on initialization of the STATE variable.
On input: the current state of the base generator.
On output: The STATE vector for a generator that has been advanced N places.
Constraint: The STATE vector must be for either the NAG basic, Wichmann-Hill or
L’Ecuyer Combined Recursive base generators.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 3 * 100 values from the Uniform distribution
C Multiple streams generated using the Skip Ahead method
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,NSKIP
INTEGER SEED(1),STATEL(LSTATE),STATE2(LSTATE),STATE3(LSTATE)
DOUBLE PRECISION X1(N),X2(N),X3(N)
DOUBLE PRECISION A,B
C Set the seed
SEED(1) = 1234
C Set the distributional parameters
A= 0.0D0
B =1.0D0
C Initialize the STATEL vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATEL,LSTATE,INFO)
C Copy the STATEL vector into other state vectors
DO 201 =1,LSTATE
STATE2(l) = STATEL(I)
STATE3(l) = STATEL(l)
20 CONTINUE
C Calculate how many places we want to skip, this
C should be >> than the number of variates we
C wish to generate from each stream
NSKIP =N *N
C Advance each stream, first does not need changing
CALL DRANDSKIPAHEAD(NSKIP,STATE2,INFO)
CALL DRANDSKIPAHEAD(2*NSKIP,STATES3,INFO)
C Generate 3 sets of N variates from the Univariate distribution
CALL DRANDUNIFORM(N,A B,STATE1,X1,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE2,X2,LDX,INFO)
CALL DRANDUNIFORM(N,A B,STATE3,X3,LDX,INFO)
C Print the results

40

DO401=1N
WRITE(6,*) X1(1),X2(1),X3(1)
CONTINUE

AMD Random Number Generator Library
3.2.4 Leap Frogging

Independent sequences of variates can be generated from a single base generator using leap-

frogging. This method involves splitting the sequence from a single generator into k disjoint
subsequences. For example:

Subsequence 1 : x1, Xk+1, X2k+1, * *
Subsequence 2 : x2, Xk+2, X2k+2, * *

Subsequence K : xx, X2k, X3k, * * *

Each subsequence then provides an independent stream.

The leap-frog algorithm therefore requires the generation of every kth variate of a sequence.
Due to their form this can be done efficiently for linear congruential generators and multiple
congruential generators. The library provides leap-frogging for the NAG Basic generator, the
Wichmann-Hill generators and L’Ecuyer’s Combined Recursive generator.

As an illustrative example, a brief description of the algebra behind the implementation of
the leap-frog algorithm (and block-splitting algorithm) for a linear congruential generator
(LCG) will be given. A linear congruential generator has the form xi+1 = arxi mod my. The
recursive nature of a LCG means that

Xitv = Q1 Xj+y—1 mod my
= a1 (a1 Xi+v—2 mod my) mod my
= af Xi+v—2 mod my
= ayxamod my

The sequence can be quickly advanced v places by multiplying the current state (x) by
aéénod mu, hence allowing block-splitting. Leap-frogging s implemented by using a®, where
1

k is the number of streams required, in place of a; in the standard LCG recursive formula.

In a linear congruential generator, the multiplier a; is constructed so that the generator has
good statistical properties in, for example, the spectral test. When using leap-frogging to
construct multiple streams, this multiplier is replaced with a. There is no guarantee that this
new multiplier will have suitable properties especially as the value of k depends

on the number of streams required and so is likely to change depending on the application. This
problem can be emphasized by the lattice structure of LCGs.

Note that, due to rounding, a sequence generated using leap-frogging and a sequence
constructed by taking every kth value from a set of variates generated without leap-frogging may
differ slightly. These differences should only affect the least significant digit.

AMD Random Number Generator Library
DRANDLEAPFROG / SRANDLEAPFROG
Amend a generator so that it will generate every Kth value.

(Note that SRANDLEAPFROG is the single precision version of DRANDLEAPFROG. The
argument lists of both routines are identical except that any double precision arguments of
DRANDLEAPFROG are replaced in SRANDLEAPFROG by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDLEAPFROG (N,K,STATE,INFO) [SUBROUTINE]

INTEGER N [Input]
On input: total number of streams being used.
Constraint: N > 0.

INTEGER K
On input: number of the current stream [Input]
Constraint: 0< K < N.

INTEGER STATE(*)

[Input/Output]
The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDLEAPFROG STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: The STATE vector for a generator that has been advanced K 1 places
and will return every Nth value.

Constraint: The STATE array must be for either the NAG basic, Wichmann-Hill or
L’Ecuyer Combined Recursive base generators.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 3 * 100 values from the Uniform distribution
C Multiple streams generated using the Leap Frog method
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO

INTEGER SEED(1),STATEL(LSTATE),STATE2(LSTATE),STATE3(LSTATE)
DOUBLE PRECISION X1(N),X2(N),X3(N)
DOUBLE PRECISION A,B

C Set the seed
SEED(1) = 1234

C Set the distributional parameters
A= 0.0D0
B =1.0D0

C Initialize the STATEL vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATEL,LSTATE,INFO)

C Copy the STATEL1 vector into other state vectors
DO 201 =1,LSTATE
STATE2(l) = STATEL(I)
STATE3(l) = STATEL(I)
20 CONTINUE

C Update each stream so they generate every 3" value
CALL DRANDLEAPFROG(3,1,STATEL,INFO)
CALL DRANDLEAPFROG(3,2,STATE2,INFO)
CALL DRANDLEAPFROG(3,3,STATES3,INFO)

C Generate 3 sets of N variates from the Univariate distribution
CALL DRANDUNIFORM(N,A,B,STATEL,X1,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE2,X2,LDX,INFO)
CALL DRANDUNIFORM(N,A,B,STATE3,X3,LDX,INFO)

C Print the results
DO401=1,N
WRITE(6,*) X1(1),X2(1),X3(I)
40 CONTINUE

AMD Random Number Generator Library
3.3 Distribution Generators

3.3.1 Continuous Univariate Distributions

DRANDBETA/SRANDBETA

Generates a vector of random variates from a beta distribution with probability density
function, f{X), where:

vy - LA+B) vay -\ B-1
f'._.‘!.] = ml I_l — _11 J
if0 < X< 1and A, B > 0.0, otherwise f(X) = 0.

(Note that SRANDBETA is the single precision version of DRANDBETA. The argument lists
of both routines are identical except that any double precision arguments of DRANDBETA are

replaced in SRANDBETA by single precision arguments, i.e. type REAL in Fortran or type float
in C).

DRANDBETA (N, 2,B,STATE, X, INFO) [SUBROUTINE]

INTEGER N _ _ [Input]
On input: number of variates required.
Constraint: N = 0.
DOUBLE PRECISION A
On input: first parameter for the distribution. [Input]
Constraint: A> 0.
DOUBLE PRECISION B
On input: second parameter for the distribution.
Constraint: B> 0. [Input]
INTEGER STATE(*)

[Input/Output]
The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDBETA STATE must
have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO
[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Beta distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Beta distribution CALL
DRANDBETA(N,AB,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDCAUCHY / SRANDCAUCHY

Generates a vector of random variates from a Cauchy distribution with probability density
function, f{X), where:

1
rB(14 (254)?)

fIX) =

(Note that SRANDCAUCHY is the single precision version of DRANDCAUCHY. The
argument lists of both routines are identical except that any double precision arguments of
DRANDCAUCHY are replaced in SRANDCAUCHY by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDCAUCHY (N,4,B,STATE, X, INFO) [SUBROUTINE]
INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.
DOUBLE PRECISION A
On input: median of the distribution. [Input]
DOUBLE PRECISION B
On input: semi-quartile range of the distribution.
Constraint: B> 0. [Input]
INTEGER STATE(*)

[Input/Output]
The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDCAUCHY STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO
[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Cauchy distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) AB

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Cauchy distribution
CALL DRANDCAUCHY(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDCHISQUARED / SRANDCHISQUARED

Generates a vector of random variates from a x? distribution with probability density
function, f{X), where:

X5 1g-

":é'-'r-'ﬁ_l

e I.\. ._!.

