
Advanced Micro Devices

AOCL User Guide

Publication # 57404 Revision # 4.2
Issue Date February 2024

Advanced Micro Devices

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, Windows Server, Visual Studio,and DirectX are registered trademarks of Microsoft
Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Contents 3

AOCL User Guide57404 Rev. 4.2 February 2024

Contents

Revision History .12

Chapter 1 Introduction .13

1.1 Feature Support Matrix .14

Chapter 2 Validation Matrix .17

2.1 Operating Systems .17

2.2 Compilers .17

2.3 Library .17

2.4 Message Passing Interface (MPI) .17

2.5 Programming Language .17

2.6 Build Utilities .18

Chapter 3 Installing AOCL .19

3.1 Building from Source .19

3.2 Installing AOCL Binary Packages .19

3.2.1 Using Master Package .19

3.2.2 Using Library Package .21

3.2.3 Using Debian and RPM Packages .21

3.2.4 Using Windows Packages .23

Chapter 4 AOCL-BLAS .25

4.1 Installation on Linux .25

4.1.1 Build AOCL-BLAS from Source .25

4.1.2 Using Pre-built Binaries .27

4.2 Application Development Using AOCL-BLAS .27

4.2.1 API Compatibility Layers (Calling AOCL-BLAS) .27

4.2.2 API Compatibility - Advance Options .29

4.2.3 Linking Application with AOCL-BLAS .29

4.2.4 AOCL-BLAS Usage in Fortran .30

4.2.5 AOCL-BLAS Usage in C .32

4.3 Migrating/Porting .36

4.4 Using AOCL-BLAS Library Features .37

4 Contents

57404 Rev. 4.2 February 2024AOCL User Guide

4.4.1 Dynamic Dispatch .37

4.4.2 AOCL-BLAS - Running the Test Suite .40

4.4.3 Testing/Benchmarking .41

4.4.4 AOCL-BLAS Utility APIs .43

4.5 Debugging and Troubleshooting .44

4.5.1 Error Handling in AOCL-BLAS .44

4.5.2 Debugging Build Using GDB .45

4.5.3 Viewing Logs .46

4.5.4 Checking AOCL-BLAS Operation Progress .50

4.6 Build AOCL-BLAS from Source on Windows .52

4.6.1 Building AOCL-BLAS using GUI .53

4.6.2 Building AOCL-BLAS using Command-line Arguments 58

4.6.3 Packaging AOCL -BLAS .58

4.6.4 Building and Running the Test Suite .58

4.7 LPGEMM in AOCL-BLAS .59

4.7.1 Add-on in AOCL-BLAS .59

4.7.2 API Naming and Arguments .59

4.7.3 Post-operations .60

4.7.4 APIs and Post-ops in aocl_gemm .61

4.7.5 Enabling aocl_gemm Add-on .62

4.7.6 Sample Application 1 .63

4.7.7 Sample Application 2 .65

Chapter 5 AOCL-LAPACK .68

5.1 Installing on Linux .68

5.1.1 Building AOCL-LAPACK from Source .68

5.1.2 Using Pre-built Libraries .73

5.2 Usage on Linux .73

5.2.1 Use by Applications .74

5.3 Building AOCL-LAPACK from Source on Windows .75

5.3.1 Building AOCL-LAPACK Using GUI .75

5.3.2 Building AOCL-LAPACK using Command-line Arguments 78

Contents 5

AOCL User Guide57404 Rev. 4.2 February 2024

5.3.3 Building and Running Test Suite .78

5.4 Checking AOCL-LAPACK Operation Progress .79

Chapter 6 AOCL-FFTW .81

6.1 Installing .81

6.1.1 Building AOCL-FFTW from Source on Linux .81

6.1.2 Building AOCL-FFTW from Source on Windows .83

6.1.3 Using Pre-built Libraries .87

6.2 Usage .87

6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW87

6.2.2 Sample Programs for MPI FFTW .88

6.2.3 Additional Options .88

Chapter 7 AOCL-LibM .89

7.1 Library Contents .89

7.1.1 Scalar Functions .89

7.1.2 Fast Scalar and Vector Variants .90

7.2 Installation .93

7.2.1 Installing the Pre-Built Binaries on Linux .93

7.2.2 Building AOCL-LibM on Linux .93

7.2.3 Building AOCL-LibM on Windows .94

7.3 Using AOCL-LibM .96

Chapter 8 AOCL-ScaLAPACK .98

8.1 Installation .98

8.1.1 Building AOCL-ScaLAPACK from Source on Linux99

8.1.2 Using Pre-built Libraries .102

8.2 Usage .102

8.3 Building AOCL-ScaLAPACK from Source on Windows .103

8.3.1 Building AOCL-ScaLAPACK Using GUI .103

8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments 104

8.3.3 Building and Running the Individual Tests .105

8.4 Checking AOCL-ScaLAPACK Operation Progress .105

8.5 Additional Features .106

6 Contents

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 9 AOCL-RNG .108

9.1 Installation .108

9.2 Using AOCL-RNG Library on Linux .109

9.3 Using AOCL-RNG Library on Windows .109

Chapter 10 AOCL-SecureRNG .110

10.1 Installation .110

10.2 Usage .110

10.3 Using AOCL-SecureRNG Library on Windows .111

Chapter 11 AOCL-Sparse .113

11.1 Installation .114

11.1.1 Building AOCL-Sparse from Source on Linux .114

11.1.2 Building AOCL-Sparse from Source on Windows 116

11.1.3 Using Pre-built Libraries .120

11.2 Usage .120

11.2.1 Use by Applications on Linux .120

11.2.2 Use by Application on Windows .121

11.2.3 Performance Benchmarking on Linux .122

11.2.4 Performance Benchmarking on Windows .123

11.2.5 Running the Test Suite .124

Chapter 12 AOCL-LibMem .125

12.1 Building AOCL-LibMem for Linux .125

12.2 Running an Application .126

12.3 Running an Application with Tunables .126

12.3.1 Default State .127

12.3.2 Tuned State .127

Chapter 13 AOCL-Cryptography .130

13.1 Requirements .131

13.2 Installation .131

13.2.1 Building AOCL-Cryptography from Source on Linux131

13.2.2 Building AOCL-Cryptography from Source on Windows133

13.3 Using AOCL-Cryptography in a Sample Application .134

Contents 7

AOCL User Guide57404 Rev. 4.2 February 2024

13.3.1 Compiling and Running Examples .134

13.3.2 AOCL-Cryptography Library Provider for OpenSSL 135

13.3.3 Integrating AOCL Libraries with Applications that Use IPP135

Chapter 14 AOCL-Compression .136

14.1 Installation .136

14.1.1 Using Pre-built Libraries .136

14.1.2 Building from Source .137

14.2 Running AOCL-Compression Test Bench on Linux .137

14.3 Running AOCL-Compression Test Bench on Windows .139

14.4 API Reference .139

14.4.1 Unified Standardized API Set .139

14.4.2 Interface Data Structures .139

14.4.3 Library Return Error Codes .141

14.4.4 Multi-threaded API Set .141

14.4.5 Native APIs .141

14.4.6 Example Program .144

14.5 Optional Optimization Options .148

Chapter 15 AOCL-Utils .150

15.1 Requirements .151

15.2 Clone and Build the AOCL-Utils Library .151

15.3 Using AOCL-Utils .151

15.3.1 C API Example .152

15.3.2 C++ API Example .152

15.3.3 Building on Windows .152

15.3.4 Building on Linux .153

15.3.5 Output .154

15.3.6 Integrate with Other Libraries/Applications .154

Chapter 16 AOCL Tuning Guidelines .155

16.1 AOCL-BLAS Thread Control .155

16.1.1 AOCL-BLAS Initialization .155

16.1.2 Runtime .156

8 Contents

57404 Rev. 4.2 February 2024AOCL User Guide

16.2 AOCL Dynamic .158

16.2.1 Limitations .159

16.3 AOCL-BLAS DGEMM Multi-thread Tuning .159

16.3.1 Library Usage Scenarios .159

16.3.2 Architecture Specific Tuning .160

16.4 AOCL-BLAS DGEMM Block-size Tuning .161

16.5 Performance Suggestions for Skinny Matrices .163

16.6 AOCL-LAPACK Multi-threading .163

16.7 AOCL-FFTW Tuning Guidelines .164

Chapter 17 Support .166

Chapter 18 References .167

Appendix .168

Check AMD Server Processor Architecture .168
On Linux .168
On Windows .168

Application Notes .169
AOCL-BLAS .169
AOCL-FFTW. .169

List of Tables 9

AOCL User Guide57404 Rev. 4.2 February 2024

List of Tables

Table 1. AOCL Feature Support Matrix - 1 .14

Table 2. AOCL Feature Support Matrix - 2 .15

Table 3. install.sh Script Options .20

Table 4. AOCL-BLAS API Compatibility Layers .28

Table 5. AOCL-BLAS API Compatibility - Advance Options .29

Table 6. AOCL-BLAS Application - Link Options .29

Table 7. Porting to AOCL-BLAS .37

Table 8. AOCL-BLAS Utility APIs .43

Table 9. AOCL-BLAS - Error Handlers .44

Table 10. Callback Parameters .51

Table 11. CMake Config Options .55

Table 12. Required Architecture Features and APIs. .61

Table 13. GEMM API Supported Post-ops. .61

Table 14. Utility APIs in aocl_gemm Add-on .62

Table 15. AOCL-LAPACK Config Options. .75

Table 16. AOCL-LAPACK Progress Feature Callback Function Parameters79

Table 17. AOCL-FFTW Config Options .84

Table 18. AOCL-ScaLAPACK CMake Parameter List .98

Table 19. Compiler and Type of Library .100

Table 20. AOCL-ScaLAPACK Progress Feature Callback Function Parameters106

Table 21. Additional Features .106

Table 22. Compiler and Library Type. .115

Table 23. AOCL-Sparse - CMake Build Options .115

Table 24. Application Implementations .127

Table 25. Sample Threshold Settings .129

Table 26. AOCL-Cryptography - Linux Options .132

Table 27. AOCL-Cryptography - Windows Options .133

Table 28. Optional Optimization Options .148

Table 29. Sample Scenarios - 1. .156

10 List of Tables

57404 Rev. 4.2 February 2024AOCL User Guide

Table 30. Sample Scenarios - 2. .157

Table 31. AOCL Dynamic .158

List of Figures 11

AOCL User Guide57404 Rev. 4.2 February 2024

List of Figures

Figure 1. Sample Run of Function Call Tracing .48

Figure 2. Sample Run with Debug Logs Enabled .49

Figure 3. Debug Logs Showing Input Values of GEMM .50

Figure 4. Microsoft Visual Studio Prerequisites .52

Figure 5. CMake Source and Build Folders .53

Figure 6. Set Generator and Compiler .54

Figure 7. CMake Configure and Generate Project Settings .57

Figure 8. AOCL-LAPACK CMake Configurations .77

Figure 9. AOCL-FFTW CMake Config Options .86

Figure 10. AOCL-ScaLAPACK CMake Options .104

Figure 12. AOCL-Sparse CMake Config Options .118

12 Revision History

57404 Rev. 4.2 February 2024AOCL User Guide

Revision History

Date Revision Description

February 2024 4.2 • Re-organized Chapter 11
• Release specific updates and general edits

August 2023 4.1 • Added Chapter 15
• Added sections 4.7, 8.5, 11.5, 14.1.1, and 14.1.2

November 2022 4.0 • Added sections 9.3, 10.3, 16.1.2.1, and 16.6
• Updated section 4.4.1.3
• Added Chapter 14
• Removed the chapter AOCL-Spack recipes

July 2022 3.2 • Added chapters 12 and 13, sections 5.4, 8.4, and 16.1
• Added Multi-thread support information in chapter 11

December 2021 3.1 Initial version

Chapter 1 Introduction 13

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 1 Introduction

AMD Optimizing CPU Libraries (AOCL) are a set of numerical libraries optimized for AMD “Zen”-
based processors, including EPYCTM, RyzenTM ThreadripperTM, and RyzenTM. This document
provides instructions on installing and using all the AMD optimized libraries.

AOCL is comprised of the following libraries:

• AOCL-BLAS is a portable software framework for performing high-performance Basic Linear
Algebra Subprograms (BLAS) functionality.

• AOCL-LAPACK is a portable library for dense matrix computations that provides the
functionality present in the Linear Algebra Package (LAPACK).

• AOCL-FFTW (Fastest Fourier Transform in the West) is a comprehensive collection of fast C
routines for computing the Discrete Fourier Transform (DFT) and various special cases.

• AOCL-LibM is a software library containing elementary math functions optimized for x86-64
processor based machines.

• AOCL-Utils is a library which provides APIs to check the available CPU features/flags, cache
topology, and so on of AMD "Zen"-based CPUs.

• AOCL-ScaLAPACK is a library of high-performance linear algebra routines for parallel
distributed memory machines. It depends on external libraries including BLAS and LAPACK for
linear algebra computations.

• AOCL-RNG (AMD Random Number Generator) is a pseudo-random number generator
library.

• AOCL-SecureRNG is a library that provides APIs to access the cryptographically secure random
numbers generated by the AMD hardware random number generator.

• AOCL-Sparse is a library containing the basic linear algebra subroutines for sparse matrices and
vectors optimized for AMD “Zen”-based CPUs.

• AOCL-LibMem is AMD’s optimized implementation of memory manipulation functions for
AMD “Zen”-based CPUs.

• AOCL-Cryptography is AMD’s optimized implementation of cryptographic functions.

• AOCL-Compression is a software framework of various lossless data compression and
decompression methods tuned and optimized for AMD “Zen”-based CPUs.

All the above libraries are open-source except AOCL-RNG.

14 Introduction Chapter 1

57404 Rev. 4.2 February 2024AOCL User Guide

1.1 Feature Support Matrix

Following tables summarize the list of supported features and dependencies for the AOCL libraries:
Table 1. AOCL Feature Support Matrix - 1

Library\Feature AVX512 Dynamic Dispatcher Vector Precision

AOCL-BLAS

Yes Yes Yes Single, Double,
Complex, Double
Complex, Mixed
Precision, and Low
Precision (INT16,
INT8, UINT8,
BFLOAT16, and so
on)
Note: Currently

supported only for
GEMM API.

AOCL-LAPACK
No Partially (requires AVX2

support)
Not applicable Single, Double,

Complex, Double
Complex

AOCL-FFTW

Yes Yes for Linux with GCC
and AOCC. No for
Windows with Clang.
MSVC compiler has not
been used on Windows.

Yes Single, Double,
Long-double, Quad

AOCL-LibM
Yes Yes Yes Single, Double,

Complex, Double
Complex

AOCL-Sparse
Partial (for
SpMV)

Partial (for SpMV) Yes Single, Double,
Complex, Complex,
Double Complex

AOCL-
Cryptography

Yes Yes, GCC and AOCC on
Linux; Clang on
Windows.

Not applicable Not applicable

AOCL-
Compression

AVX512
instructions have
not been used.
But, library can
be built with -
mavx512f
compiler option.

Yes, GCC and AOCC on
Linux; Clang on
Windows.

Yes Not applicable

Chapter 1 Introduction 15

AOCL User Guide57404 Rev. 4.2 February 2024

AOCL-RNG Partial Yes Not applicable Single, Double

AOCL-
SecureRNG

Not applicable Not applicable Not applicable Not applicable

AOCL-
ScaLAPACK

Dependent on the
underlying BLAS
and LAPACK
libraries

Dependent on the
underlying BLAS and
LAPACK libraries

Not applicable Single, Double,
Complex, Double
Complex

AOCL-LibMem Yes No Yes Not applicable

AOCL-Utils Not applicable Not applicable Not applicable Not applicable

Table 2. AOCL Feature Support Matrix - 2

Library\Feature glibc
Dependency Single-threaded Multi-threaded MPI

AOCL-BLAS
Yes Yes Yes No

AOCL-LAPACK Yes Yes Yes No

AOCL-FFTW

Yes Yes Yes Yes

AOCL-LibM Yes Yes No No

AOCL-Sparse Yes Yes Partial (for SpMV) No

AOCL-
Cryptography

Yes Yes No No

AOCL-
Compression

Yes Yes Partial (for LZ4, Snappy,
ZLIB, and ZSTD)

No

AOCL-RNG Yes Yes No No

Table 1. AOCL Feature Support Matrix - 1

Library\Feature AVX512 Dynamic Dispatcher Vector Precision

16 Introduction Chapter 1

57404 Rev. 4.2 February 2024AOCL User Guide

Dynamic Dispatch facilitates building a single binary compatible with all the AMD “Zen”
architectures. At runtime, this feature enables optimizations specific to the detected AMD “Zen”
architecture.

You can find the flags to enable/disable (the applicable features in Table 1 and Table 2) in the
individual library sections.

Additionally, AMD provides Spack (https://spack.io/) recipes for installing AOCL-BLAS, AOCL-
LAPACK, AOCL-ScaLAPACK, AOCL-LibM, AOCL-FFTW, AOCL-Sparse, AOCL-Compression,
AOCL-Cryptography, and AOCL-Utils libraries.

For more information on the AOCL release and installers, refer the AMD Developer Central (https://
www.amd.com/en/developer/aocl.html).

For any issues or queries on the libraries, send an email to toolchainsupport@amd.com.

To determine the underlying architecture of your AMD system, refer to Check AMD Server
Processor Architecture.

AOCL-
SecureRNG

No Yes No No

AOCL-
ScaLAPACK

Yes Yes, dependent on the
underlying BLAS and
LAPACK libraries

Yes, dependent on the
underlying BLAS and
LAPACK libraries

Yes

AOCL-LibMem Yes Yes No No

AOCL-Utils Yes Yes No No

Table 2. AOCL Feature Support Matrix - 2

Library\Feature glibc
Dependency Single-threaded Multi-threaded MPI

https://spack.io/
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

Chapter 2 Validation Matrix 17

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 2 Validation Matrix

This release has been validated on the following:

Note: For the supported compiler versions and prerequisites of a specific library, refer to the
corresponding sections.

2.1 Operating Systems

• Ubuntu® 20.04 LTS and 22.04 LTS

• Red Hat® Enterprise Linux® (RHEL) 9.0 and 8.6

• SUSE Linux Enterprise Server (SLES) 15 SP3

• Windows Server 2019

• Windows® 10

• Windows 11 Pro

2.2 Compilers

• GCC 12.2 and 13.1

• AOCC 4.1 and 4.2

• LLVMTM 15 and 16

2.3 Library

• glibc 2.28 and 2.35

• OpenSSL 3.0.0 through 3.0.5

2.4 Message Passing Interface (MPI)

• Linux Open MPI 4.1.5

• Windows Intel® MPI (2021.8.0 “version 3.1”)

2.5 Programming Language

• Python versions 3.4, 3.6, 3.8, and 3.9

18 Validation Matrix Chapter 2

57404 Rev. 4.2 February 2024AOCL User Guide

• Perl 5.14 and 5.34

2.6 Build Utilities

• GNU Make 4.3

• CMake 3.20.2, 3.22.1, and 3.26.2

• Microsoft Visual Studio 2019 (build 16.8.7)/2022 (build 17.3.2)

• SCons 4.6.0

Chapter 3 Installing AOCL 19

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 3 Installing AOCL

3.1 Building from Source

You can download the following open-source libraries of AOCL from GitHub and build from source:

• AOCL-BLAS (https://github.com/amd/blis)

• AOCL-LAPACK (https://github.com/amd/libflame)

• AOCL-FFTW (https://github.com/amd/amd-fftw)

• AOCL-LibM (https://github.com/amd/aocl-libm-ose)

• AOCL-ScaLAPACK (https://github.com/amd/aocl-scalapack)

• AOCL-Sparse (https://github.com/amd/aocl-sparse)

• AOCL-Cryptography (https://github.com/amd/aocl-crypto)

• AOCL-Compression (https://github.com/amd/aocl-compression)

• AOCL-LibMem (https://github.com/amd/aocl-libmem)

• AOCL-Utils (https://github.com/amd/aocl-utils)

The details on installing from source for each library areexplained in the later sections. For more
information on Spack-based installation of AOCL libraries, refer to AMD Developer Central (https://
www.amd.com/en/developer/zen-software-studio/applications/spack/spack-aocl.html).

3.2 Installing AOCL Binary Packages

The section describes the procedure to install AOCL binaries on Linux and Windows.

3.2.1 Using Master Package

Complete the following steps to install the AOCL library suite:

1. Download the AOCL tar packages from the Download (https://www.amd.com/en/developer/
aocl.html#downloads) section to the target machine.

2. Use the command tar -xvf <aocl-linux-<compiler>-4.2.0.tar.gz> to untar the package.

The installer file install.sh is available in aocl-linux-<compiler>-4.2.0.

https://github.com/amd/blis

https://github.com/amd/libflame
https://github.com/amd/amd-fftw
https://github.com/amd/aocl-libm-ose
https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-sparse
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads
https://github.com/amd/aocl-crypto
https://github.com/amd/aocl-compression
https://github.com/amd/aocl-libmem
https://github.com/amd/aocl-utils
https://www.amd.com/en/developer/zen-software-studio/applications/spack/spack-aocl.html
https://www.amd.com/en/developer/zen-software-studio/applications/spack/spack-aocl.html

20 Installing AOCL Chapter 3

57404 Rev. 4.2 February 2024AOCL User Guide

3. Run ./install.sh to install the AOCL package (all libraries) to the default INSTALL_PATH: /home/
<username>/aocl/4.2.0/<compiler>, where the compiler value is aocc or gcc.

Use install.sh to print the usage of the script. A few supported options are:

4. To install the AOCL package in a custom location, use the installer with the option: -t
<CUSTOM_PATH>. For example, ./install.sh -t /home/<username>.

5. You can use the master installer to install the individual library out of the master package. The
library names used are blis, libflame, libm, scalapack, rng, secrng, fftw, compression, crypto, and
sparse. You can do one of the following:

• To install a specific library, use the option: -l <Library name>. For example, ./install.sh -l
blis.

• Install the individual library in a path of your choice. For example, ./install.sh -t /home/amd
-l libm.

6. AOCL libraries support the following two integer types:

• LP64 libraries and header files are installed respectively inthe following paths:

– /INSTALL_PATH/lib_LP64
– /INSTALL_PATH/include_LP64

• ILP64 libraries and header files are installed respectively inthe following paths:

– /INSTALL_PATH/lib_ILP64
– /INSTALL_PATH/include_ILP64

Note: AOCL-Compression supports only LP64; AOCL-FFTW supports LP64 and ILP64 in
single binary using a different set of APIs.

By default, LP64 libraries and header files are available in /INSTALL_PATH/lib and /
INSTALL_PATH/include respectively.

Suffix ./install.sh with -i <lp64/ilp64> to:

• Set the LP64 libraries as the default libraries, use the installer with the option: -i lp64. For
example, ./install.sh -t /home/amd -l blis -i lp64.

Table 3. install.sh Script Options
Option Description

-h Print the help.
-t Custom target directory to install libraries.
-l Library to be installed.
-i Select LP64/ILP64 libraries to be set as default.

Chapter 3 Installing AOCL 21

AOCL User Guide57404 Rev. 4.2 February 2024

This installs only AOCL-BLAS library in the path /home/amd and sets LP64 AOCL-BLAS
libraries as the default.

• Set ILP64 libraries as the default use the installer with the option: -i ilp64. For example, ./
install.sh -i ilp64.

This installs all AOCL libraries in the default path and sets ILP64 libraries as the default.

3.2.2 Using Library Package

Refer to the AOCL home page (https://www.amd.com/en/developer/aocl.html#downloads) to
download the individual library binaries from the respective pages.

For example, AOCL-BLAS and AOCL-LAPACK tar packages are available in the BLAS library
page (https://www.amd.com/en/developer/aocl/blas.html).

3.2.3 Using Debian and RPM Packages

The Debian and RPM packages of AOCL are available in the Download section (https://
www.amd.com/en/developer/aocl.html#downloads).

The package name used in the following installation procedure is based on the ‘gcc’ build. For the
AOCC build, you can replace ‘gcc’ with ‘aocc’.

Installing Debian Package

Complete the following steps to install the AOCL Debian package:

1. Download the AOCL 4.2 Debian package to the target machine.

2. Check the installation path before installing.

3. Install the package.

Note: You must have the sudo privileges to perform this action.

4. Display the installed package information along with the package version and a short description.

5. List the contents of the package.

6. AOCL libraries support the following two integer types:

• LP64 libraries and header files are installed in /INSTALL_PATH/lib_LP64 and /
INSTALL_PATH/include_LP64 respectively.

• ILP64 libraries and header files are installed in /INSTALL_PATH/lib_ILP64 and /
INSTALL_PATH/include_ILP64 respectively.

$ dpkg -c aocl-linux-gcc-4.2.0_1_amd64.deb

$ sudo dpkg -i aocl-linux-gcc-4.2.0_1_amd64.deb
Or
$ sudo apt install ./aocl-linux-gcc-4.2.0_1_amd64.deb

$ dpkg -s aocl-linux-gcc-4.2.0

$dpkg -L aocl-linux-gcc-4.2.0

https://www.amd.com/en/developer/aocl/blas.html
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads

22 Installing AOCL Chapter 3

57404 Rev. 4.2 February 2024AOCL User Guide

Note: AOCL-Compression supports only LP64; AOCL-FFTW supports LP64 and ILP64 in
single binary using a different set of APIs.

By default, LP64 libraries and header files are available in /INSTALL_PATH/lib and /
INSTALL_PATH/include respectively, where:

• INSTALL_PATH: /opt/AMD/aocl/aocl-linux-<compiler>-4.2.0/<compiler>

• Compiler: aocc or gcc

For example, INSTALL_PATH for aocc compiler is:

/opt/AMD/aocl/aocl-linux-aocc-4.2.0/aocc

7. To change the default library path to ILP64 / LP64, use the script as follows:

Uninstalling Debian package

Execute one of the following commands to uninstall the AOCL Debian package:

Installing RPM Package

Complete the following steps to install the AOCL RPM package:

1. Download the AOCL 4.2 RPM package to the target machine.

2. Install the package.

Note: You must have the sudo privileges to perform this action.

3. Display the installed package information along with the package version and a short description.

4. List the contents of the package.

5. AOCL libraries support the following two integer types:

• LP64 libraries and header files are installed in /INSTALL_PATH/lib_LP64 and /
INSTALL_PATH/include_LP64 respectively.

• ILP64 libraries and header files are installed in /INSTALL_PATH/lib_ILP64 and /
INSTALL_PATH/include_ILP64 respectively.

cd /opt/AMD/aocl/aocl-linux-<compiler>-4.2.0/aocc
sudo bash set_aocl_interface_symlink.sh <ilp64 / lp64>

$ sudo dpkg -r aocl-linux-gcc-4.2.0
or
$ sudo apt remove aocl-linux-gcc-4.2.0

$ sudo rpm -ivh aocl-linux-gcc-4.2.0-1.x86_64.rpm

$ rpm -qi aocl-linux-gcc-4.2.0.x86_64

$ rpm -ql aocl-linux-gcc-4.2.0

Chapter 3 Installing AOCL 23

AOCL User Guide57404 Rev. 4.2 February 2024

Note: AOCL-Compression supports only LP64; AOCL-FFTW supports LP64 and ILP64 in
single binary using a different set of APIs.

By default, LP64 libraries and header files are available in /INSTALL_PATH/lib and /
INSTALL_PATH/include respectively.

Where,

• INSTALL_PATH: /opt/AMD/aocl/aocl-linux-<compiler>-4.2.0/<compiler>

• Compiler: aocc or gcc

For example, INSTALL_PATH for aocc compiler is:

/opt/AMD/aocl/aocl-linux-aocc-4.2.0/aocc

6. To change the default library path to ILP64 / LP64, use the script as follows:

Uninstalling RPM package

Execute the following command to uninstall the AOCL RPM package:

3.2.4 Using Windows Packages

Installing a Windows Package

Complete the following steps to install the AOCL Windows package:

1. Download the AOCL Windows installer from the Download (https://www.amd.com/en/developer/
aocl.html#downloads) section.

2. Double-click the executable.

The installation wizard is displayed.

3. Click the Next button.

4. Accept the License Agreement and click the Next button.

5. Select the libraries to be installed and the destination folder.

6. Click the Install button to begin the installation.

7. Click the Finish button to complete the installation.

cd /opt/AMD/aocl/aocl-linux-<compiler>-4.2.0/aocc
sudo bash set_aocl_interface_symlink.sh <ilp64 / lp64>

$ rpm -e aocl-linux-gcc-4.2.0

https://www.amd.com/en/developer/aocl.html#downloads
https://www.amd.com/en/developer/aocl.html#downloads

24 Installing AOCL Chapter 3

57404 Rev. 4.2 February 2024AOCL User Guide

Uninstalling a Windows Package

Complete the following steps to uninstall the AOCL Windows binaries:

1. Double-click the AOCL Windows installer.

2. Click the Remove button.

Alternatively, you can also use the Add or remove programs option in Windows.

3. Click the Finish button to complete the uninstallation.

Chapter 4 AOCL-BLAS 25

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 4 AOCL-BLAS

AOCL-BLAS is a high-performant implementation of the Basic Linear Algebra Subprograms
(BLAS). The BLAS was designed to provide the essential kernels of matrix and vector computation
and are the most commonly used computationally intensive operations in dense numerical linear
algebra. Select kernels have been optimized for the AMD “Zen”-based processors, for example,
AMD EPYCTM, AMD RyzenTM, AMD RyzenTM ThreadripperTM processors by AMD and others.

AOCL_BLAS is developed as a forked version of BLIS (https://github.com/flame/blis), which is
developed by members of the Science of High-Performance Computing (SHPC) group in the Institute
for Computational Engineering and Sciences at The University of Texas at Austin and other
collaborators (including AMD). All known features and functionalities of BLIS are retained and
supported in AOCL-BLAS library, along with the standard BLAS and CBLAS interfaces. C++
template interfaces for the BLAS functionalities are also included.

4.1 Installation on Linux

You can install AOCL-BLAS from source or pre-built libraries.

4.1.1 Build AOCL-BLAS from Source

GitHub URL: https://github.com/amd/blis

You can use the following ways to build AOCL-BLAS using the configure/make method:

• auto — This configuration generates a binary optimized for the build machine’s AMD “Zen” core
architecture. This is useful when you build the library on the target system. Starting from the
AOCL-BLAS 2.1 release, the auto configuration option enables selecting the appropriate build
configuration based on the target CPU architecture. For example, for a build machine using the 1st
Gen AMD EPYCTM (code name "Naples") processor, the zen configuration will be auto-selected.
For a build machine using the 2nd Gen AMD EPYCTM processor (code name "Rome"), the zen2
configuration will be auto-selected. From AOCL-BLAS 3.0 forward, zen3 will be auto-selected
for the 3rd Gen AMD EPYCTM processor (code name "Milan"). From AOCL-BLAS 4.0 forward,
zen4 will be auto-selected for the 4th Gen AMD EPYCTM processors (code name "Genoa" or
"Bergamo").

• zen — This configuration generates a binary compatible with AMD “Zen” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• zen2 — This configuration generates binary compatible with AMD “Zen2” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• zen3 — This configuration generates binary compatible with AMD “Zen3” architecture and is
optimized for it. The architecture of the build machine is not relevant.

https://github.com/amd/blis
https://github.com/flame/blis

26 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

• zen4 — This configuration generates binary compatible with AMD “Zen4” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• amdzen — The library built using this configuration generates a binary compatible with and
optimized for AMD “Zen”, AMD “Zen2”, AMD “Zen3”,and AMD “Zen4” architectures. The
architecture of the build machine is not relevant. The architecture of the target machine is checked
during the runtime, based on which, the relevant optimizations are picked up automatically.

This feature is also called Dynamic Dispatch. For more information, refer “Dynamic Dispatch”
on page 37.

Depending on the target system and the build environment, you must enable/disable the appropriate
configure options. The following sub-sections provide instructions for compiling AOCL-BLAS. For
a complete list of the options and their descriptions, use the command ./configure --help.

4.1.1.1 Single-thread AOCL-BLAS

Complete the following steps to install a single-thread AOCL-BLAS:

1. Clone the AOCL-BLAS Git repository (https://github.com/amd/blis.git).

2. Configure the library as required:

3. To build the library, use the command:

4. To install the library on build machine, use the command:

4.1.1.2 Multi-thread AOCL-BLAS

Complete the following steps to install a multi-thread AOCL-BLAS:

1. Clone the AOCL-BLAS Git repository (https://github.com/amd/blis.git).

2. Configure the library as required:

GCC (Default)

$./configure --enable-cblas --prefix=<your-install-dir> auto

AOCC
$./configure --enable-cblas --prefix=<your-install-dir> --complex-return=intel CC=clang
CXX=clang++ auto

$ make

$ make install

GCC (Default)

$./configure --enable-cblas --enable-threading=[Mode] --prefix=<your-install-dir> auto

AOCC
$./configure --enable-cblas --enable-threading=[Mode] --prefix=<your-install-dir> --complex-
return=intel CC=clang CXX=clang++ auto

Mode indicates one of the options in {openmp, no}. "no" option implies disable multi-threading.

https://github.com/amd/blis.git
https://github.com/amd/blis.git

Chapter 4 AOCL-BLAS 27

AOCL User Guide57404 Rev. 4.2 February 2024

3. To build the library, use the command:

4. To install the library on build machine, use the command:

4.1.1.3 Verifying AOCL-BLAS Installation

The AOCL-BLAS source directory contains the test cases which demonstrate the usage of AOCL-
BLAS APIs.

To execute the tests, navigate to the AOCL-BLAS source directory and run the following command:

Execute the AOCL-BLAS C++ Template API tests as follows:

4.1.2 Using Pre-built Binaries

AOCL-BLAS library binaries for Linux are available at the following URL:

https://www.amd.com/en/developer/aocl/blas.html

Also, the AOCL-BLAS binary can be installed from the AOCL master installer tar file (https://
www.amd.com/en/developer/aocl.html).

The master installer includes the following:

• Single threaded and multi-threaded AOCL-BLAS binaries.

• Binaries built with amdzen config with LP64 and ILP64 integer support.

• Multi-threaded AOCL-BLAS binary (libblis-mt) built with OpenMP threading mode.

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master
Package” on page 19.

