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Chapter 1: ZenDNN
The latest ZenDNN 5.0.1 is here!

ZenDNN 5.0.1 is a minor release building upon the major ZenDNN 5.0 release. This upgrade continues
the focus on optimizing inference performance with Recommender Systems and Large Language Models
on AMD EPYC™ CPUs. ZenDNN includes AMD EPYC™ enhancements for bfloat16 performance,
expanded support for cutting-edge models like Llama 3.1 and 3.2, Microsoft Phi, and more as well as
support for INT4 quantized datatype. This includes the advanced Activation-Aware Weight Quantization
(AWQ) algorithm.

Under the hood, ZenDNN’s enhanced AMD-specific optimizations operate at every level. In addition
to highly optimized operator microkernels, these include comprehensive graph optimizations including
pattern identification, graph reordering, and fusions.

Notable improvements include optimized embedding bag kernels and enhanced zenMatMul matrix
splitting strategies, both designed to maximize throughput and minimize latency.

The result? Enhanced performance with respect to the vanilla frameworks. Beyond its powerful
optimizations, the ZenDNN plug-ins offer broad compatibility, seamlessly integrating with popular
frameworks like TensorFlow and PyTorch.

1.1  Scope
The ZenDNN library and plug-ins have been developed to enable Deep Learning inference on AMD
EPYC™ CPUs. The library offers optimized primitives, such as EmbeddingBag operators, Matrix
multiplications and related fusions, Elementwise operations, Attention operators and Pool (Max and
Average) that improve the performance of many transformer-based models, recommender system
models, convolutional neural networks, and recurrent neural networks. For the primitives not supported
by ZenDNN, execution will fall back to the native path of the framework.

1.2  Release Highlights
ZenDNN 5.0.1

• Compatibility with Deep-learning Frameworks: Fully aligned with PyTorch 2.5 and TensorFlow
2.18, ensuring smooth upgrades and interoperability.

• Efficient Model Execution: Added support for INT8/INT4-quantized DLRM models in zentorch,
unlocking faster inference with lower memory usage compared to BF16-precision. This release
supports the MLPerf version of DLRMv2; support for generic models will be added in the next
release.
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Native Framework Support

• The ZenDNN library is based on oneDNN v2.6.3

• The ZenDNN library can be used in the following frameworks through a plug-in:

• TensorFlow v2.16 and later

Note: The ZenDNN 5.0.1 plug-in for TensorFlow is optimized to give the best performance
with TensorFlow v2.18.

• PyTorch v2.2 to v2.5.

Note: The ZenDNN 5.0.1 plug-in for PyTorch is optimized to give the best performance with
PyTorch v2.5.0.

• In ZenDNN 5.0, the ZenDNN library is directly integrated with ONNX Runtime v1.19.2. As of
ZenDNN 5.0.1, support for ONNXRT has been temporarily paused.

Note: In this document, we refer to the ZenDNN plug-in for TensorFlow as zentf, and the ZenDNN
plug-in for PyTorch as zentorch.

• Wheel Files

• zentorch wheel files (*.whl) have been generated using:

• Python v3.9-v3.12

• PyTorch v2.5.0

• zentf wheel files (*.whl) have been generated using:

• Python v3.9-v3.12

• TensorFlow v2.18

For the latest information on the ZenDNN release and installers, visit AMD Developer Central.

Highlights of Previous Major Release ZenDNN 5.0

• Support for the Zen5 family of AMD EPYC™ processors, codenamed Turin

• Compatibility with AOCL BLIS 5.0

• AMD EPYC™ specific enhancements to matmul operators and related fusions, specifically for BF16
precision

• An auto-tuning algorithm BF16:0 specifically targeting generative LLM models. Support for weight
only quantization (WOQ) with INT4 weights and BF16 activations for LLMs; ZenDNN 5.0 natively
supports models optimized and exported using the AMD Quantizer Quark.