2|

FIX) = 3

e ||

if X > 0, otherwise f(X) = 0. Here v is the degrees of freedom, DF.

(Note that SRANDCHISQUARED is the single precision version of DRANDCHISQUARED.
The argument lists of both routines are identical except that any double precision arguments of
DRANDCHISQUARED are replaced in SRANDCHISQUARED by single precision arguments,
i.e. type REAL in Fortran or type float in C).

DRANDCHISQUARED (N, DF, STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER DF
On input: degrees of freedom of the distribution. [Input]
Constraint: DF>0.

INTEGER STATE(*)

[Input/Output]
The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDCHISQUARED
STATE must have been initialized. See Section 3.1.1 [Initialization of the Base
Generators], for information on initialization of the STATE variable.
On input: the current state of the base generator.
On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO
[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Chi-squared distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER DF
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) DF
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Chi-squared distribution CALL
DRANDCHISQUARED(N,DF STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDEXPONENTIAL / SRANDEXPONENTIAL
Generates a vector of random variates from an exponential distribution with probability
density function, f(X), where
e a

fIX)= A

if X > 0, otherwise f(X) = 0.

(Note that SRANDEXPONENTIAL is the single precision version of
DRANDEXPONENTIAL. The argument lists of both routines are identical except that any double
precision arguments of DRANDEXPONENTIAL are replaced in SRANDEXPONENTIAL by
single precision arguments, i.e. type REAL in Fortran or type float in C).

DRANDEXPONENTIAL (N,A,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION A [Input]
On input: exponential parameter.
Constraint: A= 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDEXPONENTIAL STATE must
have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Exponential distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) A
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Exponential distribution CALL
DRANDEXPONENTIAL(N,A,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDF / SRANDF

Generates a vector of random variates from an F distribution, also called the Fisher’s
variance ratio distribution, with probability density function, f{X), where:

(=2 Vv E-1,. %
(=) T e

fiX)=—— —
-1z -1+ E~)=rT

if X >0, otherwise f(X) = 0. Here u is the first degrees of freedom, (DF1) and v is the
second degrees of freedom, (DF2).

(Note that SRANDEF is the single precision version of DRANDF. The argqument lists of both
routines are identical except that any double precision arguments of DRANDF are replaced in
SRANDEF by single precision arguments, i.e. type REAL in Fortran or type float in C).

DRANDF (N,DF1,DF2,STATE,X,INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER DF1 [Input]
On input: first degrees of freedom.
Constraint: DF1= 0.

INTEGER DF2 [Input]
On input: second degrees of freedom.
Constraint: DF2> 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDF STATE must have been
initialized. See Section 3.1.1 [Initialization of the Base Generators], for information on
initialization of the STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the F distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER DF1,DF2
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) DF1,DF2

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the F distribution
CALL DRANDF(N,DF1,DF2,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDGAMMA / SRANDGAMMA

Generates a vector of random variates from a Gamma distribution with probability density
function, f{.X), where:
VA-1.—%

FX) = Faray

if X> 0and A, B > 0.0, otherwise f(X) = 0.

(Note that SRANDGAMMA is the single precision version of DRANDGAMMA. The argument
lists of both routines are identical except that any double precision arguments of DRANDGAMMA are
replaced in SRANDGAMMA by single precision arguments, i.e. type REAL in Fortran or type float in
C).

DRANDGAMMA (N,2,B,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION A [Input]
On input: first parameter of the distribution.
Constraint: A> 0.

DOUBLE PRECISION B [Input]
On input: second parameter of the distribution.
Constraint: B> 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDGAMMA STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(n) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Gamma distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) A,B
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Gamma distribution CALL
DRANDGAMMA(N,A,B,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDGAUSSIAN / DRANDGAUSSIAN

Generatesavector of random variates from a Gaussian distribution with probability density
function, f{.X), where:

- £ =
(XN)= ——.

fX) a2

Here u is the mean, (XMU) and o the variance, (VAR) of the distribution.

(Note that SRANDGAUSSIAN is the single precision version of DRANDGAUSSIAN. The
argument lists of both routines are identical except that any double precision arguments of
DRANDGAUSSIAN are replaced in SRANDGAUSSIAN by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDGAUSSIAN (N, XMU, VAR,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION XMU [Input]
On input: mean of the distribution.
DOUBLE PRECISION VAR [Input]

On input: variance of the distribution.
Constraint: VAR=> 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDGAUSSIAN STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Gaussian distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION XMU,VAR
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) XMU,VAR
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Gaussian distribution
CALL DRANDGAUSSIAN(N,XMU,VAR,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDLOGISTIC / SRANDLOGISTIC

Generates a vector of random variates from a logistic distribution with probability density
function, f{X), where:

f :; X 1=

B(1+e"7)?

(Note that SRANDLOGISTIC is the single precision version of DRANDLOGISTIC. The
argument lists of both routines are identical except that any double precision arguments of
DRANDLOGISTIC are replaced in SRANDLOGISTIC by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDLOGISTIC (N,2,B,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION A [Input]
On input: mean of the distribution.

DOUBLE PRECISION B [Input]

On input: spread of the distribution. B = 30/ where o is the standard
deviation of the distribution.
Constraint: B> 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDLOGISTIC STATE must have
been initialized. See Section 3.1.1 [Initialization of the Base Generators], for information
on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(n) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Logistic distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) AB
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Logistic distribution
CALL DRANDLOGISTIC(N,A,B,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDLOGNORMAL / SRANDLOGNORMAL

Generatesavectorofrandomvariatesfromalognormaldistribution with probability density
function, f{.X), where:

if X >0, otherwise f(X) = 0. Here u is the mean, (XMU) and o? the variance, (VAR) of
the underlying Gaussian distribution.
(Note that SRANDLOGNORMAL is the single precision version of DRANDLOGNORMAL.
The argument lists of both routines are identical except that any double precision arguments of
DRANDLOGNORMAL are replaced in SRANDLOGNORMAL by single precision arguments,
i.e. type REAL in Fortran or type float in C).

DRANDLOGNORMAL (N, XMU, VAR, STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION XMU [Input]
On input: mean of the underlying Gaussian distribution.
DOUBLE PRECISION VAR [Input]

On input: variance of the underlying Gaussian distribution.
Constraint: VAR= 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDLOGNORMAL
STATE must have been initialized. See Section 3.1.1 [Initialization of the Base
Generators], for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Lognormal distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION XMU,VAR
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) XMU,VAR
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Lognormal distribution
CALL DRANDLOGNORMAL(N,XMU,VAR STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDSTUDENTST / SRANDSTUDENTST

Generates a vector of random variates from a Students T distribution with probability
density function, f{X), where:

(=17

flX)= 2

= 2y (e dd)
'\!—,]-r-',-" i !-"|_]. T L: 4

Here v is the degrees of freedom, DF.

(Note that SRANDSTUDENTST is the single precision version of DRANDSTUDENTST.
The argument lists of both routines are identical except that any double precision arguments of
DRANDSTUDENTST are replaced in SRANDSTUDENTST by single precision arguments, i.e.
type REAL in Fortran or type float in C).