4.2 Application Development Using AOCL-BLAS

This section explains the different types of APIs provided by AOCL-BLAS. It describes how to call
them and link with the library.

4.2.1 API Compatibility Layers (Calling AOCL-BLAS)

AOCL-BLAS supports various API compatibility layers. The following sub-sections explain these
layers with source code examples.

The BLAS/CBLAS standard enables portability between various libraries.

AOCL-BLAS also includes BLIS APIs that provide more flexibility and control to help achieve the
best performance in some situations.

$ make

$ make install

$ make check

$ make checkcpp

https://www.amd.com/en/developer/aocl/blas.html
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

28 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

The following table lists all the supported layers and the configure options to control them, with the
default setting in bold:
Table 4. AOCL-BLAS API Compatibility Layers

API
Compatibility

Layer

Header
Files

Configuration
Option Usages

BLAS (Fortran) Not
applicable

--enable-blas
--disable-blas

Use this option when calling AOCL-BLAS from
Fortran applications.

API Name Format: DGEMM
BLAS (C) blis.h --enable-blas

--disable-blas
Use this option when calling AOCL-BLAS from C
application using BLAS type parameters.

API Name Format: dgemm_
CBLAS cblas.h --enable-cblas

(Implies --
enable-blas)
--disable-cblas

Use this option when calling AOCL-BLAS from C
application using CBLAS type parameters.

API Name Format: cblas_dgemm
BLIS - C
Non-standard

blis.h Default This is AOCL-BLAS library specific (non-standard)
interface, it provides most flexibility in calling
AOCL-BLAS for best performance. However, these
applications will not be portable to other BLAS/
CBLAS compatible libraries.

API Name Format: bli_gemm
API Name Format: blis_gemm_ex

BLIS – CPP
Non-standard

blis.hh Default This is AOCL-BLAS library specific (non-standard)
C++ interface. This interface follows same parameter
order as CBLAS. However, these applications will
not be portable to other BLAS/CBLAS compatible
libraries.

API Name Format: blis::gemm

Chapter 4 AOCL-BLAS 29

AOCL User Guide57404 Rev. 4.2 February 2024

4.2.2 API Compatibility - Advance Options

The API compatibility can be further extended to meet additional requirements for input sizes
(ILP64) and different ways in which complex numbers are handled. The following table explains
such options:

4.2.3 Linking Application with AOCL-BLAS

The AOCL-BLAS library can be linked statically or dynamically with the user application. It has a
separate binary for single-threaded and multi-threaded implementation.

The basic build command is as following:

The following table explains different options depending on a particular build configuration:

Table 5. AOCL-BLAS API Compatibility - Advance Options

Feature Configuration
Option Usages

ILP64
Support

--blas-int-size=SIZE This option can be used to specify the integer types used in external
BLAS/CBLAS interfaces.

Accepted Values:
ILP64 - SIZE = 64
LP64 - SIZE = 32 (Default)

Complex
Number
return
handling

--complex-
return=gnu|intel

The complex numbers can be returned through registers or the hidden
parameter.
Based on the way application is calling the API, the library must be
configured to match the return value receptions.
gnu = return complex values through registers
intel = return complex values through hidden parameter.
For more information and example, refer “Returning Complex
Numbers” on page 36.

gcc test_blis.c -I<path-to-AOCL-BLAS-header> <link-options> -o test_blis.x

Table 6. AOCL-BLAS Application - Link Options
Application Type Linking Type Link Options

Single-threaded Static <path-to-AOCL-BLAS-library>/libblis.a -lm -lpthread

Single-threaded Dynamic -L<path-to-AOCL-BLAS-library> -lblis -lm -lpthread

Multi-threaded Static <path-to-AOCL-BLAS-library>/libblis-mt.a -lm -fopenmp

Multi-threaded Dynamic -L<path-to-AOCL-BLAS-library> -lblis-mt -lm -fopenmp

30 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

4.2.3.1 Example - Dynamic Linking and Execution

AOCL-BLAS can be built as a shared library. By default, the library is built as both static and shared
libraries. Complete the following steps to build a shared lib version of AOCL-BLAS and link it with
the user application:

1. During configuration, enable the support for the shared lib using the following command:

2. Link the application with the generated shared library using the following command:

3. Ensure that the shared library is available in the library load path. Run the application using the
following command (for this demo we will use the BLAS_DGEMM_usage.c):

4.2.4 AOCL-BLAS Usage in Fortran

AOCL-BLAS can be used with the Fortran applications through the standard BLAS API.

./configure --disable-static --enable-shared zen

gcc CBLAS_DGEMM_usage.c -I path/to/include/aocl-blas/ -L path/to/libblis.so -lblis -lm -
lpthread -o CBLAS_DGEMM_usage.x

$ export LD_LIBRARY_PATH=”path/to/libblis.so”

$./BLAS_DGEMM_usage.x
a =
1.000000 2.000000
3.000000 4.000000
b =
5.000000 6.000000
7.000000 8.000000
c =
19.000000 22.000000
43.000000 50.000000

Chapter 4 AOCL-BLAS 31

AOCL User Guide57404 Rev. 4.2 February 2024

4.2.4.1 Using BLAS API in Fortran

For example, the following Fortran code does a double precision general matrix-matrix
multiplication. It calls the 'DGEMM' BLAS API function to accomplish this. A sample command to
compile and link it with the AOCL-BLAS library is shown in the following code:
! File: BLAS_DGEMM_usage.f
! Example code to demonstrate BLAS DGEMM usage

program dgemm_usage

implicit none

EXTERNAL DGEMM

DOUBLE PRECISION, ALLOCATABLE :: a(:,:)
DOUBLE PRECISION, ALLOCATABLE :: b(:,:)
DOUBLE PRECISION, ALLOCATABLE :: c(:,:)
INTEGER I, J, M, N, K, lda, ldb, ldc
DOUBLE PRECISION alpha, beta

M=2
N=M
K=M
lda=M
ldb=K
ldc=M
alpha=1.0
beta=0.0

ALLOCATE(a(lda,K), b(ldb,N), c(ldc,N))

a=RESHAPE((/ 1.0, 3.0, &
 2.0, 4.0 /), &
 (/lda,K/))
b=RESHAPE((/ 5.0, 7.0, &
 6.0, 8.0 /), &
 (/ldb,N/))

WRITE(*,*) ("a =")
DO I = LBOUND(a,1), UBOUND(a,1)
 WRITE(*,*) (a(I,J), J=LBOUND(a,2), UBOUND(a,2))
END DO
WRITE(*,*) ("b =")
DO I = LBOUND(b,1), UBOUND(b,1)
 WRITE(*,*) (b(I,J), J=LBOUND(b,2), UBOUND(b,2))
END DO

CALL DGEMM('N','N',M,N,K,alpha,a,lda,b,ldb,beta,c,ldc)

WRITE(*,*) ("c =")
DO I = LBOUND(c,1), UBOUND(c,1)
 WRITE(*,*) (c(I,J), J=LBOUND(c,2), UBOUND(c,2))
END DO

end program dgemm_usage

32 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

A sample compilation command with gfortran compiler for the code above:

4.2.5 AOCL-BLAS Usage in C

The AOCL-BLAS library supports standard BLAS, CBLAS, and BLIS APIs. They can be called
from C or C++ programs. BLAS and CBLAS examples are available at:

https://github.com/amd/blis/blob/master/docs/BLISObjectAPI.md

Details on the BLIS interfaces are available at:

https://github.com/amd/blis/blob/master/docs/BLISTypedAPI.md

4.2.5.1 Using BLAS API in C

Following is the C version of the Fortran code in section 4.2.4. It uses the standard BLAS API.

The following process takes place during the execution of the code:

1. The matrices are transposed to account for the row-major storage of C and the column-major
convention of BLAS (inherited from Fortran).

2. The function arguments are passed by address again to be in line with Fortran conventions.

3. There is a trailing underscore in the function name ('dgemm_') as BLAS APIs require Fortran
compilers to add a trailing underscore.

gfortran -ffree-form BLAS_DGEMM_usage.f path/to/libblis.a

https://github.com/amd/blis/blob/master/docs/BLISObjectAPI.md
https://github.com/amd/blis/blob/master/docs/BLISTypedAPI.md

Chapter 4 AOCL-BLAS 33

AOCL User Guide57404 Rev. 4.2 February 2024

4. "blis.h" is included as a header. A sample command to compile it and link with the AOCL-BLAS
library is also shown in the following code:
// File: BLAS_DGEMM_usage.c
// Example code to demonstrate BLAS DGEMM usage

#include<stdio.h>
#include "blis.h"

#define DIM 2

int main() {

double a[DIM * DIM] = { 1.0, 3.0, 2.0, 4.0 };
double b[DIM * DIM] = { 5.0, 7.0, 6.0, 8.0 };
double c[DIM * DIM];
int I, J, M, N, K, lda, ldb, ldc;
double alpha, beta;

M = DIM;
N = M;
K = M;
lda = M;
ldb = K;
ldc = M;
alpha = 1.0;
beta = 0.0;

printf("a = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < K; J ++) {
printf("%f\t", a[J * K + I]);
}
printf("\n");
}
printf("b = \n");
for (I = 0; I < K; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", b[J * N + I]);
}
printf("\n");
}

dgemm_("N","N",&M,&N,&K,&alpha,a,&lda,b,&ldb,&beta,c,&ldc);

printf("c = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", c[J * N + I]);
}
printf("\n");
}

return 0;
}

34 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

A sample compilation command with a gcc compiler for the code above:

4.2.5.2 Example Application - Using AOCL-BLAS with CBLAS API

This section contains an example application written in C code using the CBLAS API for DGEMM.

The following process takes place during the execution of the code:

1. The CBLAS Layout option is used to choose row-major layout which is consistent with C.

2. The function arguments are passed by value.

gcc BLAS_DGEMM_usage.c -Ipath/to/include/aocl-blas/ -lpthread -lm path/to/libblis.a

Chapter 4 AOCL-BLAS 35

AOCL User Guide57404 Rev. 4.2 February 2024

3. "cblas.h" is included as a header. A sample command to compile it and link with the AOCL-
BLAS library is also shown in the following code:
// File: CBLAS_DGEMM_usage.c
// Example code to demonstrate CBLAS DGEMM usage
#include<stdio.h>
#include "cblas.h"

#define DIM 2

int main() {
double a[DIM * DIM] = { 1.0, 2.0, 3.0, 4.0 };
double b[DIM * DIM] = { 5.0, 6.0, 7.0, 8.0 };
double c[DIM * DIM];
int I, J, M, N, K, lda, ldb, ldc;
double alpha, beta;

M = DIM;
N = M;
K = M;
lda = M;
ldb = K;
ldc = M;
alpha = 1.0;
beta = 0.0;

printf("a = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < K; J ++) {
printf("%f\t", a[I * K + J]);
}
printf("\n");
}
printf("b = \n");
for (I = 0; I < K; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", b[I * N + J]);
}
printf("\n");
}

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, alpha, a, lda, b, ldb, beta,
c, ldc);

printf("c = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", c[I * N + J]);
}
printf("\n");
}

return 0;
}

36 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

Note: To get the CBLAS API with AOCL-BLAS, you must provide the flag '--enable-cblas' to the
'configure' command while building the AOCL-BLAS library.

A sample compilation command with a gcc compiler for the code above is as follows:

4.2.5.3 Returning Complex Numbers

The GNU Fortran compiler (gfortran), AOCC (Flang), and Intel Fortran compiler (ifort) have
different requirements for returning complex numbers from the C functions as follows:

• Intel® (ifort) compiler returns complex numbers using hidden first argument. The caller must pass
the pointer to the return value as the first parameter.

• GNU (gfortran)/AOCC (Flang) compiler returns complex numbers using registers. Thus, the
complex numbers are returned as the return value of the function itself.

gfortran Example:

• Configure Option:

• API Call:

ifort example:

• Configure Option:

• API Call:

This feature is currently enabled only for cdotc, cdotu, zdotc, and zdotu APIs.

4.3 Migrating/Porting

The application written for MKL, OpenBLAS or any other library using standard BLAS or CBLAS
interfaces can be ported to AOCL-BLAS with minimal or no changes.

Complete the following steps to port from BLAS or CBLAS to AOCL-BLAS:

1. Update the source code to include the correct header files.

2. Update the build script or makefile to use correct compile or link option.

gcc CBLAS_DGEMM_usage.c -Ipath/to/include/aocl-blas/ -lpthread -lm path/to/libblis.a

-–complex-return=gnu

ret_value = cdotc_(&n, x, &incx, y, &incy);

-–complex-return=intel

cdotc_(&ret_value, &n, x, &incx, y, &incy);

Chapter 4 AOCL-BLAS 37

AOCL User Guide57404 Rev. 4.2 February 2024

The following table lists the compiler and linker options to use while porting to AOCL-BLAS:

4.4 Using AOCL-BLAS Library Features

4.4.1 Dynamic Dispatch

Starting from AOCL 3.1, AOCL-BLAS supports Dynamic Dispatch feature. It enables you to use the
same binary with different code paths optimized for different architectures.

4.4.1.1 Purpose

Before Dynamic Dispatch, the user had to build different binaries for each CPU architecture, that is,
AMD “Zen”, AMD “Zen2”, and AMD “Zen3” architectures. Furthermore, when building the
application, users had to ensure that they used the correct AMD “Zen”-based library as needed for the
platform. This becomes challenging when using AOCL-BLAS on a cluster having nodes of different
architectures.

Dynamic Dispatch addresses this issue by building a single binary compatible with all the AMD
“Zen” architectures. At the runtime, the Dynamic Dispatch feature enables optimizations specific to
the detected AMD “Zen” architecture.

4.4.1.2 On non-AMD “Zen” Architectures

The Dynamic Dispatch feature supports AMD “Zen”, AMD “Zen2”, AMD “Zen3”, and AMD
“Zen4” architectures in a single binary. However, it also includes the support for standard x86
architecture. The generic architecture uses a pure C implementation of the APIs and does not use any
architecture-specific features.

The specific compiler flags used for building the library with generic configuration are:

Note: As no architecture specific optimization and vectorized kernels are enabled, performance with
the generic architecture may be significantly lower than the architecture-specific
implementation.

Table 7. Porting to AOCL-BLAS

MKL OpenBLAS
AOCL-BLAS

Single-threaded Multi-threaded

Header File mkl.h cblas.h blis.h/cblas.h blis.h/cblas.h

Link Options

-lmkl_intel_lp64
-lmkl_core
-lmkl_blacs_intelmpi_ilp64
-lmkl_intel_thread

-lopenblas -lm -lblis -
lpthread

-lm -fopenmp
-lblis-mt

-O2 -funsafe-math-optimizations -ffp-contract=fast -Wall -Wno-unused-function -Wfatal-errors

38 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

4.4.1.3 Using Dynamic Dispatch

Building AOCL-BLAS

Dynamic Dispatch must be enabled while building the AOCL-BLAS library. This is done by building
the library for amdzen configuration as explained in “Build AOCL-BLAS from Source” on page 25.

Code Path Information

Dynamic Dispatch can print debugging information on the selected code path. This is enabled by
setting the environment variable BLIS_ARCH_DEBUG=1.

Architecture Selection at Runtime

For most use cases, Dynamic Dispatch will detect the underlying architecture and enable appropriate
code paths and optimizations.

However, AOCL-BLAS can be forced to use a specific architecture by setting either the environment
variable AOCL_ENABLE_INSTRUCTIONS or BLIS_ARCH_TYPE as follows:

Where, value = {avx512, avx2, zen4, zen3, zen2, zen, generic}

You must note the following:

• The code path names are not case sensitive but the environment variable names are.

• In AOCL-BLAS builds with configuration amdzen, avx512 is an alias for zen4 and avx2 is an
alias for zen3.

• AOCL_ENABLE_INSTRUCTIONS is intended to become the standard option for controlling
dynamic dispatch (where supported) across all the AOCL components.

• BLIS_ARCH_TYPE is specific to the BLIS code used in AOCL-BLAS.

• If both are specified, BLIS_ARCH_TYPE takes precedence and
AOCL_ENABLE_INSTRUCTIONS is ignored by AOCL-BLAS.

• The operation of AOCL_ENABLE_INSTRUCTIONS and BLIS_ARCH_TYPE are slightly
different:

– If AOCL_ENABLE_INSTRUCTIONS is in operation, AOCL-BLAS will check if the
instruction set required by the code path selected is supported by the processor. If not, it will
try to step down to another code path that is supported (from AVX512 > AVX2 > generic). In
other words, AOCL_ENABLE_INSTRUCTIONS should be used to restrict a processor to an
earlier instruction set, rather than try to force a later one on an older processor.

– By contrast, if BLIS_ARCH_TYPE is in operation, that code path will be used irrespective of
the compatibility with the processor.

AOCL_ENABLE_INSTRUCTIONS=value <AOCL-BLAS linked application>

or

BLIS_ARCH_TYPE=value <AOCL-BLAS linked application>

Chapter 4 AOCL-BLAS 39

AOCL User Guide57404 Rev. 4.2 February 2024

• Specifying a particular code path will completely override the automatic selection and thus, the
following scenarios are possible:

– A code path unavailable in the AOCL-BLAS build is being used. This will result in an error
message from the AOCL-BLAS library which will then abort. This applies to both
AOCL_ENABLE_INSTRUCTIONS and BLIS_ARCH_TYPE.

– A code path executes instructions unavailable on the processor being used, for example, trying
to run the AMD “Zen4” code path (which may use AVX512 instructions) on a AMD “Zen3”
or older system. If this happens, the program may stop with an "illegal instruction" error. This
applies when only when BLIS_ARCH_TYPE is used; executing the illegal instruction may be
routine and problem size dependent.

In some circumstances, AOCL-BLAS aborting on an error from BLIS_ARCH_TYPE being set
incorrectly may not be acceptable. If you are building AOCL-BLAS from source, there are two
options to mitigate this issue. One is to change the environment variable used from
BLIS_ARCH_TYPE to another name, for example:

This will cause program.exe (which uses AOCL-BLAS) to ignore the setting of BLIS_ARCH_TYPE
to zen3. Instead, it will take the value of MY_BLIS_ARCH_TYPE and use the zen2 code path.

Alternatively, the mechanism to allow manual selection of code path can be disabled:

In this case, Dynamic Dispatch will still occur among the included code paths. However, only by
automatic selection based on the code architecture.

Model Selection at Runtime

Recent AMD “Zen” generations have added more diverse choices of core designs and cache
characteristics. For example, Milan and Milan-X variants at AMD “Zen3”; Genoa, Bergamo, and
Genoa-X variants at AMD “Zen4”. Some AOCL-BLAS APIs may be tuned differently for these
different models. The appropriate model will be selected automatically by Dynamic Dispatch.
However, AOCL can be forced to use a specific model by setting the environment variable
BLIS_MODEL_TYPE as follows:

where value = {Milan, Milan-X, Genoa, Bergamo, Genoa-X}

Note the following:

• Different model values correspond to specific BLIS_ARCH_TYPE values (either set
automatically or explicitly by the user). Thus, Milan and Milan-X correspond to AMD “Zen3”;
Genoa, Bergamo, and Genoa-X correspond to AMD “Zen4”.

./configure --enable-cblas --prefix=<your-install-dir> -rename-blis-arch-
type=MY_BLIS_ARCH_TYPE amdzen
... make aocl-blas library
... compile program linking with aocl-blas
export BLIS_ARCH_TYPE=zen3
export MY_BLIS_ARCH_TYPE=zen2
./program.exe

./configure --enable-cblas --prefix=<your-install-dir> --disable-blis-arch-type amdzen

BLIS_MODEL_TYPE=value <AOCL-BLAS linked application>

40 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

• Incorrect values of BLIS_MODEL_TYPE do not cause an error, the default model type for the
selected architecture will be used.

• The number of APIs that have different optimizations by model type is currently very small.
Setting this environment variable may provide consistent results across different models if
consistency is a higher priority than best performance.

As with BLIS_ARCH_TYPE, when building BLAS from source, the name of the environment
variable used to set the model type can be changed, for example:

Disabling the mechanism to allow the manual section of BLAS architecture will also disable the
mechanism to allow the manual section of the model.

Setting either of these environment variables makes sense only when using a build of AOCL-BLAS
that includes multiple code paths.

Thus, AOCL_ENABLE_INSTRUCTIONS and BLIS_ARCH_TYPE are disabled by default in all
the builds containing only a single code path.

Dynamic Dispatch on non-AMD Architectures

Previous AOCL-BLAS releases identified the processor based on Family, Model, and other cpuid
features, and selected the appropriate code path based on the preprogrammed choices. With Dynamic
Dispatch, an unknown processor would fall through to the slow "generic" code path, although users
could override this by setting BLIS_ARCH_TYPE to a suitable value.

From AOCL-BLAS 4.2, additional cpuid tests based on AVX2 and AVX512 instruction support are
used to enable AMD “Zen3” or AMD “Zen4” code paths to be selected by default on suitable
processors (current or future AMD/Intel processors). The AMD “Zen3” or AMD “Zen4” code paths
are not (re-) optimized specifically for these different architectures, but should perform better than the
slow "generic" code path.

To be more specific:

• AVX2 support requires AVX2 and FMA3.

• AVX512 support requires AVX512 F, DQ, CD, BW, and VL.

4.4.2 AOCL-BLAS - Running the Test Suite

The AOCL-BLAS source directory contains a test suite to verify the functionality of AOCL-BLAS
and BLAS APIs. The test suite invokes the APIs with different inputs and verifies that the results are
within the expected tolerance limits.

For more information, refer https://github.com/amd/blis/blob/master/docs/Testsuite.md.

./configure --enable-cblas --prefix=<your-install-dir> -rename-blis-model-
type=MY_BLIS_MODEL_TYPE amdzen

./configure --enable-cblas --prefix=<your-install-dir> --disable-blis-arch-type amdzen

https://github.com/amd/blis/blob/master/docs/Testsuite.md

Chapter 4 AOCL-BLAS 41

AOCL User Guide57404 Rev. 4.2 February 2024

4.4.2.1 Multi-thread Test Suite Performance

Starting from AOCL-BLAS 3.1, if the number of threads are not specified, AOCL-BLAS uses the
maximum number of threads equal to the number of cores available on the system. A higher number
of threads result in better performance for medium to large size matrices found in practical use cases.

However, the higher number of threads results in poor performance for very small sizes used by the
test and check features. Hence, you must specify the number of threads while running the test/test
suite.

The recommended number of threads to run the test suite is 1 or 2.

Running Test Suite

Execute the following command to invoke the test suite:

The sample output from the execution of the command is as follows:

4.4.3 Testing/Benchmarking

The AOCL-BLAS source has an API specific test driver and this section explains how to use it for a
specific set of matrix sizes.

The source file for GEMM benchmark is test/test_gemm.c and the executable is test/
test_gemm_blis.x.

$ OMP_NUM_THREADS=2 make test

$:~/blis$ OMP_NUM_THREADS=2 make test
Compiling obj/zen3/testsuite/test_addm.o
Compiling obj/zen3/testsuite/test_addv.o
.
<<< More compilation output >>>
.
Compiling obj/zen3/testsuite/test_xpbym.o
Compiling obj/zen3/testsuite/test_xpbyv.o
Linking test_libblis-mt.x against 'lib/zen3/libblis-mt.a -lm -lpthread -fopenmp -lrt'
Running test_libblis-mt.x with output redirected to 'output.testsuite'
check-blistest.sh: All BLIS tests passed!
Compiling obj/zen3/blastest/cblat1.o
Compiling obj/zen3/blastest/abs.o
.
<<< More compilation output >>>
.
Compiling obj/zen3/blastest/wsfe.o
Compiling obj/zen3/blastest/wsle.o
Archiving obj/zen3/blastest/libf2c.a
Linking cblat1.x against 'libf2c.a lib/zen3/libblis-mt.a -lm -lpthread -fopenmp -lrt'
Running cblat1.x > 'out.cblat1'
.
<<< More compilation output >>>
.
Linking zblat3.x against 'libf2c.a lib/zen3/libblis-mt.a -lm -lpthread -fopenmp -lrt'
Running zblat3.x < './blastest/input/zblat3.in' (output to 'out.zblat3')
check-blastest.sh: All BLAS tests passed!

42 AOCL-BLAS Chapter 4

57404 Rev. 4.2 February 2024AOCL User Guide

Complete the following steps to execute the GEMM tests on specific input parameters:

Enabling File Inputs

By default, file input/output is disabled (instead it uses start, end, and step sizes). To enable the file
inputs, complete the following steps:

1. Open the file test/test_gemm.c.

2. Uncomment the macro at the start of the file:

#define FILE_IN_OUT

Building Test Driver

Execute the following commands to build the test driver:

Creating an Input File

The input file accepts matrix sizes and strides in the following format. Each dimension is separated by
a space and each entry is separated by a new line.

For example, m k nlda ldb ldc. Where:

• Matrix A is of size m x k

• Matrix B is of size k x n

• Matrix C is of size m x n

• lda is leading dimension of matrix A

• ldb is leading dimension of matrix B

• ldc is leading dimension of matrix C

This test application (test_gemm.c) assumes column-major storage of matrices.

The valid values of lda, ldb, and ldc for a GEMM operation C = beta*C + alpha* A * B, are as
follows:

• lda >= m

• ldb >= k

• ldc >= m

Running the Tests

Execute the following commands to run the tests:

$ cd tests
$ make -j blis

$ cd tests
$./test_gemm_blis.x <input file name> <output file name>

Chapter 4 AOCL-BLAS 43

AOCL User Guide57404 Rev. 4.2 February 2024

An execution sample (with the test driver) for GEMM is as follows:

4.4.4 AOCL-BLAS Utility APIs

This section explains some of the AOCL-BLAS APIs used to get the AOCL-BLAS library
configuration information and for configuring optimization tuning parameters.