DRANDSTUDENTST (N,DF,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER DF [Input]
On input: degrees of freedom.
Constraint: DF>0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDSTUDENTST STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Students T distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER DF
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) DF
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Students T distribution
CALL DRANDSTUDENTST(N,DF,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDTRIANGULAR / SRANDTRIANGULAR

Generates a vector of random variates from a Triangular distribution with probability
density function, f{X), where:

2(X - Xyn)
Xmax = XMINYXMED = XMIN)

X)) =

2

if XMIN < X = XMED. else
2Xmax — X

JX) =
Xmax — XMINXvmax - XMED)

2

if XMED < X =< XpmAX, otherwise f{X) = 0.

(Note that SRANDTRIANGULAR is the single precision version of DRANDTRIANGULAR.
The argument lists of both routines are identical except that any double precision arguments of
DRANDTRIANGULAR are replaced in SRANDTRIANGULAR by single precision arguments,
i.e. type REAL in Fortran or type float in C).

DRANDTRIANGULAR (N, XMIN,XMED,XMAX,STATE,X, INFO) [SUBROUTINE]

INTEGER N [Input]

On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION XMIN [Input]
On input: minimum value for the distribution.
DOUBLE PRECISION XMED [Input]

On input: median value for the distribution.
Constraint: XMIN < XMED < XMAX.

DOUBLE PRECISION XMAX [Input]
On input: maximum value for the distribution.
Constraint: XMAX > XMIN.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDTRIANGULAR
STATE must have been initialized. See Section 3.1.1 [Initialization of the Base
Generators], for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(n) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Triangular distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION XMIN,XMED,XMAX
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) XMIN,XMED,XMAX
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Triangular distribution
CALL DRANDTRIANGULAR(N,XMIN,XMED,XMAX,STATE X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDUNIFORM / SRANDUNIFORM

Generates a vector of random variates from a Uniform distribution with probability density
function, f{.X), where:

1
B-A

(Note that SRANDUNIFORM is the single precision version of DRANDUNIFORM. The
argument lists of both routines are identical except that any double precision arquments of

DRANDUNIFORM are replaced in SRANDUNIFORM by single precision arguments, i.e. type
REAL in Fortran or type float in C).

fX) =

DRANDUNIFORM (N, 2,B,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION A [Input]
On input: minimum value for the distribution.
DOUBLE PRECISION B [Input]

On input: maximum value for the distribution.
Constraint: B> A.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDUNIFORM STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Uniform distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Uniform distribution
CALL DRANDUNIFORM(N,AB,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDVONMISES / SRANDVONMISES

GeneratesavectorofrandomyvariatesfromaVonMisesdistributionwith probability density
function, f{.X), where:

— eKCOS X
S 21l(K)

where X is reduced modulo 2w so that it lies between 1, and x is the concentration
parameter VK.

(Note that SRANDVONMISES is the single precision version of DRANDVONMISES. The
argument lists of both routines are identical except that any double precision arguments of
DRANDVONMISES are replaced in SRANDVONMISES by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDVONMISES (N, VK, STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]

On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION VK [Input]
On input: concentration parameter.
Constraint: VK> 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDVONMISES STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Von Mises distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION VK
DOUBLE PRECISION X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) VK
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Von Mises distribution
CALL DRANDVONMISES(N,VK,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library
DRANDWEIBULL / SRANDWEIBULL

Generates a vector of random variates from a Weibull distribution with probability density
function, f{X), where:

AX A1~ 5

fIX) = 7

if X > 0, otherwise f(X) = 0.

(Note that SRANDWEIBULL is the single precision version of DRANDWEIBULL. The
argument lists of both routines are identical except that any double precision arguments of
DRANDWEIBULL are replaced in SRANDWEIBULL by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDWEIBULL (N,4,B,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION A [Input]
On input: shape parameter for the distribution.
Constraint: A> 0.

DOUBLE PRECISION B

[Input]
On input: scale parameter for the distribution.
Constraint: B> 0.
INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDWEIBULL STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Weibull distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION A,B
DOUBLE PRECISION X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) A,B

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Weibull distribution
CALL DRANDWEIBULL(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

3.3.2 Discrete Univariate Distributions

DRANDBINOMIAL / SRANDBINOMIAL

Generates a vector of random variates from a Binomial distribution with probability, f{X),
defined by:

MIPX(1- p)MX)

Sx) = XM - 1)!

,X=0,1,---,M

(Note that SRANDBINOMIAL is the single precision version of DRANDBINOMIAL. The
argument lists of both routines are identical except that any double precision arguments of
DRANDBINOMIAL are replaced in SRANDBINOMIAL by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDBINOMIAL (N, P,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER M [Input]
On input: number of trials.
Constraint: M = 0.

DOUBLE PRECISION P [Input]
On input: probability of success.
Constraint: 0< P < 1.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDBINOMIAL STATE must have
been initialized. See Section 3.1.1 [Initialization of the Base Generators], for information
on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Binomial distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) M,P
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Binomial distribution
CALL DRANDBINOMIAL(N,M,P,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDGEOMETRIC / SRANDGEOMETRIC

Generatesavector of random variates fromaGeometric distribution with probability, f(X),
defined by:

AX)=P(1-P) *xX=0,1, - -

(Note that SRANDGEOMETRIC is the single precision version of DRANDGEOMETRIC.
The argument lists of both routines are identical except that any double precision arguments of
DRANDGEOMETRIC are replaced in SRANDGEOMETRIC by single precision arguments, i.e.
type REAL in Fortran or type float in C).

DRANDGEOMETRIC (N,P,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]

On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION P [Input]

On input: distribution parameter.
Constraint: 0< P < 1.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used
and as such its minimum length varies. Prior to calling DRANDGEOMETRIC STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable. On input: the current state of
the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Geometric distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION P
INTEGER X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) P
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Geometric distribution
CALL DRANDGEOMETRIC(N,P,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDHYPERGEOMETRIC / SRANDHYPERGEOMETRIC

Generates a vector of random variates from a Hypergeometric distribution with probability,
f(X), defined by:

(X)) = s!ml(p— s)i(p — m)! |
Xi(s-X)(m-X)!(p-m-s+X)!p

if X=max(0, m + s p), , min(l, m), otherwise f(X) = 0. Here p is the size of the population,
(INP), s is the size of the sample taken from the population, (INS) and m is the number of
labeled, or specified, items in the population, (M).

(Note that SRANDHYPERGEOMETRIC is the single precision version of DRAND-
HYPERGEOMETRIC. The argument lists of both routines are identical except that any double
precision arguments of DRANDHYPERGEOMETRIC are replaced in
SRANDHYPERGEOMETRIC by single precision arguments, i.e. type REAL in Fortran or type
float in C).

DRANDHYPERGEOMETRIC (N,NP,NS,M,STATE,X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER NP [Input]
On input: size of population.
Constraint: NP> 0.

INTEGER NS [Input]
On input: size of sample being taken from population.
Constraint: 0< NS < NP.

INTEGER M

[Input]
On input: number of specified items in the population.
Constraint: 0< M <NP.
INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDHYPERGEOMETRIC STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Hypergeometric distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER NP,NS,M
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) NP,NS,M

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Hypergeometric distribution CALL
DRANDHYPERGEOMETRIC(N,NP,NS,M,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDNEGATIVEBINOMIAL / SRANDNEGATIVEBINOMIAL

Generates a vector of random variates from a Negative Binomial distribution with proba-
bility f{X) defined by:

A= M +X-DP"@-P)" x=0,1,
XM - 1)!

(Note that SRANDNEGATIVEBINOMIAL is the single precision version of
DRANDNEGATIVEBINOMIAL. The argument lists of both routines are identical except that
any double precision arguments of DRANDNEGATIVEBINOMIAL are replaced in
SRANDNEGATIVEBINOMIAL by single precision arguments, i.e. type REAL in Fortran or type
float in C).

DRANDNEGATIVEBINOMIAL (,}4, P,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]

On input: number of variates required.
Constraint: N = 0.

INTEGER M [Input]
On input: number of failures.
Constraint: M > 0.

DOUBLE PRECISION P [Input]
On input: probability of success.
Constraint: 0< P < 1.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDNEGATIVEBINOMIAL STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Negative Binomial distribution
INTEGER LSTATEN
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Negative Binomial distribution CALL
DRANDNEGATIVEBINOMIAL(N,M,P,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDPOISSON / SRANDPOISSON
Generates a vector of random variates from a Poisson distribution with probability f (X)
defined by:

AX -2

X!

fIX)= X =01,

where A is the mean of the distribution, LAMBDA.

(Note that SRANDPOISSON is the single precision version of DRANDPOISSON. The
argument lists of both routines are identical except that any double precision arguments of
DRANDPOISSON are replaced in SRANDPOISSON by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDPOISSON (N, LAMBDA,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER M [Input]
On input: number of failures.
Constraint: M > 0.

DOUBLE PRECISION LAMBDA [Input]
On input: mean of the distribution.
Constraint: LAMBDA> 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDPOISSON STATE must have
been initialized. See Section 3.1.1 [Initialization of the Base Generators], for information
on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Poisson distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
DOUBLE PRECISION LAMBDA
INTEGER X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) LAMBDA
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Poisson distribution
CALL DRANDPOISSON(N,LAMBDA,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDDISCRETEUNIFORM / SRANDDISCRETEUNIFORM

Generates a vector of random variates from a Uniform distribution with probability f (X)
defined by:

R
fl‘-l’l_m.-‘i —."1.."1+].."'.B

(Note that SRANDDISCRETEUNIFORM is the single precision version of DRAND-
DISCRETEUNIFORM. The argument lists of both routines are identical except that any double
precision arguments of DRANDDISCRETEUNIFORM are replaced in
SRANDDISCRETEUNIFORM by single precision arguments, i.e. type REAL in Fortran or type
float in C).

DRANDDISCRETEUNIFORM (N,A,B,STATE, X, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER A [Input]
On input: minimum for the distribution.
INTEGER B [Input]

On input: maximum for the distribution.
Constraint: B> A.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDDISCRETEUNIFORM STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the Uniform distribution
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER A,B
INTEGER X(N)
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) A,B
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the Uniform distribution
CALL DRANDDISCRETEUNIFORM(N,A,B,STATE,X,INFO)
C Print the results

WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDGENERALDISCRETE / SRANDGENERALDISCRETE

Takes a reference vector initialized via one of DRANDBINOMIALREFERENCE,
DRANDGEOMETRICREFERENCE, DRANDHYPERGEOMETRICREFERENCE,

DRANDNEGATIVEBINOMIALREFERENCE, DRANDPOISSONREFERENCE and generates a vector of
random variates from it.

(Note that SRANDGENERALDISCRETE is the single precision version of DRAND-
GENERALDISCRETE. The argument lists of both routines are identical except that any double
precision arguments of DRANDGENERALDISCRETE are replaced in
SRANDGENERALDISCRETE by single precision arguments, i.e. type REAL in Fortran or type
float in C).

DRANDGENERALDISCRETE (N,REF,STATE,X, INFO) [SUBROUTINE]

INTEGER N [Input]

On input: number of variates required.
Constraint: N = 0.

DOUBLE PRECISION REF(*) [Input]
On input: reference vector generated by one of the following:
DRANDBINOMIALREFERENCE, DRANDGEOMETRICREFERENCE,
DRANDHYPER- GEOMETRICREFERENCE,
DRANDNEGATIVEBINOMIALREFERENCE, DRANDPOISSONREFERENCE.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDGENERALDISCRETE STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]
On output: vector of variates from the specified distribution.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C

Generate 100 values from the Binomial distribution
INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

Set the seed
SEED(1) = 1234

Read in the distributional parameters
READ(5,*) M,P

Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

Initialize the reference vector
LREF = 1000
CALL DRANDBINOMIALREFERENCE(M,P,REF,LREF,INFO)

Generate N variates from the Binomial distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

Print the results
WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDBINOMIALREFERENCE / SRANDBINOMIALREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Binomial distribution with probability, f (X), defined by:

MIPX(1— p)M-X)

X =01, M

f(X)=

(Note that SRANDBINOMIALREFERENCE is the single precision wversion of
DRANDBINOMIALREFERENCE. The argument lists of both routines are identical except that
any double precision arguments of DRANDBINOMIALREFERENCE are replaced in
SRANDBINOMIALREFERENCE by single precision arguments, i.e. type REAL in Fortran or
type float in C).

DRANDBINOMIALREFERENCE (2, P,REF,LREF, INFO) [SUBROUTINE]

INTEGER M [Input]
On input: number of trials.
Constraint: M = 0.

DOUBLE PRECISION P [Input]
On input: probability of success.
Constraint: 0< P < 1.

DOUBLE PRECISION REF(LREF) [Output]

On output: if INFO returns with a value of 0 then REF contains reference infor-
mation required to generate values from a Binomial distribution using DRAND-
GENERALDISCRETE.

INTEGER LREF [Input/Output]
On input: either the length of the reference vector REF, or 1. —
On output: if LREF =1 on.input, then LREF is set to the recommended length of the
reference vector and the routine returns. Otherwise LREF is left unchanged.

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been
successfully initialized.

AMD Random Number Generator Library

Example:

C

Generate 100 values from the Binomial distribution
INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

Set the seed
SEED(1) = 1234

Read in the distributional parameters
READ(5,*) M,P

Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

Initialize the reference vector
LREF = 1000
CALL DRANDBINOMIALREFERENCE(M,P,REF,LREF,INFO)

Generate N variates from the Binomial distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

Print the results
WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDGEOMETRICREFERENCE / SRANDGEOMETRICREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Geometric distribution with probability, f(X), defined by:

AX)=P@1-P),X=0,1, - - -

(Note that SRANDGEOMETRICREFERENCE is the single precision uversion of
DRANDGEOMETRICREFERENCE. The argument lists of both routines are identical except
that any double precision arguments of DRANDGEOMETRICREFERENCE are replaced in
SRANDGEOMETRICREFERENCE by single precision arguments, i.e. type REAL in Fortran or
type float in C).

DRANDGEOMETRICREFERENCE (P,REF,LREF,INFO) [SUBROUTINE]

DOUBLE PRECISION P [Input]

On input: distribution parameter.
Constraint: 0< P < 1.

DOUBLE PRECISION REF(LREF) [Output]

On output: if INFO returns with a value of 0 then REF contains reference information
required to generate values from a Geometric distribution using
DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]
On input: either the length of the reference vector REF, or 1. _
On output: if LREF =1 on.input, then LREF is set to the recommended length of the
reference vector and the routine returns. Otherwise LREF is left unchanged.

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been
successfully initialized.