$ cat inputs.txt
200 100 100 200 200 200
10 4 1 100 100 100
4000 4000 400 4000 4000 4000
$./test_gemm_blis.x inputs.txt outputs.txt
~~~~~~~~~~_BLAS  m       k       n       cs_a    cs_b    cs_c    gflops
data_gemm_blis   200      100     100     200     200     200    27.211
data_gemm_blis    10        4       1     100     100     100     0.027
data_gemm_blis  4000     4000     400    4000    4000    4000    45.279
$ cat outputs.txt
m        k       n       cs_a    cs_b    cs_c    gflops
   200    100     100     200     200     200    27.211 
    10      4       1     100     100     100     0.027 
  4000   4000     400    4000    4000    4000    45.279 

Table 8. AOCL-BLAS Utility APIs
API Usages

bli_info_get_version_str() Returns the version string in the form of “AOCL-BLAS 4.2.0 
Build yyyyddmm”.

bli_info_get_enable_openmp()
bli_info_get_enable_pthreads()
bli_info_get_enable_threading()

Returns true if OpenMP/pthreads are enabled and false otherwise.

bli_info_get_info_value() Returns the value of INFO from the previous call by this user 
thread to a BLAS2 or BLAS3 routine. For more information, refer 
to section 4.5.1. 

bli_thread_get_num_threads()1 Returns the default number of threads used for the subsequent 
BLAS calls.

bli_thread_set_num_threads( 
dim_t n_threads )1

Sets the number of threads for the subsequent BLAS calls.

bli_thread_set_ways(
dim_t jc, 
dim_t pc, 
dim_t ic, 
dim_t jr, 

dim_t ir )1

Sets the number of threads for different levels of parallelization as 
per GotoBLAS five loops architecture.

Notes:
1. Refer https://github.com/amd/blis/blob/master/docs/Multithreading.md#specifying-multithreading

https://github.com/amd/blis/blob/master/docs/Multithreading.md#specifying-multithreading


44 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

4.5 Debugging and Troubleshooting

4.5.1 Error Handling in AOCL-BLAS

The original Netlib BLAS defined an error handling function XERBLA, which is called within 
BLAS2 and BLAS3 routines if an incorrect input argument is detected. Only incorrect matrix, vector 
sizes, and options for specifying transpose matrix, upper or lower in a symmetric matrix, and so on 
can be detected. BLAS does not detect extreme values (such as Inf or NaNs) within the supplied 
matrices and vectors, it is the user's responsibility to check for these if required.

The functionality of Netlib's XERBLA is to print a message to standard output and stop execution of 
the process. Stopping is extremely unhelpful in many applications and usage scenarios. Thus, AOCL-
BLAS, in common with other similar libraries, has traditionally disabled the stop statement. In AOCL 
4.2, the functionality of AOCL-BLAS has been enhanced to give users more choice over both 
stopping the application on error and printing a message on error. The choices are specified by setting 
each of the environment variables BLIS_STOP_ON_ERROR and BLIS_PRINT_ON_ERROR to 0 
or 1 to respectively disable or enable the functionality. The default values for each are:

When the stop on error is disabled, no error code is passed back to the user application through the 
BLAS interface arguments, unlike the INFO argument used in LAPACK routines. Therefore, AOCL-
BLAS has also added an extra function to return the value of INFO from the previous call to a BLAS 
routine made by the same thread. The function can be called as follows:

Note: Errors from an incorrect setting of the BLIS_ARCH_TYPE environment variable (used to 
override the default choice in dynamic dispatch, refer to section 4.4.1.3 for details) are 
handled by a separate error mechanism and will not be affected by the environment variables 
BLIS_STOP_ON_ERROR and BLIS_PRINT_ON_ERROR.

Table 9. AOCL-BLAS - Error Handlers
Environment Variable Defaut Value

BLIS_STOP_ON_ERROR 0

BLIS_PRINT_ON_ERROR 1

In C/C++:

#include <blis.h>
...
gint_t info_value = bli_info_get_info_value();

In Fortran:

integer :: info_value
integer, external :: bli_info_get_info_value
...
info_value = bli_info_get_info_value()

If the returned value is not zero, the value indicates the argument in the preceding BLAS call 
that was incorrect.



Chapter 4 AOCL-BLAS 45

 

AOCL User Guide57404 Rev. 4.2 February 2024

4.5.2 Debugging Build Using GDB

The AOCL-BLAS library can be debugged on Linux using GDB. To enable the debugging support, 
build the library with the --enable-debug flag. Use following commands to configure and build the 
debug version of AOCL-BLAS:

Use the following commands to link the application with the binary and build application with debug 
support:

$ cd blis_src 
$ ./configure --enable-cblas --enable-debug auto
$ make -j

$ cd blis_src 
$ gcc -g -O0 -lpthread -lm -I<path-to-AOCL-BLAS-header> <path-to-AOCL-BLAS-library>/libblis.a 
test_gemm.c -o test_gemm_blis.x



46 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

You can debug the application using gdb. A sample output of the gdb session is as follows:

4.5.3 Viewing Logs

The AOCL-BLAS library provides Debug and Trace features:

• Trace Log identifies the code path taken in terms of the function call chain. It prints the 
information on the functions invoked and their order. 

• Debug Log prints the other debugging information, such as values of input parameters, content, 
and data structures. 

The key features of this functionality are as follows:

• Can be enabled/disabled at compile time. 

$ gdb ./test_gemm_blis.x
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-12.el8
..
..
..
Reading symbols from ./test_gemm_blis.x...done.
(gdb) break bli_gemm_small
Breakpoint 1 at 0x677543: file kernels/zen/3/bli_gemm_small.c, line 110.
(gdb) run
Starting program: /home/dipal/work/blis_dtl/test/test_gemm_blis.x
Using host libthread_db library "/lib64/libthread_db.so.1".
BLIS Library version is : AOCL BLIS 3.1

Breakpoint 1, bli_gemm_small (alpha=0x7fffffffcf40, a=0x2471b30, b=0x7fffffffd1c0, 
beta=0x2465400 <BLIS_ZERO>,
    c=0x4fe66e <bli_obj_equals+300>, cntx=0x7fffffffb320, cntl=0x0) at kernels/zen/3/
bli_gemm_small.c:110
110     {
(gdb) bt
#0  bli_gemm_small (alpha=0x7fffffffcf40, a=0x2471b30, b=0x7fffffffd1c0, beta=0x2465400 
<BLIS_ZERO>,
    c=0x4fe66e <bli_obj_equals+300>, cntx=0x7fffffffb320, cntl=0x0) at kernels/zen/3/
bli_gemm_small.c:110
#1  0x00000000007caab6 in bli_gemm_front (alpha=0x7fffffffd1c0, a=0x7fffffffd120, 
b=0x7fffffffd080,
    beta=0x7fffffffcfe0, c=0x7fffffffcf40, cntx=0x2471b30, rntm=0x7fffffffce50, cntl=0x0)
    at frame/3/gemm/bli_gemm_front.c:83
#2  0x00000000005baf42 in bli_gemmnat (alpha=0x7fffffffd1c0, a=0x7fffffffd120, 
b=0x7fffffffd080,
    beta=0x7fffffffcfe0, c=0x7fffffffcf40, cntx=0x2471b30, rntm=0x7fffffffce50)
    at frame/ind/oapi/bli_l3_nat_oapi.c:83
#3  0x00000000005474a2 in dgemm_ (transa=0x7fffffffd363 "N\320\a", transb=0x7fffffffd362 
"NN\320\a",
    m=0x7fffffffd36c, n=0x7fffffffd364, k=0x7fffffffd368, alpha=0x24733c0, a=0x7ffff53e2040, 
lda=0x7fffffffd378,
    b=0x7ffff355d040, ldb=0x7fffffffd374, beta=0x2473340, c=0x7ffff16d8040, ldc=0x7fffffffd370)
    at frame/compat/bla_gemm.c:559
#4  0x0000000000413a1c in main (argc=1, argv=0x7fffffffd988) at test_gemm.c:321
(gdb)



Chapter 4 AOCL-BLAS 47

 

AOCL User Guide57404 Rev. 4.2 February 2024

• When these features are disabled at compile time, they do not require any runtime resources and 
that does not affect the performance.

• Compile time option is available to control the depth of trace/log levels. 

• All the traces are thread safe.

• Performance data, such as execution time and gflops achieved, are also printed for xGEMM APIs.

4.5.3.1 Function Call Tracing

The function call tracing is implemented using hard instrumentation of the AOCL-BLAS code. Here, 
the functions are grouped as per their position in the call stack. You can configure the level up to 
which the traces must be generated.

Complete the following steps to enable and view the traces:

1. Enable the trace support as follows:

a. Modify the source code to enable tracing.

b. Change the following macro from 0 to 1:

2. Configure the trace depth level.

a. Modify the source code to specify the trace depth level.

b. Change the following macro as required. Beginning with Level 5 should be a good 
compromise in terms of details and resource requirement. The higher the level, the deeper is 
the call stack. A lower level reduces the depth of the call stack used for a trace generation.

3. Build the library as explained in “Build AOCL-BLAS from Source” on page 25.

Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

#define AOCL_DTL_TRACE_ENABLE       0

Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

#define AOCL_DTL_TRACE_LEVEL  AOCL_DTL_LEVEL_TRACE_5



48 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

4. Run the application to generate the trace data.

The trace output file for each thread is generated in the current folder. 

The following figure shows a sample running the call tracing function using the test_gemm 
application:

Figure 1. Sample Run of Function Call Tracing

The trace data for each thread is saved in the file with appropriate naming conventions. The .txt 
extension is used to signify the readable file:

P<process id>_T<thread id>_aocldtl_trace.txt

5. View the trace data.

The output of the call trace is in a readable format, you can open the file in any of the text editors. 
The first column shows the level in call stack for the given function.

4.5.3.2 Debug Logging

The debug logging works very similar to the function call tracing and uses the same infrastructure. 
However, it can be enabled independent of the trace feature to avoid cluttering of the overall 
debugging information. This feature is primarily used to print the input values of the AOCL-BLAS 
APIs. Additionally, it can also be used to print any arbitrary debugging data (buffers, matrices, arrays, 
or text).

Complete the following steps to enable and view the debug logs:

1. Enable the debug log support as follows:

a. Modify the source code to enable debug logging.
Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

 



Chapter 4 AOCL-BLAS 49

 

AOCL User Guide57404 Rev. 4.2 February 2024

b. Change the following macro from 0 to 1:

2. Configure the trace depth level.

a. Modify the source code to specify the debug log depth level.

b. Change the following macro as required. Beginning with Level 5 should be a good 
compromise in terms of details and resource requirement. The higher the level (maximum is 
10), the deeper is the call stack. A lower level reduces the depth of the call stack used for a 
trace generation.

3. Build the library as explained in “Build AOCL-BLAS from Source” on page 25.

4. Run the application to generate the trace data.

The trace output files for each thread is generated in the current folder. 

The following figure shows a sample running of AOCL-BLAS with the debug logs enabled using 
the test_gemm application:

Figure 2. Sample Run with Debug Logs Enabled

The debug logs for each thread are saved in the file with appropriate naming conventions. The .txt 
extension is used to signify the readable file:

P<process id>_T<thread id>_aocldtl_log.txt

#define AOCL_DTL_LOG_ENABLE       0

Open file <aocl-blas folder>/aocl_dtl/aocldtlcf.h

#define AOCL_DTL_TRACE_LEVEL  AOCL_DTL_LEVEL_TRACE_5

 



50 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

5. View the debug logs.

The output of the debug logs is in a readable format, you can open the file in any of the text 
editors. The following figure shows the sample output for one of the threads of test_gemm 
application:

Figure 3. Debug Logs Showing Input Values of GEMM

4.5.3.3 Usages and Limitations

The debug and trace logs have the following usages and limitations:

• When tracing is enabled, there could be a significant drop in the performance.

• Only a function that has the trace feature in the code can be traced. To get the trace information 
for any other function, the source code must be updated to add the trace/log macros in them.

• The call trace and debug logging is a resource-dependent process and can generate a large size of 
data. Based on the hardware configuration (the disk space, number of cores and threads) required 
for the execution, logging may result in a sluggish or non-responsive system.

4.5.4 Checking AOCL-BLAS Operation Progress

The AOCL libraries may be used to perform lengthy computations (for example, matrix 
multiplications and solver involving large matrices). These operations/computations may go on for 
hours. 

AOCL Progress feature provides mechanism for the application to check the computation  progress. 
The AOCL libraries (AOCL-BLAS and AOCL-LAPACK) periodically updates the application with 
progress made through a callback function.

Usage

The application must define the callback function in a specific format and register it with the AOCL 
library.

Callback Definition

The callback function prototype must be as defined as given follows:

However, you can modify the function name as per your preference.

dim_t AOCL_progress(
const char* const api,
const dim_t lapi,
const dim_t progress,
const dim_t current_thread,
const dim_t total_threads
)

 



Chapter 4 AOCL-BLAS 51

 

AOCL User Guide57404 Rev. 4.2 February 2024

The following table explains different parameters passed to the callback function:

Callback Registration

The callback function must be registered with the library for reporting the progress. Each library has 
its own callback registration function. The registration can be done by calling:

AOCL_BLIS_set_progress(AOCL_progress);  // for AOCL-BLAS

Example

The library only invokes the callback function at appropriate intervals, it is up to the user to consume 
this information appropriately. The following example shows how to use it for printing the progress to 
a standard output:

Register the callback with:

AOCL_BLIS_set_progress(AOCL_progress);  // for AOCL-BLAS

The result is displayed in following format (output truncated):

Table 10. Callback Parameters
Parameter Purpose

api Name of the API running currently
lapi Length of the API name string (*api)
progress Linear progress made in current thread presently
current_thread Current thread ID
total_threads Total number of threads used to performance the operation

dim_t AOCL_progress(
const char* const api,
const dim_t lapi,
const dim_t progress,
const dim_t current_thread,
const dim_t total_threads
)
{
  printf("\n%s, total thread = %lld, processed %lld element by thread %lld.",
         api, total_threads, progress, current_thread); 
     return 0;
}

BLIS_NUM_THREADS=5 ./test_gemm_blis.x
dgemm, total thread = 5, processed 11796480 element by thread 4.
dgemm, total thread = 5, processed 17694720 element by thread 0.
dgemm, total thread = 5, processed 5898240 element by thread 2.
dgemm, total thread = 5, processed 20643840 element by thread 0.
dgemm, total thread = 5, processed 14745600 element by thread 3.
dgemm, total thread = 5, processed 14745600 element by thread 4.



52 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

Limitations

• The feature only shows if the operation is progressing or not, it doesn't provide an estimate/
percentage compilation status.

• A separate callback must be registered for AOCL-BLAS, AOCL-LAPACK, and AOCL-
ScaLAPACK.

4.6 Build AOCL-BLAS from Source on Windows

GitHub URL: https://github.com/amd/blis 

AOCL-BLAS uses CMake along with Microsoft Visual Studio for building binaries from the sources 
on Windows. The following sections explain the GUI and command-line schemes of building the 
binaries and test suite.

Prerequisites

• Windows 10/11 or Windows Server 2019/2022

• LLVM  15/16 for AMD “Zen3” and AMD “Zen4” support (or LLVM 11 for AMD “Zen2” 
support)

• LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this 
plugin enables linking Visual Studio with the installed LLVM toolchain)

• CMake 3.15 through 3.23.3

• Microsoft Visual Studio 2019 (build 16.8.7) and 2022 (build 17.3.2 through 17.7.5)

• Microsoft Visual Studio tools (as shown in Figure 4):

– Python development
– Desktop development with C++: C++ Clang-Cl for v142 build tool (x64/x86)

Figure 4. Microsoft Visual Studio Prerequisites

https://github.com/amd/blis


Chapter 4 AOCL-BLAS 53

 

AOCL User Guide57404 Rev. 4.2 February 2024

4.6.1 Building AOCL-BLAS using GUI

4.6.1.1 Preparing Project with CMake GUI

Complete the following steps in the CMake GUI:

1. Set the source (folder containing AOCL-BLAS source code) and build (folder in which the 
project files will be generated, for example, out) folder paths as shown in the following figure: 

Figure 5. CMake Source and Build Folders

It is not recommended to use the folder named build since build is used by Linux build system.

2. Click on the Configure button to prepare the project options.

 



54 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

3. Set the generator to Visual Studio 17 2022 and the compiler to ClangCl as shown in the 
following figure:

Figure 6. Set Generator and Compiler
 



Chapter 4 AOCL-BLAS 55

 

AOCL User Guide57404 Rev. 4.2 February 2024

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 11. CMake Config Options
Feature CMake Parameter

AMD CPU architecture BLIS_CONFIG_FAMILY=zen/zen2/zen3/zen4/
amdzen

Shared library BUILD_SHARED_LIBS=ON
Static library BUILD_SHARED_LIBS=OFF
Debug/Release build type CMAKE_BUILD_TYPE=Debug/Release

Enable single threading (disables 
AOCL dynamic dispatch)

ENABLE_THREADING=no(default)

Enable multi-threading (enables AOCL 
dynamic dispatch with OpenMP)

ENABLE_THREADING=openmp

AOCL Dynamic (automatically 
selected depending on the value of 
ENABLE_THREADING)

ENABLE_AOCL_DYNAMIC=ON/OFF

Enable BLAS/CBLAS support ENABLE_BLAS=ON
ENABLE_CBLAS=ON

Enable 32-bit integer size in BLIS and 
BLAS APIs

INT_SIZE=32 and BLAS_INT_SIZE=32

Enable 64-bit integer size in BLIS and 
BLAS APIs

INT_SIZE=64 and BLAS_INT_SIZE=64

Absolute path to the OpenMP library, 
including the library name

OpenMP_libomp_LIBRARY



56 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

For the detailed documentation of all the options, configure CMake with 
PRINT_CONFIGURE_HELP=ON.

 All variables and their default values BUILD_SHARED_LIBS=ON(default)/OFF
ENABLE_THREADING=no(default)/openmp
INT_SIZE=auto(default)/32/64
BLAS_INT_SIZE=32(default)/64
ENABLE_BLAS=ON/OFF(default)
ENABLE_CBLAS=ON/OFF(default)
ENABLE_MIXED_DT=ON(default)/OFF
ENABLE_SUP_HANDLING=ON(default)/OFF
ENABLE_AOCL_DYNAMIC=ON(default)/OFF
COMPLEX_RETURN=gnu(default)/intel
ENABLE_NO_UNDERSCORE_API=ON/
OFF(default)
ENABLE_UPPERCASE_API=ON/OFF(default)
ENABLE_SYSTEM=ON(default)/OFF
THREAD_PART_JRIR=slab(default)/rr
ENABLE_PBA_POOLS=ON(default)/OFF
ENABLE_SBA_POOLS= ON(default)/OFF
ENABLE_MEM_TRACING=ON/OFF(default)
ENABLE_MIXED_DT=ON(default)/OFF
ENABLE_MIXED_DT_EXTRA_MEM=ON(def
ault)/OFF
ENABLE_SUP_HANDLING=ON(default)/OFF
ENABLE_TRSM_PREINVERSION= 
ON(default)/OFF
FORCE_VERSION=no(default)/<user-defined>
DISABLE_BLIS_ARCH_TYPE=ON/
OFF(default)
RENAME_BLIS_ARCH_TYPE=BLIS_ARCH_
TYPE(default)/<user-defined> 
RENAME_BLIS_MODEL_TYPE=BLIS_MODE
L_TYPE(default)/<user-defined>

Table 11. CMake Config Options
Feature CMake Parameter



Chapter 4 AOCL-BLAS 57

 

AOCL User Guide57404 Rev. 4.2 February 2024

5. To generate the Microsoft Visual Studio project in the out folder, click on the Generate button as 
shown in the following figure:

Figure 7. CMake Configure and Generate Project Settings

4.6.1.2 Building the Project in Visual Studio GUI

Complete the following steps in the Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on 
page 53.

2. To generate AOCL-BLAS binaries, build the AOCL-LibBlis project or libs/libblis target. 

The library files will be generated in the out folder based on the project settings.

For example, blis/out/Release/AOCL-LibBlis-Win-MT.dll or AOCL-LibBlis-Win-MT.lib

3. To install the binaries (or to build and install them), build the INSTALL project under 
CMakePredefinedTargets.

 



58 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

4.6.2 Building AOCL-BLAS using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as well. 
The corresponding steps are described in the following sections.

4.6.2.1 Configuring the Project in Command Prompt

In the AOCL-BLAS project folder, create a folder out. Open the command prompt in this directory 
and run the following command to configure the project:

You can refer Table 11 and update the parameter options in the command according to the project 
requirements or run the following command for a detailed description of the available options:

4.6.2.2 Building the Project in Command Prompt

Open command prompt in the blis\out directory. Invoke CMake with the build command with release 
or debug option. For example: 

For building the library using multiple threads, run the following command:

The library files would be generated in the Release or Debug folder based on the project settings.

4.6.3 Packaging AOCL -BLAS

During CMake configuration, AOCL-BLAS package will be created in the specified path using:

-DCMAKE_INSTALL_PREFIX=<blas_install_path>

The AOCL-BLAS package contains lib and include folders.

4.6.4 Building and Running the Test Suite

To build and run the test suite, execute the following command:

To build the test suite using multiple threads, execute the following command:

cmake -S .. -B . -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release
-DBLIS_CONFIG_FAMILY=amdzen -DBUILD_SHARED_LIBS=ON -DENABLE_THREADING=openmp
-DCOMPLEX_RETURN=intel -DOpenMP_libomp_LIBRARY="C:\Program
Files\LLVM\lib\libomp.lib" -TClangCL

cmake -S .. -B . -G "Visual Studio 17 2022" -DPRINT_CONFIGURE_HELP=ON

cmake --build . --config Release

cmake --build . --config Release -j

cmake -build . -config Release --target checkblis 

cmake --build . --config Release --target checkblis -j 



Chapter 4 AOCL-BLAS 59

 

AOCL User Guide57404 Rev. 4.2 February 2024

The same header can be used for both static and shared libraries on Windows. To access DLL's public 
data symbols and objects, you can define BLIS_EXPORT=__declspec(dllimport) to import those 
symbols explicitly. Importing is not required for:

• The AOCL-BLAS and CBLAS interface users

• Most of the cases where BLIS interface is used

4.7 LPGEMM in AOCL-BLAS

4.7.1 Add-on in AOCL-BLAS

An add-on in AOCL-BLAS provides additional APIs, operations, and/or implementations that may 
be useful to certain users. It can be a standalone extension of AOCL-BLAS that does not depend on 
any other add-on, although add-ons may utilize existing functionality or kernels within the core 
framework.

An add-on should never provide APIs that conflict with the interfaces belonging to the BLIS typed or 
object API. Thus, a properly constructed/functioning add-on would never interfere with or change the 
core BLIS functionality or the standard BLAS and CBLAS APIs.

Low Precision GEMM (LPGEMM) APIs are added as an add-on feature with the name aocl_gemm 
in AOCL-BLAS 4.1 which are used in Inference of Deep Neural Networks (DNN) applications. For 
example, Low Precision DNN uses the input as image pixels that are unsigned 8-bit (u8) and 
quantized pre-trained weights of signed 8-bits (s8) width. They produce signed 32-bit or downscaled/
quantized 8-bit output.

At the same time, these APIs are expected to utilize the architecture features such as AVX512VNNI   
instructions designed to take the inputs in u8, s8; produce an output in s32 and produce high 
throughput. Similarly, AVX512BF16 based instructions expects input in Brain Floating Point 
(bfloat16) type to provide higher throughput with less precision than 32-bit.

4.7.2 API Naming and Arguments

LPGEMM APIs starts with the prefix "aocl_gemm_" and follows the data type of input matrix A, B, 
accumulation type, and output matrix C. 

For example, aocl_gemm_u8s8s32os32( ) API expects input matrix ‘A’ is unsigned 8-bit (u8) and 
matrix ‘B’ signed 8-bit (s8), accumulation matrix ‘C’ is signed 32-bit (s32) and output matrix type is 
signed 32-bit (o s32).



60 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

4.7.3 Post-operations

The low precision GEMM operations are highly useful in AI applications, where the precision 
requirements can be traded with performance. In DNN applications element-wise operations, such as 
adding bias, clipping the output, ReLU, and GeLU are performed on the GEMM output which are 
referred here as post-operations (post-ops). 

In LPGEMM, these post-ops are fused with the GEMM operation to avoid repeated access to memory 
and thereby, improving the performance. In the LPGEMM APIs, an additional argument is added for 
the user to provide information about the post-ops needed to perform after the GEMM operation.



Chapter 4 AOCL-BLAS 61

 

AOCL User Guide57404 Rev. 4.2 February 2024

4.7.4 APIs and Post-ops in aocl_gemm

4.7.4.1 Architecture Features and APIs

4.7.4.2 Utility APIs in aocl_gemm Add-on

Table 12. Required Architecture Features and APIs
Architecture Features

Required
API

AVX512-VNNI aocl_gemm_u8s8s32os32
aocl_gemm_u8s8s32os8
aocl_gemm_s8s8s32os32
aocl_gemm_s8s8s32os8

AVX2 aocl_gemm_u8s8s16os16
aocl_gemm_u8s8s16os8
aocl_gemm_u8s8s16ou8
aocl_gemm_s8s8s16os16
aocl_gemm_s8s8s16os8

AVX512-BF16 aocl_gemm_bf16bf16f32of32
aocl_gemm_bf16bf16f32obf16

AVX512 aocl_gemm_f32f32f32of32

Table 13. GEMM API Supported Post-ops
Post-op Description

Add bias Adds bias to the GEMM output before storing into C, where the bias data is passed by the 
user using the post-op interface.

ReLU Performs ReLu operation on GEMM output.
f(x) = 0, when x<=0 and f(x)=x when x>0.

PReLU Performs Parametric ReLU operation on GEMM output based on scale given by the user.
f(x) = x, when x > 0 and f(x) = scale*x when x <= 0.

GeLU-Tanh Perform Tanh based GeLU on GEMM output.
GeLU_Tanh(x) = 0.5*x*(1 + tanh(0.797884*(x+( 0.044715*x^3 ) ) ) )

GeLU-ERF Perform Erf based GeLU on GEMM output.
GeLU_Erf(x) = 0.5* x * (1 + erf (x * 0.707107 ))

Scale Perform Scale operation on GEMM output based on the scale provided by the user.
Clip Perform clip operation on GEMM output based on minimum and maximum values given by 

the user.



62 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

LPGEMM APIs supports reordering the entire input matrix before calling GEMM and on the go 
packing, where GEMM API takes care of packing of matrix internally. The following utility APIs are 
used to reorder input weight matrix before calling GEMM:

4.7.5 Enabling aocl_gemm Add-on

Enabling aocl_gemm add-on while building AOCL-BLAS from Source on Linux:

• Building with GCC:

• Building with AOCC:

• The aocl_gemm add-on feature is not supported on Windows.

• Refer to blis.h file for all the prototypes of LPGEMM APIs.

• Some LPGEM APIs are supported only when the architecture features, such as avx512vnni and 
avx512bf16 are available in the machine as mentioned in Table 15. The APIs returns without 
doing anything when those features are not available.

• Transpose support for A and B is currently available only for bf16 APIs.

Table 14. Utility APIs in aocl_gemm Add-on
API Description

aocl_get_reorder_buff_size_XXX
XXXXX( )

Returns buffer size required to reorder an input matrix, where 
XXXXXXXX corresponds to each of the data type combinations 
specified in Table 15. For example, u8s8s32os32.

aocl_reorder_XXXXXXXX   ( ) Reorders the given input and writes into output buffer.
aocl_gelu_tanh_f32( ) Performs tanh operation on each element of the given input buffer and 

writes in the output buffer.
aocl_gelu_erf_f32( ) Performs tanh operation on each element of the given input buffer and 

writes in the output buffer.
aocl_softmax_f32( ) Performs tanh operation on each element of the given input buffer and 

writes in the output buffer.

$./configure -a aocl_gemm --enable-cblas --enable-threading=Openmp
--prefix=<your-install-dir> CC=gcc CXX=g++  [auto | amdzen]

$./configure -a aocl_gemm --enable-cblas --enable-threading=openmp
--prefix=<your-install-dir> CC=clang CXX=clang++  [auto | amdzen]



Chapter 4 AOCL-BLAS 63

 

AOCL User Guide57404 Rev. 4.2 February 2024

4.7.6 Sample Application 1

The following sample application is to use the LPGEMM APIs without post-ops:
/*
$gcc test_lpgemm.c -o ./test_lpgemm.x -I/aocl-blis_install_directory/include/amdzen/
-L/aocl-blis_install_directory/lib/amdzen/ -lblis-mt -lm

Note: Export blis lib path to LD_LIBRARY_PATH before running the executable
*/

// Add Update the LD_LIBRARY_PATH with blis library path and run ./test_lpgem.x
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "blis.h"
// Example program to demonstrate LPGEMM API usage.
// aocl_gemm_u8s8s32os32 (A:uint8_t, B:int8_t, C:int32_t) used here.
int main()
{
    dim_t m = 1024;
    dim_t n = 1024;
    dim_t k = 1024;
    // Leading dimensions for row major matrices.
    dim_t lda = k;
    dim_t ldb = n;
    dim_t ldc = n;



64 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

 err_t err = BLIS_SUCCESS;
    uint8_t *a = (uint8_t *)bli_malloc_user(sizeof(uint8_t) * m * k, &err);
    int8_t *b = (int8_t *)bli_malloc_user(sizeof(int8_t) * n * k, &err);
    int32_t *c = (int32_t *)bli_malloc_user(sizeof(int32_t) * m * n, &err);
    if (err != BLIS_SUCCESS)
    {
        printf("Memory allocation Failed\n");
        goto bailout;
    }

    // Functions to fill the matrices with data can be added here.
    int32_t alpha = 2;
    int32_t beta = 9;
    char storage = 'r'; // Row major. Use 'c' for column major.
    char transa = 'n';  // No transpose. Transpose not supported for all API's.
    char transb = 'n';
    char reordera = 'n';
    char reorderb = 'n';

    aocl_gemm_u8s8s32os32(
        storage, transa, transb,
        m, n, k,
        alpha,
        a, lda, reordera,
        b, ldb, reorderb,
        beta,
        c, ldc,
        NULL);

bailout:
    if (a != NULL)
    {
        bli_free_user(a);
    }
    if (b != NULL)
    {
        bli_free_user(b);
    }
    if (c != NULL)
    {
        bli_free_user(c);
    }
    return 0;
}



Chapter 4 AOCL-BLAS 65

 

AOCL User Guide57404 Rev. 4.2 February 2024

4.7.7 Sample Application 2

The following sample application is to use the LPGEMM Downscale APIs with post-ops:
/*
$gcc test_lpgemm_postops.c -o test_lpgemm_postops.x -I/aocl-blis_install_directory/include/
amdzen
 -L/aocl-blis_install_directory/lib/ -lBLIS-mt -lm
Note: Export blis lib path to LD_LIBRARY_PATH before running the executable
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "blis.h"
// Example program to demonstrate usage of LPGEMM downscale API with post-ops.
// aocl_gemm_u8s8s32os8 (A:uint8_t, B:int8_t, C:int8_t) used here.
// 3 post-ops - bias + gelu_tanh + clip used here.
int main()
{
    dim_t m = 1024;
    dim_t n = 1024;
    dim_t k = 1024;
    // Leading dimensions for row major matrices.
    dim_t lda = k;
    dim_t ldb = n;
    dim_t ldc = n;
    err_t err = BLIS_SUCCESS;
    uint8_t *a = (uint8_t *)bli_malloc_user(sizeof(uint8_t) * m * k, &err);
    int8_t *b = (int8_t *)bli_malloc_user(sizeof(int8_t) * n * k, &err);
    int8_t *c = (int8_t *)bli_malloc_user(sizeof(int8_t) * m * n, &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    // Functions to fill the matrices with data can be added here.
    int32_t alpha = 2;
    int32_t beta = 9;
    char storage = 'r'; // Row major. Use 'c' for column major.
    char transa = 'n';  // No transpose. Transpose not supported.
    char transb = 'n';
    char reordera = 'n';
    char reorderb = 'n';
    // Initialize post-ops struct.
    aocl_post_op *post_ops = NULL;
    post_ops = (aocl_post_op *)bli_malloc_user(sizeof(aocl_post_op), &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    // Downscale parameters need to be passed as a post-op, even
    // if a downscale specific api is invoked.
    dim_t max_post_ops_seq_length = 4; // bias+gelu_tanh+clip+downscale
    post_ops->seq_vector = (AOCL_POST_OP_TYPE *)
        bli_malloc_user(max_post_ops_seq_length * sizeof(AOCL_POST_OP_TYPE),
                        &err);
    if (err != BLIS_SUCCESS)
        goto bailout;



66 AOCL-BLAS Chapter 4

 

57404 Rev. 4.2 February 2024AOCL User Guide

    // Bias
    post_ops->seq_vector[0] = BIAS;
    // Need to output accumulation (int32_t) type for bias.
    post_ops->bias.bias = bli_malloc_user(n * sizeof(int32_t), &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    // Add function to fill bias array here.
    post_ops->seq_vector[1] = ELTWISE; // For gelu_tanh
    post_ops->seq_vector[2] = ELTWISE; // For clip
    // 2 element wise post-ops, need to allocate dynamically.
    post_ops->eltwise = bli_malloc_user(2 * sizeof(aocl_post_op_eltwise), &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    // Gelu tanh.
    (post_ops->eltwise + 0)->is_power_of_2 = FALSE;
    (post_ops->eltwise + 0)->scale_factor = NULL;
    (post_ops->eltwise + 0)->algo.alpha = NULL;
    (post_ops->eltwise + 0)->algo.beta = NULL;
    (post_ops->eltwise + 0)->algo.algo_type = GELU_TANH;

    // Clip.
    (post_ops->eltwise + 1)->is_power_of_2 = FALSE;
    (post_ops->eltwise + 1)->scale_factor = NULL;
    // Min bound is represented by alpha.
    (post_ops->eltwise + 1)->algo.alpha = bli_malloc_user(sizeof(int32_t), &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    // Max bound is represented by beta.
    (post_ops->eltwise + 1)->algo.beta = bli_malloc_user(sizeof(int32_t), &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    // Set some min/max bounds.
    *((int32_t *)(post_ops->eltwise + 1)->algo.alpha) = (int32_t)(-64);
    *((int32_t *)(post_ops->eltwise + 1)->algo.beta) = (int32_t)(3);
    (post_ops->eltwise + 1)->algo.algo_type = CLIP;
    // Downscale
    post_ops->seq_vector[3] = SCALE;
    post_ops->sum.is_power_of_2 = FALSE;
    post_ops->sum.buff = NULL;
    post_ops->sum.zero_point = bli_malloc_user(n * sizeof(float), &err);
    if (err != BLIS_SUCCESS)
        goto bailout;
    post_ops->sum.scale_factor = bli_malloc_user(n * sizeof(float), &err);
    // Add function to fill downscale array here.
    post_ops->seq_length = 4;
    if (err != BLIS_SUCCESS)
        goto bailout;



Chapter 4 AOCL-BLAS 67

 

AOCL User Guide57404 Rev. 4.2 February 2024

 aocl_gemm_u8s8s32os8(
        storage, transa, transb,
        m, n, k,
        alpha,
        a, lda, reordera,