AMD Random Number Generator Library

Example:

C

Generate 100 values from the Geometric distribution
INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

Set the seed
SEED(1) = 1234

Read in the distributional parameters
READ(5,*) P

Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

Initialize the reference vector
LREF = 1000
CALL DRANDGEOMETRICREFERENCE(P,REF,LREF,INFO)

Generate N variates from the Geometric distribution CALL
DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

Print the results
WRITE(6,*) (X(1),I=1,N)

AMD Random Number Generator Library

DRANDHYPERGEOMETRICREFERENCE / SRANDHYPERGEOMETRICREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Hypergeometric distribution with probability, f (X), defined by:

F(X) = slm!(p — s)!(p — m)!
T X (s = X)W m—-X)l(p—m—s+X)p!’

if X = max(0, m + s — p),...., min(l, m), otherwise f (X) = 0. Here p is the size of the
population, (INP), s is the size of the sample taken from the population, (INS) and m is the
number of labeled, or specified, items in the population, (M).

(Note that SRANDHYPERGEOMETRICREFERENCE is the single precision version of
DRANDHYPERGEOMETRICREFERENCE. The argument lists of both routines are identical
except that any double precision arguments of DRANDHYPERGEOMETRICREFERENCE are
replaced in SRANDHYPERGEOMETRICREFERENCE by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDHYPERGEOMETRICREFERENCE (NP,NS,M,REF,LREF,INFO) [SUBROUTINE]

INTEGER NP [Input]
On input: size of population.
Constraint: NP> 0.

INTEGER NS [Input]
On input: size of sample being taken from population.
Constraint: 0< NS < NP.

On input: number of specified items in the population.
Constraint: 0< M <NP.

DOUBLE PRECISION REF(LREF) [Output]

On output: if INFO returns with a value of 0 then REF contains reference information
required to generate values from a Hypergeometric distribution using
DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]
On input: either the length of the reference vector REF, or 1. —
On output: if LREF =1 on.input, then LREF is set to the recommended length of the
reference vector and the routine returns. Otherwise LREF is left unchanged.

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = | on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been
successfully initialized.

AMD Random Number Generator Library

Example:

C

Generate 100 values from the Hypergeometric distribution
INTEGER LSTATEN

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER NP, NS,M

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

Set the seed
SEED(1) = 1234

Read in the distributional parameters
READ(5,*) NP,NS,M

Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

Initialize the reference vector
LREF = 1000

CALL DRANDHYPERGEOMETRICREFERENCE(NP,NS,M,REF,LREF,INFO)

Generate N variates from the Hypergeometric distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

Print the results
WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDNEGATIVEBINOMIALREFERENCE / SRANDNEGATIVEBINOMIALREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Negative Binomial distribution with probability f (X) defined by:

M+Xx-1pT1-p) M

X)) = . X=0,1,""
XI(M - 1)!

(Note that SRANDNEGATIVEBINOMIALREFERENCE is the single precision version of
DRANDNEGATIVEBINOMIALREFERENCE. The argument lists of both routines are identical
except that any double precision arguments of DRANDNEGATIVEBINOMIALREFERENCE
are replaced in SRANDNEGATIVEBINOMIALREFERENCE by single precision arguments, i.e.
type REAL in Fortran or type float in C).

DRANDNEGATIVEBINOMIALREFERENCE (M, P,REF,LREF, INFO) [SUBROUTINE]

INTEGER M [Input]
On input: number of failures.
Constraint: M > 0.

DOUBLE PRECISION P [Input]
On input: probability of success.
Constraint: 0< P < 1.

DOUBLE PRECISION REF(LREF) [Output]

On output: if INFO returns with a value of 0 then REF contains reference information
required to generate values from a Negative Binomial distribution using
DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]
On input: either the length of the reference vector REF, or 1. —
On output: if LREF =1 on input, then LREF is set to the recommended length of the
reference vector and the routine returns. Otherwise LREF is left unchanged.

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been
successfully initialized.

AMD Random Number Generator Library

)
INTEGER LSTATE,N
PARAMETER (LSTATE=16,N=100)
INTEGER I,INFO,SEED(1),STATE(LSTATE)
INTEGER M
DOUBLE PRECISION P
INTEGER X(N)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,P

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDNEGATIVEBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Negative Binomial distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results
WRITE(6,*) (X(1),1=1,N)

AMD Random Number Generator Library

DRANDPOISSONREFERENCE / SRANDPOISSONREFERENCE
Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a
Poisson distribution with probability f (X) defined by:

Mg

X)) =—7

A =01,---,

where A is the mean of the distribution, LAMBDA.

(Note that SRANDPOISSONREFERENCE is the single precision version of DRAND-
POISSONREFERENCE. The argument lists of both routines are identical except that any double
precision arguments of DRANDPOISSONREFERENCE are replaced in

SRANDPOISSONREFERENCE by single precision arquments, i.e. type REAL in Fortran or type
float in C).

DRANDPOISSONREFERENCE (LAMBDA,REF,LREF,INFO) [SUBROUTINE]

INTEGER M

On input: number of failures.
Constraint: M >0.

DOUBLE PRECISION LAMBDA [Input]
On input: mean of the distribution.
Constraint: LAMBDA> 0.

DOUBLE PRECISION REF(LREF)

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference information

required to generate values from a Poisson distribution using
DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]
On input: either the length of the reference vector REF, or 1. _
On output: if LREF =1 on.input, then LREF is set to the recommended length of the
reference vector and the routine returns. Otherwise LREF is left unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been
successfully initialized.

AMD Random Number Generator Library

Example:

C

Generate 100 values from the Poisson distribution
INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION LAMBDA

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

Set the seed
SEED(1) = 1234

Read in the distributional parameters
READ(5,*) LAMBDA

Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

Initialize the reference vector
LREF = 1000
CALL DRANDPOISSONREFERENCE(LAMBDA,REF,LREF,INFO)

Generate N variates from the Poisson distribution
CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

Print the results
WRITE(6,*) (X(1),I=1,N)

AMD Random Number Generator Library

3.3.3 Continuous Multivariate Distributions

DRANDMULTINORMAL / SRANDMULTINORMAL

Generates an array of random variates from a Multivariate Normal distribution with
probability density function, f{X), where:

where u is the vector of means, XMU.

(Note that SRANDMULTINORMAL is the single precision wversion of
DRANDMULTINORMAL. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTINORMAL are replaced in
SRANDMULTINORMAL by single precision arguments, i.e. type REAL in Fortran or type float
in C).

DRANDMULTINORMAL (N, XMU,C,L.DC,STATE, X, LDX, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER M [Input]
On input: number of dimensions for the distribution.
Constraint: M >1.

DOUBLE PRECISION XMU(M) [Input]
On input: vector of means for the distribution.

DOUBLE PRECISION C(LDC,M) [Input]
On input: variance / covariance matrix for the distribution.

INTEGER LDC [Input]

On input: leading dimension of C in the calling routine.
Constraint: LDC = M.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being usedand
as such its minimum length varies. Prior to calling DRANDMULTINORMAL STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators],
for information on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M) [Output]
On output: matrix of variates from the specified distribution.
INTEGER LDX [Input]

On input: leading dimension of X in the calling routine.
Constraint: LDX > N.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the
C Multivariate Normal distribution
INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
C Set array sizes
LDC=MM
LDX =N
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) M
READ(5,*) (XMU(I),I=1,M)
DO20I1=1M
READ(5,*) (C(1,J),J=1,M)
20 CONTINUE
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the
C Multivariate Normal distribution
CALL DRANDMULTINORMAL(N,M,XMU,C,LDC,STATE,X,LDX,INFO)
C Print the results
DO401=1,N
WRITE(6,*) (X(1,J),J=1,M)
40 CONTINUE

AMD Random Number Generator Library

DRANDMULTISTUDENTST / SRANDMULTISTUDENTST

Generates an array of random variates from a Multivariate Students T distribution with
probability density function, f(X), where:

1_ :I-"—.!‘.'LJ‘:' .,) __ T __) _||..:'..‘
£(X) = (3 J (l+"l p)f CHX {.i])

I —— ,
(m)FL(5) |C]? v

where u is the vector of means, XMU and v is the degrees of freedom, DF.