        b, ldb, reorderb,
        beta,
        c, ldc,
        post_ops);

bailout:
    if (post_ops->sum.scale_factor != NULL)
    {
        bli_free_user(post_ops->sum.scale_factor);
    }
    if ((post_ops->eltwise + 1)->algo.alpha != NULL)
    {
        bli_free_user((post_ops->eltwise + 1)->algo.alpha);
    }
    if ((post_ops->eltwise + 1)->algo.beta != NULL)
    {
        bli_free_user((post_ops->eltwise + 1)->algo.beta);
    }
    if (post_ops->eltwise != NULL)
    {
        bli_free_user(post_ops->eltwise);
    }
    if (post_ops->bias.bias != NULL)
    {
        bli_free_user(post_ops->bias.bias);
    }
    if (post_ops->seq_vector != NULL)
    {
        bli_free_user(post_ops->seq_vector);
    }
    if (post_ops != NULL)
    {
        bli_free_user(post_ops);
    }
    if (a != NULL)
    {
        bli_free_user(a);
    }
    if (b != NULL)
    {
        bli_free_user(b);
    }
    if (c != NULL)
    {
        bli_free_user(c);
    }
    return 0;
}



68 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 5 AOCL-LAPACK

AOCL-LAPACK is a high performant implementation of Linear Algebra PACKage (LAPACK). 
LAPACK provides routines for solving systems of linear equations, least-squares problems, 
eigenvalue problems, singular value problems, and the associated matrix factorizations. It is 
extensible, easy to use, and available under an open-source license. Applications relying on standard 
Netlib LAPACK interfaces can utilize AOCL-LAPACK with virtually no changes to their source 
code. AOCL-LAPACK supports C, Fortran, and C++ template interfaces (for a subset of APIs) for 
the LAPACK APIs.

AOCL-LAPACK is based on libFLAME, which was originally developed by current and former 
members of the Science of High-Performance Computing (SHPC) group in the Institute for 
Computational Engineering and Sciences at The University of Texas at Austin under the project name 
libflame. The upstream libFLAME repository is available on GitHub (https://github.com/flame/
libflame). AMD is actively optimizing key routines in libFLAME as a part of the AOCL-LAPACK 
library, for AMD “Zen”-based architectures in the "amd" fork of libFLAME hosted on AMD GitHub.

From AOCL 4.1, AOCL-LAPACK is compatible with LAPACK 3.11.0 specification. In combination 
with the AOCL-BLAS library, which includes optimizations for the AMD “Zen”-based processors, 
AOCL-LAPACK enables running high performing LAPACK functionalities on AMD platforms.

5.1 Installing on Linux

AOCL-LAPACK can be installed from source or pre-built binaries.

5.1.1 Building AOCL-LAPACK from Source

GitHub URL: https://github.com/amd/libflame

Note:  The applications which use AOCL-LAPACK must link to AOCL-BLAS (or other BLAS 
libraries) for the BLAS functionalities.

Prerequisites

The following dependencies must be met for installing AOCL-LAPACK:

• Target CPU ISA supporting AVX2 and FMA

• Python versions 3.4 and 3.6 

• GNU Make 4.2

• GCC, g++, and Gfortran (versions 12.2 through 13.1)

• AOCL-Utils library

https://github.com/amd/libflame
https://shpc.oden.utexas.edu/
https://www.oden.utexas.edu/
https://www.oden.utexas.edu/
https://www.utexas.edu/
https://github.com/flame/libflame
https://github.com/flame/libflame


Chapter 5 AOCL-LAPACK 69

 

AOCL User Guide57404 Rev. 4.2 February 2024

Build Steps

AOCL-LAPACK supports compiling the library using CMake build system in addition to configure 
script method on Linux. Both the approaches to build the library are explained in this section.

Complete the following steps to build AOCL-LAPACK from source:

1. Clone the Git repository (https://github.com/amd/libflame.git). 

2. Compile AOCL-LAPACK source.

Note: AOCL-LAPACK depends on the AOCL Utilities library (AOCL-Utils) for certain functions 
including CPU architecture detection at runtime. The default build of AOCL-LAPACK 
requires the path to the AOCL-Utils header files to be set. The applications using AOCL-
LAPACK must link with the AOCL-Utils library explicitly. 

Method 1: Using CMake

1. Create a new build directory, for example, newbuild:

2. Run the following command to configure the project:

Set header file path of the AOCL-Utils library using the LIBAOCLUTILS_INCLUDE_PATH 
option:

– With GCC (default):

– With AOCC:

Shared library is turned on by default. To generate static library, provide the additional option:

-DBUILD_SHARED_LIBS=OFF

$ mkdir newbuild
$ cd newbuild

Using 32-bit Integer (LP64)

cmake ../ -DENABLE_AMD_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-install-dir> -
DLIBAOCLUTILS_INCLUDE_PATH=<path_to_libaoclutils_header_files>

Using 64-bit Integer (ILP64)

cmake ../ -DENABLE_ILP64=ON -DENABLE_AMD_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-install-
dir> -DLIBAOCLUTILS_INCLUDE_PATH=<path_to_libaoclutils_header_files>

export CC=clang
export CXX=clang++
export FC=flang
export FLIBS="-lflang"

Using 32-bit Integer (LP64)
cmake ../ -DENABLE_AMD_AOCC_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-install-dir> -
DLIBAOCLUTILS_INCLUDE_PATH=<path_to_libaoclutils_header_files>

Using 64-bit Integer (ILP64)
cmake ../ -DENABLE_ILP64=ON -DENABLE_AMD_AOCC_FLAGS=ON -DCMAKE_INSTALL_PREFIX=<your-
install-dir> -DLIBAOCLUTILS_INCLUDE_PATH=<path_to_libaoclutils_header_files>

https://github.com/amd/libflame.git


70 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

3. Compile the library using the following command:

This will generate libflame.a/libflame.so library in the lib directory

Method 2: Using Configure/Makefile

1. Set the header file path of AOCL-Utils in CFLAGS environment variable:

2. Run the configure script. An example below shows the recommended options to be used when 
compiling on AMD “Zen”-based processors.

– With GCC (default)

– With AOCC

3. Make and install using the following commands:

By default, without the configure option prefix, the library will be installed in $HOME/flame.

cmake --build . -j

or

make -j

$ export CFLAGS="-I<path to libaoclutils include directory>"

Using 32-bit Integer (LP64)

$ ./configure --enable-amd-flags --prefix=<your-install-dir>

Using 64-bit Integer (ILP64)

$ ./configure --enable-amd-flags –enable-ilp64 --prefix=<your-install-dir>

$ export CC=clang
$ export FC=flang
$ export FLIBS="-lflang"

Using 32-bit Integer (LP64)

$ ./configure --enable-amd-aocc-flags --prefix=<your-install-dir>

Using 64-bit Integer (ILP64)

$ ./configure --enable-amd-aocc-flags –enable-ilp64 --prefix=<your-install-dir>

$ make -j
$ make install



Chapter 5 AOCL-LAPACK 71

 

AOCL User Guide57404 Rev. 4.2 February 2024

Linking with AOCL-BLAS

AOCL-LAPACK can be linked with any Netlib BLAS compliant library when compiled with 
standard CMake options above. However, AOCL-LAPACK provides an option explicitly to link 
explicitly with AOCL-BLAS library at compile time. This option enables invoking lower level 
AOCL-BLAS APIs directly and that could result in better performance for certain APIs on AMD 
"Zen" CPUs. To force AOCL-LAPACK to use AOCL-BLAS library, provide the option 
ENABLE_AOCL_BLAS in the CMake configuration:

Provide path of the AOCL-BLAS library using one of the following methods:

• Set "AOCL_ROOT" environment variable to the root path where AOCL-BLAS 
library($AOCL_ROOT/lib) and header files($AOCL_ROOT/include) are located:

• Specify root path of the AOCL-BLAS library through the CMake option "AOCL_ROOT":

The path specified in AOCL_ROOT must have the directories "include" and "lib" containing the 
necessary header files and AOCL-BLAS binary respectively.

Auto-linking AOCL-Utils Library

The option to merge the AOCL-Utils library with the AOCL-LAPACK library is deprecated and not 
recommended in most scenarios. This is provided as backward support of previous release. 

Auto-linking of AOCL-Utils can be done using "ENABLE_EMBED_AOCLUTILS" option for both 
CMake and autoconfigure tools build mode. With this option, AOCL-LAPACK automatically links 
with libaoclutils library by downloading the source of libaoclutils from AMD GitHub, compiling it 
and linking/merging with AOCL-LAPACK library. A sample command is as follows:

With embed AOCL-Utils build, if an external path is provided for the libaoclutils binary and header 
files through separate flags, 'LIBAOCLUTILS_LIBRARY_PATH' and 

$ cmake -DENABLE_AMD_AOCC_FLAGS=ON -DENABLE_AOCL_BLAS=ON ...

$ export AOCL_ROOT=<path to AOCL-BLAS>

$ cmake -DENABLE_AMD_AOCC_FLAGS=ON -DENABLE_AOCL_BLAS=ON -DAOCL_ROOT=<path to AOCL-BLAS> ...

CMake Build:

$ cmake ../ -DENABLE_AMD_FLAGS=ON -DENABLE_EMBED_AOCLUTILS=ON

Autoconfigure:

$ configure --enable-amd-flags
$ make ENABLE_EMBED_AOCLUTILS=1 -j



72 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

'LIBAOCLUTILS_INCLUDE_PATH' respectively, the specified library is used instead of 
downloading from GitHub. A sample command is as follows:

Additional Notes on Configuration Options

1. By default, the configuration options --enable-amd-flags and --enable-amd-aocc-flags enable 
multi-threading using OpenMP for the selected APIs in AOCL-LAPACK. To disable multi-
threading, use the configure option --enable-multithreading=no.

Example:

Similarly, for CMake, use the flag ENABLE_MULTITHREADING to set multi-threading ON/
OFF.

CMake Build:

$ cmake ../ -DENABLE_AMD_FLAGS=ON -DENABLE_EMBED_AOCLUTILS=ON DLIBAOCLUTILS_LIBRARY_PATH=<path/
to/libaoclutils/library> -DLIBAOCLUTILS_INCLUDE_PATH=<path/to/libaoclutils/header/files>

Autoconfigure:

$ make ENABLE_EMBED_AOCLUTILS=1 LIBAOCLUTILS_LIBRARY_PATH=<path/to/libaoclutils/library> 
LIBAOCLUTILS_INCLUDE_PATH=<path/to/libaoclutils/header/files> -j

$ ./configure --enable-amd-flags --enable-multithreading=no

or

$ ./configure --enable-amd-aocc-flags --enable-multithreading=no



Chapter 5 AOCL-LAPACK 73

 

AOCL User Guide57404 Rev. 4.2 February 2024

2. To support binary portability across different architectures, the default compiler flags are set to -
mtune=native -mavx2 -mfma -O3.

This requires AVX2 and Fused Multiply Accumulate (FMA) support from the target CPU as 
mentioned in the Prerequisites section.

For enabling further optimizations, such as enabling AVX2, FMA, or AVX512 depending on the 
ISA supported on the target CPU, you can use the following steps: 

Using CMake:

Set the flag LF_ISA_CONFIG to the desired ISA support. The available options are Auto, AVX2 
(default), AVX512, and None. The command to use this is as follows:

Using Configure/Makefile:

Set the configure option --enable-optimizations to the desired optimization flags and that will 
override the default flags. For example, on a AMD “Zen4”-based processor, you can set 'znver4' 
flag for improved performance:

Ensure that the compiler you use supports 'znver4' flag.

5.1.2 Using Pre-built Libraries

You can find the AOCL-LAPACK library binaries for Linux at the following URL:

https://www.amd.com/en/developer/aocl.html#libflame 

Also, the AOCL-LAPACK binary can be installed from the AOCL master installer tar file available at 
the following URL:

https://www.amd.com/en/developer/aocl.html 

The tar file includes pre-built binaries of the other AMD libraries as explained in "Using Master 
Package" on page 19.

5.2 Usage on Linux

The AOCL-LAPACK source directory contains test cases which demonstrate the usage of AOCL-
LAPACK APIs.

From AOCL 3.2, a separate test suite is included for the LAPACK interfaces. Currently, it has test 
cases for critical set of AOCL-LAPACK APIs and new test cases are being added on an -ongoing 
basis. The test suite validates the APIs and displays performance numbers. The configuration files for 
input supports testing for a range of input sizes and different parameter values. For more information 
on this test suite, refer to the ReadMe.txt file in the directory test/main.

$ cmake .. -DLF_ISA_CONFIG=AVX512 -DENABLE_AMD_FLAGS=ON

$ ./configure --enable-amd-flags --enable-optimizations="-march=znver4 -O3"

or

$ ./configure --enable-amd-flags --enable-optimizations="-march=native -O3"

https://www.amd.com/en/developer/aocl.html#libflame
https://www.amd.com/en/developer/aocl.html#libflame
https://www.amd.com/en/developer/aocl.html


74 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

5.2.1 Use by Applications

To use AOCL-LAPACK in your application, link with AOCL-LAPACK, AOCL-BLAS,and AOCL-
Utils libraries while building the application.

AOCL-Utils library has libstdc++ library dependency. As AOCL-LAPACK is dependent on AOCL-
Utils, applications must link with libstdc++(-lstdc++) as well.

An example program demonstrating the usage of AOCL-LAPACK is located at libflame/test/
example. This directory contains example source file showing the usage of AOCL-LAPACK library 
functions. 

Use the included CMake script to compile and execute the program. You can test it on both Linux and 
Windows.

1. Move to installed examples directory:

2. Configure the build system:

Example:

3. Compile the sample applications:

4. Run the application

$ cd test/example

$ mkdir build
$ cd build
$ cmake .. -DEXT_BLAS_LIBRARY_DEPENDENCY_PATH=< path to blas library> -
DEXT_LAPACK_LIBRARY_PATH=<path to AOCL-LAPACK library> -DEXT_BLAS_LIBNAME=blas_lib_name -
DEXT_LAPACK_LIBNAME=lapack_lib_name -DEXT_FLAME_HEADER_PATH=<path to AOCL-LAPACK header file 
FLAME.h> -DAOCLUTILS_LIBRARY_PATH=<path to aoclutils library>

$ cmake .. -DEXT_BLAS_LIBRARY_DEPENDENCY_PATH=/home/user/blis -DEXT_LAPACK_LIBRARY_PATH=/home/
user/libflame -DEXT_BLAS_LIBNAME=libblis-mt.a -DEXT_LAPACK_LIBNAME=libflame.a -
DEXT_FLAME_HEADER_PATH=/home/user/aocl/include -DAOCLUTILS_LIBRARY_PATH=/home/usr/aoclutils-
install/lib

For Linux

$ cmake --build . or make

For Windows

$ cmake --build .

For Linux

$ ./test_dgetrf.x

For Windows

cd Debug
$ test_dgetrf.exe



Chapter 5 AOCL-LAPACK 75

 

AOCL User Guide57404 Rev. 4.2 February 2024

5.3 Building AOCL-LAPACK from Source on Windows

AOCL-LAPACK (https://github.com/amd/libflame) uses CMake along with Microsoft Visual Studio 
for building binaries from the source on Windows. The following sections explain the GUI and 
command-line schemes of building the binaries and test suite.

Prerequisites

Refer to the Prerequisites sub-section in "Build AOCL-BLAS from Source on Windows" on page 52. 
Also, AOCL-LAPACK has dependency on AOCL-Utils library.

5.3.1 Building AOCL-LAPACK Using GUI

5.3.1.1 Preparing Project with CMake GUI

Complete the following steps in the CMake GUI:

1. Set the source (folder containing AOCL-LAPACK source code) and build (folder in which the 
project files will be generated, for example, out) folder paths. It is not recommended to use the 
folder named build as a folder with that name exists at the top of AOCL-LAPACK source tree.

2. Click on the Configure button to prepare the project options.

3. Set the generator to Visual Studio 17 2022 and the compiler to ClangCl or LLVM.

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 15. AOCL-LAPACK Config Options
Feature CMake Parameter(s)

Shared library BUILD_SHARED_LIBS=ON
Static library BUILD_SHARED_LIBS=OFF
Flags enabled by default BUILD_SHARED_LIBS

ENABLE_WINDOWS_BUILD
ENABLE_AMD_FLAGS
ENABLE_BLAS_EXT_GEMMT
ENABLE_MULTITHREADING
ENABLE_WRAPPER
ENABLE_BLIS1_USE_OF_FLA_MALLOC
ENABLE_BUILTIN_LAPACK2FLAME
ENABLE_EXT_LAPACK_INTERFACE
ENABLE_INTERNAL_ERROR_CHECKING
ENABLE_NON_CRITICAL_CODE
ENABLE_PORTABLE_TIMER
INCLUDE_LAPACKE

https://github.com/amd/libflame


76 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

Enable AMD optimized path ENABLE_AMD_OPT=ON
Note: It is automatically set to ON when ENABLE_AMD_FLAGS is ON.

32-bit integer size ENABLE_ILP64=OFF
64-bit integer size ENABLE_ILP64=ON
BLAS library path CMAKE_EXT_BLAS_LIBRARY_DEPENDENCY_PATH=<pa

th to BLAS library>
BLAS library name EXT_BLAS_LIBNAME=BLAS Library Name
Enable invoking ‘void’ return based 
interface for BLAS functions DOTC 
and DOTU

ENABLE_F2C_DOTC=ON

Enable ‘void’ return type for AOCL-
LAPACK functions such as cladiv/
zladiv

ENABLE_VOID_RETURN_COMPLEX_FUNCTION=ON

Enables multithreading ENABLE_MULTITHREADING=ON
Note: You can set it to OFF to build a single-threaded AOCL-LAPACK 

library.

On Windows, setting 
ENABLE_AMD_FLAGS flag 
internally enables:
• ENABLE_BLAS_EXT_GEMMT
• ENABLE_AMD_OPT
• ENABLE_BUILTIN_LAPACK2FLA

ME
• ENABLE_EXT_LAPACK_INTERF

ACE
• ENABLE_F2C_DOTC
• ENABLE_VOID_RETURN_COMP

LEX_FUNCTION
• ENABLE_MULTITHREADING

ENABLE_AMD_FLAGS=ON

Set external libaoclutils library path LIBAOCLUTILS_LIBRARY_PATH=<path to libaoclutils 
library>

Set external libaoclutils header path LIBAOCLUTILS_INCLUDE_PATH=<path to libaoclutils 
header files path>

Enable main test suite BUILD_TEST=ON (ensure that BUILD_LEGACY_TEST is not 
set)

Enable legacy test suite BUILD_LEGACY_TEST=ON (ensure that BUILD_TEST is not 
set)

Set BLAS library header path BLAS_HEADER_PATH=<pa
th to BLAS header file>

Table 15. AOCL-LAPACK Config Options
Feature CMake Parameter(s)



Chapter 5 AOCL-LAPACK 77

 

AOCL User Guide57404 Rev. 4.2 February 2024

5. Provide the path to the BLAS and AOCL-Utils libraries. It will be used at the linking stage while 
building the test suite.

6. To generate the Microsoft Visual Studio project in the out folder, click on the Generate button as 
shown in the following figure:

Figure 8. AOCL-LAPACK CMake Configurations

Enable Netlib test suite BUILD_NETLIB_TEST=ON
Set the instruction set architecture 
(ISA) to compile with
Valid options: Auto, AVX2, AVX512, 
and None

-- LF_ISA_CONFIG=[options]

Enable embedding the AOCL-Utils 
library in AOCL-LAPACK

--  ENABLE_EMBED_AOCLUTILS=OFF

Enable tight-coupling with the AOCL-
BLAS library to use AOCL-BLAS 
internal routines

-- ENABLE_AOCL_BLAS=OFF
Note: Enables invoking lower level AOCL-BLAS APIs directly and that 

could result in better performance for certain APIs on AMD "Zen" 
CPUs.

Set the AOCL-BLAS installation path -- AOCL_ROOT=<path to AOCL-BLAS install directory having 
include and lib folders>

Table 15. AOCL-LAPACK Config Options
Feature CMake Parameter(s)



78 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

5.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in the Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in "Preparing Project with CMake GUI" on 
page 75.

2. To generate AOCL-LAPACK binaries, build the AOCL-LibFLAME-Win project. 

The library files will generate in the lib folder based on the project settings.

For example, libflame/lib/Release/AOCL-LibFLAME-Win-dll.dll or AOCL-LibFLAME-Win-
dll.lib

5.3.2 Building AOCL-LAPACK using Command-line Arguments

The project configuration and build procedures can also be triggered from the command prompt. The 
corresponding steps are described in the following sections.

5.3.2.1 Configuring the Project in Command Prompt

In the AOCL-LAPACK project folder, create a folder out. Open the command prompt in this 
directory and run the following command to configure the project:

Note: Add -DENABLE_MULTITHREADING=OFF to build a single-threaded AOCL-LAPACK 
library.

You can refer to Table 15 and update the parameter options according to the project requirements.

5.3.2.2 Building the Project in Command Prompt

Open a command prompt in the libflame\out directory. Invoke CMake with the build command with 
release or debug option. For example: 

The library files would be generated in the Release or Debug folder based on the project settings.

5.3.3 Building and Running Test Suite

The Microsoft Visual Studio project for the test suite is generated as a part the CMake generate step. 
You can build the test projects from the Microsoft Visual Studio GUI or the command prompt as 
described in the previous sections.

cmake -S .. -B . Example for building ILP64 mode binaries:
cmake -S .. -B . -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=ON -
DEXT_BLAS_LIBNAME="AOCL-LibBlis-Win-MT-dll.lib" -
DCMAKE_EXT_BLAS_LIBRARY_DEPENDENCY_PATH="<path to AOCL-BLAS library>" -
DLIBAOCLUTILS_LIBRARY_PATH=<path to AOCL-Utils library including library> -
DLIBAOCLUTILS_INCLUDE_PATH=<path to AOCL-Utils header files> -DENABLE_ILP64=ON -
DENABLE_AMD_FLAGS=ON -TLLVM -DBUILD_TEST=OFF -DBUILD_NETLIB_TEST=OFF -DENABLE_WRAPPER=ON -
DOpenMP_libomp_LIBRARY="C:\Program
Files\LLVM\lib\libomp.lib"

cmake --build . --config Release



Chapter 5 AOCL-LAPACK 79

 

AOCL User Guide57404 Rev. 4.2 February 2024

As mentioned in Table 15, enable "BUILD_TEST" to build a new main test suite of AOCL-
LAPACK. To build a legacy test suite, set "BUILD_LEGACY_TEST". 

Note: On Windows, both main test suite and legacy test suites must not be enabled together in the 
same build due to certain incompatible flag settings between the 2 projects. 

5.4 Checking AOCL-LAPACK Operation Progress

AOCL libraries perform tasks that can be computationally expensive. The AOCL Progress feature 
provides a mechanism, for a selected set of APIs, for the calling application to check how far a 
computation has progressed through a callback function.

Usage

The application must define the aocl_fla_progress or callback function in a specific format and 
register this callback function with the AOCL-LAPACK library.

The callback function prototype must be defined as follows:

However, you can change the function name as per your preference.

The following table explains AOCL-LAPACK Progress feature callback function parameters:

Callback Registration

The callback function must be registered with the library to report the progress. Each library has its 
own callback registration function. The registration is done by calling:

int aocl_fla_progress(const char* const api,
const integer lenapi,
const integer* const progress,
const integer* const current_thread,
const integer* const total_threads)

Table 16. AOCL-LAPACK Progress Feature Callback Function Parameters
Parameter Purpose

api Name of the API running currently
lenapi Length of the API name character buffer
progress Linear progress made in the current thread so far
current_thread Current thread ID
total_threads Total number of threads in the current threads team

aocl_fla_set_progress(test_progress);



80 AOCL-LAPACK Chapter 5

 

57404 Rev. 4.2 February 2024AOCL User Guide

Example:

Note: In the case of single-threaded AOCL-LAPACK (--enable-multithreading=none or 
ENABLE_MULTITHREADING=OFF), the values of "current_thread" and "total_threads" 
are set to 0 and 1 respectively. As a result, the callback function cannot be used to monitor the 
thread ID and thread count of the application.

Limitations

On Windows, aocl_fla_progress is not supported when using AOCL-LAPACK. Hence, the callback 
function must be registered through aocl_fla_set_progress.

int aocl_fla_progress(const char* const api,const integer lenapi,const  integer* const 
progress,const integer* const current_thread,const integer* const total_threads)
{
  printf( "In AOCL FLA Progress thread %lld", at API %s, progress %lld total threads= 
%lld\n",*current_thread, api, *progress,*total_threads );
  return 0;
}

or

int test_progress(const char* const api,const integer lenapi,const integer * const 
progress,const integer *const current_thread,const integer *const total_threads)
{
  printf( "In AOCL Progress thread %lld", at API %s, progress %lld total threads= 
%lld\n",*current_thread, api, *progress,*total_threads );
  return 0;
}

Register the callback with:
aocl_fla_set_progress(test_progress);



Chapter 6 AOCL-FFTW 81

 

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 6 AOCL-FFTW

AMD optimized version of Fast Fourier Transform Algorithm (FFTW) is a comprehensive collection 
of fast C routines for computing the Discrete Fourier Transform (DFT) and various special cases 
thereof that are optimized for AMD EPYCTM and other AMD “Zen”-based processors. It is an open-
source implementation of FFTW. It can compute transforms of real and complex valued arrays of 
arbitrary size and dimension.

6.1 Installing

AOCL-FFTW can be installed from the source or pre-built binaries.

6.1.1 Building AOCL-FFTW from Source on Linux

Complete the following steps to build AOCL-FFTW for AMD EPYCTM processor based on the 
architecture generation:

1. Download the latest stable release of AOCL-FFTW (https://github.com/amd/amd-fftw).

2. Depending on the target system and build environment, you must enable/disable the appropriate 
configure options. Set PATH and LD_LIBRARY_PATH to the MPI installation. In the case of 
building for AMD Optimized FFTW library with AOCC compiler, you must compile and setup 
OpenMPI with AOCC compiler.

Complete the following steps to compile it for EPYCTM processors and other AMD “Zen”-based 
processors:

https://github.com/amd/amd-fftw


82 AOCL-FFTW Chapter 6

 

57404 Rev. 4.2 February 2024AOCL User Guide

Note: For a complete list of options and their description, type ./configure --help.

– With GCC (default)

– With AOCC

AMD optimized fast planner is added as an extension to the original planner to improve the 
planning time of various planning modes in general and PATIENT mode in particular. 

The configure user option --enable-amd-fast-planner when given in addition to –enable-amd-opt 
enables this new fast planner.

Double Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-amd-opt --enable-amd-mpifft --enable-dynamic-
dispatcher --prefix=<your-install-dir>

Single Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-single --enable-amd-opt --enable-amd-mpifft --
enable-dynamic-dispatcher --prefix=<your-install-dir>

Long double FFTW libraries 

$ ./configure --enable-shared --enable-openmp --enable-mpi --enable-long-double --
enable-amd-opt --enable-amd-mpifft --enable-dynamic-dispatcher --prefix=<your-install-
dir>

Quad Precision FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-quad-precision --enable-amd-opt 
--enable-dynamic-dispatcher --prefix=<your-install-dir>

Double Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-amd-opt --enable-amd-mpifft --enable-dynamic-
dispatcher --prefix=<your-install-dir> CC=clang F77=flang FC=flang 

Single Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-single --enable-amd-opt --enable-amd-mpifft --
enable-dynamic-dispatcher --prefix=<your-install-dir> CC=clang F77=flang FC=flang

Long double FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-mpi --enable-long-double --
enable-amd-opt --enable-amd-mpifft --enable-dynamic-dispatcher --prefix=<your-install-
dir> CC=clang F77=flang FC=flang

Quad FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-quad-precision --enable-amd-opt 
--enable-dynamic-dispatcher --prefix=<your-install-dir> CC=clang F77=flang FC=flang



Chapter 6 AOCL-FFTW 83

 

AOCL User Guide57404 Rev. 4.2 February 2024

An optional configure option AMD_ARCH is supported, that can be set to the CPU architecture 
values, such as auto, znver1, znver2, znver3,or znver4 for AMD EPYCTM and other AMD “Zen”-
based processors.

Additional config and build options to enable specific optimizations are covered in the section 
“AOCL-FFTW Tuning Guidelines” on page 164.

A dynamic dispatcher feature has been added to build a single portable optimized library for 
execution on a wide range of x86 CPU architectures. Use the--enable-dynamic-dispatcher 
configure option to enable this feature on Linux-based systems. The configure option --enable-
amd-opt is the mandatory master optimization switch that must be set for enabling other optional 
configure options, such as:

– --enable-amd-mpifft 
– --enable-amd-mpi-vader-limit 
– --enable-amd-trans 
– --enable-amd-fast-planner 
– --enable-amd-top-n-planner 
– --enable-amd-app-opt 
– --enable-dynamic-dispatcher

3. Build the library:

4. Install the library in the preferred path:

5. Verify the installed library:

6.1.2 Building AOCL-FFTW from Source on Windows

AOCL-FFTW uses CMake along with Microsoft Visual Studio for building binaries from the sources 
on Windows. This section explains the GUI and command-line schemes for building the binaries and 
test suite.

Prerequisites

The following prerequisites must be met:

• Windows 10/11 and Windows Server 2019/2022

• A suitable MPI library installation along with the appropriate environment variables on the host 
machine

• LLVM 13/14 for AMD “Zen3” support 

• LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this 
plugin enables linking Visual Studio with the installed LLVM tool-chain)

$ make

$ make install

$ make check



84 AOCL-FFTW Chapter 6

 

57404 Rev. 4.2 February 2024AOCL User Guide

• CMake versions 3.0 through  3.23.3

• MPI compiler

• Microsoft Visual Studio 2019 build 16.8.7

• Microsoft Visual Studio tools

– Python development
– Desktop development with C++: C++ Clang-Cl for build tool (x64 or x86)

6.1.2.1 Using CMake GUI to Build

Complete the following steps in the CMake GUI:

1. Set the source (folder containing FFTW source code) and build (folder in which the project files 
will be generated, for example, out) folder paths. 

2. Click on the Configure button to prepare the project options.

3. Set the generator to Visual Studio 16 2019 or Visual Studio 17 2022 and the compiler to 
ClangCl or LLVM.

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 17. AOCL-FFTW Config Options
Feature CMake Parameters

Build type (Release or Debug mode) CMAKE_BUILD_TYPE=Release/Debug
AMD CPU architecture (AMD “Zen”/AMD “Zen2”/
AMD “Zen3”/AMD “Zen4”)

AMD_ARCH: STRING=znver1/znver2/znver3/
znver4

Shared library without multithreading BUILD_SHARED_LIBS=ON
ENABLE_OPENMP=OFF
ENABLE_THREADS=OFF

Shared library with multithreading BUILD_SHARED_LIBS=ON
ENABLE_OPENMP=ON

Static library without multithreading BUILD_SHARED_LIBS=OFF
ENABLE_OPENMP=OFF

Static library with multithreading BUILD_SHARED_LIBS=OFF
ENABLE_OPENMP=ON

Use Threads instead of OpenMP for multithreading ENABLE_THREADS=ON
WITH_COMBINED_THREADS=ON

Use both Threads and OpenMP for multithreading ENABLE_THREADS=ON
ENABLE_OPENMP=ON



Chapter 6 AOCL-FFTW 85

 

AOCL User Guide57404 Rev. 4.2 February 2024

Flags for enhanced instruction set support ENABLE_SSE=ON
ENABLE_SSE2=ON
ENABLE_AVX=ON
ENABLE_AVX2=ON
ENABLE_AVX512=ON

Flags for single and long double ENABLE_FLOAT=ON
ENABLE_LONG_DOUBLE=ON

Build tests directory and generate test applications BUILD_TESTS=ON
Enables MPI lib ENABLE_MPI=ON
Enables AMD optimizations ENABLE_AMD_OPT=ON
Enables AMD MPI FFT optimizations ENABLE_AMD_MPIFFT=ON

ENABLE_AMD_MPI_VADER_LIMIT: ON
Enables AMD optimized transpose ENABLE_AMD_TRANS=ON
Enables AMD optimizations for HPC/Scientific 
applications 

ENABLE_AMD_APP_OPT: ON

Table 17. AOCL-FFTW Config Options
Feature CMake Parameters



86 AOCL-FFTW Chapter 6

 

57404 Rev. 4.2 February 2024AOCL User Guide

Note: ENABLE_QUAD_PRECISION is currently not supported on Windows.

Select the available and recommended options as follows:

Figure 9. AOCL-FFTW CMake Config Options

5. Click the Generate button and then Open Project.

6.1.2.2 Using Command-line Arguments to Build

Complete the following steps to trigger the project configuration and build procedures from the 
command prompt:

1. In the AOCL-FFTW project folder, create a folder out. Open the command prompt in this 
directory and run the following command to configure the project:

2. Refer Table 17 and update the parameter options in the command according to the project 
requirements.

The library files would be generated in the Release or Debug folder based on the project settings.

3. To verify the installed library, copy the test scripts from \win\tests to \out\Release and run python 
fftw_check.py.

cmake .. -DBUILD_TESTS=ON  -D[other options1]  -D[other options2] -T ClangCl -G "Visual Studio 
16 2019" && cmake --build . --config Release

 



Chapter 6 AOCL-FFTW 87

 

AOCL User Guide57404 Rev. 4.2 February 2024

6.1.3 Using Pre-built Libraries

The AOCL-FFTW library binaries for Linux and Windows are available at the following URL:

https://www.amd.com/en/developer/aocl/fftw.html 

The AOCL-FFTW binary for Linux and Windows can also be installed from the AOCL master 
installer (tar packages for Linux and zip packages for Windows) available at the following URL: 

https://www.amd.com/en/developer/aocl.html 

The tar and zip files include pre-built binaries of other AMD libraries as explained in “Using Master 
Package” on page 19.

Note: The pre-built libraries are prepared on a specific platform having dependencies related to OS, 
Compiler (GCC, Clang), MPI, Visual studio, and GLIBC. Your platform must adhere to the 
same versions of these dependencies to use the pre-built libraries. 

6.2 Usage

Sample programs and executable binaries demonstrating the usage of AOCL-FFTW APIs and 
performance benchmarking are available in tests/ and mpi/ directories for Linux and out/Release 
directory for Windows.

6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW

To run single-threaded test, execute the following command:

Where,

• i/o means in-place or out-of-place. Out of place is the default.

• r/c means real or complex transform. Complex is the default.

• f/b means forward or backward transform. Forward is the default.

• <size> is an arbitrary multidimensional sequence of integers separated by the character 'x'.

Check the tuning guidelines for single-threaded test execution in “AOCL-FFTW Tuning Guidelines” 
on page 164.

To run multi-threaded test, execute the following command:

Where, N is number of threads.

Check the tuning guidelines for multi-threaded test execution in the section “AOCL-FFTW Tuning 
Guidelines” on page 164.

$ bench -opatient -s [i|o][r|c][f|b]<size>

$bench -opatient -onthreads=N -s [i|o][r|c][f|b]<size>

https://www.amd.com/en/developer/aocl/fftw.html
https://www.amd.com/en/developer/aocl.html


88 AOCL-FFTW Chapter 6

 

57404 Rev. 4.2 February 2024AOCL User Guide

6.2.2 Sample Programs for MPI FFTW

Where, N is the number of processes.

Check the tuning guidelines for MPI test execution in the section “AOCL-FFTW Tuning Guidelines” 
on page 164.

6.2.3 Additional Options

• -owisdom 

On startup, read wisdom from the file wis.dat in the current directory (if it exists).

On completion, write accumulated wisdom to wis.dat (overwriting if file exists).

This bypasses the planner next time onwards and directly executes the read plan from wisdom.

• --verify <problem> 

Verify that AOCL-FFTW is computing correctly. It does not output anything unless there is an 
error.

• -v<n> 

Set verbosity to <n> or 1 if <n> is omitted. -v2 will output the created plans.