(Note that SRANDMULTISTUDENTST is the single precision version of
DRANDMULTISTUDENTST. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTISTUDENTST are replaced in
SRANDMULTISTUDENTST by single precision arguments, i.e. type REAL in Fortran or type
float in C).

DRANDMULTISTUDENTST (N,M, DF,XMU,C,LDC,STATE, X, LDX, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER M [Input]
On input: number of dimensions for the distribution.
Constraint: M >1.

INTEGER DF [Input]
On input: degrees of freedom.
Constraint: DF>2.

DOUBLE PRECISION XMU(M) [Input]
On input: vector of means for the distribution.
DOUBLE PRECISION C(LDC,M) [Input]

On input: matrix defining the variance / covariance for the distribution. The
variance / covariance matrix is given byig, where v are the degrees of
freedom, DF. Y

INTEGER LDC [Input]

On input: leading dimension of C in the calling routine.
Constraint: LDC = M.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDMULTISTUDENTST STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.

On input: the current state of the base generator. On

output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M) [Output]
On output: matrix of variates from the specified distribution.

AMD Random Number Generator Library

INTEGER LDX [Input]
On input: leading dimension of X in the calling routine.
Constraint: LDX > N.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

Example:

C Generate 100 values from the
C Multivariate Students T distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER 1,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M,DF

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

C Set array sizes
LDC=MM
LDX=N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M,DF
READ(5,*) (XMU(l),1=1,M)

DO201=1M
READ(5,*) (C(1,J),J=1,M)
20 CONTINUE
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Generate N variates from the
C Multivariate Students T distribution

CALL DRANDMULTISTUDENTST(N,M,DF,XMU,C,LDC,STATE,X,LDX,INFO)

C Print the results
DO401 =1,N
WRITE(6,*) (X(1,J),J=1,M)
40 CONTINUE

AMD Random Number Generator Library

DRANDMULTINORMALR / SRANDMULTINORMALR

Generates an array of random variates from a Multivariate Normal distribution using a reference vector
initialized by DRANDMULTINORMALREFERENCE.

(Note that SRANDMULTINORMALR is the single precision wversion of
DRANDMULTINORMALR. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTINORMALR are replaced in
SRANDMULTINORMALR by single precision arguments, i.e. type REAL in Fortran or type float
in C).

DRANDMULTINORMALR (N,REF,STATE, X, LDX, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N > 0.

DOUBLE PRECISION REF(*) [Input]

On input: a reference vector generated by DRANDMULTINORMALREFERENCE.

INTEGER STATE(*) [Input/Output]
The STATE vector holds information on the state of the base generator being used and
as such its minimum length varies. Prior to calling DRANDMULTINORMALR
STATE must have been initialized. See Section 3.1.1 [Initialization of the Base
Generators], for information on initialization of the STATE variable.

On input: the current state of the base generator.
On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M) [Output]
On output: matrix of variates from the specified distribution.
INTEGER LDX [Input]

On input: leading dimension of X in the calling routine.
Constraint: LDX > N.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the

C Multivariate Normal distribution
INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set array sizes
LDC = MM
LDX =N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M
READ(5,*) (XMU(I),I=1,M)
DO201=1M
READ(5,*) (C(1,9),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDMULTINORMALREFERENCE(M,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the
C Multivariate Normal distribution
CALL DRANDMULTINORMALR(N,REF,STATE,X,LDX,INFO)

C Print the results
DO401=1N
WRITE(6,*) (X(1,J),J=1,M)
40 CONTINUE

AMD Random Number Generator Library

DRANDMULTISTUDENTSTR / SRANDMULTISTUDENTSTR

Generates an array of random variates from a Multivariate Students T distribution using a
reference vector initialized by DRANDMULTISTUDENTSTREFERENCE.

(Note that SRANDMULTISTUDENTSTR is the single precision version of
DRANDMULTISTUDENTSTR. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTISTUDENTSTR are replaced in SRAND-
MULTISTUDENTSTR by single precision arquments, i.e. type REAL in Fortran or type float in
C).

DRANDMULTISTUDENTSTR (N,REF,STATE,X,LDX,INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N > 0.

DOUBLE PRECISION REF(*) [Input]
On input: a reference vector generated by
DRANDMULTISTUDENTSTREFERENCE.

INTEGER STATE(*) [Input/Output]
The STATE vector holds information on the state of the base generator being used and as
such its minimum length varies. Prior to calling DRANDMULTISTUDENTSTR STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for
information on initialization of the STATE variable.

On input: the current state of the base generator.
On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M) [Output]
On output: matrix of variates from the specified distribution.
INTEGER LDX [Input]

On input: leading dimension of X in the calling routine.
Constraint: LDX > N.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:
C Generate 100 values from the
C Multivariate Students T distribution
INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M,DF
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)
C Set array sizes
LDC= MM
LDX =N
C Set the seed
SEED(1) = 1234
C Read in the distributional parameters
READ(5,*) M,DF
READ(5,*) (XMU(I),I=1,M)
DO201=1M
READ(5,*) (C(1,J),J=1,M)
20 CONTINUE
C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)
C Initialize the reference vector
LREF = 1000
CALL DRANDMULTISTUDENTSTREFERENCE(M,DF, XMU,C,LDC,REF,LREF,INFO) |
C Generate N variates from the
C Multivariate Students T distribution
CALLDRANDMULTISTUDENTSTR(N,REF,STATE,X,LDX,INFO)
C Print the results
DO401=1,N

WRITE(6,*) (X(1,J),d=1,M)
40 CONTINUE

AMD Random Number Generator Library

DRANDMULTINORMALREFERENCE / SRANDMULTINORMALREFERENCE

Initializes a reference vector for use with DRANDMULTINORMALR. Reference vector is for a
Multivariate Normal distribution with probability density function, f (X), where:

FX) =4/ %
Vo

where u is the vector of means, XMU.

(Note that SRANDMULTINORMALREFERENCE is the single precision version of
DRANDMULTINORMALREFERENCE. The argument lists of both routines are identical except
that any double precision arguments of DRANDMULTINORMALREFERENCE are replaced in
SRANDMULTINORMALREFERENCE by single precision arguments, i.e. type REAL in

Fortran or type float in C).

DRANDMULTINORMALREFERENC (¥,xXMU,C,LDC,REF,LREF,INFO) [SUBROUTINE]
INTEGER M [Input]

On input: number of dimensions for the distribution.
Constraint: M >1.

DOUBLE PRECISION XMU(M) [Input]

On input: vector of means for the distribution.

DOUBLE PRECISION C(LDC,M) [Input]

On input: variance / covariance matrix for the distribution.

INTEGER LDC [Input]

On input: leading dimension of C in the calling routine.
Constraint: LDC = M.

DOUBLE PRECISION REF(LREF) [Output]

On output: if INFO returns with a value of 0 then REF contains reference information
required to generate values from a Multivariate Normal distribution using

DRANDMULTINORMALR.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1. _

On output: if LREF =1 on.nput, then LREF is set to the recommended length of the

reference vector and the routine returns. Otherwise LREF is left unchanged.