Notes:
1. The names of windows FFTW test bench application has .exe extension (bench.exe and mpi-

bench.exe).

2. The folder /win/tests/ includes Windows benchmark scripts for single-threaded, multi-
threaded and MPI FFT execution for standard sizes. A README file is also provided with 
the instructions to run these benchmark scripts.

To display the AOCL version number of AOCL-FFTW library, application must call the following 
FFTW API fftw_aoclversion().

The test bench executables of AOCL-FFTW support the display of AOCL version using the --info-
all option.

$mpirun -np N mpi-bench -opatient -s [i|o][r|c][f|b]<size>



Chapter 7 AOCL-LibM 89

 

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 7 AOCL-LibM

AOCL-LibM is a high-performant implementation of LibM, the standard C library of elementary 
floating-point mathematical functions. It includes many of the functions from the C99 standard. 
Single and double precision versions of the functions are provided, all optimized for accuracy and 
performance, including a small number of complex functions. There are also a number of vector and 
fast scalar variants, in which a small amount of the accuracy has been traded for greater performance.

7.1 Library Contents

7.1.1 Scalar Functions

A list of the scalar functions present in the library is provided below.

Note: An “f”at the end of the function name indicates that it is single-precision; otherwise, it is 
double-precision. They can be called by a standard C99 function and naming convention and 
must be linked with AOCL-LibM before standard libm.

For example:

• Trigonometric

cosf, cos, sinf, sin, tanf, tan, sincosf, and sincos

• Inverse Trigonometric

acosf, acos, asinf, asin, atanf, atan, atan2f, and atan2

• Hyperbolic

coshf, cosh, sinhf, sinh, tanhf, and tanh 

• Inverse Hyperbolic

acoshf, acosh, asinhf, asinh, atanhf, and atanh 

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/AOCL-LibM_library
$ clang -Wall -std=c99 myprogram.c -o myprogram -L<Path to AOCL-LibM Library> -lalm -lm

Or

$ gcc -Wall -std=c99 myprogram.c -o myprogram -L<Path to AOCL-LibM Library> -lalm -lm



90 AOCL-LibM Chapter 7

 

57404 Rev. 4.2 February 2024AOCL User Guide

• Exponential and Logarithmic

– expf, exp, exp2f, exp2, exp10f, exp10, expm1f, and expm1
– logf, log, log10f, log10, log2f, log2, log1pf, and log1p
– logbf, logb, ilogbf, and ilogb
– modff, modf, frexpf, frexp, ldexpf, and ldexp
– scalbnf, scalbn, scalblnf, and scalbln

• Error Function

erff and erf

• Power

powf, pow, cbrtf, cbrt, sqrtf, sqrt, hypotf, and hypot

• Nearest Integer

– ceilf, ceil, floorf, floor, truncf, and trunc
– rintf, rint, roundf, round, nearbyintf, and nearbyint
– lrintf, lrint, llrintf, and llrint
– lroundf, lround, llroundf, and llround

• Remainder

fmodf, fmod, remainderf, and remainder

• Manipulation

– fabsf and fabs
– copysignf, copysign, nanf, nan, finitef, and finite
– nextafterf, nextafter, nexttowardf, and nexttoward

• Maximum, Minimum, and Positive Difference

fmaxf, fmax, fminf, fmin, fdimf, and fdim

Also, there are a small number of complex scalar functions: cpowf, cpow, clogf, clog, cexpf, and 
cexp.

7.1.2 Fast Scalar and Vector Variants

Faster but less accurate versions of some of the scalar functions are available in the library 
libalmfast.so. It contains fast versions of acosf, acos, asinf, asin, atanf, atan, cosf, cos, erff, erf, expf, 
exp, logf, log, powf, pow, sinf, sin, tanf, and tan. These functions can be accessed by directly linking 
to this library before libalm.so, can be selected by setting LD_PRELOAD=/path-to/libalmfast.so or 
enabled through the use of certain flags by the AOCC compiler. For more information, refer to the 
AOCC 4.2 user guide.



Chapter 7 AOCL-LibM 91

 

AOCL User Guide57404 Rev. 4.2 February 2024

AOCL-LibM includes vector variants for many of the core math functions as listed later in this 
section. A few caveats on both the fast scalar versions and the vector variants are as follows:

• Theseroutines trade off some of the accuracy for increased performance, but should nevertheless 
have a maximum ULP error no greater than 4.0. 

• While these routines take advantage of the AMD64 architecture for performance, some 
improvement is also made by sacrificing error handling and argument checking.

• Abnormal inputs may produce unpredictable results. It is therefore the responsibility of the caller 
of these routines to ensure that their arguments are valid. 

• These variants do not set the IEEE error codes and hence, the user code must not rely on them 
doing so. 

The vector variants can be enabled by using the AOCC compiler with the -ffast-math -
fveclib=AMDLIBM flags. You can also call these functions directly; if doing so, you must take care to 
avoid losing portability. As these functions accept arguments in __m128, __m128d, __m256, 
__m256d,__m512 and __m512d types, you must manually pack and later unpack to and from the 
appropriate data type.

The following naming convention is used for the vector functions:

where,

• v – vector

• r – real

• <type> - ‘s’ for single precision and ‘d’ for double precision

• <vec_size> - 4, 8, or 16 for single-precision; 2, 4, or 8 for double-precision; or 'a' if this is a vector 
array function

• <func> - function name, such as ‘exp’ and ‘expf’

For example, a single precision 4 element version of exp has the signature: 

The list of available vector functions is as follows:

Note: All these functions have an 'amd_' prefix, but this has been omitted in the following list for 
brevity. 

amd_vr<type><vec_size>_<func>

__m128 amd_vrs4_expf (__m128 x);



92 AOCL-LibM Chapter 7

 

57404 Rev. 4.2 February 2024AOCL User Guide

• Exponential

– vrs8_expf and vrs8_exp2f
– vrs4_expf, vrs4_exp2f, vrs4_exp10f, and vrs4_expm1f
– vrsa_expf, vrsa_exp2f, vrsa_exp10f, and vrsa_expm1f
– vrd2_exp, vrd2_exp2, vrd2_exp10, vrd2_expm1, vrd4_exp, and vrd4_exp2
– vrda_exp, vrda_exp2, vrda_exp10, and vrda_expm1
– vrs16_expf and vrs16_exp2f
– vrd8_exp and vrd8_exp2

• Logarithmic

– vrs8_logf, vrs8_log2f, and vrs8_log10f 
– vrs4_logf, vrs4_log2f, vrs4_log10f, and vrs4_log1pf
– vrd4_log and vrd4_log2
– vrsa_logf, vrsa_log2f, vrsa_log10f, and vrsa_log1pf
– vrd2_log, vrd2_log2, vrd2_log10, and vrd2_log1p
– vrda_log, vrda_log2, vrda_log10, vrda_log1p
– vrs16_logf, vrs16_log2f, and vrs16_log10f
– vrd8_log and vrd8_log2

• Trigonometric

– vrs4_cosf, vrs8_cosf, vrs4_sinf, and vrs8_sinf
– vrsa_cosf, vrsa_sinf, and vrsa_sincosf
– vrd4_sin, vrd4_cos, vrd4_tan, and vrd4_sincos
– vrd2_cos, vrd2_sin, vrd2_tan, and vrd2_sincos
– vrda_cos, vrda_sin, and vrda_sincos
– vrs16_cosf, vrs16_sinf, and vrs16_tanf
– vrd8_cos, vrd8_sin, vrd8_tan, and vrd8_sincos

• Inverse Trigonometric

– vrs4_acosf, vrs4_asinf, and vrs8_asinf
– vrs4_atanf, vrs8_atanf, and vrd2_atan
– vrs16_atanf, vrs16_asinf, and vrs16_acosf
– vrd8_atan and vrd8_asin

• Hyperbolic

– vrs4_coshf and vrs4_tanhf
– vrs8_coshf and vrs8_tanhf
– vrs16_tanhf



Chapter 7 AOCL-LibM 93

 

AOCL User Guide57404 Rev. 4.2 February 2024

•  Power

– vrs4_powf, vrd2_pow, vrd4_pow, vrs8_powf, and vrsa_powf
– vrs16_powf and vrd8_pow

• Error Function

– vrs4_erff, vrd2_erf, vrs8_erff, and vrd4_erf
– vrd16_erff and vrd8_erf

• Vector Array Arithmetic Functions

– vrsa_addf, vrsa_addfi, vrda_add, and vrda_addi
– vrsa_subf, vrsa_subfi, vrda_sub, and vrda_subi
– vrsa_mulf, vrsa_mulfi, vrda_mul, and vrda_muli
– vrsa_divf, vrsa_divfi, vrda_div, and vrda_divi
– vrsa_fmaxf, vrsa_fmaxfi, vrda_fmax, and vrda_fmaxi
– vrsa_fminf, vrsa_fminfi, vrda_fmin, and vrda_fmini

7.2 Installation

7.2.1 Installing the Pre-Built Binaries on Linux

The AOCL-LibM binary for Linux is available at the following URL:

https://www.amd.com/en/developer/aocl/libm.html 

The AOCL-LibM library can also be installed from the AOCC and GCC compiled AOCL master 
installer tar files available on AMD Developer Central (https://www.amd.com/en/developer/
aocl.html).

The tar and zip files include pre-built binaries of other AOCL libraries as explained in Using Master 
Package.

7.2.2 Building AOCL-LibM on Linux

Software requirements for compilation:

• GCC versions 9.2 through v13.1

It is recommend to use a GCC version of 9.2 or later as 9.2 is the version at which AMD “Zen2” 
compiler optimizations were introduced. 

AMD “Zen3” compiler optimizations were added at GCC 10.3 and AMD “Zen4” at 12.3.

• Clang 12.0.0 (AOCC 3.0) through Clang 17.0.0 (AOCC 4.2)

• Virtualenv with Python 3.6 or later

• SCons version 3.1.1 or later

• libstdc++ (required for AOCL-Utils)

https://www.amd.com/en/developer/aocl/libm.html
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html


94 AOCL-LibM Chapter 7

 

57404 Rev. 4.2 February 2024AOCL User Guide

The minimum and maximum permitted versions of GCC and Clang are set in the file scripts/
site_scons/alm/check.py. You can edit it to allow the use of other compiler versions. 

Refer to Chapter 3 to install the AOCL-Utils library. Then, complete the following steps to compile 
AOCL-LibM:

1. Download source from GitHub (https://github.com/amd/aocl-libm-ose). 

2. Navigate to the LibM folder and checkout the branch aocl-4.2:

3. Create a virtual environment:

4. Activate the virtual environment:

5. Install SCons: 

6. Compile AOCL-LibM: 

7. By default, the libraries (static and dynamic) will be compiled and generated in the following 
location: 

aocl-libm-ose/build/aocl-release/src/

If a debug mode build has been selected, the libraries (static and dynamic) will instead be 
compiled and generated in the following location:

aocl-libm-ose/build/aocl-debug/src

If the installation option is used, the libraries will also be copied to the directory <path to 
install>/lib.

7.2.3 Building AOCL-LibM on Windows

Minimum software requirements for compilation:

• Windows 10/11 or Windows Server 2019/2022

cd aocl-libm-ose
git checkout aocl-4.2

virtualenv –p python3 .venv3

source. venv3/bin/activate

pip install scons

Basic build command: scons --aocl_utils_install_path=<libaoclutils library path>

Additional Flags

Build in parallel: -j<number of parallel builds>
Installation: install --prefix=<path to install>
Compiler selection: ALM_CC=<gcc/clang executable path> ALM_CXX=<g++/clang++ executable path>
Verbosity: --verbose=1
Debug mode build: --debug_mode=libs

https://github.com/amd/aocl-libm-ose


Chapter 7 AOCL-LibM 95

 

AOCL User Guide57404 Rev. 4.2 February 2024

• LLVM compiler V14.0 for AMD “Zen3” or AMD “Zen4” support (or LLVM compiler V11.0 for 
AMD “Zen2” support)

• Microsoft Visual Studio 2019 build 16 or 2022 build 17

• Windows SDK Version 10.0.19041.0

• Virtualenv with Python 3.6 or later

• SCons 4.4.0

• libstdc++ (required for AOCL-Utils)

Refer to Chapter 3 to install the AOCL-Utils library. Then, complete the following steps to install 
AOCL-LibM:

1. Download source from GitHub (https://github.com/amd/aocl-libm-ose). 

2. Navigate to the folder: 

3. Install virtualenv:

4. Initialize the environment for correct architecture using Visual Studio vcvarsall.bat file using 
following command: 

5. Activate virtual environment and install SCons inside:

6. Build the project using the clang compiler:

For example: 

By default, the static (libalm-static.lib) and dynamic (libalm.dll and libalm.lib) libraries are compiled 
and generated in the following location:

aocl-libm-ose/build/aocl-release/src/

cd aocl-libm-ose

pip install virtualenv

"C:\Program Files (x86)\Microsoft Visual 
Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat" amd64

virtualenv -p python .venv3
.venv3\Scripts\activate
pip install scons

Basic build command: scons ALM_CC=<clang-cl executable path> ALM_CXX=<clang-cl executable path> 
--aocl_utils_install_path="<libaoclutils library path>"

Additional Flags

Build in parallel: -j<number of parallel builds>
Verbosity: --verbose=1
Debug mode build: --debug_mode=libs

scons -j32 ALM_CC="C:\PROGRA~1\LLVM\bin\clang-cl.exe" ALM_CXX="C:\PROGRA~1\LLVM\bin\clang-
cl.exe" --verbose=1

https://github.com/amd/aocl-libm-ose


96 AOCL-LibM Chapter 7

 

57404 Rev. 4.2 February 2024AOCL User Guide

If a debug mode build has been selected, the libraries will instead be compiled and generated in the 
following location:

aocl-libm-ose/build/aocl-debug/src

7.3 Using AOCL-LibM

To use AOCL-LibM in your application, complete the following steps: 

1. Include ‘math.h’ as a standard way to use the C Standard library math functions.

2. Link in the appropriate version of the library in your program.

The Linux libraries may have a dependency on the system math library. When linking AOCL-LibM, 
ensure that it precedes the system math library in the link order, that is, -lalm must appear before -lm. 
The explicit linking of the system math library is required when using the GCC or AOCC compilers. 
Such explicit linking is not required with the g++ compiler (for C++).

Example: myprogram.c

To use AOCL-LibM scalar functions, use the following commands:

You can access the vector calls by using the AOCC compiler with the flags -ffast-math -
fveclib=AMDLIBM.

You can also call the functions directly, which requires manual packing and unpacking. To do so, you 
must include the header file amdlibm_vec.h. The following program shows such an example. For 
simplicity, the size and other checks are omitted. 

#include <stdio.h>
#include <math.h>

int main() {
    float f = 3.14f;
    printf ("%f\n", expf(f));
    return 0;
}

$ export LD_LIBRARY_PATH=<Path to libalm.so>:$LD_LIBRARY_PATH
$ cc -Wall -std=c99 myprogram.c -o myprogram -L<Path to libalm.so> -lalm -lm (cc can be ‘gcc’ or 

‘clang’).
$  ./myprogram



Chapter 7 AOCL-LibM 97

 

AOCL User Guide57404 Rev. 4.2 February 2024

Example: myprogram.c

You can compile myprogram.c as follows:

For more details on usage, refer to the examples folder in the release package, which contains 
example source code and a makefile.

#define AMD_LIBM_VEC_EXTERNAL_H
#define AMD_LIBM_VEC_EXPERIMENTAL
#include “amdlibm_vec.h”
__m128 vrs4_expf (__m128 x);

__m128
test_expf_v4s(float *ip, float *out)
{    
    __m128 ip4 = _mm_set_ps(ip1[3], ip1[2], ip1[1], ip1[0]);
    __m128 op4 = vrs4_expf(ip4);
    _mm_store_ps(&out[0], op4);

    return op4;
}

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/AOCL-LibM
$ clang -Wall -std=c99 -ffastmath myprogram.c -o myprogram -L<path to libalm.so> -lalm -lm



98 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 8 AOCL-ScaLAPACK

AOCL-ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed 
memory machines. It can be used to solve linear systems, least squares problems, eigenvalue 
problems, and singular value problems. AOCL-ScaLAPACK is optimized for AMD “Zen”-based 
processors. It depends on the external libraries BLAS and LAPACK; thus, the use of AOCL-BLAS 
and AOCL-LAPACK is recommended.

Following table lists the CMake flags supported by AOCL-ScaLAPACK:

8.1 Installation

AOCL-ScaLAPACK can be installed from source or pre-built binaries.

Table 18. AOCL-ScaLAPACK CMake Parameter List
Build Feature CMake Command

Select debug or Release mode build CMAKE_BUILD_TYPE=Debug/Release

Shared library BUILD_SHARED_LIBS=ON
BUILD_STATIC_LIBS=OFF

Static library BUILD_STATIC_LIBS=ON
BUILD_SHARED_LIBS=OFF

Provide external BLAS/AOCL-BLAS 
library

BLAS_LIBRARIES
=<Path to BLAS/AOCL-BLAS lib>

Provide external LAPACK/AOCL-
LAPACK library

LAPACK_LIBRARIES
=<Path to lapack/AOCL-LAPACK lib>
Note: If linked with AOCL-LAPACK, include the AOCL-Utils library 

path too.

Integer bit length:
• ON => 64-bit integer length
• OFF => 32-bit integer length

ENABLE_ILP64

Flags disabled by default USE_OPTIMIZED_LAPACK_BLAS

Set OpenMP library path OpenMP_libomp_LIBRARY=<path to OpenMP library>

Enable Trace and Log feature ENABLE_DTL=OFF

Configurable flag for Windows builds CDEFS = NoChange (Fortran to C interface API's called 
with small case)
CDEFS = UpCase (Fortran to C interface API's called with 
upper case)
 CDEFS = Add_ (Fortran to C interface API's called with 
small case and underscore)
DCDEFS=NoChange



Chapter 8 AOCL-ScaLAPACK 99

 

AOCL User Guide57404 Rev. 4.2 February 2024

8.1.1 Building AOCL-ScaLAPACK from Source on Linux

GitHub URL: https://github.com/amd/aocl-scalapack

Prerequisites

Building AOCL-ScaLAPACK library requires linking to the following libraries installed using pre-
built binaries or built from source:

• AOCL-BLAS 

• AOCL-LAPACK 

• AOCL-Utils

• An MPI library (validated with OpenMPI library)

Complete the following steps to build AOCL-ScaLAPACK from source:

1. Clone the GitHub repository (https://github.com/amd/aocl-scalapack.git).

2. Execute the command:

3. CMake as follows:

a. Create a new directory. For example, build:

b. Export PATH and LD_LIBRARY_PATH to the lib and bin folders of the MPI installation 
respectively:

c. Run cmake command based on the compiler and the type of library generation required.
Note: AOCL-LAPACK is dependent on the AOCL-Utils library, which in turn depends on 

libstdc++. Hence, you must link with AOCL-Utils and libstdc++(-lstdc++) along with the 
AOCL-LAPACK library while specifying the path for LAPACK_LIBRARIES in the CMake 
flags.

$ cd aocl-scalapack

$ mkdir build
$ cd build

export PATH=<MPI installation folder>/bin:$PATH
export LD_LIBRARY_PATH=<MPI installation folder>/lib:$LD_LIBRARY_PATH

https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-scalapack.git


100 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.2 February 2024AOCL User Guide

Table 19. Compiler and Type of Library

Compiler Library 
Type Threading

Command

GCC Static Single-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis.a" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.a <path to AOCL-Utils library>/
libaoclutils.a
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis-mt.a" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.a <path to AOCL-Utils library>/
libaoclutils.a
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

Shared Single-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis.so" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.so <path to AOCL-Utils library>/
libaoclutils.so
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis-mt.so" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.so <path to AOCL-Utils library>/
libaoclutils.so
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 



Chapter 8 AOCL-ScaLAPACK 101

 

AOCL User Guide57404 Rev. 4.2 February 2024

On Linux, the inbuilt communications sub-module of AOCL-ScaLAPACK, called Basic Linear 
Algebra Communication Subprograms (BLACS), exposes the API symbols in lower case with 
underscore format.

You can build AOCL-ScaLAPACK with an external BLACS library on Linux using the following 
configure option:

Example: To build static library with external BLACS library:

AOCC Static Single-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis.a" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.a <path to AOCL-Utils library>/
libaoclutils.a
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis-mt.a" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.a <path to AOCL-Utils library>/
libaoclutils.a
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

Shared Single-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis.so" -
DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK 
library>/libflame.so <path to AOCL-Utils library>/
libaoclutils.so
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLAS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLAS library>/libblis-mt.so" -
DLAPACK_LIBRARIES="-lstdc++  <path to AOCL-LAPACK 
library>/libflame.so <path to AOCL-Utils library>/
libaoclutils.so
" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-DDENABLE_ILP64=ON] 

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-fopenmp <path to AOCL-BLAS library>/
libblis-mt.a" -DLAPACK_LIBRARIES="-lstdc++ <path to AOCL-LAPACK library>/libflame.a <path to 
AOCL-Utils library>/libaoclutils.a"   -DBLACS_LIBRARIES=<path to BLACS library>/libBLACS.a  -
DCMAKE_C_COMPILER=mpicc -DCMAKE_Fortran_COMPILER=mpif90 -DUSE_OPTIMIZED_LAPACK_BLAS=OFF 

Table 19. Compiler and Type of Library

Compiler Library 
Type Threading

Command



102 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.2 February 2024AOCL User Guide

You can build AOCL-ScaLAPACK with Intel MPI and ICC compiler tool chain using the following 
configure option.

Example: To build a static library with Intel MPI and ICC compiler:

d. Ensure CMake locates AOCL-LAPACK and AOCL-BLAS libraries. On completion, a 
message, “LAPACK routine dgesv is found: 1” similar to the following in CMake output is 
displayed:

e. Compile the code:

When the building process is complete, the AOCL-ScaLAPACK library is created in the lib directory. 
The test application binaries are generated in the <aocl-scalapack>/build/TESTING folder.

8.1.2 Using Pre-built Libraries

AOCL-ScaLAPACK library binaries for Linux are available at the following URL:

https://www.amd.com/en/developer/aocl/scalapack.html 

Also, AOCL-ScaLAPACK binary can be installed from the AOCL master installer tar file available at 
the following URL:

https://www.amd.com/en/developer/aocl.html 

The tar file includes pre-built binaries of other AMD Libraries as explained in “Using Master 
Package” on page 19.

8.2 Usage

You can find the applications demonstrating the usage of ScaLAPACK APIs in the TESTING 
directory of ScaLAPACK source package:

cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-fopenmp  <path to AOCL-BLAS library>/
libblis-mt.a" -DLAPACK_LIBRARIES="-lstdc++ -fopenmp <path to AOCL-LAPACK library>/libflame.a 
<path to AOCL-Utils library>/libaoclutils.a" -DCMAKE_C_COMPILER=mpiicc -
DCMAKE_Fortran_COMPILER=mpiifort -DUSE_OPTIMIZED_LAPACK_BLAS=OFF;

….
…
-- CHECKING BLAS AND LAPACK LIBRARIES
-- --> LAPACK supplied by user is <path>/libflame.a.
-- --> LAPACK routine dgesv is found: 1.
-- --> LAPACK supplied by user is WORKING, will use <path>/libflame.a.
-- BLAS library: <path>/libblis.a
-- LAPACK library: <path>/libflame.a
…
…

$ make -j

$ cd aocl-scalapack/TESTING

https://www.amd.com/en/developer/aocl/LAPACK.html
https://www.amd.com/en/developer/aocl.html


Chapter 8 AOCL-ScaLAPACK 103

 

AOCL User Guide57404 Rev. 4.2 February 2024

8.3 Building AOCL-ScaLAPACK from Source on Windows

GitHub URL: https://github.com/amd/aocl-scalapack

AOCL-ScaLAPACK uses CMake along with Microsoft Visual Studio for building the binaries from 
the sources on Windows. The following sections explain the GUI and command-line schemes of 
building the binaries and test suite.

Prerequisites

The following prerequisites must be met:

• AOCL-BLAS, AOCL-LAPACK, and AOCL-Utils librariess

• Windows10/11 or Windows Server 2019/2022

• LLVM 15/16

• LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this 
plug-in enables linking Microsoft Visual Studio with the installed LLVM tool-chain)

• CMake versions 3.0 through 3.23.3

• Intel MPI compiler

• Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.3.2)

• Microsoft Visual Studio tools

– Python development
– Desktop development with C++: C++ Clang-Cl for v142 build tool (x64 or x86)

8.3.1 Building AOCL-ScaLAPACK Using GUI

8.3.1.1 Preparing Project with CMake GUI

Complete the following steps to prepare the project with CMake GUI:

1. Set the source (folder containing aocl-scalapack source code) and build (folder in which the 
project files will be generated, for example, out) folder paths. It is not recommended to use the 
folder named build as a folder with that name exists at the top of AOCL-LAPACK source tree.

2. Click on the Configure button to prepare the project options.

3. Set the generator to Visual Studio 17 2022 and the compiler to ClangCl or LLVM.

https://github.com/amd/aocl-scalapack


104 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.2 February 2024AOCL User Guide

4. Select the available and recommended options as follows:

Figure 10. AOCL-ScaLAPACK CMake Options

5. Click the Generate button and then Open Project.

8.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on 
page 103.

2. To generate the AOCL-ScaLAPACK binaries, build the ScaLAPACK project. The library files 
would be generated in the folder out based on the project settings.

For example: 

aocl-scalapack/out/lib/Release/scalapack.lib

aocl-scalapack/out/Testing/Release/scalapack.dll 

8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as 
follows:

8.3.2.1 Configuring the Project in Command Prompt

Complete the following steps to configure the project using the command prompt:

1. In the ScaLAPACK project folder, create a folder out. 

 



Chapter 8 AOCL-ScaLAPACK 105

 

AOCL User Guide57404 Rev. 4.2 February 2024

2. Open the command prompt in that directory and run the following command:

8.3.2.2 Building the Project in Command Prompt

Complete the following steps to build the project using the command prompt:

1. Open command prompt in the aocl-scalapack/out directory. 

2. Invoke CMake with the build command and release or debug option. For example: 

The library files would be generated inside the folder Release or Debug based on the project settings.

On Windows, the inbuilt communications submodule of ScaLAPACK, called Basic Linear Algebra 
Communication Subprograms(BLACS), exposes the API symbols in upper case without underscore 
format.

8.3.3 Building and Running the Individual Tests

Microsoft Visual Studio projects for the individual tests are generated as part of the CMake generate 
step. Refer the previous sections to build the test projects from Microsoft Visual Studio GUI or 
command prompt.

The test application binaries are generated in the folder <aocl-scalapack>/out/Testing/Release or 
<aocl-scalapack>/out/Testing/Debug based on the project settings. Run the tests from the command 
prompt as follows:

8.4 Checking AOCL-ScaLAPACK Operation Progress

AOCL libraries perform tasks that can be computationally expensive. The AOCL Progress feature 
provides a mechanism, for a selected set of APIs, for the application to check how far a computation 
has progressed through a callback function.

Usage

The application must define a callback function in a specific format and register this callback function 
with the AOCL-ScaLAPACK library.

cmake -S .. -B . -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release 
-DBUILD_SHARED_LIBS=ON -DCDEFS=UpCase /NoChange/Add_
-DBUILD_STATIC_LIBS=OFF -DBLAS_LIBRARIES="<path to AOCL-BLAS library>/AOCL-
LibBlis-Win-MT-dll.lib" 
-DLAPACK_LIBRARIES="<path to AOCL-LAPACK library>/AOCL-LibFLAME-Win-MT-dll.lib;<path to AOCL-
Utils library>/libaoclutils.lib"

cmake --build . --config Release

Release> mpiexec xcbrd.exe



106 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.2 February 2024AOCL User Guide

The callback function prototype must be defined as follows:

The following table explains AOCL-ScaLAPACK Progress feature callback function parameters:

Callback Registration

The callback function must be registered with the library to report the progress:

Example:

Limitation

Currently, AOCL-ScaLAPACK progress feature is supported only on Linux.

8.5 Additional Features

The additional features supported at runtime through the environment variable setting are as follows:

int aocl_scalapack_progress(
const char* api,
const integer *lenapi,
const integer *progress,
const integer *mpi_rank,
const integer *total_mpi_processes
)

Table 20. AOCL-ScaLAPACK Progress Feature Callback Function Parameters
Parameter Purpose

api Name of the API running currently
lenapi Length of the API name character buffer
progress Linear progress made in the current thread so far
mpi_rank Current process rank
total_mpi_processes Total number of processes used to perform the operation

aocl_scalapack_set_progress(aocl_scalapack_progress);

int AOCL_progress(const char* const api, const int *lenapi, const int *progress, 
                        const int *mpi_rank, const int *total_mpi_processes)
{
    printf( "In AOCL Progress MPI Rank: %i API: %s progress: %i MPI processes: %i\n",
             *mpi_rank, api, *progress,*total_mpi_processes );
    return 0;
}

Table 21. Additional Features

Feature Description Environment Variable OS Support

Trace Enable function call trace. AOCL_SL_TRACE Linux, Windows

Log Enable logging of input argument values. AOCL_SL_LOG Linux, Windows



Chapter 8 AOCL-ScaLAPACK 107

 

AOCL User Guide57404 Rev. 4.2 February 2024

Note: To use the Trace and Log feature, ensure that AOCL-ScaLAPACK is built with the flag 
ENABLE_DTL=ON.

Example:

• export AOCL_SL_LOG=1 in Linux enables the log file at run time.

• set AOCL_SL_PROGRESS=1 in Windows enables the AOCL Progress feature at run time.

AOCL Progress Check how far a computation has 
progressed through a callback function for 
3 major factorization APIs (LU, QR, 
Cholesky ) for all data type variants

AOCL_SL_PROGRESS Linux, Windows
Table 21. Additional Features



108 AOCL-RNG Chapter 9

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 9 AOCL-RNG

The AMD Random Number Generator (AOCL-RNG) library is a pseudorandom number generator 
library. It provides a comprehensive set of statistical distribution functions and various uniform 
distribution generators (base generators) including Wichmann-Hill, Mersenne Twister, and SIMD-
based Fast Mersenne Twister (SFMT). The library contains six base generators and twenty-three 
distribution generators. In addition, you can supply a custom-built generator as the base generator for 
all the distribution generators.

For more information, refer to the RNG documentation <AOCL team to provide hyperlink>.

9.1 Installation

Note: AOCL-RNG can only be installed from pre-built binaries.

The AOCL-RNG binary is available at the following URL:

https://www.amd.com/en/developer/aocl/rng-library.html 

Also, AOCL-RNG binary can be installed from the AOCL master installer tar file available at the 
following URL:

https://www.amd.com/en/developer/aocl.html 

The tar file includes pre-built binaries of other AMD libraries as explained in "Using Master 
Package" on page 19. 

To install the AOCL-RNG binary for Windows, refer to "Using Windows Packages" on page 23. 
rng_amd.dll and rng_amd.lib are a part of the dynamic library and rng_amd-static.lib is a static 
library.

As the AOCL-RNG library has a dependency on the AOCL-LibM and AOCL-BLAS libraries, note 
the following:

• To install AOCL-LibM binary for linux and Windows, refer to "Installation" on page 93.

• To install AOCL-BLAS binary for linux and Windows, refer to "Using Pre-built Binaries" on 
page 27.

• Those libraries must be linked with the application. 

Set the runtime library search path (using the environment variable LD_LIBRARY_PATH) before 
running the application as follows:
$ export LD_LIBRARY_PATH=<path-to-aocl-libm-library-libamdlibm.so>:<path-to-aocl-blas-library-
libblis.so>:$LD_LIBRARY_PATH

https://www.amd.com/en/developer/aocl/rng-library.html
https://www.amd.com/en/developer/aocl.html


Chapter 9 AOCL-RNG 109

 

AOCL User Guide57404 Rev. 4.2 February 2024

9.2 Using AOCL-RNG Library on Linux

To use the AOCL-RNG library in your application, link the library while building the application.

The following is a sample Makefile for an application that uses the AOCL-RNG library:

For more information, refer the examples directory in the AOCL-RNG library install location. 

9.3 Using AOCL-RNG Library on Windows

Complete the following steps to use AOCL-RNG library on Windows:

1. Create a 64-bit console app project in Visual Studio 17 2022.

2. Use the following navigation to select Clang-cl compiler:

Project >Properties >Configuration Properties >General >Platform Toolset >LLVM(Clang-
cl)

3. Use example/* sources as a reference to find the RNG API call flow.

4. Include the AOCL-RNG header file (rng.h) and call required AOCL-RNG APIs in Windows 
application.

5. Copy the AOCL-RNG header file (rng.h) and AOCL-RNG dll library (rng_amd.dll and 
rng_amd.lib) to the same project folder.

6. Copy AOCL-LibM DLL library (libalm.dll and libalm.lib) to the same project folder.

7. Copy AOCL-BLAS single-threaded DLL library (AOCL-LibBlis-Win-dll.dll and AOCL-LibBlis-
Win-dll.lib) to the same project folder.

8. Use the following navigation to add WIN64 preprocessor definition:

Project >Properties >C/C++ >Preprocessor >Preprocessor Definitions

9. Compile and then run the application.

10. You may create Fortran based project in similar manner and compile it using ifort compiler.

11. You can also compile your application using AOCL-RNG static library (rng_amd-static.lib).

RNGDIR := <path-to-AOCL-RNG-library>
CC := gcc
CFLAGS := -I$(RNGDIR)/include
//CFLAGS For ILP64 case
//CFLAGS := -I$(RNGDIR)/include -DINTEGER64
CLINK := $(CC)
CLINKLIBS := -lamdlibm -lblis -lgfortran -lm -lrt -ldl
LIBRNG := $(RNGDIR)/lib/librng_amd.so
//Compile the program
$(CC) -c $(CFLAGS) test_rng.c -o test_rng.o
//Link the library
$(CLINK) test_rng.o $(LIBRNG) $(CLINKLIBS) -o test_rng.exe



110 AOCL-SecureRNG Chapter 10

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 10 AOCL-SecureRNG

AOCL-SecureRNG is a library that provides the APIs to access the cryptographically secure random 
numbers generated by the AMD hardware based RNG. These are high quality robust random numbers 
designed for the cryptographic applications. The library makes use of RDRAND and RDSEED x86 
instructions exposed by the AMD hardware. The applications can just link to the library and invoke a 
single or a stream of random numbers. The random numbers can be of 16-bit, 32-bit, 64-bit, or 
arbitrary size bytes.

For more information, refer to the SecureRNG documentation <AOCL team to provide hyperlink>.

10.1 Installation

The AOCL-SecureRNG library can be downloaded from following URL:

https://www.amd.com/en/developer/aocl/rng-library.html 

Also, AMD SecureRNG can be installed from the AOCL master installer tar file available at the 
following URL:

https://www.amd.com/en/developer/aocl.html 

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master 
Package” on page 19. 

To install the AOCL-SecureRNG binary for Windows, refer to “Using Windows Packages” on 
page 23. amdsecrng.dll and amdsecrng.lib are a part of the dynamic library and amdsec-static.lib is a 
static library.