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO = 1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been

successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the

C Multivariate Normal distribution
INTEGER LSTATE,N, MM
PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M
DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF
DOUBLE PRECISION REF(1000)

C Set array sizes
LDC = MM
LDX =N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) M
READ(5,*) (XMU(I),I=1,M)
DO201=1M
READ(5,*) (C(1,9),J=1,M)
20 CONTINUE

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector
LREF = 1000
CALL DRANDMULTINORMALREFERENCE(M,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the
C Multivariate Normal distribution
CALL DRANDMULTINORMALR(N,REF,STATE,X,LDX,INFO)

C Print the results
DO401=1N
WRITE(6,*) (X(1,J),J=1,M)
40 CONTINUE

AMD Random Number Generator Library

DRANDMULTISTUDENTSTREFERENCE / SRANDMULTISTUDENTSTREFERENCE

Initializes a reference vector for use with DRANDMULTISTUDENTSTR. Reference vector is for a
Multivariate Students T distribution with probability density function, f (X), where:

r Zle'—d.'h‘) ¢ PEIRY, Pl PR _ Lwd M
FIX) = (7) | (1 N (X —p)'CHX Ir_i])
"Nz

- (mv)FL(%) |C v

)

where u is the vector of means, XMU and v is the degrees of freedom, DF.

(Note that SRANDMULTISTUDENTSTREFERENCE is the single precision version of
DRANDMULTISTUDENTSTREFERENCE. The argument lists of both routines are identical
except that any double precision arguments of DRANDMULTISTUDENTSTREFERENCE are
replaced in SRANDMULTISTUDENTSTREFERENCE by single precision arguments, i.e. type
REAL in Fortran or type float in C).

DRANDMULTISTUDENTSREFERENCE [SUBROUTINE]
(M,DF,XMU,C,LDC,REF,LREF,INFO)
INTEGER M [Input]

On input: number of dimensions for the distribution.
Constraint: M >1.

INTEGER DF [Input]
On input: degrees of freedom.
Constraint: DF>2.

DOUBLE PRECISION XMU(M) [Input]
On input: vector of means for the distribution.
DOUBLE PRECISION C(LDC,M) [Input]

On input: matrix defining the variance / covariance for the distribution. The
variance / covariance matrix is given by %_CZJ where v are the degrees of
freedom, DF.

INTEGER LDC [Input]

On input: leading dimension of C in the calling routine.
Constraint: LDC = M.

DOUBLE PRECISION REF(LREF) [Output]

On output: if INFO returns with a value of 0 then REF contains reference information
required to generate values from a Multivariate Students T distribution using
DRANDMULTISTUDENTSTR.

INTEGER LREF [Input/Output]
On input: either the length of the reference vector REF,or 1. _
On output: if LREF =1 on.input, then LREF is set to the recommended length of the
reference vector and the routine returns. Otherwise LREF is left unchanged.

AMD Random Number Generator Library

INTEGER INFO [Output]
On output: INFO is an error indicator. If INFO = i on_exit, the i-th argument had an
illegal value. If INFO =1 on exit, then LREF has been set to the recommended length
for the reference vector REF. If INFO = 0 then the reference vector, REF, has been
successfully initialized.

Example:

C
C

20

40

Generate 100 values from the

Multivariate Students T distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDC,LDX,M,DF

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)
INTEGER LREF

DOUBLE PRECISION REF(1000)

Set array sizes
LDC=MM
LDX=N

Set the seed
SEED(1) = 1234

Read in the distributional parameters
READ(5,*) M,DF
READ(5,*) (XMU(l),1=1,M) DO
201 =1M

READ(5,*) (C(1,J),J=1,M)
CONTINUE

Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

Initialize the reference vector
LREF = 1000
CALL DRANDMULTISTUDENTSTREFERENCE(M,DF,XMU,C,LDC,REF,LREF,INFO)

Generate N variates from the
Multivariate Students T distribution
CALL DRANDMULTISTUDENTSTR(N,REF,STATE,X,LDX,INFO)

Print the results
DO401=1,N
WRITE(6,*) (X(1,J),J=1,M)
CONTINUE

AMD Random Number Generator Library

3.3.4 Discrete Multivariate Distributions

DRANDMULTINOMIAL / SRANDMULTINOMIAL

Generates a matrix of random variates from a Multinomial distribution with probability,
f(X), defined by:

. MK
_,Ir.‘_ii)= ”h—l_ﬁpH‘H’ Ty

WhereX:{X1) XZ; ot ',XK},P={P'|,P2, T, R(})ZF=1XL' =]‘andzi{=lpl = 1.

(Note that SRANDMULTINOMIAL is the single precision version of
DRANDMULTINOMIAL. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTINOMIAL are replaced in
SRANDMULTINOMIAL by single precision arguments, i.e. type REAL in Fortran or type float
in C).

DRANDMULTINOMIAL (N, P,K,STATE,X,LDX, INFO) [SUBROUTINE]

INTEGER N [Input]
On input: number of variates required.
Constraint: N = 0.

INTEGER M [Input]

On input: number of trials.
Constraint: M > 0.

DOUBLE PRECISION P(K) [Input]

On input: vector of probabilities for each of the K possible outcomes.
Constraint: 0 < P <1,i=1,2,- - - KYk , P, =1.

INTEGER K [Input]
On input: number of possible outcomes.
Constraint: K= 2.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the status of the base generator being used and as
such its minimum length varies. Prior to calling DRANDBINOMIAL STATE must have
been initialized. See Section 3.1.1 [Initialization of the Base Generators], for information
on initialization of the STATE variable.
On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(LDX,K) [Output]
On output: matrix of variates from the specified distribution.
INTEGER LDX [Input]

On input: leading dimension of X in the calling routine.
Constraint: LDX = N.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0. If
INFO = —i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Multinomial distribution
INTEGER LSTATE,N,M
PARAMETER (LSTATE=16,N=100,M=10)
INTEGER I,J,INFO,SEED(1),STATE(LSTATE)
INTEGER LDX,K
INTEGER X(N,M) DOUBLE
PRECISION P(M)

C Set array sizes
LDX=N

C Set the seed
SEED(1) = 1234

C Read in the distributional parameters
READ(5,*) K
READ(,*) (P(D,I1=1,K)

C Initialize the STATE vector
CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Multinomial distribution
CALL DRANDMULTINOMIAL(N,M,P,K,STATE,X,LDX,INFO)

C Print the results

DO201=1,N
WRITE(6,*) (X(1,J),J=1,K)

20 CONTINUE

AMD Random Number Generator Library

4 References
[1] D. E. Knuth, The Art of Computer Programming Addison-Wesley, 1997.

[2] J. Banks, Handbook on Simulation, Wiley, 1998.

. [3] A. Menezes, P.van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, Chapter
5, CRC Press, 1996.

. [4] Chapter Introduction GO5 - Random Number Generators, The NAG Fortran Library
Manual, Mark 21 Numerical Algorithms Group, 2005.

. [5] N. M. Maclaren, The generation of multiple independent sequences of pseudorandom
numbers, Appl. Statist., 1989, 38, 351-359.

. [6] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator, ACM Transactions on Modelling and Computer
Simulations, 1998.

. [7] P. L’Ecuyer, Good parameter sets for combined multiple recursive random number
generators, Operations Research, 1999, 47, 159-164.