10.2 Usage

The following source files are included in the AOCL-SecureRNG package:

• include/secrng.h — A header file that has declaration of all the library APIs.

• src_lib/secrng.c — Contains the implementation of the APIs.

• src_test/secrng_test.c — Test application to test all the library APIs.

• Makefile — To compile the library and test the application.

You can use the included makefile to compile the source files and generate dynamic and static 
libraries. Then, you can link it to your application and invoke the required APIs. 

https://www.amd.com/en/developer/aocl/rng-library.html
https://www.amd.com/en/developer/aocl.html


Chapter 10 AOCL-SecureRNG 111

 

AOCL User Guide57404 Rev. 4.2 February 2024

The following code snippet shows a sample usage of the library API:

In the example, get_rdrand64u is invoked to return a single 64-bit random value and get_rdrand64u_arr 
is used to return an array of 1000 64-bit random values.

10.3 Using AOCL-SecureRNG Library on Windows

Complete the following steps to use AOCL-SecureRNG library on Windows:

1. Create a 64-bit console app project in Visual Studio 17 2022.

2. Use the following navigation to select Clang-cl compiler:

Project >Properties >Configuration Properties >General >Platform Toolset >LLVM(Clang-
cl)

3. Use secrng_test.c as a reference to find the AOCL-SecureRNG API call flow.

//Check for RDRAND instruction support
int ret = is_RDRAND_supported();
int N = 1000;

//If RDRAND supported
if (ret == SECRNG_SUPPORTED)
{
   uint64_t rng64;

   //Get 64-bit random number
   ret = get_rdrand64u(&rng64, 0);

   if (ret == SECRNG_SUCCESS)
     printf("RDRAND rng 64-bit value %lu\n\n", rng64);
   else
     printf("Failure in retrieving random value using RDRAND!\n");

   //Get a range of 64-bit random values
   uint64_t* rng64_arr = (uint64_t*) malloc(sizeof(uint64_t) * N);

   ret = get_rdrand64u_arr(rng64_arr, N, 0);

   if (ret == SECRNG_SUCCESS)
   {
     printf("RDRAND for %u 64-bit random values succeeded!\n", N);
     printf("First 10 values in the range : \n");
     for (int i = 0; i < (N > 10? 10 : N); i++)
            printf("%lu\n", rng64_arr[i]);
   }
   else
     printf("Failure in retrieving array of random values using RDRAND!\n"); 
}
else
{
     printf("No support for RDRAND!\n");
}



112 AOCL-SecureRNG Chapter 10

 

57404 Rev. 4.2 February 2024AOCL User Guide

4. Include the AOCL-SecureRNG header file (secrng.h) and call required AOCL-SecureRNG APIs 
under window application.

5. Copy the AOCL-SecureRNG header file (secrng.h) and AOCL-SecureRNG DLL library 
(amdsecrng.dll and amdsecrng.lib) to same project folder.

6. Compile and then run the application.

7. You may create Fortran based project in similar manner and compile it using ifort compiler.

8. You can also compile your application using AOCL-SecureRNG static library (amdsecrng-
static.lib).



Chapter 11 AOCL-Sparse 113

 

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 11 AOCL-Sparse

AOCL-Sparse is a library containing basic linear algebra subroutines for sparse matrices and vectors 
(Sparse BLAS). It is designed to be used with C, C++, and compatible languages. 

The current functionality of AOCL-Sparse is organized in the following categories:

• Sparse Level 1 functions perform vector operations, such as dot product, vector additions on 
sparse vectors, gather, scatter, and other similar operations.

• Sparse Level 2 functions describe the operations between a matrix in sparse format and a vector 
in dense format, including matrix-vector product (SpMV), triangular solve (TRSV), and so on.

• Sparse Level 3 functions describe the operations between a matrix in sparse format and a matrix 
in dense/sparse format. The operations comprise of matrix additions (SpADD), matrix-matrix 
product (SpMM, Sp2M), and triangular solver with multiple right-hand sides (TRSM).

• Iterative sparse solvers based on Krylov subspace methods (CGM, GMRES) and pre-conditioners 
(such as SymGS and ILU0).

• Sparse format conversion functions for translating matrices in a variety of sparse storage formats.

• Auxiliary functions to allow basic operations, including create, copy, destroy, and modify matrix 
handles and descriptors.

Additional Highlights

• Supported data types: single, double, and the complex variants

• 0-based and 1-based indexing of sparse formats

Hint & Optimize framework to accelerate the supported functions by a prior matrix analysis based on 
the users’ hints of expected operations.Multi-thread Support

Note: AOCL-Sparse provides multi-thread support for specific APIs through OpenMP by default. 
You can set the total number of threads using the environment variables 
AOCLSPARSE_NUM_THREADS (recommended) or OMP_NUM_THREADS. If both 
environment variables are set, AOCL-Sparse library gives higher precedence to 
AOCLSPARSE_NUM_THREADS. If neither variable is set, the default number of threads is 
1. The function with multi-thread support includes SpMV variants and TRSM.Currently, only 
single-threaded builds are supported on Windows; multi-threaded support will be added in 
future release.

For more information on the AOCL-Sparse APIs, refer AOCL-Sparse_API_Guide.pdf in the docs 
folder (https://github.com/amd/aocl-sparse).

https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse


114 AOCL-Sparse Chapter 11

 

57404 Rev. 4.2 February 2024AOCL User Guide

11.1 Installation

AOCL-Sparse can be installed from the source or pre-built binaries.

11.1.1 Building AOCL-Sparse from Source on Linux

The following prerequisites must be met:

• Git

• CMake versions 3.11 through 3.27

• Boost library versions 1.65 through 1.83

Note: This is needed only for benchmarks (BUILD_CLIENTS_BENCHMARKS=ON). For 
more information, refer to Table 30.

Complete the following steps to build different packages of the library, including dependencies and 
test application:

1. Install AOCL-BLAS, AOCL-LAPACK, and AOCL-Utils.

2. Define the environment variable AOCL_ROOT to point to AOCL Libs installation:

For the cases where AOCL_ROOT cannot be exported by placing AOCL-BLAS,  AOCL-
LAPACK,and AOCL-Utils libraries in the same path, you can use the following variables during 
the CMake configuration to point to the location of the dependent libraries and headers:

• AOCL_BLIS_LIB

• AOCL_LIBFLAME

• AOCL_UTILS_LIB

• AOCL_BLIS_INCLUDE_DIR

• AOCL_LIBFLAME_INCLUDE_DIR

• AOCL_UTILS_INCLUDE_DIR

3. Download the latest release of AOCL-Sparse (https://github.com/amd/aocl-sparse). 

4. Clone the Git repository (https://github.com/amd/aocl-sparse.git).

export AOCL_ROOT=/opt/aocl

https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse.git


Chapter 11 AOCL-Sparse 115

 

AOCL User Guide57404 Rev. 4.2 February 2024

5. Configure the project using the following tables:
Table 22. Compiler and Library Type

Compiler Library 
Type

ILP 64 
Support Command

G++
(Default)

Static OFF (Default) cmake -S . -B out_sparse -DBUILD_SHARED_LIBS=OFF

ON cmake -S . -B out_sparse -DBUILD_SHARED_LIBS=OFF -
DBUILD_ILP64=ON

Shared 
(Default)

OFF (Default) cmake -S . -B out_sparse

ON cmake -S . -B out_sparse -DBUILD_ILP64=ON

AOCC Static OFF (Default) cmake -S . -B out_sparse -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_SHARED_LIBS=OFF

ON cmake -S . -B out_sparse -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_SHARED_LIBS=OFF -DBUILD_ILP64=ON

Shared 
(Default)

OFF (Default) cmake -S . -B out_sparse -DCMAKE_CXX_COMPILER=clang++

ON cmake -S . -B out_sparse -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_ILP64=ON

Table 23. AOCL-Sparse - CMake Build Options
Build Option Feature 

CMAKE_INSTALL_PREFIX Use -DCMAKE_INSTALL_PREFIX=<path> to choose the custom path. 
The default install path is /opt/aoclsparse/

CMAKE_BUILD_TYPE • Release => Release Library (Default)
• Debug => Debug Library

CMAKE_CXX_COMPILER Use -DCMAKE_CXX_COMPILER=clang++ for AOCC builds
BUILD_SHARED_LIBS • OFF => Build Static Library

• ON => Build Dynamic/Shared library (Default)
BUILD_ILP64 Integer length:

• OFF => 32-bit integer length (Default)
• ON => 64-bit integer length

SUPPORT_OMP Multi-threading using OpenMP:
• OFF => Disable OpenMP
• ON => Enable OpenMP (Default)



116 AOCL-Sparse Chapter 11

 

57404 Rev. 4.2 February 2024AOCL User Guide

6. Build the AOCL-Sparse library:

where,

build_type can be Release/Debug as configured during configuration.

nproc is the number of cores for the build to run in parallel.

7. Install AOCL-Sparse to the directory /opt/aoclsparse or a custom path given by 
CMAKE_INSTALL_PREFIX:

Note: If AOCL_ROOT contains the shared and static libraries in the same directory for any 
dependent library, Sparse will link to the shared library irrespective of 
BUILD_SHARED_LIBS.

11.1.2 Building AOCL-Sparse from Source on Windows

AOCL-Sparse uses CMake along with Microsoft Visual Studio for building binaries from the sources 
on Windows. The following sections explain the GUI and command-line schemes of building the 
binaries and test suite.

Prerequisites

For more information, refer to the Prerequisites sub-section in section 4.6.

USE_AVX512 • OFF => Dynamically selects kernels (AVX2 and AVX512) for SpMV 
(Default)

• ON => Enables AVX512 kernels for SpMV and TRSV
BUILD_CLIENTS_BENCHM
ARKS

• OFF => Disable building benchmarks (Default)
• ON => Build client benchmarking (requires Boost library)

BUILD_CLIENTS_SAMPLES • OFF => Disable building sparse API examples
• ON => Enable building sparse examples for SPMV, CSR2M, DTRSV, 

CG, and GMRES (Default)
BUILD_UNIT_TESTS • OFF => Unit tests are not built

• ON => Unit testing is built and new target "test" is activated, this target 
should be used to test the correctness of the compiled library. It runs all 
the available executable targets and checks for success/failure of each 
test.

BUILD_DOCS • ON => Build PDF and HTML documentation, this adds a new target 
"docs" (requires Linux and modern LaTeX distribution)

• OFF => Does not activate the docs target (Default)

cmake --build out_sparse --config <build_type> --parallel <nproc>

cmake --build out_sparse --target install

Table 23. AOCL-Sparse - CMake Build Options
Build Option Feature 



Chapter 11 AOCL-Sparse 117

 

AOCL User Guide57404 Rev. 4.2 February 2024

11.1.2.1 Using CMake and Visual Studio GUI

Complete the following steps to prepare the project with CMake GUI:

1. Install AOCL-BLAS, AOCL-LAPACK, and AOCL-Utils.

2. Define the environment variable AOCL_ROOT to point to the AOCL Libs installation:

For the cases where AOCL_ROOT cannot be exported by placing AOCL-BLAS, AOCL-
LAPACK, and AOCL-Utils libraries in the same path, define the following variables during 
CMake configuration in cmake-gui to point to the corresponding libraries and headers:

– AOCL_BLIS_LIB
– AOCL_LIBFLAME
– AOCL_UTILS_LIB
– AOCL_BLIS_INCLUDE_DIR
– AOCL_LIBFLAME_INCLUDE_DIR
– AOCL_UTILS_INCLUDE_DIR
Launch CMake GUI using the Windows command line:

3. Set the source (folder containing the AOCL-Sparse source code) and build (folder in which the 
project files will be generated) folder paths. It is not recommended to use the folder named build 
as it is already used for Linux build system.

4. Click on the Configure button to prepare the project options.

5. Set the generator to Visual Studio 17 2022 and the platform toolset to clangCl:

Figure 11. Specify Generator

set "AOCL_ROOT=C:\Program Files\AMD\AOCL-Windows"

cmake-gui

 



118 AOCL-Sparse Chapter 11

 

57404 Rev. 4.2 February 2024AOCL User Guide

6. Update the options based on the project requirements. All the available options are listed in 
Table 30.Select the available and recommended options as follows:

Figure 12. AOCL-Sparse CMake Config Options

Note: Currently, only single-threaded builds are supported on Windows; multi-threaded 
support will be added in future release.

7. Click the Generate button and then Open Project.

8. Complete the following steps in Microsoft Visual Studio GUI:

a. Open the AOCL-Sparse Visual Studio project from the build folder using the aoclsparse.sln 
file or the Open Project button in CMake GUI.

b. To generate the AOCL-Sparse binaries, choose the appropriate build configuration Debug or 
Release and then build the AOCL-Sparse project. The library files would be generated at 
<build_dir>\library\Release.

11.1.2.2 Using Windows Command-line

Complete the following steps to configure the project using command prompt:

1. Install AOCL-BLAS, AOCL-LAPACK, and AOCL-Utils.



Chapter 11 AOCL-Sparse 119

 

AOCL User Guide57404 Rev. 4.2 February 2024

2. Define the environment variable AOCL_ROOT to point to the AOCL Libs installation:

For the cases where AOCL_ROOT cannot be exported by placing AOCL-BLAS, AOCL-
LAPACK, and AOCL-Utils libraries in the same path, define the following variables during 
CMake configuration to point to the corresponding libraries and headers:

– AOCL_BLIS_LIB
– AOCL_LIBFLAME
– AOCL_UTILS_LIB
– AOCL_BLIS_INCLUDE_DIR
– AOCL_LIBFLAME_INCLUDE_DIR
– AOCL_UTILS_INCLUDE_DIR

3. Checkout the AOCL-Sparse directory:

4. Configure the project along with the following options depending on the required build. For 
CMake configure options, refer to Table 23. When AOCL_ROOT is defined:

When CMake variables are used to define AOCL-BLAS, AOCL-LAPACK, and AOCL-Utils 
libraries/header:

Refer to Table 30 to update the parameter options in the command according to the project 
requirements.

Note: Currently, only single-threaded builds are supported for Windows; multi-threaded 
support will be added in future release.

5. Export the paths for AOCL-BLAS, AOCL-LAPACK, and AOCL-Utils libraries:

6. Build the project:

7. Install AOCL-Sparse:

set "AOCL_ROOT=C:\Program Files\AMD\AOCL-Windows"

cd aocl-sparse

cmake -S . -B out_sparse -T clangcl -G "Visual Studio 17 2022" -DCMAKE_CXX_COMPILER=clang-cl -
DCMAKE_INSTALL_PREFIX="<aoclsparse_install_path>"

cmake -S . -B out_sparse -T clangcl -G "Visual Studio 17 2022" -DCMAKE_CXX_COMPILER= clang-cl -
DCMAKE_INSTALL_PREFIX="<aoclsparse_install_path>" -DAOCL_LIBFLAME="Lapack/Library/with/path" -
DAOCL_LIBFLAME_INCLUDE_DIR="path/to/Lapack/Headers" -DAOCL_BLIS_LIB="Blas/Library/with/path" -
DAOCL_BLIS_INCLUDE_DIR="path/to/Blas/Headers"
-DAOCL_UTILS_LIB="Utils/Library/with/path" -DAOCL_UTILS_INCLUDE_DIR="path/to/Utils/Headers"

set "PATH=C:\Users\Program Files\AMD\AOCL-Windows\amd-blis\lib\LP64;%PATH%"
set "PATH=C:\Users\Program Files\AMD\AOCL-Windows\amd-libflame\lib\LP64;%PATH%"
set "PATH=C:\Users\Program Files\AMD\AOCL-Windows\amd-utils\lib;%PATH%"

cmake --build out_sparse --config Release --target install --verbose

cmake --build out_sparse/ --target install



120 AOCL-Sparse Chapter 11

 

57404 Rev. 4.2 February 2024AOCL User Guide

11.1.3 Using Pre-built Libraries

You can install the AOCL-Sparse binaries using the packages available at the following URL:

https://www.amd.com/en/developer/aocl/sparse.html 

Also, you can install AOCL-Sparse binary from the AOCL master installer tar file available at the 
following URL: 

https://www.amd.com/en/developer/aocl.html 

Note:

Note: The pre-built libraries are prepared on a specific platform having dependencies related to 
operating system, Compiler (GCC, Clang), Visual studio, and glibc. Your platform must 
adhere to the same versions of these dependencies to use those libraries.

11.2 Usage

The library includes sample programs demonstrating the usage of AOCL-Sparse APIs and they can 
be used as a starting point to build your application, executable binaries to perform benchmarking and 
unit test to check the correctness of the library build. These are located in tests/examples, tests/
benchmarks and tests/unit_tests directories respectively.

11.2.1 Use by Applications on Linux

To use AOCL-Sparse in your application, compile your source with C or C++ compiler including the 
AOCL-Sparse header files (-I$SPARSE_ROOT/include). If 64-bit integers are used, define the appropriate 
macro (-Daoclsparse_ILP64). Afterwards, link the objects with C++ linker to the AOCL-Sparse library, 
dependencies (libflame, libblis, and libaoclutils in that order), and pthreads library. You must match 
the size of integers for the dependency libraries (LP64 versus ILP64). If multi-threaded library is 
used, appropriate compiler flags must be defined and the corresponding dependent libraries must be 
linked. Either static or shared libraries can be used. In the case of shared libraries, you must set their 
location in LD_LIBRARY_PATH before running the resulting executables.

The following sections provide commands to manually build two sample programs from AOCL-
Sparse examples directory (tests/examples) in two different scenarios.

https://www.amd.com/en/developer/aocl/sparse.html
https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html


Chapter 11 AOCL-Sparse 121

 

AOCL User Guide57404 Rev. 4.2 February 2024

11.2.1.1 Link to Single-Threaded, LP64, Static Sparse Library

11.2.1.2 Link to Multi-Threaded, ILP64, Shared Sparse Library

To build all the example programs using CMake build system, refer to README.md in tests/
examples.

11.2.2 Use by Application on Windows

Complete the following steps to use by application on Windows:

1. Move to installed examples directory:

2. Define the environment variable AOCL_ROOT to point to AOCL libs installation that has AOCL 
BLAS, AOCL LAPACK and AOCL UTILS libraries:

export AOCL_ROOT=/opt/aocl 
export SPARSE_ROOT=<aoclsparse_install_path> 
export LD_LIBRARY_PATH=$AOCL_ROOT/lib_LP64:$LD_LIBRARY_PATH

g++ sample_spmv.cpp -I$SPARSE_ROOT/include -I$AOCL_ROOT/include_LP64 -I$AOCL_ROOT/include_LP64/
alci/..    $SPARSE_ROOT/lib/libaoclsparse.a -Wl,-rpath,$AOCL_ROOT/lib_LP64 $AOCL_ROOT/
lib_LP64/libflame.so $AOCL_ROOT/lib_LP64/libblis.so $AOCL_ROOT/lib_LP64/libaoclutils.so 
-lpthread -o sample_spmv

g++ sample_spmv_c.c -I$SPARSE_ROOT/include -I$AOCL_ROOT/include_LP64 -I$AOCL_ROOT/include_LP64/
alci/.. $SPARSE_ROOT/lib/libaoclsparse.a -Wl,-rpath,$AOCL_ROOT/lib_LP64 $AOCL_ROOT/
lib_LP64/libflame.so $AOCL_ROOT/lib_LP64/libblis.so $AOCL_ROOT/lib_LP64/libaoclutils.so 
-lpthread -o sample_spmv_c

./sample_spmv

./sample_spmv_c

export AOCL_ROOT=/opt/aocl 
export SPARSE_ROOT=<aoclsparse_install_path> 
export LD_LIBRARY_PATH=$AOCL_ROOT/lib_ILP64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$SPARSE_ROOT/lib:$LD_LIBRARY_PATH

g++ sample_spmv.cpp -I$SPARSE_ROOT/include -I$AOCL_ROOT/include_ILP64 -I$AOCL_ROOT/
include_ILP64/alci/.. -Daoclsparse_ILP64 -fopenmp $SPARSE_ROOT/lib/libaoclsparse.so -
Wl,-rpath,$AOCL_ROOT/lib_ILP64 $AOCL_ROOT/lib_ILP64/libflame.so $AOCL_ROOT/lib_ILP64/
libblis.so $AOCL_ROOT/lib_ILP64/libaoclutils.so  -lpthread -o sample_spmv

g++ sample_spmv_c.c -I$SPARSE_ROOT/include -I$AOCL_ROOT/include_ILP64 -I$AOCL_ROOT/
include_ILP64/alci/.. -Daoclsparse_ILP64 -fopenmp $SPARSE_ROOT/lib/libaoclsparse.so -
Wl,-rpath,$AOCL_ROOT/lib_ILP64 $AOCL_ROOT/lib_ILP64/libflame.so $AOCL_ROOT/lib_ILP64/
libblis.so $AOCL_ROOT/lib_ILP64/libaoclutils.so -lpthread -o sample_spmv_c

./sample_spmv

./sample_spmv_c

cd <install_dir>\examples

set "AOCL_ROOT=C:\Program Files\AMD\AOCL-Windows"



122 AOCL-Sparse Chapter 11

 

57404 Rev. 4.2 February 2024AOCL User Guide

3. Define SPARSE_ROOT to the AOCL-Sparse package installation path:

4. Add AOCL-Sparse, AOCL-BLAS, AOCL-LAPACK and AOCL-Utils library paths to the 
environment path variable:

5. Configure the build system to compile sample applications. Ensure that the build configuration is 
same as the one used to build the AOCL-Sparse library for the variable BUILD_ILP64:

6. Compile the sample applications:

7. Run the application:

Notes:
1. Currently, only single-threaded builds are supported for Windows; multi-threaded support 

will be added in future release. So, by default, SUPPORT_OMP=OFF.

2. The environment variable "SPARSE_ROOT" takes precedence when searching for sparse 
library and headers. If the environment variable "SPARSE_ROOT" is not defined, 
SPARSE_ROOT inherits the path from AOCL_ROOT and looks for AOCL-Sparse 
installation in AOCL_ROOT. If the sparse library/headers are not found neither in 
SPARSE_ROOT nor in AOCL_ROOT, an error is returned.

11.2.3 Performance Benchmarking on Linux

The AOCL-Sparse benchmark executable (called aoclsparse-bench) accepts various input parameters 
including matrix data and triggers the desired operation while measuring the API performance. 
Optionally, it can also check the results against its reference implementation. The matrix data can be 
randomly generated or read from the Matrix Market format (.mtx) input file. The MTX inputs can be 
downloaded from the SuiteSprase Matrix Collection website (https://sparse.tamu.edu/). Usage of 
both the input types is as follows:

1. Enable BUILD_CLIENTS_BENCHMARKS during AOCL-Sparse installation process (refer to 
the section 11.1.1).

set "SPARSE_ROOT=%HOME%\amd\aocl-sparse"

set "PATH=%SPARSE_ROOT%\lib;%PATH%"
set "PATH=%AOCL_ROOT%\amd-blis\lib\ILP64;%PATH%"
set "PATH=%AOCL_ROOT%\amd-libflame\lib\ILP64;%PATH%"
set "PATH=%AOCL_ROOT%\amd-utils\lib;%PATH%"

cmake -S . -B out_sparse -G "Visual Studio 17 2022" -T "clangcl" -DCMAKE_CXX_COMPILER=clang-cl 
-DBUILD_SHARED_LIBS=ON -DBUILD_ILP64=OFF -DSUPPORT_OMP=OFF

cmake --build out_sparse

.\out_sparse\sample_spmv.exe

https://sparse.tamu.edu/


Chapter 11 AOCL-Sparse 123

 

AOCL User Guide57404 Rev. 4.2 February 2024

2. Export paths to the dependent libraries in LD_LIBRARY_PATH if building shared library of 
AOCL-Sparse:

3. Navigate to the folder containing the AOCL-Sparse executable:

4. Run the benchmark:

5. Run the multi-threaded (4 threads) CSR-SPMV on a randomly generated matrix:

Note: Running aoclsparse-bench without any arguments will provide overview of its 
parameters.

11.2.4 Performance Benchmarking on Windows

Complete the following steps to run performance benchmarking on Windows:

1. Enable BUILD_CLIENTS_BENCHMARKS during AOCL-Sparse installation process (refer to 
the section 11.1.1).

2. Define the environment variable AOCL_ROOT to point to AOCL libs installation that has AOCL 
BLAS, AOCL LAPACK and AOCL UTILS libraries:

3. Define SPARSE_ROOT to the AOCL-Sparse package installation path:

4. Add AOCL-Sparse, AOCL-BLAS, AOCL-LAPACK and AOCL-Utils library paths to the 
environment path variable:

5. Navigate to the folder containing the AOCL-Sparse executable:

export AOCL_ROOT=/opt/aocl 
export SPARSE_ROOT=<aoclsparse_install_path> 
export LD_LIBRARY_PATH=$AOCL_ROOT/lib_ILP64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$SPARSE_ROOT/lib:$LD_LIBRARY_PATH

cd out_sparse/tests/staging/

Random Data:
./aoclsparse-bench --function=optmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 -
verify=1

MTX Input:
./aoclsparse-bench --function=optmv --precision=d --mtx=LFAT5.mtx --verify=1

export AOCLSPARSE_NUM_THREADS=4
./aoclsparse-bench --function=csrmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 --
verify=1

set "AOCL_ROOT=C:\Program Files\AMD\AOCL-Windows"

set "SPARSE_ROOT=%HOME%\amd\aocl-sparse"

set "PATH=%SPARSE_ROOT%\lib;%PATH%"
set "PATH=%AOCL_ROOT%\amd-blis\lib\ILP64;%PATH%"
set "PATH=%AOCL_ROOT%\amd-libflame\lib\ILP64;%PATH%"
set "PATH=%AOCL_ROOT%\amd-utils\lib;%PATH%"

cd out_sparse\tests\staging\



124 AOCL-Sparse Chapter 11

 

57404 Rev. 4.2 February 2024AOCL User Guide

6. Run the benchmark:

Note: Currently, only single-threaded builds are supported for Windows; multi-threaded support 
will be added in future release.

11.2.5 Running the Test Suite

The AOCL-Sparse library comes with a comprehensive set of tests which you might want to run 
when you build the library from source (refer to the sections 11.1.1 and 11.1.2). During the 
configuration, enable BUILD_UNIT_TESTS, BUILD_CLIENTS_BENCHMARKS and 
BUILD_CLIENTS_SAMPLES. CMake will then generate all unit tests, examples, and a selection of 
benchmarking tests as a part of ctests. They can be executed from the command prompt as follows:

Refer to the ctests help on all the possible ways to trigger an individual test or a specific selection.

Random Data:
.\aoclsparse-bench.exe --function=optmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 
-verify=1

MTX Input:
.\aoclsparse-bench.exe --function=optmv --precision=d --mtx=LFAT5.mtx --verify=1

cd <build_directory>
ctest -VV



Chapter 12 AOCL-LibMem 125

 

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 12 AOCL-LibMem

AOCL-LibMem is a Linux library of data movement and manipulation functions (such as memcpy() 
and strcpy()) highly optimized for AMD “Zen” micro-architecture. It has multiple implementations of 
each function, supporting AVX2, AVX512, and ERMS CPU features. The default choice is the best-
fit implementation based on the underlying micro-architectural support for CPU features and 
instructions. It also supports tunable build under which a specific implementation can be chosen for 
mem* functions as per the application requirements with respect to alignments, instruction choice, 
and threshold values as tunable parameters.

This release of the AOCL-LibMem library supports the following functions:

• memcpy

• mempcpy

• memmove

• memset

• memcmp

• strcpy

• strncpy

• strcmp

• strncmp

• strlen

12.1 Building AOCL-LibMem for Linux

Minimum software requirements for compilation:

• GCC 12.2

• AOCC 4.0

• Python 3.6

• CMake 3.10

Complete the following steps to build AOCL-LibMem for Linux:

1. Download and install the AOCL master installer (aocl-linux-<compiler>-<version>.tar.gz) from:

https://www.amd.com/en/developer/aocl.html

2. Locate the aocl-libmem folder in the root directory.

https://www.amd.com/en/developer/aocl.html


126 AOCL-LibMem Chapter 12

 

57404 Rev. 4.2 February 2024AOCL User Guide

3. Configure for one of the following builds as required:

– GCC

– AOCC (Clang)

4. Build:

5. Install:

Note: Both shared (libaocl-libmem.so) and static (libaocl-libmem.a) library files are installed under 
<build_dir>/lib/ path.Dynamic Dispatcher is not supported. Hence, it is recommended not to 
load/run the AVX512 library on a non-AVX512 machine as it will lead to crash due to 
unsupported instructions.

12.2 Running an Application

The applications can preload the AOCL-LibMem shared library to replace the standard c library 
memory functions for better performance gains on AMD “Zen” micro-architectures.

To run the application, preload the libaocl-libmem.so generated from the build procedure above:

12.3 Running an Application with Tunables

LibMem built with tunables enabled exposes two tunable parameters that will help you select the 
implementation of your choice:

# Default Native Build
$ cmake -D CMAKE_C_COMPILER=gcc -S <source_dir> -B <build_dir>

# Cross Compiling AVX2 Binary on AVX512 Machine
$ cmake -D CMAKE_C_COMPILER=gcc -D ALMEM_ARCH=avx2 -S <source_dir> -B <build_dir>
# Cross Compiling AVX512 Binary on AVX2 Machine
$ cmake -D CMAKE_C_COMPILER=gcc -D ALMEM_ARCH=avx512 -S <source_dir> -B <build_dir>

# Enabling Tunable Parameters
$ cmake -D CMAKE_C_COMPILER=gcc -D ENABLE_TUNABLES=Y -S <source_dir> -B <build_dir>

# Default Native Build
$ cmake -D CMAKE_C_COMPILER=clang -S <source_dir> -B <build_dir>

# Cross Compiling AVX2 Binary on AVX512 Machine
$ cmake -D CMAKE_C_COMPILER=clang -D ALMEM_ARCH=avx2 -S <source_dir> -B <build_dir>
# Cross Compiling AVX512 Binary on AVX2 Machine
$ cmake -D CMAKE_C_COMPILER=clang -D ALMEM_ARCH=avx512 -S <source_dir> -B <build_dir>

# Enabling Tunable Parameters
 $ cmake -D CMAKE_C_COMPILER=clang -D ENABLE_TUNABLES=Y -S <source_dir> -B <build_dir>

$ cmake --build <build_dir>

$ cmake --install <build_dir>

## For custom install path, run configure with "CMAKE_INSTALL_PREFIX"

$ LD_PRELOAD=<path to build/lib/libaocl-libmem.so> <executable> <params>



Chapter 12 AOCL-LibMem 127

 

AOCL User Guide57404 Rev. 4.2 February 2024

• LIBMEM_OPERATION: Instruction based on alignment and cacheability

• LIBMEM_THRESHOLD: The threshold for ERMS and Non-Temporal instructions

Following two states are possible with this library based on the tunable settings:

• Default State: None of the parameters is tuned.

• Tuned State: One of the parameters is tuned with a valid option. 

12.3.1 Default State

In this state, none of the parameters are tuned; the library will pick up the best implementation based 
on the underlying AMD “Zen” micro-architecture.

Run the application by preloading the tunables enabled libaocl-libmem.so:

12.3.2 Tuned State

In this state, one of the parameters is tuned by the application at run time. The library will choose the 
implementation based on the valid tuned parameter at run time. Only one of the tunable can be set to 
a valid set of format/options as described in Table 24.

12.3.2.1 LIBMEM_OPERATION

You can set the tunable LIBMEM_OPERATION as follows:

Based on this option, the library chooses the best implementation based on the combination of move 
instructions, alignment of the source and destination addresses.

Valid Options

• <operations> = [avx2|avx512|erms]

• <source_alignment> = [b|w|d|q|x|y|n]

• <destination_alignmnet> = [b|w|d|q|x|y|n]

Use the following table to select the right implementation for your application:

$ LD_PRELOAD=<path to build/lib/libaocl-libmem.so> <executable> <params>

LIBMEM_OPERATION=<operations>,<source_alignment>,<destination_alignmnet>

Table 24. Application Implementations

Application Requirement LIBMEM_OPERATION Instructions Side-effects

Vector unaligned source and de
stination

[avx2|avx512],b,b Load:VMOVDQU; 
Store:VMOVDQU

None

Vectoraligned source and desti
nation

[avx2|avx512],y,y Load:VMOVDQA; 
Store:VMOVDQA

Unaligned source 
and/or destination 
address will lead 
to crash



128 AOCL-LibMem Chapter 12

 

57404 Rev. 4.2 February 2024AOCL User Guide

Note: A best-fit solution for the underlying micro-architecture will be chosen if the tunable is in an 
invalid format.

For example, to use only avx2-based move operations with both unaligned source and aligned 
destination addresses:

12.3.2.2 LIBMEM_THRESHOLD

You can set the tunable LIBMEM_THRESHOLD as follows:

Based on this option, the library will choose the implementation with tuned threshold settings for 
supported instruction sets: {vector, rep mov, non-temporal}.

Valid Options

Vectoraligned source and 
unaligned destination

[avx2|avx512],y,[b|w|d|q|x] Load:VMOVDQA; 
Store:VMOVDQU

None

Vector unaligned source andali
gned destination

[avx2|avx512],[b|w|d|q|x], y Load:VMOVDQU; 
Store:VMOVDQA

None

Vector non temporal load and 
store

[avx2|avx512],n,n Load:VMOVNTDQ
A; 
Store:VMOVNTDQ

Unaligned source 
and/or 
destination address 
will lead to crash

Vector non temporal load [avx2|avx512],n,[b|w|d|q|x|
y]

Load:VMOVNTDQ
A; 
Store:VMOVDQU

None

Vector non temporal store [avx2|avx512],[b|w|d|q|x|y],
n

Load:VMOVDQU; 
Store:VMOVNTDQ

None

Rep movs unaligned source or 
destination

erms,b,b REP MOVSB None

Rep movs word aligned source 
and destination

erms,w,w REP MOVSW Data corruption or 
crash if the length is 
not a multiple of 2

Rep movs double word aligned 
source and destination

erms,d,d REP MOVSD Data corruption or 
crash if the length is 
not a multiple of 4

Rep movs quad word aligned 
source and destination

erms,q,q REP MOVSQ Data corruption or 
crash if the length is 
not a multiple of 8

$ LD_PRELOAD=<build/lib/libaocl-libmem.so> LIBMEM_OPERATION=avx2,b,y <executable>

LIBMEM_THRESHOLD=<repmov_start_threshold>,<repmov_stop_threshold>,<nt_start_threshold>,
<nt_stop_threshold>

Table 24. Application Implementations

Application Requirement LIBMEM_OPERATION Instructions Side-effects



Chapter 12 AOCL-LibMem 129

 

AOCL User Guide57404 Rev. 4.2 February 2024

• <repmov_start_threshold> = [0, +ve integers]

• <repmov_stop_threshold> = [0, +ve integers, -1]

• <nt_start_threshold> = [0, +ve integers]

• <nt_stop_threshold> = [0, +ve integers, -1]

Where, -1 refers to the maximum length.

Refer the following table for the sample threshold settings:

Note: A system configured threshold will be chosen if the tunable is in an invalid format.

For example, to use **REP MOVE** instructions for a range of 1KB to 2KB and non_temporal 
instructions for a range of 512 KB and above:

Table 25. Sample Threshold Settings
LIBMEM_THRESHOLD Vector Range RepMov Range Non-Temporal Range

0,2048,1048576,-1 (2049, 1048576) [0,2048] [1048576, max value of unsigned long 
long)

0,0,1048576,-1 [0,1048576) [0,0] [1048576, max value of unsigned long 
long)

$ LD_PRELOAD=<build/lib/libaocl-libmem.so> LIBMEM_THRESHOLD=1024,2048,524288,-1 <executable>



130 AOCL-Cryptography Chapter 13

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 13 AOCL-Cryptography

AOCL-Cryptography is a library consisting of the core cryptographic functions optimized for AMD 
“Zen” micro-architecture. This library has multiple implementations of different type:

• Advanced Encryption Standard (AES) block and ChaCha20 stream ciphers

• Secure Hash Algorithms (SHA-2 and SHA-3) 

• Cipher, Hash,and Poly1305 based Message Authentication Code (MAC)

• Elliptic-curve Diffie–Hellman (ECDH) and Rivest, Shamir, and Adleman (RSA) key generation 
functions

The AOCL-Cryptography library has the following functions:

• AES block cipher encrypt/decrypt routines for the following schemes:

– Cipher Block Chaining (CBC)
– Cipher Feedback (CFB)
– Output Feedback (OFB)
– Counter (CTR)
– Galois/Counter Mode (GCM)
– Ciphertext Stealing Mode (XTS)
– Counter with Cipher Block Chaining Message Authentication Code (CCM)
– Synthetic Initialization Vector (SIV)

• Stream cipher encrypt/decrypt routine — Chacha20

• SHA-2 digest routines for the following schemes:

– SHA2_224
– SHA2_256
– SHA2_384
– SHA2_512
– SHA2_512_224
– SHA2_512_256

• SHA-3 digest routines for the following schemes:

– SHA3_224, SHA3_256, SHA3_384, and SHA3_512
– SHAKE128 and SHAKE256



Chapter 13 AOCL-Cryptography 131

 

AOCL User Guide57404 Rev. 4.2 February 2024

• MAC routines:

– Hash-based Message Authentication Code (HMAC)
– Cipher-based Message Authentication Code (CMAC)
– Poly1305

• ECDH x25519 key exchange functions:

– Generate Public Key
– Compute Secret Key

• RSA 1024/2048

– Encrypt with public Key
– Decrypt with private Key

Notes:
1. Only OAEP-padded mode is supported in AOCL 4.2 release. 

2. RSA functions are supported in all AMD “Zen” architectures. Architectures other than 
AMD “Zen” might have partial support.

13.1 Requirements

• CMake 3.21

• GCC 11.1.0 through 13.1.0

• OpenSSL v3.0.0 through 3.0.5

• Clang 15 on Windows

• AOCL-Utils library 

• AOCC 4.1 or later

• For more information on supported Linux operating systems, refer to Operating Systems library.

13.2 Installation

13.2.1 Building AOCL-Cryptography from Source on Linux

Complete the following steps to build AOCL-Cryptography from source on Linux:

1. GitHub URL: https://github.com/amd/aocl-crypto

2. Clone the repository aocl-crypto.

3. cd aocl-crypto 

4. mkdir build 

5. cd build 

https://github.com/amd/aocl-crypto


132 AOCL-Cryptography Chapter 13

 

57404 Rev. 4.2 February 2024AOCL User Guide

6. Run the configure command cmake ../ using the following options:

7. make -j$(nproc) 

8. make install 

9. To execute tests/benchmarks using KAT framework, run the following commands:

For detailed steps to execute KAT tests/bench, refer to tests_Readme and bench_Readme files 
respectively.

Testing Examples

1. Navigate to the installed directory.

2. Ensure that AOCL and OpenSSL lib directories are added to LD_LIBRARY_PATH and 
LIBRARY_PATH environment variables:

Table 26. AOCL-Cryptography - Linux Options
Option Description

ALCP_ENABLE_EXAMPLES (ON/OFF) Compile the example code
CMAKE_BUILD_TYPE (Debug/Release) Specify the build type
ENABLE_AOCL_UTILS (ON/OFF) Enable CPUID feature using the AOCL-Utils library
AOCL_UTILS_INSTALL_DIR AOCL-Utils installation path
OPENSSL_INSTALL_DIR OpenSSL (3.0.0 through 3.0.5) installation path
CMAKE_INSTALL_PREFIX AOCL-Cryptography installation path
ALCP_SANITIZE (ON/OFF) Enable sanitizers (asan, ubsan, msan, and so on)
AOCL_COMPAT_LIBS Supported values= ipp,openssl/ipp/openssl

Enable compilation of IPP OpenSSL provider libraries.
Notes:

1. The IPP header files should be added to the 
CPLUS_INCLUDE_PATH environment variable (working 
version for IPP is 2021_8).

2. OpenSSL provider support is not yet enabled for ECDH, 
RSA, and SIV functions.

3. IPP provider support is not yet enabled for ECDH and RSA 
functions.

ALCP_ENABLE_DOXYGEN Values: ON/OFF

Enable Doxygen documentation generation.
Note: Doxygen version supported: v1.9.6 or later.

git-lfs fetch
git-lfs checkout

export LD_LIBRARY_PATH=<path to aocl crypto lib>:<path to OpenSSL lib>:$LD_LIBRARY_PATH;
export LIBRARY_PATH=<path to aocl crypto lib>:<path to OpenSSL lib>:$LIBRARY_PATH;

https://github.com/amd/aocl-crypto/tests/README.md
https://github.com/amd/aocl-crypto/bench/README.md


Chapter 13 AOCL-Cryptography 133

 

AOCL User Guide57404 Rev. 4.2 February 2024

3. make 

4. Run the executables generated in ./bin/<module>. For example, ./bin/mac/hmac.

13.2.2 Building AOCL-Cryptography from Source on Windows

AOCL-Cryptography requires CMake and Microsoft Visual Studio for building the binaries from the 
sources on Windows. 

Prerequisites 

• CMake versions 3.0 through 3.26.1

• Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.5.3) 

• Desktop development with C++: C++ Clang-tools for windows (x64 or x86) 

• LLVM plug-in for Microsoft Visual Studio (if the latest version of LLVM is installed separately, 
this plug-in enables linking Microsoft Visual Studio with the installed LLVM toolchain) 

• Install OpenSSL (3.0.0 through 3.0.5) and add openssl\bin path to the PATH environment 
variables, if not set

Configure and Build

1. Clone the repository aocl-crypto.

2. Open Command Prompt or PowerShell.

3. cd aocl-crypto 

4. mkdir build 

5. Run cmake configure using the following options:

6. Build the library:

7. To execute tests/benchmarks using the KAT framework, run the following commands:

For detailed steps to execute KAT tests/bench, refer to tests_Readme and bench_Readme files 
respectively.

Table 27. AOCL-Cryptography - Windows Options
Option Description

-A (platform) x86/x64
-B (build directory) Build
-T (toolset) ClangCl/LLVM
-G (specify generator) Visual Studio 17 2022/ Visual Studio 16 2019

--config=release/debug
PS>cmake --build ./build --config=release -j

git-lfs fetch
git-lfs checkout

https://github.com/amd/aocl-crypto/tests/README.md
https://github.com/amd/aocl-crypto/bench/README.md


134 AOCL-Cryptography Chapter 13

 

57404 Rev. 4.2 February 2024AOCL User Guide

Testing Examples

1. Navigate to the build directory. 

2. Ensure that the lib/Release directory is added to PATH environment variables. 

3. If not set already, add openssl\bin path to the PATH environment variables. 

4. Run the executables generated in  .\examples\<module>\Release\*.exe.

Example: .\examples\cipher\Release\aes-ccm.exe 

13.3 Using AOCL-Cryptography in a Sample Application

A few pointers for using AOCL-Cryptography in a sample application:

• For using the encrypt/decrypt routines, use the header file in the test application: 

include/alcp/alcp.h

For using the cipher routines, use the header file:

include/alcp/cipher.h

An example to use the cipher routines can be found in: 

aocl-crypto/examples/cipher

• For using the digest routines, use the header file:

include/alcp/digest.h

An example to use the digest routines can be found in: 

aocl-crypto/examples/digest

13.3.1 Compiling and Running Examples

Complete the following steps to compile and run the AOCL-Cryptography examples from the 
downloaded packages:

1. Download and untar the aocl-crypto package.

2. cd amd-crypto 

3. export LIBRARY_PATH=<path to aocl crypto lib>:<path to aocl utils lib>:<path to openssl 
lib>:$LIBRARY_PATH; 

4. make 

5. To run example applications (for digest):
LD_LIBRARY_PATH=<path to aocl crypto lib>:<path to aocl utils lib>:<path to openssl lib> ./bin/

digest/sha2_384_example;



Chapter 13 AOCL-Cryptography 135

 

AOCL User Guide57404 Rev. 4.2 February 2024

13.3.2 AOCL-Cryptography Library Provider for OpenSSL

For more information on usage instructions, refer to the following URL:

https://github.com/amd/aocl-crypto/blob/main/docs/compat/openssl.pdf 

13.3.3 Integrating AOCL Libraries with Applications that Use IPP

For more information, refer to the following URL:

https://github.com/amd/aocl-crypto/blob/main/docs/compat/ipp.pdf 

https://github.com/amd/aocl-crypto/blob/main/docs/compat/openssl.pdf
https://github.com/amd/aocl-crypto/blob/main/docs/compat/ipp.pdf


136 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 14 AOCL-Compression

AOCL-Compression is a software framework of various lossless data compression and 
decompression methods tuned and optimized for AMD “Zen”-based CPUs. This library suite 
supports the following:

• Linux and Windows platforms.

• lz4, zlib/deflate, lzma, zstd, bzip2, snappy, and lz4hc optimized compression and decompression 
methods. 

• A unified standardized API set and the existing native APIs of the respective methods. 

• OpenMP based multi-threaded implementation of lz4, zlib, zstd, and snappy compression 
methods.

• Dynamic dispatcher feature that executes the most optimal function variant implemented using 
Function Multi-versioning and hence, offering a single optimized library portable across different 
x86 CPU architectures.

• Instruction set dispatch, running non-optimized code, and log level selection using environment 
variables at runtime:

– Instruction Set Dispatch (SSE2, AVX, AVX2, and AVX512)
– Enabling of logging and selection of log level

• Non-optimized (reference) code executionA test suite is provided for validation and performance 
benchmarking of the supported compression and decompression methods. The test suite also 
supports the benchmarking of IPP compression methods, such as lz4, lz4hc, bzip2, and zlib on the 
Linux-based platforms.

• The library build framework offers CTest based testing of the test cases that are implemented 
using GTest and the library test suite. Also, it supports the testing of the compression methods 
through their native APIs directly, offers memory checks using Valgrind, ASAN, and source code 
coverage using GCOV.

• A Python-based performance benchmarking automation script is provided for benchmarking 
needs.

• Doxygen based documentation covering library's API level details.

• Custom build options supported to exclude the unnecessary compression methods from the 
library build for achieving a lower code footprint.

14.1 Installation

14.1.1 Using Pre-built Libraries

The library and test bench binary for Linux and Windows can be installed from one of the following:



Chapter 14 AOCL-Compression 137

 

AOCL User Guide57404 Rev. 4.2 February 2024

• AOCL-Compression page (https://developer.amd.com/amd-aocl/aocl-compression/)

• AOCL master installer: tar and zip packages for Linux and Windows respectively (https://
developer.amd.com/amd-aocl/)

14.1.2 Building from Source

Complete the following steps to build AOCL-Compression from source:

1. Download the AOCL-Compression source package from GitHub (https://github.com/amd/aocl-
compression). 

2. Follow the steps in the README file to build the library for Linux or Windows.

3. To build the library with multi-threaded support, set the CMake build option 
AOCL_ENABLE_THREADS=ON. The library uses OpenMP for multi-threaded support. 
Maximum numbers of threads to use can be set using the environment variable 
OMP_NUM_THREADS. To run the library built with AOCL_ENABLE_THREADS=ON in 
single threaded mode, set OMP_NUM_THREADS=1.

Refer to the section “Optional Optimization Options” on page 148 for the complete list of 
supported CMake build options.

• It is recommended that applications use the unified APIs of the library over the native APIs for 
ease of integration and minimal code modifications required for addition of new compression 
methods.

14.2 Running AOCL-Compression Test Bench on Linux

Test bench supports several options to validate, benchmark, or debug the supported compression 
methods. 

It can be configured to use the unified APIs or native APIs to invoke compression methods supported 
by AOCL-Compression. It can also invoke and benchmark some of the IPP's compression methods.

To check the various options supported by the test bench, use one of the following commands:

Use the following command for an example to run the test bench and validate the outputs from all the 
supported compression and decompression methods for a given input file:

Use the following command for an example to run the test bench and check the performance of a 
particular compression and decompression method for a given input file:

Here, 5 is the level and 0 is the additional parameter to specify the custom window size for the ZSTD 
method.

aocl_compression_bench -h
Or
aocl_compression_bench --help

aocl_compression_bench -a -t <input filename>

aocl_compression_bench -ezstd:5:0 -p <input filename>

https://developer.amd.com/amd-aocl/aocl-compression/
https://developer.amd.com/amd-aocl/
https://github.com/amd/aocl-compression
https://github.com/amd/aocl-compression


138 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

To run the test bench with error/debug/trace/info logs, build the library by using `-
DAOCL_ENABLE_LOG_FEATURE=ON` and set the environment variable 
`AOCL_ENABLE_LOG` to any of the following:

• `AOCL_ENABLE_LOG=ERR`   for Error logs

• `AOCL_ENABLE_LOG=INFO` for Error, Info logs

• `AOCL_ENABLE_LOG=DEBUG` for Error, Info, and Debug logs

• `AOCL_ENABLE_LOG=TRACE` for Error, Info, Debug, and Trace logs

When building the library for best performance, do not enable 
`DAOCL_ENABLE_LOG_FEATURE`.To run the test bench using native APIs, use the -n option. An 
example to run the test bench and validate the outputs (from all the supported compression and 
decompression methods) for a given input file using the native APIs:

To test and benchmark the performance of IPP's compression methods, use the test bench option -c 
along with the other relevant options (as explained above).

Currently, IPP's lz4, lz4hc, bzip2, and zlib methods are supported by the test bench.

Complete the following steps:

1. Set the library path environment variable (export LD_LIBRARY_PATH on Linux) to point to the 
installed IPP library path.

Alternatively, you can also run vars.sh that comes along with the IPP installation to setup the 
environment variable.

2. Download lz4-1.9.3, zlib-1.2.11, and bzip2-1.0.8 source packages.

3. Apply IPP's patch files as follows:

4. Build the patched IPP lz4, bzip2, and zlib libraries as per the steps in the IPP README files (in 
the corresponding patch file locations) for these compression methods.

5. Set the library path environment variable (export LD_LIBRARY_PATH on Linux) to point to the 
patched IPP lz4, bzip2, and zlib libraries.

6. Run the test bench to benchmark IPP library methods as follows:

For more information, refer to the README file available with the source package in GitHub (https:/
/github.com/amd/aocl-compression).

aocl_compression_bench -a -n -t <input filename>

patch -p1 <"path to corresponding patch file">

aocl_compression_bench -a -p -c <input filename>
aocl_compression_bench -elz4 -p -c <input filename>
aocl_compression_bench -elz4hc -p -c <input filename>
aocl_compression_bench -ezlib -p -c <input filename>
aocl_compression_bench -ebzip2 -p -c <input filename>

https://github.com/amd/aocl-compression
https://github.com/amd/aocl-compression


Chapter 14 AOCL-Compression 139

 

AOCL User Guide57404 Rev. 4.2 February 2024

14.3 Running AOCL-Compression Test Bench on Windows

Test bench on Windows supports all the user options as on Linux, except for the -c option to link and 
test the IPP's compression methods. For more information, refer to the README file available with 
the source package in GitHub (https://github.com/amd/aocl-compression).

Note: Library portability on Windows is limited to the systems with support for AVX2 instruction set 
or later.

14.4 API Reference

14.4.1 Unified Standardized API Set

14.4.2 Interface Data Structures

//Interface API to compress data
int64_t aocl_llc_compress(aocl_compression_desc *handle,
                          aocl_compression_type codec_type);

//Interface API to decompress data
int64_t aocl_llc_decompress(aocl_compression_desc *handle,
                            aocl_compression_type codec_type);

//Interface API to setup the compression method
void aocl_llc_setup(aocl_compression_desc *handle,
                    aocl_compression_type codec_type);

//Interface API to destroy the compression method
void aocl_llc_destroy(aocl_compression_desc *handle,
                      aocl_compression_type codec_type);

//Interface API to get compression library version string
const char *aocl_llc_version(void);

//Types of compression methods supported
typedef enum
{
    LZ4 = 0,
    LZ4HC,
    LZMA,
    BZIP2,
    SNAPPY,
    ZLIB,
    ZSTD,
    AOCL_COMPRESSOR_ALGOS_NUM
} aocl_compression_type;

https://github.com/amd/aocl-compression


140 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

typedef struct
{
    char *inBuf;         /**<  Pointer to input buffer data                           */
    char *outBuf;        /**<  Pointer to output buffer data                          */
    char *workBuf;       /**<  Pointer to temporary work buffer                       */
    size_t inSize;       /**<  Input data length                                      */                      
    size_t outSize;      /**<  Output data length                                     */ 
    size_t level;        /**<  Requested compression level                            */
    size_t optVar;       /**<  Additional variables or parameters                     */
    int numThreads;      /**<  Number of threads available for multi-threading        */
    int numMPIranks;     /**<  Number of available multi-core MPI ranks               */
    size_t memLimit;     /**<  Maximum memory limit for compression/decompression     */
    int measureStats;    /**<  Measure speed and size of compression/decompression    */
    uint64_t cSize;      /**<  Size of compressed output                              */
    uint64_t dSize;      /**<  Size of decompressed output                            */
    uint64_t cTime;      /**<  Time to compress input                                 */
    uint64_t dTime;      /**<  Time to decompress input                               */
    float cSpeed;        /**<  Speed of compression                                   */
    float dSpeed;        /**<  Speed of decompression                                 */
    int optOff;          /**<  Turn off all optimizations                             */
    int optLevel;        /**<  Optimization level:  \n
                               0 - non-SIMD algorithmic optimizations, \n
                               1 - SSE2 optimizations, \n
                               2 - AVX optimizations, \n
                               3 - AVX2 optimizations, \n
                               4 - AVX512 optimizations                               */
    } aocl_compression_desc;



Chapter 14 AOCL-Compression 141

 

AOCL User Guide57404 Rev. 4.2 February 2024

14.4.3 Library Return Error Codes

14.4.4 Multi-threaded API Set

14.4.5 Native APIs

typedef enum
{

ERR_INVALID_INPUT = -5,        ///<Invalid input parameter provided
ERR_UNSUPPORTED_METHOD = -4,     ///<compression method not supported by the library

    ERR_EXCLUDED_METHOD,             ///<compression method excluded from this library build
    ERR_COMPRESSION_FAILED,          ///<failure in compression/decompression
    ERR_COMPRESSION_INVALID_OUTPUT   ///<invalid compression/decompression output
} aocl_error_type;

//Interface API to get the upper bound of RAP frame bytes that will be added during 
multithreaded compression.

int32_t aocl_get_rap_frame_bound_mt(void);

//Interface API to get the length of the RAP frame in the compressed stream
int32_t aocl_skip_rap_frame_mt(char* src, int32_t src_size);

//bzip2 Interface API to compress data
int BZ2_bzBuffToBuffCompress(
char*         dest, 
unsigned int* destLen,
char*         source, 
unsigned int  sourceLen,
int           blockSize100k, 
int           verbosity, 
int           workFactor 
   );

//bzip2 Interface API to decompress data
int BZ2_bzBuffToBuffDecompress ( 
char*         dest, 
unsigned int* destLen,
char*         source, 
unsigned int  sourceLen,
int           small, 
int           verbosity 
   );



142 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

//lz4 Interface API to compress data
int LZ4_compress_default(
      const char* src, 
char* dst, 
int srcSize, 
int dstCapacity
);

//lz4 Interface API to decompress data
int LZ4_decompress_safe  (
const char* src,
char* dst,
int compressedSize,
int dstCapacity
);

//lz4hc Interface API to compress data
int LZ4_compress_HC(
      const char* src, 
char* dst, 
int srcSize, 
int dstCapacity,
int compressionLevel
);

//lz4hc Interface API to decompress data
int LZ4_decompress_safe (
const char* src,
char* dst,
int compressedSize,
int dstCapacity
);

//lzma Interface API to compress data
int LzmaEncode(
Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig
);

//lzma Interface API to decompress data
int LzmaDecode(
Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc
);



Chapter 14 AOCL-Compression 143

 

AOCL User Guide57404 Rev. 4.2 February 2024

Note: When calling LZ4HC native APIs that use external dictionary such as 
LZ4_compress_HC_extStateHC(), it is recommended to set the environment variable 
AOCL_DISABLE_OPT=ON, due to a known issue.

//snappy Interface API to compress data
void RawCompress(
const char* input,
size_t input_length,
char* compressed,
size_t* compressed_length
);

//snappy Interface API to decompress data
bool RawUncompress(
const char* compressed, size_t compressed_length,
char* uncompressed
);

//zlib Interface API to compress data
Int compress2(
unsigned char *dest,   unsigned long *destLen,
const unsigned char *source, unsigned long sourceLen,
int level
);

//zlib Interface API to decompress data
int uncompress(
unsigned char *dest,   unsigned long *destLen,
const unsigned char *source, unsigned long sourceLen
);

//zstd Interface API to compress data
size_t ZSTD_compress_advanced(
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params
);

//zstd Interface API to decompress data
size_t ZSTD_decompressDCtx(
ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize
);



144 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

14.4.6 Example Program

14.4.6.1 Single-threaded APIs

The following exampleprogram shows the sample usage and calling sequence of AOCL-
Compression APIs to compress and decompress a test input:
#include <stdio.h> 
#include "aocl_compression.h"

int main (int argc, char **argv)
{
    aocl_compression_desc aocl_compression_ds;
    aocl_compression_desc *aocl_compression_handle = &aocl_compression_ds;
    FILE *inFp = NULL;
    int file_size = 0;
    char *inPtr = NULL, *compPtr = NULL, *decompPtr = NULL;
    int64_t resultComp = 0, resultDecomp = 0;

    if (argc < 2)
    {
        printf("Provide input test file path\n");
        return -1;
    }
    inFp = fopen(argv[1], "rb");
    fseek(inFp, 0L, SEEK_END);
    file_size = ftell(inFp);
    rewind(inFp);

    // One of the compression methods as per aocl_compression_type
    aocl_compression_type method = LZ4;
    aocl_compression_handle->level = 0;
    aocl_compression_handle->optVar = 0;
    aocl_compression_handle->optOff = 0;
    aocl_compression_handle->inSize = file_size;
    aocl_compression_handle->outSize = (file_size + (file_size / 6) + (16 * 1024));
    inPtr = (char *)calloc(1, aocl_compression_handle->inSize);
    compPtr = (char *)calloc(1, aocl_compression_handle->outSize);
    decompPtr = (char *)calloc(1, aocl_compression_handle->inSize);
    aocl_compression_handle->inBuf = inPtr;
    aocl_compression_handle->outBuf = compPtr;
    file_size = fread(inPtr, 1, file_size, inFp);

    // 1. setup and create a handle
    aocl_llc_setup(aocl_compression_handle, method);

    // 2. compress
    resultComp = aocl_llc_compress(aocl_compression_handle, method);
    
    if (resultComp <= 0)
    {
        printf("Compression: failed\n");
        goto error_exit;
    }
    printf("Compression: done\n");



Chapter 14 AOCL-Compression 145

 

AOCL User Guide57404 Rev. 4.2 February 2024

To build this example test program on a Linux system using GCC or AOCC, you must specify the 
aocl_compression.h header file and link the libaocl_compression.so file as follows:

14.4.6.2 Multi-threaded APIs

When a library is built with multi-threaded support (refer to section 14.1.2), a Random Access Point 
(RAP) frame is added at the start of the compressed stream to support parallel decompression of the 
compressed stream/file. You must allocate sufficient additional bytes in the destination buffer to 
account for this frame.

A stream compressed with multi-threaded AOCL-Compression library can be decompressed using 
any single-threaded standard decompressor by skipping the initial block of bytes containing the RAP 
frame present at the start of the stream.

 // decompress
    aocl_compression_handle->inSize = resultComp;
    aocl_compression_handle->outSize = file_size;
    aocl_compression_handle->inBuf = compPtr;
    aocl_compression_handle->outBuf = decompPtr;

    resultDecomp = aocl_llc_decompress(aocl_compression_handle, method);

    if (resultDecomp <= 0)
    {
        printf("Decompression Failure\n");
        goto error_exit;
    }
    printf("Decompression: done\n");

    // destroy handle
    aocl_llc_destroy(aocl_compression_handle, method);
    error_exit:
    if (inPtr)
        free(inPtr);
    if (compPtr)
        free(compPtr);
    if (decompPtr)
        free(decompPtr);
    return 0;
}

gcc test.c -I<aocl_compression.h file path> -L <libaocl_compression.so file path> -
laocl_compression



146 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

Following test program shows the sample usage and calling sequence of AOCL-Compression APIs to 
get an ST compatible compressed stream from the stream produced by AOCL MT compressor:
<code-section-here-start>
#include <stdio.h> 
#include <stdlib.h>
#include "aocl_compression.h"
#include "aocl_threads.h"

int main (int argc, char **argv)
{
    aocl_compression_desc aocl_compression_ds;
    aocl_compression_desc *aocl_compression_handle = &aocl_compression_ds;
    FILE *inFp = NULL;
    int file_size = 0;
    char *inPtr = NULL, *compPtr = NULL, *decompPtr = NULL;
    int64_t resultComp = 0, resultDecomp = 0;

    if (argc < 2)
    {
        printf("Provide input test file path\n");
        return -1;
    }
    inFp = fopen(argv[1], "rb");
    fseek(inFp, 0L, SEEK_END);
    file_size = ftell(inFp);
    rewind(inFp);

    aocl_compression_type method = LZ4; // One of the compression methods as per 
aocl_compression_type
    aocl_compression_handle->level = 0;
    aocl_compression_handle->optVar = 0;
    aocl_compression_handle->optOff = 0;
    aocl_compression_handle->measureStats = 0;
    aocl_compression_handle->inSize = file_size;
    aocl_compression_handle->outSize = (file_size + (file_size / 6) + (16 * 1024)) /* LZ4 ST 
compress bound */ 
                                        + aocl_get_rap_frame_bound_mt() /* upper bound of RAP 
frame bytes */;
    inPtr = (char *)calloc(1, aocl_compression_handle->inSize);
    compPtr = (char *)calloc(1, aocl_compression_handle->outSize);
    decompPtr = (char *)calloc(1, aocl_compression_handle->inSize);
    aocl_compression_handle->inBuf = inPtr;
    aocl_compression_handle->outBuf = compPtr;
    file_size = fread(inPtr, 1, file_size, inFp);
// 1. setup and create a handle
    aocl_llc_setup(aocl_compression_handle, method);



Chapter 14 AOCL-Compression 147

 

AOCL User Guide57404 Rev. 4.2 February 2024

To build this example program on a Linux system using GCC or AOCC, you must specify the path to 
aocl_compression.h and aocl_threads.h header files and link with libaocl_compression.so file as 
follows:

    // 2. MT compress
    resultComp = aocl_llc_compress(aocl_compression_handle, method);
    
    if (resultComp <= 0)
    {
        printf("Compression: failed\n");
        goto error_exit;
    }
    printf("Compression: done\n");
//3. ST decompress
    // Get number of bytes for the RAP frame
    int rap_frame_len = aocl_skip_rap_frame_mt((char *)compPtr, resultComp);

    // Skip RAP frame in input stream and pass this to ST decompressor
    aocl_compression_handle->inSize = resultComp - rap_frame_len;
    aocl_compression_handle->outSize = file_size;
    aocl_compression_handle->inBuf = compPtr + rap_frame_len;
    aocl_compression_handle->outBuf = decompPtr;

    // Pass format compliant stream to aocl decompressor (or any legacy ST decompressor)
    resultDecomp = aocl_llc_decompress(aocl_compression_handle, method);

    if (resultDecomp <= 0)
    {
        printf("Decompression Failure\n");
        goto error_exit;
    }
    printf("Decompression: done\n");

    // destroy handle
    aocl_llc_destroy(aocl_compression_handle, method);
    error_exit:
    if (inPtr)
        free(inPtr);
    if (compPtr)
        free(compPtr);
    if (decompPtr)
        free(decompPtr);
    return 0;
}

`gcc test.c -I <aocl_compression.h file path> -L <libaocl_compression.so file path> -
laocl_compression`



148 AOCL-Compression Chapter 14

 

57404 Rev. 4.2 February 2024AOCL User Guide

14.5 Optional Optimization Options

Some additional optimization options are supported in the library that can give performance benefits 
based on specific test conditions. These optional features are not enabled by default and must be 
turned on depending on their need:
Table 28. Optional Optimization Options

Option Description

AOCL_ENABLE_THREADS Enable multi-threaded compression and decompression 
using SMP based OpenMP threads (Disabled by default)

AOCL_ENABLE_LOG_FEATURE Enables logging through environment variable 
`AOCL_ENABLE_LOG` (Disabled by default)

BUILD_DOC Build documentation for this library (Disabled by 
default)

AOCL_TEST_COVERAGE Enable GTest and AOCL test bench based CTest suite 
(Disabled by default)

CODE_COVERAGE Enable source code coverage, supported only on Linux 
with the GCC compiler (Disabled by default)

ASAN Enable Address Sanitizer checks. Only supported on 
Linux/Debug build (Disabled by default)

VALGRIND Enable Valgrind checks. Only supported on Linux/Debug 
and incompatible with ASAN=ON (Disabled by default)

LZ4_FRAME_FORMAT_SUPPORT Enable building LZ4 with Frame format and API support 
(Enabled by default)

AOCL_LZ4_OPT_PREFETCH_BACKWA
RDS

Enable LZ4 optimizations related to backward 
prefetching of data (Disabled by default)

AOCL_LZ4_MATCH_SKIP_OPT_LDS_ST
RAT1

Enable LZ4 match skipping optimization strategy-1 
based on a larger base step size applied for long distance 
search (Disabled by default)

AOCL_LZ4_MATCH_SKIP_OPT_LDS_ST
RAT2

Enable LZ4 match skipping optimization strategy-2 by 
aggressively setting search distance on top of strategy-1. 
Preferred to be used with Silesia corpus (Disabled by 
default)

AOCL_LZ4_NEW_PRIME_NUMBER   Enable the usage of a new prime number for LZ4 
hashing function. Preferred to be used with Silesia 
corpus (Disabled by default)

AOCL_LZ4_EXTRA_HASH_TABLE_UPD
ATES

Enable storing of additional potential matches to 
improve compression ratio. Recommended for higher 
compressibility use cases (Disabled by default)



Chapter 14 AOCL-Compression 149

 

AOCL User Guide57404 Rev. 4.2 February 2024

AOCL_LZ4_HASH_BITS_USED Control the number of bits used for LZ4 hashing, 
allowed values are LOW (low perf gain and less CR 
regression) and HIGH (high perf gain and high CR 
regression) (Disabled by default)

AOCL_LZ4HC_DISABLE_PATTERN_AN
ALYSIS

Disable Pattern Analysis in LZ4HC for level 9 (Enabled 
by default)

SNAPPY_MATCH_SKIP_OPT Enable Snappy match skipping optimization (Disabled 
by default)

ZLIB_DEFLATE_FAST_MODE Enable ZLIB deflate quick strategy (Disabled by default)
AOCL_ZSTD_SEARCH_SKIP_OPT_DFAS
T_FAST

Enable ZSTD match skipping optimization, and reduce 
search strength/tolerance for levels 1-4 (Disabled by 
default)

AOCL_ZSTD_WILDCOPY_LONG Faster wildcopy when match lengths are long in ZSTD 
decompression (Disabled by default)

AOCL_XZ_UTILS_LZMA_API_EXPERIM
ENTAL 

Build with xz utils lzma APIs. Experimental feature with 
limited API support (Disabled by default)

Table 28. Optional Optimization Options
Option Description



150 AOCL-Utils Chapter 15

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 15 AOCL-Utils

AOCL-Utils provides a uniform interface to all the AOCL libraries to access the CPU features for 
AMD CPUs. This library provides the following features:

• Core details

• Flags available/usable

• ISA available/usable

• Topology about L1/L2/L3 caches

AOCL-Utils is designed for integration with the other AOCL libraries. Each project has its own 
mechanism to identify CPU and provide necessary features such as Dynamic Dispatch. The main 
purpose of this library is to provide a centralized mechanism to update/validate and provide 
information to the users.

AOCL-Utils supports the following functions:

• ISA available/usable

• API to check following features:

– SHA, AES, and VAES availability
– RDSEED and RDRAND availability
– AVX2 availability
– AVX512 foundation and sub-feature flags

• APIs for cache topology

– Cache size and line size
– Number of ways and sets
– Number of logical processors sharing cache
– Number of physical partitions
– Fully associative
– Self-initializing
– Cache Inclusive/Exclusive

Note: This library detects only the CPUs of AMD "Zen" architecture, there are no plans to add 
support for other x86 implementations of other CPU vendors. Some of the utilities may fail or 
behave in an unexpected manner on the predecessors of AMD "Zen" architecture.



Chapter 15 AOCL-Utils 151

 

AOCL User Guide57404 Rev. 4.2 February 2024

15.1 Requirements

• CMAKE v3.15 or later

• GCC v12.2 or later

• Clang v15 or later

• AOCC 4.1 or later

• Refer to “Build Utilities” on page 18 for Make and Microsoft Visual Studio versions

• For more information on the supported operating systems, refer to “Operating Systems” on 
page 17

stdc++ library must be linked when using the AOCL-Utils static binary

15.2 Clone and Build the AOCL-Utils Library

Complete the following steps to clone and build the AOCL-Utils library:

1. Download the latest release of AOCL-Utils (https://github.com/amd/aocl-utils).

2. Clone the Git repository (https://github.com/amd/aocl-utils.git).

3. Run the command:

4. For more information on the detailed steps to build and install AOCL-Utils (based on OS, 
compilers, and so on) refer to the aocl-utils/BUILD.md file.

Note: For installing the AOCL-Utils library with Spack on Linux-based environment, refer to 
“Building from Source” on page 19.

15.3 Using AOCL-Utils

For this library, C++ is used for implementation. This library also provides C interfaces for the calls 
from other C programs/libraries. After installing the AOCL-Utils library:

• For using the C++ routines, use the include/alci.h header file that has classes/members to get CPU 
features, AMD "Zen" micro-architecture and cache information.

• For using the C routines:

– Use include/alci/arch.h to get the CPU features and AMD "Zen" micro-architecture information.
– Use include/alci/cache.h to get the Cache topology (L1, L2, and L3) information.

cd aocl-utils

https://github.com/amd/aocl-utils
https://github.com/amd/aocl-utils.git


152 AOCL-Utils Chapter 15

 

57404 Rev. 4.2 February 2024AOCL User Guide

15.3.1 C API Example

Example: test_c_application.c

15.3.2 C++ API Example

Example: test_cpp_application.cc

15.3.3 Building on Windows

On Windows, you can build an application with the AOCL-Utils library using Clang/Clang++ 
Compilers as follows:

1. Create a 64-bit console app C++ project in Microsoft Visual Studio 17 2022.

2. To select Clang-cl compiler, navigate to Project > Properties > Configuration Properties > 
General > Platform Toolset > LLVM(Clang-cl) or llvm.

3. Use test_c_application.c or test_cpp_application.cc sources as a reference for the API call flow 
of AOCL-Utils.

#include "alci/arch.h"
#include "alci/alci.h"
#include <stdio.h>

int main(int argc, char **argv) {

    if (alcpu_is_amd()) {
        printf("Is CPU based on AMD Zen: true\n");