. [8] P. L’Ecuyer and R. Simard, TestU01: A Software Library in ANSI C for Empirical
Testing of Random Number Generators, Departement d’Informatique et de Recherche
Operationnelle, Universite de Montreal, 2002. Software and user’s guide available at
http://www.iro.umontreal.ca/~lecuyer

. [9] Mutsuo Saito and Makoto Matsumoto, "SIMD-oriented Fast Mersenne Twister: a 128-bit

Pseudorandom Number Generator”, Monte Carlo and Quasi-Monte Carlo Methods 2006,
Springer, 2008.

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer

	1 Introduction
	2 General Information
	2.1 Library Package
	2.2 Fortran and C interfaces
	2.3 Example programs calling AOCL-RNG Library routines
	2.4 AOCL-RNG library version API

	3 Random Number Generators
	3.1 Base Generators
	3.1.1 Initialization of the Base Generators
	3.1.2 Calling the Base Generators
	3.1.3 NAG Basic Generator
	3.1.4 Wichmann-Hill Generator
	3.1.5 Mersenne Twister
	3.1.6 SIMD-oriented Fast Mersenne Twister
	3.1.7 L’Ecuyer’s Combined Recursive Generator
	3.1.8 Blum-Blum-Shub Generator
	3.1.9 User Supplied Generators

	3.2 Multiple Streams
	3.2.1 Using Different Seeds
	3.2.2 Using Different Generators
	3.2.3 Skip Ahead
	3.2.4 Leap Frogging

	3.3 Distribution Generators
	3.3.1 Continuous Univariate Distributions
	INTEGER N
	DOUBLE PRECISION A
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO
	DRANDF / SRANDF
	INTEGER N
	INTEGER DF1
	INTEGER DF2
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDGAMMA / SRANDGAMMA
	INTEGER N
	DOUBLE PRECISION A
	DOUBLE PRECISION B
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDGAUSSIAN / DRANDGAUSSIAN
	INTEGER N
	DOUBLE PRECISION XMU
	DOUBLE PRECISION VAR
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDLOGISTIC / SRANDLOGISTIC
	INTEGER N
	DOUBLE PRECISION A
	DOUBLE PRECISION B
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDLOGNORMAL / SRANDLOGNORMAL
	INTEGER N
	DOUBLE PRECISION XMU
	DOUBLE PRECISION VAR
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDSTUDENTST / SRANDSTUDENTST
	INTEGER N
	INTEGER DF
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDTRIANGULAR / SRANDTRIANGULAR
	INTEGER N
	DOUBLE PRECISION XMIN
	DOUBLE PRECISION XMED
	DOUBLE PRECISION XMAX
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDUNIFORM / SRANDUNIFORM
	INTEGER N
	DOUBLE PRECISION A
	DOUBLE PRECISION B
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDVONMISES / SRANDVONMISES
	INTEGER N
	DOUBLE PRECISION VK
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	DRANDWEIBULL / SRANDWEIBULL
	INTEGER N
	DOUBLE PRECISION A
	DOUBLE PRECISION B
	INTEGER STATE(*)
	DOUBLE PRECISION X(N)
	INTEGER INFO

	3.3.2 Discrete Univariate Distributions
	DRANDBINOMIAL / SRANDBINOMIAL
	INTEGER N
	INTEGER M
	DOUBLE PRECISION P
	INTEGER STATE(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDGEOMETRIC / SRANDGEOMETRIC
	INTEGER N
	DOUBLE PRECISION P
	INTEGER STATE(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDHYPERGEOMETRIC / SRANDHYPERGEOMETRIC
	INTEGER N
	INTEGER NP
	INTEGER NS
	INTEGER M
	INTEGER STATE(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDNEGATIVEBINOMIAL / SRANDNEGATIVEBINOMIAL
	INTEGER N
	INTEGER M
	DOUBLE PRECISION P
	INTEGER STATE(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDPOISSON / SRANDPOISSON
	INTEGER N
	INTEGER M
	DOUBLE PRECISION LAMBDA
	INTEGER STATE(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDDISCRETEUNIFORM / SRANDDISCRETEUNIFORM
	INTEGER N
	INTEGER A
	INTEGER B
	INTEGER STATE(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDGENERALDISCRETE / SRANDGENERALDISCRETE
	INTEGER N
	DOUBLE PRECISION REF(*)
	INTEGER X(N)
	INTEGER INFO

	DRANDBINOMIALREFERENCE / SRANDBINOMIALREFERENCE
	INTEGER M
	DOUBLE PRECISION P
	DOUBLE PRECISION REF(LREF)

	DRANDGEOMETRICREFERENCE / SRANDGEOMETRICREFERENCE
	DOUBLE PRECISION P
	DOUBLE PRECISION REF(LREF)

	DRANDHYPERGEOMETRICREFERENCE / SRANDHYPERGEOMETRICREFERENCE
	INTEGER NP
	INTEGER NS
	INTEGER M
	DOUBLE PRECISION REF(LREF)

	DRANDNEGATIVEBINOMIALREFERENCE / SRANDNEGATIVEBINOMIALREFERENCE
	INTEGER M
	DOUBLE PRECISION P
	DOUBLE PRECISION REF(LREF)

	DRANDPOISSONREFERENCE / SRANDPOISSONREFERENCE
	INTEGER M
	DOUBLE PRECISION LAMBDA
	DOUBLE PRECISION REF(LREF)

	3.3.3 Continuous Multivariate Distributions
	DRANDMULTINORMAL / SRANDMULTINORMAL
	INTEGER N
	INTEGER M
	DOUBLE PRECISION XMU(M)
	DOUBLE PRECISION C(LDC,M)
	INTEGER LDC
	INTEGER STATE(*)
	DOUBLE PRECISION X(LDX,M)
	INTEGER LDX
	INTEGER INFO

	DRANDMULTISTUDENTST / SRANDMULTISTUDENTST
	INTEGER N
	INTEGER M
	INTEGER DF
	DOUBLE PRECISION XMU(M)
	DOUBLE PRECISION C(LDC,M)
	INTEGER LDC
	INTEGER STATE(*)
	DOUBLE PRECISION X(LDX,M)
	INTEGER LDX
	INTEGER INFO

	DRANDMULTINORMALR / SRANDMULTINORMALR
	INTEGER N
	DOUBLE PRECISION REF(*)
	DOUBLE PRECISION X(LDX,M)
	INTEGER LDX
	INTEGER INFO

	DRANDMULTISTUDENTSTR / SRANDMULTISTUDENTSTR
	INTEGER N
	DOUBLE PRECISION REF(*)
	DOUBLE PRECISION X(LDX,M)
	INTEGER LDX
	INTEGER INFO

	DRANDMULTINORMALREFERENCE / SRANDMULTINORMALREFERENCE
	INTEGER M
	DOUBLE PRECISION XMU(M)
	DOUBLE PRECISION C(LDC,M)
	INTEGER LDC
	DOUBLE PRECISION REF(LREF)

	DRANDMULTISTUDENTSTREFERENCE / SRANDMULTISTUDENTSTREFERENCE
	DRANDMULTISTUDENTSREFERENCE
	INTEGER M
	INTEGER DF
	DOUBLE PRECISION XMU(M)
	DOUBLE PRECISION C(LDC,M)
	INTEGER LDC
	DOUBLE PRECISION REF(LREF)

	3.3.4 Discrete Multivariate Distributions
	DRANDMULTINOMIAL / SRANDMULTINOMIAL
	INTEGER N
	INTEGER M
	DOUBLE PRECISION P(K)
	INTEGER K
	INTEGER STATE(*)
	INTEGER X(LDX,K)
	INTEGER LDX
	INTEGER INFO

	4 References