    } else {
        printf("Is CPU based on AMD Zen: false\n");
    }

    return 0;
}

#include "alci/cxx/alci.hh"
#include "alci/cxx/cpu.hh"
#include <stdio.h>

alci::Cpu Cpudata = alci::Cpu();

int main(int argc, char **argv) {

    if (Cpudata.isAmd()) {
        printf("Is CPU based on AMD Zen: true\n");
    } else {
        printf("Is CPU based on AMD Zen: false\n");
    }

    return 0;
}



Chapter 15 AOCL-Utils 153

 

AOCL User Guide57404 Rev. 4.2 February 2024

4. Add them into project using:

Project > Add Existing item > select test_c_application.c or test_cpp_application.cc from the 
project source directory.

5. Include the AOCL-Utils header files (such as include/alci/alci.h, include/alci/cxx/alci.hh, and so 
on) and call the required AOCL-Utils APIs in the Windows application.

6. Update the include path in:

Project > Properties > C/C++ > General > Additional Include Directories

7. Update the AOCL-Utils library path (where libaoclutils.lib or libaoclutils_static.lib exist) in:

Project > Properties > Linker > General > Additional Library Directories

8. Update the AOCL-Utils library name in:

Project > Properties > Linker > Input > Additional Dependencies (libaoclutils.lib or 
libaoclutils_static.lib)

9. If AOCL-Utils dynamic library is used, copy the AOCL-Utils DLL library (libaoclutils.dll) to the 
same project application folder.

10. Compile the project and run the application.

15.3.4 Building on Linux

On Linux, you can build an application with the AOCL-Utils library using:

• GCC/G++ Compilers:
# Export the libaoclutils binaries path into LD_LIBRARY_PATH variable.
export LD_LIBRARY_PATH=<path of libaoclutils binaries>:${LD_LIBRARY_PATH}

Using Static Library:

gcc -std=gnu11 test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries> 
-l:libaoclutils.a -lstdc++ -I<path of libaoclutils include directory>

g++ -std=gnu++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils 
binaries> -l:libaoclutils.a -I<path of libaoclutils include directory>

Using Dynamic/Shared Library:

gcc -std=gnu11 test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries> 
-l:libaoclutils.so -I<path of libaoclutils include directory>

g++ -std=gnu++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils 
binaries> -l:libaoclutils.so -I<path of libaoclutils include directory>



154 AOCL-Utils Chapter 15

 

57404 Rev. 4.2 February 2024AOCL User Guide

• AOCC Clang/Clang++ Compilers:

15.3.5 Output

Finally, run test_c_application.exe or test_cpp_application.exe on system and that’ll give the 
following output:

15.3.6 Integrate with Other Libraries/Applications

Following are the build systems to integrate in library/application with AOCL-Utils:

• CMAKE:

In the CMake file, use the following: 

– TARGET_INCLUDE_DIRECTORIES() – path of libaoclutils include directory
– TARGET_LINK_LIBRARIES() – path to link libaoclutils binaries

• Make:

In the compiler flags of Make file, use the following:

– “–I” - path of libaoclutils include directory
– “-l, -L” - path to link libaoclutils binaries

Using Static Library:

clang -std=c11 test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries> 
-l:libaoclutils.a -lstdc++ -I<path of libaoclutils include directory>

clang++ -std=c++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils 
binaries> -l:libaoclutils.a -I<path of libaoclutils include directory>

Using Dynamic/Shared Library:

clang -std=c11 test_c_application.c -o test_c_application.exe -L<path of libaoclutils binaries> 
-l:libaoclutils.so -I<path of libaoclutils include directory>

clang++ -std=c++17 test_cpp_application.cc -o test_cpp_application.exe -L<path of libaoclutils 
binaries> -l:libaoclutils.so -I<path of libaoclutils include directory>

Is CPU based on AMD Zen: true for AMD Zen based CPU.
Is CPU based on AMD Zen: false for other non-AMD Zen based CPU.



Chapter 16 AOCL Tuning Guidelines 155

 

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 16 AOCL Tuning Guidelines

This section provides tuning recommendations for AOCL.

16.1 AOCL-BLAS Thread Control

Application can set the desired number of threads during AOCL-BLAS initialization and runtime as 
explained below.

16.1.1 AOCL-BLAS Initialization

During AOCL-BLAS initialization, the preferred number of threads by an application in the BLAS 
routines can be set in multiple ways as follows:

• bli_thread_set_num_threads(nt) AOCL-BLAS library API

• Valid value of BLIS_NUM_THREADS environment variable

• omp_set_num_threads(nt) OpenMP library API

• Valid value of OMP_NUM_THREADS environment variable

• If none of these is issued by an application, the number of logical cores would be used by the 
AOCL-BLAS library as the preferred number of threads

If the number of threads is set in one or more possible ways, the order of precedence for AOCL would 
be in the above mentioned order.



156 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.2 February 2024AOCL User Guide

The following table describes the sample scenarios for setting the number of threads during AOCL-
BLAS initialization:

16.1.2 Runtime

Once the number of threads is set during AOCL-BLAS initialization, it will be used in subsequent 
BLAS routine execution until the application modifies the number of threads (for example, 
omp_set_num_threads() API) to be used.

Table 29. Sample Scenarios - 1

Sample Pseudo Code 
for Application

Sample Command 
Executed

Number of 
Threads Set 

During 
AOCL-
BLAS 

Initialization

Remarks

int main()
{

 ////pseudo 
code to use OpenMP 
API to set number of 
threads //////

 
omp_set_num_threads(
16);

 dgemm_( );
 ////////////
 return 0;

}

$ 
BLIS_NUM_THREADS=8 
./my_blis_program

8 BLIS_NUM_THREADS will have the 
maximum precedence.

$ ./
my_blis_program

16 BLIS_NUM_THREADS is not set and 
hence, omp_set_num_threads(16) has 
taken effect.

$ 
OMP_NUM_THREADS=4 
./my_blis_program

16 BLIS_NUM_THREADS is not set, 
omp_set_num_threads(16) has taken effect 
as it has more precedence than 
OMP_NUM_THREADS.

$ 
BLIS_NUM_THREADS=8 
OMP_NUM_THREADS=4 
./my_blis_program

8 BLIS_NUM_THREADS is set to 8, 
omp_set_num_threads(nt) and 
OMP_NUM_THREADS do not have any 
effect.

int main()
{

 ////pseudo 
code //////

 dgemm_( );
 ////////////
 return 0;

}

$ 
BLIS_NUM_THREADS=8 
./my_blis_program

8 BLIS_NUM_THREADS will have the 
maximum precedence.

$ ./
my_blis_program

64 BLIS_NUM_THREADS is not set, 
omp_set_num_threads() is not issued, and 
OMP_NUM_THREADS is not set, 
Considering the number of logical cores to 
be 64, number of threads is 64.

$ 
OMP_NUM_THREADS=4 
./my_blis_program

4 BLIS_NUM_THREADS is not set, 
omp_set_num_threads() is not issued, and 
OMP_NUM_THREADS is set to 4.



Chapter 16 AOCL Tuning Guidelines 157

 

AOCL User Guide57404 Rev. 4.2 February 2024

The following table describes the sample scenarios for setting the number of threads during runtime:

16.1.2.1 Runtime Thread Control

AOCL-BLAS libraries that are multi-threaded using OpenMP parallelism provide two mechanisms 
for the users to control the number of threads for AOCL-BLAS functions to use. These are the normal 
OpenMP mechanisms and AOCL-BLAS specific environment variables and function calls. The 
AOCL-BLAS specific mechanisms include the option to set the overall number of threads for AOCL-
BLAS to use or to set the threading specifically for the different loops within the AOCL-BLAS3 
routines (for example, DGEMM). These are called the automatic and the manual ways respectively. 
For more information, refer to:

https://github.com/amd/blis/blob/master/docs/Multithreading.md 

Table 30. Sample Scenarios - 2

Sample Pseudo Code for 
Application

Sample Command 
Executed m

Number of 
Threads for 

this BLAS Call
Remarks

int main()
{
////Pseudo code for 
sample usage of OpenMP 
API to set number of 
threads in the 
Application during Run 
Time//////

 do { 
if(m < 500) 

omp_set_num_threads(8);
 if(m >= 

500) 
omp_set_num_threads(16);

  if(m >= 
3000) 
omp_set_num_threads(32);

dgemm_( );
 } 

while(test_case_counter-
-)
 ////////////
 return 0;
}

$./my_blis_program 100 8 Application issued 
omp_set_num_threa
ds(8)

500 16 Application issued 
omp_set_num_threa
ds(16)

200 8 Application re-issued 
omp_set_num_threa
ds(8)

4000 32 Application issued 
omp_set_num_threa
ds(32)

1000 16 Application re-issued 
omp_set_num_threa
ds(16)

500 16 Application re-issued 
omp_set_num_threa
ds(16)

100 8 Application re-issued 
omp_set_num_threa
ds(8)

https://github.com/amd/blis/blob/master/docs/Multithreading.md


158 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.2 February 2024AOCL User Guide

The order of precedence used in AOCL-BLAS, where set or called by the user, is as follows:

1. The AOCL-BLAS manual way values set using bli_thread_set_ways() by the application.

2. Valid value(s) of any of the BLIS_*_NT environment variables.

3. Value set using bli_thread_set_num_threads(nt) by the application.

4. Valid value set for the environment variable BLIS_NUM_THREADS.

5. omp_set_num_threads(nt) issued by the application.

6. Valid value set for the environment variable OMP_NUM_THREADS.

7. The default number of threads used by the chosen OpenMP runtime library when 
OMP_NUM_THREADS is not set.

Two other factors may override these settings:

1. OpenMP parallelism at higher level(s) in the code calling AOCL-BLAS, that is, the number of 
active levels and the level at which the AOCL-BLAS call occurs.

2. The effect of AOCL Dynamic (if enabled), as described in the next section.

Note: From AOCL 4.1, support for calling AOCL-BLAS within nested OpenMP parallelism has 
been improved. Hence, using the standard OpenMP mechanisms should be sufficient for most 
of the use cases.

16.2 AOCL Dynamic

The AOCL dynamic feature enables AOCL-BLAS to dynamically change the number of threads. 

This feature is enabled by default, however, it can be enabled or disabled at the configuration time 
using the options --enable-aocl-dynamic and --disable-aocl-dynamic respectively. 

You can also specify the preferred number of threads using the environment variables 
BLIS_NUM_THREADS or OMP_NUM_THREADS, BLIS_NUM_THREADS takes precedence if 
both of them are specified. 

The following table summarizes how the number of threads is determined based on the status of 
AOCL Dynamic and the user configuration using the variable BLIS_NUM_THREADS:
Table 31. AOCL Dynamic
AOCL Dynamic BLIS_NUM_THREADS Number of Threads Used by AOCL-BLAS

Disabled Unset Number of Cores.
Disabled Set BLIS_NUM_THREADS
Enabled Unset Number of threads determined by AOCL Dynamic.
Enabled Set Minimum of BLIS_NUM_THREADS or the number of 

threads determined by AOCL. 



Chapter 16 AOCL Tuning Guidelines 159

 

AOCL User Guide57404 Rev. 4.2 February 2024

16.2.1 Limitations

The AOCL Dynamic feature has the following limitations:

• Support only for OpenMP Threads

• Supports only DGEMM, ZGEMM, DTRSM, ZTRSM, DGEMMT, DSYRK, DTRMM, SGEMV, 
DSCAL, ZDSCAL, DDOT, DNRM2, DZNRM2, and DAXPY APIs

• Specifying the number of threads more than the number of cores may result in deteriorated 
performance because of over-utilization of cores

• Based on the input parameters (such as size, transpose, and storage format), optimal code path for 
the given number of threads would be executed. This can be single-threaded even if the number of 
threads set is more than 1. 

16.3 AOCL-BLAS DGEMM Multi-thread Tuning

AOCL-BLAS library can be used on multiple platforms and applications. Multi-threading adds more 
configuration options at runtime. This section explains the number of threads and CPU affinity 
settings that can be tuned to get the best performance for your requirements. 

16.3.1 Library Usage Scenarios

• The application and library are single-threaded:

This is straight forward - no special instructions needed. You can export 
BLIS_NUM_THREADS=1 indicating you are running AOCL-BLAS in a single-thread mode. If 
both BLIS_NUM_THREADS and OMP_NUM_THREADS are set, the former will take 
precedence over the later.

• The application is single-threaded and the library is multi-threaded:

You can either use OMP_NUM_THREADS or BLIS_NUM_THREADS to define the number of 
threads for the library. However, it is recommend that you use BLIS_NUM_THREADS.

Example: 

$ export BLIS_NUM_THREADS=128 // Here, AOCL-BLAS runs at 128 threads. 

Apart from setting the number of threads, you must pin the threads to the cores using 
GOMP_CPU_AFFINITY or numactl as follows:

Note: For the Clang compiler, it is mandatory to use OMP_PROC_BIND=true in addition to 
the thread pinning (if numactl is used). For example, for a matrix size of 200 and 32 

$ BLIS_NUM_THREADS=128 GOMP_CPU_AFFINITY=0-127 <./application>

Or

$ BLIS_NUM_THREADS=128 GOMP_CPU_AFFINITY=0-127 numactl --i=all <./application>
$ BLIS_NUM_THREADS=128 numactl -C 0-127 --interleave=all <./test_application.x>



160 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.2 February 2024AOCL User Guide

threads, if you run DGEMM without OMP_PROC_BIND settings, the performance 
would be less. However, if you start using OMP_PROC_BIND=true, the performance 
would improve. This problem is not noticed with libgomp using gcc compiler. For the 
gcc compiler, the processor affinity defined using numactl is sufficient.

• The application is multi-threaded and the library is running a single-thread:

When the application is running multi-thread and number of threads are set using 
OMP_NUM_THREADS, it is mandatory to set BLIS_NUM_THREADS to one. Otherwise, 
AOCL-BLAS will run in multi-threaded mode with the number of threads equal to 
OMP_NUM_THREADS. This may result in a poor performance. 

• The application and library are both multi-threaded:

This is a typical scenario of nested parallelism. To individually control the threading at 
application and at the AOCL-BLAS library level, use both OMP_NUM_THREADS and 
BLIS_NUM_THREADS.

– The number of threads launched by the application is OMP_NUM_THREADS.
– Each application thread spawns BLIS_NUM_THREADS threads.
– To get a better performance, ensure that Number of Physical Cores = OMP_NUM_THREADS 

* BLIS_NUM_THREADS.
Thread pinning for the application and the library can be done using OMP_PROC_BIND:

OMP_PROC_BIND=spread,close 

At an outer level, the threads are spread and at the inner level, the threads are scheduled closer to 
their master threads. This scenario is useful for a nested parallelism, where the application is 
running at say OMP_NUM_THREADS and each thread is calling multi-threaded AOCL-BLAS.

16.3.2 Architecture Specific Tuning

16.3.2.1 2nd and 3rd Gen AMD EPYCTM Processors

To achieve the best DGEMM multi-thread performance on 2nd Gen AMD EPYCTM processors 
(codenamed "Rome") and 3rd Gen AMD EPYCTM processors (codenamed "Milan”), execute one of 
the following commands:

Thread Size up to 16 (< 16)

Thread Size above 16 (>= 16)

$ OMP_NUM_THREADS=4 BLIS_NUM_THREADS=8 OMP_PROC_BIND=spread,close <./application>

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT>./test_gemm_blis.x

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x



Chapter 16 AOCL Tuning Guidelines 161

 

AOCL User Guide57404 Rev. 4.2 February 2024

16.3.2.2 1st Gen AMD EPYCTM Processors

To achieve the best DGEMM multi-thread performance on the 1st Gen AMD EPYCTM processors 
(codenamed "Naples"), complete the following steps:

The header file bli_family_zen.h in the AOCL-BLAS source directory \\blis\config\zen defines certain 
macros that help control the block sizes used by AOCL-BLAS. 

The required tuning settings vary depending on the number threads that the application linked to 
AOCL-BLAS runs.

Thread Size upto 16 (< 16)

1. Enable the macro BLIS_ENABLE_ZEN_BLOCK_SIZES in the file bli_family_zen.h.

2. Compile AOCL-BLAS with multi-thread option as mentioned in “Multi-thread AOCL-BLAS” on 
page 26.

3. Link the generated AOCL-BLAS library to your application and execute it.

4. Run the application:

Thread Size above 16 (>= 16)

1. Disable the macro BLIS_ENABLE_ZEN_BLOCK_SIZES in the file bli_family_zen.h.

2. Compile AOCL-BLAS with the multi-thread option as mentioned in “Multi-thread AOCL-
BLAS” on page 26.

3. Link the generated AOCL-BLAS library to your application.

4. Set the following OpenMP and memory interleaving environment settings:

5. Run the application.

Example: 

16.4 AOCL-BLAS DGEMM Block-size Tuning

AOCL-BLAS DGEMM performance is largely impacted by the block sizes used by AOCL-BLAS. A 
matrix multiplication of large m, n, and k dimensions is partitioned into sub-problems of the specified 
block sizes. 

Many HPC, scientific applications, and benchmarks run on high-end cluster of machines, each with 
multiple cores. They run programs with multiple instances through Message Passing Interface (MPI) 
based APIs or separate instances of each program. Depending on whether the application using 

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> ./test_gemm_blis.x

OMP_PROC_BIND=spread
BLIS_NUM_THREADS = x     // x> 16
numactl --interleave=all

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x



162 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.2 February 2024AOCL User Guide

AOCL-BLAS is running in multi-instance mode or single instance, the specified block sizes will have 
an impact on the overall performance.

The default values for the block size in AOCL-BLAS GitHub repository (https://github.com/amd/
blis) is set to extract the best performance for such HPC applications/benchmarks, which use single-
threaded AOCL-BLAS and run in multi-instance mode on AMD EPYCTM AMD “Zen” core 
processors. However, if your application runs as a single instance, the block sizes for an optimal 
performance would vary. 

The following settings will help you choose the optimal values for the block sizes based on the way 
the application is run:

2nd Gen AMD EPYCTM Processors (codenamed "Rome")

1. Open the file bli_family_zen2.h in the AOCL-BLAS source:

2. For applications/benchmarks running in multi-instance mode and using multi-threaded AOCL-
BLAS, ensure that the macro AOCL_BLIS_MULTIINSTANCE is set to 0. As of AOCL 2.x 
release, this is the default setting. The HPL benchmark is found to generate better performance 
numbers using the following setting for multi-threaded AOCL-BLAS:

1st Gen AMD EPYCTM Processors (codenamed "Naples")

1. Open the file bli_cntx_init_zen.c under the AOCL-BLAS source:

$ cd “config/zen2/ bli_family_zen2.h”

#define AOCL_BLIS_MULTIINSTANCE         0

$ cd “config/zen/bli_family_zen.h”

https://github.com/amd/blis


Chapter 16 AOCL Tuning Guidelines 163

 

AOCL User Guide57404 Rev. 4.2 February 2024

2. Ensure the macro, BLIS_ENABLE_ZEN_BLOCK_SIZES is defined:

Multi-instance Mode

For applications/benchmarks running in multi-instance mode, ensure that the macro 
BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES is set to 0. As of AOCL 2.x release, 
following is the default setting:

The optimal block sizes for this mode on AMD EPYCTM are defined in the file config/zen/
bli_cntx_init_zen.c:

Single-instance Mode

For the applications running as a single instance, ensure that the macro 
BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES is set to 1:

The optimal block sizes for this mode on AMD EPYCTM are defined in the file config/zen/
bli_cntx_init_zen.c:

16.5 Performance Suggestions for Skinny Matrices

AOCL-BLAS provides a selective packing for GEMM when one or two-dimensions of a matrix is 
exceedingly small. Selective packing is only applicable when sup is enabled. For an optimal 
performance:

16.6 AOCL-LAPACK Multi-threading

From AOCL 4.0 release, AOCL-LAPACK supports multi-threading using OpenMP in selected APIs. 
This feature is enabled by default when AOCL-LAPACK is compiled 
withENABLE_AMD_FLAGS=ON orENABLE_AMD_AOCC_FLAGS=ON. However, you can 
disable multi-threading by settingENABLE_MULTITHREADING=NO.

#define BLIS_ENABLE_ZEN_BLOCK_SIZES

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES         0

bli_blksz_init_easy( &blkszs[ BLIS_MC ],   144,  240,   144,    72 );
bli_blksz_init_easy( &blkszs[ BLIS_KC ],   256,  512,   256,   256 );
bli_blksz_init_easy( &blkszs[ BLIS_NC ],  4080,  2040,  4080,  4080 );

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES         1

bli_blksz_init_easy( &blkszs[ BLIS_MC ],   144,  510,   144,    72 );
bli_blksz_init_easy( &blkszs[ BLIS_KC ],   256,  1024,   256,   256 );
bli_blksz_init_easy( &blkszs[ BLIS_NC ],  4080,  4080,  4080,  4080 );

C = beta*C + alpha*A*B
Dimension (Dim) of A – m x k          Dim(B) – k x n            Dim(c) – m x n
Assume row-major.
IF m >> n
$BLIS_PACK_A=1 ./test_gemm_blis.x – will give a better performance.
IF m << n
$BLIS_PACK_B=1 ./test_gemm_blis.x – will give a better performance.



164 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.2 February 2024AOCL User Guide

The selected LAPACK interface APIs that support multi-threading automatically choose optimal 
number of threads. However, you can explicitly set the number of threads through the environment 
variable or OpenMP runtime APIs. In such a scenario, the number of threads is selected as follows:

16.7 AOCL-FFTW Tuning Guidelines

Following are the tuning guidelines to get the best performance out of AMD optimized FFTW:

• Use the configure option --enable-amd-opt to build the targeted library. This option enables all the 
improvements and optimizations meant for AMD EPYCTM CPUs. 

This is the mandatory master optimization switch that must be set for enabling any other optional 
configure options, such as:
– --enable-amd-mpifft
– --enable-amd-mpi-vader-limit
– --enable-amd-trans
– --enable-amd-fast-planner
– --enable-amd-top-n-planner
– --enable-amd-app-opt
– --enable-dynamic-dispatcher

• When enabling the AMD CPU specific improvements with the configure option --enable-amd-opt, 
do not use the configure option --enable-generic-simd128 or --enable-generic-simd256.

• An optional configure option --enable-amd-trans is provided and it may benefit the performance 
of transpose operations in the case of very large FFT problem sizes. This feature is to be used only 
when running in single-thread and single instance mode.

• Use the configure option --enable-amd-mpifft to enable MPI FFT related optimizations. This is 
provided as an optional parameter and will benefit most of the MPI problem types and sizes.

• An optional configure option --enable-amd-mpi-vader-limit that controls enabling of AMD's new 
MPI transpose algorithms is supported. When using this configure option, you must set --mca 
btl_vader_eager_limit appropriately (current preference is 65536) in the MPIRUN command.

• You can enable AMD optimized fast planner using the optional configure option --enable-amd-
fast-planner. You can use this option to reduce the planning time without much trade-off in the 
performance. It is supported for single and double precisions.

• To minimize single-threaded run-to-run variations, you can enable the planner feature Top N 
planner using configure option --enable-amd-top-n-planner. It works by employing WISDOM 

Thread Criteria Threads Used by API

 User specified threads > AOCL-LAPACK 
computed optimal threads

AOCL-LAPACK computed optimal threads 

User specified threads < AOCL-LAPACK 
computed optimal threads

User specified threads



Chapter 16 AOCL Tuning Guidelines 165

 

AOCL User Guide57404 Rev. 4.2 February 2024

feature to generate and reuse a set of top N plans for the given size (wherein the value of N is 
currently set to 3). It is supported for only single-threaded execution runs.

• For best performance, use the PATIENT planner flag of FFTW.

A sample running of FFTW bench test application with PATIENT planner flag is as follows:

Where, -s option is for speed/performance run and icf options stand for in-place, complex data-
type, and forward transform.

• When configured with --enable-openmp and running multi-threaded test, set the OpenMP variables 
as:

Then, run the test bench executable binary using numactl as follows:

Where, numactl --interleave=0,1,2,3 sets the memory interleave policy on nodes 0, 1, 2, and 3.

• When running MPI FFTW test, set the appropriate MPI mapping, binding, and rank options.

For example, to run 64 MPI rank FFTW on a 64-core AMD EPYCTM processor, use:

• Use the configure option --enable-amd-app-opt to enable AMD’s application optimization layer in 
AOCL-FFTW to help uplift performance of various HPC and scientific applications. For more 
information, refer “AOCL-FFTW” on page 169.

• To build a single portable optimized library that can run on a wide range of CPU architectures, a 
dynamic dispatcher feature is implemented. Use --enable-dynamic-dispatcher configure option to 
enable this feature for Linux-based systems. The set of x86 CPUs on which the single portable 
library can work depends on the highest level of CPU SIMD instruction set with which it is 
configured.

$ ./bench -opatient -s icf65536

set OMP_PROC_BIND=TRUE
OMP_PLACES=cores

numactl --interleave=0,1,2,3 ./bench -opatient -onthreads=64 -s icf65536

mpirun --map-by core --rank-by core --bind-to core -np 64 ./mpi-bench -opatient -s icf65536



166 Support Chapter 17

 

57404 Rev. 4.2 February 2024AOCL User Guide

Chapter 17 Support

For support options, the latest documentation, and downloads refer to AMD Developer Central 
(https://www.amd.com/en/developer/aocl.html).

https://www.amd.com/en/developer/aocl.html


Chapter 18 References 167

 

AOCL User Guide57404 Rev. 4.2 February 2024

Chapter 18 References

The following URLs have been used as references for this document:

• https://www.amd.com/en/developer/aocl.html

• http://www.netlib.org 

• http://www.netlib.org/benchmark/hpl/ 

• https://dl.acm.org/citation.cfm?id=2764454 

• https://github.com/flame/blis 

• http://fftw.org/ 

• http://mumps-solver.org/ 

• https://spack.io/ 

https://www.amd.com/en/developer/aocl.html
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org
https://dl.acm.org/citation.cfm?id=2764454
https://github.com/flame/blis
http://fftw.org/
http://mumps-solver.org/
https://spack.io/
https://www.amd.com/en/developer/aocl.html


168 Appendix

 

57404 Rev. 4.2 February 2024AOCL User Guide

Appendix 

Check AMD Server Processor Architecture

On Linux

To identify your AMD processor's generation, perform the following steps on Linux:

1. Run the command:

2. Check the values of CPU family and Model fields:

a. For 1st Gen AMD EPYCTM Processors (codenamed “Naples”), CPU Core AMD “Zen”
– CPU Family: 23
– Model: Values in the range <1 – 47>

b. For 2nd Gen AMD EPYCTM Processors (codenamed “Rome”), CPU Core AMD “Zen2”
– CPU Family: 23
– Model: Values in the range <48 – 63>

c. For 3rd Gen AMD EPYCTM Processors (codenamed “Milan”), CPU Core AMD “Zen3”
– CPU Family: 25
– Model: Values in the range <1 – 15>

d. For 4th Gen AMD EPYCTM Processors (codenamed “Genoa”), CPU Core AMD “Zen4”
– CPU Family: 25
– Model: Values in the range <16–31, 96-111, 120-123, 160-175>

On Windows

To identify your AMD processor's generation, perform the following steps on Windows:

1. Run the command in Windows Command Prompt:

2. Check the values of CPU family and Model fields:

a. For 1st Gen AMD EPYCTM Processors (codenamed “Naples”), CPU Core AMD “Zen”
– CPU Family: 23
– Model: Values in the range <1 – 47>

b. For 2nd Gen AMD EPYCTM Processors (codenamed “Rome”), CPU Core AMD “Zen2”
– CPU Family: 23
– Model: Values in the range <48 – 63>

$ lscpu

wmic cpu get caption



Appendix 169

 

AOCL User Guide57404 Rev. 4.2 February 2024

c. For 3rd Gen AMD EPYCTM Processors (codenamed “Milan”), CPU Core AMD “Zen3”
– CPU Family: 25
– Model: Values in the range <1 – 15>

d. For 4th Gen AMD EPYCTM Processors (codenamed “Genoa”), CPU Core AMD “Zen4”
– CPU Family: 25
– Model: Values in the range <16–31, 96-111, 120-123, 160-175>

Application Notes

AOCL-BLAS

If you prefer to build the application or the test suite executable with the pre-built static library (from 
the package) on Windows, both the instances of "#define BLIS_ENABLE_SHARED" must be 
commented out in the header file blis.h.

AOCL-FFTW

• Quad precision is supported in AOCL-FFTW using the AOCC v2.2 compiler (AMD clang 
version 10 onwards).

• Feature AMD application optimization layer has been introduced in AOCL-FFTW to uplift the 
performance of various HPC and scientific applications. 

– The configure option --enable-amd-app-opt enables this optimization layer and must be used 
with the master optimization configure switch --enable-amd-opt mandatorily.

– This optimization layer is supported for complex and real (r2c and c2r) DFT problem types in 
double and single precisions.

– Not supported for MPI FFTs, real r2r DFT problem types, Quad or Long double precisions, and 
split array format.


	Contents
	List of Tables
	List of Figures
	Revision History
	Chapter 1 Introduction
	1.1 Feature Support Matrix

	Chapter 2 Validation Matrix
	2.1 Operating Systems
	2.2 Compilers
	2.3 Library
	2.4 Message Passing Interface (MPI)
	2.5 Programming Language
	2.6 Build Utilities

	Chapter 3 Installing AOCL
	3.1 Building from Source
	3.2 Installing AOCL Binary Packages
	3.2.1 Using Master Package
	3.2.2 Using Library Package
	3.2.3 Using Debian and RPM Packages
	3.2.4 Using Windows Packages


	Chapter 4 AOCL-BLAS
	4.1 Installation on Linux
	4.1.1 Build AOCL-BLAS from Source
	4.1.2 Using Pre-built Binaries

	4.2 Application Development Using AOCL-BLAS
	4.2.1 API Compatibility Layers (Calling AOCL-BLAS)
	4.2.2 API Compatibility - Advance Options
	4.2.3 Linking Application with AOCL-BLAS
	4.2.4 AOCL-BLAS Usage in Fortran
	4.2.5 AOCL-BLAS Usage in C

	4.3 Migrating/Porting
	4.4 Using AOCL-BLAS Library Features
	4.4.1 Dynamic Dispatch
	4.4.2 AOCL-BLAS - Running the Test Suite
	4.4.3 Testing/Benchmarking
	4.4.4 AOCL-BLAS Utility APIs

	4.5 Debugging and Troubleshooting
	4.5.1 Error Handling in AOCL-BLAS
	4.5.2 Debugging Build Using GDB
	4.5.3 Viewing Logs
	4.5.4 Checking AOCL-BLAS Operation Progress

	4.6 Build AOCL-BLAS from Source on Windows
	4.6.1 Building AOCL-BLAS using GUI
	4.6.2 Building AOCL-BLAS using Command-line Arguments
	4.6.3 Packaging AOCL -BLAS
	4.6.4 Building and Running the Test Suite

	4.7 LPGEMM in AOCL-BLAS
	4.7.1 Add-on in AOCL-BLAS
	4.7.2 API Naming and Arguments
	4.7.3 Post-operations
	4.7.4 APIs and Post-ops in aocl_gemm
	4.7.5 Enabling aocl_gemm Add-on
	4.7.6 Sample Application 1
	4.7.7 Sample Application 2


	Chapter 5 AOCL-LAPACK
	5.1 Installing on Linux
	5.1.1 Building AOCL-LAPACK from Source
	5.1.2 Using Pre-built Libraries

	5.2 Usage on Linux
	5.2.1 Use by Applications

	5.3 Building AOCL-LAPACK from Source on Windows
	5.3.1 Building AOCL-LAPACK Using GUI
	5.3.2 Building AOCL-LAPACK using Command-line Arguments
	5.3.3 Building and Running Test Suite

	5.4 Checking AOCL-LAPACK Operation Progress

	Chapter 6 AOCL-FFTW
	6.1 Installing
	6.1.1 Building AOCL-FFTW from Source on Linux
	6.1.2 Building AOCL-FFTW from Source on Windows
	6.1.3 Using Pre-built Libraries

	6.2 Usage
	6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW
	6.2.2 Sample Programs for MPI FFTW
	6.2.3 Additional Options


	Chapter 7 AOCL-LibM
	7.1 Library Contents
	7.1.1 Scalar Functions
	7.1.2 Fast Scalar and Vector Variants

	7.2 Installation
	7.2.1 Installing the Pre-Built Binaries on Linux
	7.2.2 Building AOCL-LibM on Linux
	7.2.3 Building AOCL-LibM on Windows

	7.3 Using AOCL-LibM

	Chapter 8 AOCL-ScaLAPACK
	8.1 Installation
	8.1.1 Building AOCL-ScaLAPACK from Source on Linux
	8.1.2 Using Pre-built Libraries

	8.2 Usage
	8.3 Building AOCL-ScaLAPACK from Source on Windows
	8.3.1 Building AOCL-ScaLAPACK Using GUI
	8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments
	8.3.3 Building and Running the Individual Tests

	8.4 Checking AOCL-ScaLAPACK Operation Progress
	8.5 Additional Features

	Chapter 9 AOCL-RNG
	9.1 Installation
	9.2 Using AOCL-RNG Library on Linux
	9.3 Using AOCL-RNG Library on Windows

	Chapter 10 AOCL-SecureRNG
	10.1 Installation
	10.2 Usage
	10.3 Using AOCL-SecureRNG Library on Windows

	Chapter 11 AOCL-Sparse
	11.1 Installation
	11.1.1 Building AOCL-Sparse from Source on Linux
	11.1.2 Building AOCL-Sparse from Source on Windows
	11.1.3 Using Pre-built Libraries

	11.2 Usage
	11.2.1 Use by Applications on Linux
	11.2.2 Use by Application on Windows
	11.2.3 Performance Benchmarking on Linux
	11.2.4 Performance Benchmarking on Windows
	11.2.5 Running the Test Suite


	Chapter 12 AOCL-LibMem
	12.1 Building AOCL-LibMem for Linux
	12.2 Running an Application
	12.3 Running an Application with Tunables
	12.3.1 Default State
	12.3.2 Tuned State


	Chapter 13 AOCL-Cryptography
	13.1 Requirements
	13.2 Installation
	13.2.1 Building AOCL-Cryptography from Source on Linux
	13.2.2 Building AOCL-Cryptography from Source on Windows

	13.3 Using AOCL-Cryptography in a Sample Application
	13.3.1 Compiling and Running Examples
	13.3.2 AOCL-Cryptography Library Provider for OpenSSL
	13.3.3 Integrating AOCL Libraries with Applications that Use IPP


	Chapter 14 AOCL-Compression
	14.1 Installation
	14.1.1 Using Pre-built Libraries
	14.1.2 Building from Source

	14.2 Running AOCL-Compression Test Bench on Linux
	14.3 Running AOCL-Compression Test Bench on Windows
	14.4 API Reference
	14.4.1 Unified Standardized API Set
	14.4.2 Interface Data Structures
	14.4.3 Library Return Error Codes
	14.4.4 Multi-threaded API Set
	14.4.5 Native APIs
	14.4.6 Example Program

	14.5 Optional Optimization Options

	Chapter 15 AOCL-Utils
	15.1 Requirements
	15.2 Clone and Build the AOCL-Utils Library
	15.3 Using AOCL-Utils
	15.3.1 C API Example
	15.3.2 C++ API Example
	15.3.3 Building on Windows
	15.3.4 Building on Linux
	15.3.5 Output
	15.3.6 Integrate with Other Libraries/Applications


	Chapter 16 AOCL Tuning Guidelines
	16.1 AOCL-BLAS Thread Control
	16.1.1 AOCL-BLAS Initialization
	16.1.2 Runtime

	16.2 AOCL Dynamic
	16.2.1 Limitations

	16.3 AOCL-BLAS DGEMM Multi-thread Tuning
	16.3.1 Library Usage Scenarios
	16.3.2 Architecture Specific Tuning

	16.4 AOCL-BLAS DGEMM Block-size Tuning
	16.5 Performance Suggestions for Skinny Matrices
	16.6 AOCL-LAPACK Multi-threading
	16.7 AOCL-FFTW Tuning Guidelines

	Chapter 17 Support
	Chapter 18 References
	Appendix
	Check AMD Server Processor Architecture
	On Linux
	On Windows

	Application Notes
	AOCL-BLAS
	AOCL-FFTW