• AMD EPYC™ specific enhancements for WOQ matmul operators and related fusions

• Performance enhancements targeted at generative LLM models using the function
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zentorch.llm.optimize( ) available in the ZenDNN PyTorch plug-in; this function contains
additive AMD EPYC™ specific optimizations on top of the x86 optimizations available in
ipex.llm.optimize()

• An optimized Scalar Dot Product Attention (SDPA) operator in the PyTorch plug-in, including KV
cache performance optimizations tailored to AMD EPYC™ cache architectures

• Support for BF16 precision for Recommender System models in the PyTorch plug-in

• Graph optimization and pattern matching improvements in the PyTorch plug-in

1.3  High-level Overview
This high-level block diagram of the ZenDNN inference stack depicts how the ZenDNN library interfaces
with the ZenDNN plug-in for PyTorch (zentorch) and the ZenDNN plug-in for TensorFlow (zentf). The
ZenDNN library uses the AOCL-BLIS library internally, as well as other third-party libraries such as
FBGEMM.

Figure 1.1: ZenDNN Software Stack

1.4  Build from Source
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This GitHub page provides instructions to install the ZenDNN software stack using the Build from
Source option. 
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Chapter 2: PyTorch
The ZenDNN plug-in for PyTorch (zentorch) enables inference optimizations for deep learning workloads
on AMD EPYC™ CPUs. It uses the ZenDNN library, which contains deep learning operators tailored for
high performance on AMD EPYC™ CPUs. The zentorch extension to PyTorch has been developed to
leverage the torch.compile graph compilation flow, and all optimizations can be enabled by a call to
torch.compile with zentorch as the backend. Multiple passes of graph level optimizations run on the
torch.fx graph and provide further performance acceleration.

2.1  Release Highlights
zentorch is compatible with base versions of PyTorch v2.2 or later. This release provides zentorch for
PyTorch v2.5.0.

zentorch 5.0.1 Release highlights

• Added support for Pytorch 2.5.0

• Added support for INT8/INT4-quantized DLRM models in zentorch, unlocking faster inference with
lower memory usage compared to BF16-precision. This release supports the MLPerf version of
DLRMv2; support for generic models will be added in the next release.

• Support for weight caching when running LLM/NLP models with Auto Mixed Precision (AMP)
between FP32 and BF16

Previous Major Release Highlights

zentorch 5.0

• Datatypes FP32, BF16, INT8 and INT4 (WOQ)

• Introduction of a new zentorch.llm.optimize() method for Hugging Face Generative LLM models

• New zentorch.load_woq_model() method to support loading of Weight Only Quantized models
generated through the AMD Quark tool. This method only supports models quantized and exported
with per-channel quantization using the AWQ algorithm.

• Improved graph optimizations, enhanced SDPA (Scalar Dot Product Attention) operator and more.

• Automatic Mixed Precision (AMP) between FP32 and BF16 providing a performance improvement
with minimal changes in accuracy

2.2  Supported OS
Refer to the support matrix for the list of supported operating systems.

2.3  Install ZenDNN Plug-in for PyTorch (zentorch)
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Use either the Binary Release or Build from Source option to install zentorch.

2.3.1  Using the Release Binary
To install zentorch, you may choose from one of two options to access the zentorch binary release.

1. PyPI Repo as a wheel (.whl) file.

2. AMD developer portal (as a package). This release package consists of a zentorch wheel file with
a .whl extension and a scripts/ folder to set up optimal environment settings. Refer to section
zentorch Optimal Environment Settings for more details on the usage of the script.

2.3.1.1  Install the Release Binary

Create and Setup Conda Environment

Before you begin:

• Choose a unique name for your new Conda environment. Example: zentorch-5.0.1.

• Make sure that you delete any older Conda environment with the same name. For example: If a
Conda environment named zentorch-5.0.1 exists, use the following command to remove it.
conda remove --name zentorch-5.0.1 --all

Important: zentorch is compatible with Python v3.9-3.12. Make sure you create a Conda
environment only with Python versions supported by zentorch.

Conda Environment Setup

To setup the Conda environment:

1. Refer to the Anaconda documentation available here to install Anaconda on your system. Testing
has been performed with Anaconda3-2020.11-Linux- x86_64.

2. Create and activate a Conda environment that houses all the zentorch specific installations.
conda create -n zentorch-5.0.1 python=3.10 -y
conda activate zentorch-5.0.1

Install zentorch

To install the zentorch release binary:

1. Install PyTorch v2.5.0.
pip install torch==2.5.0 --index-url https://download.pytorch.org/whl/cpu

2. Use one of the following two methods to install zentorch.

a. Using the PyPI repo. Run the following command:
pip install zentorch==5.0.1

For optimal environment settings, refer to Performance Tuning, or use the script shipped in the
release package from the AMD developer portal.
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b. Using the release package from the AMD developer portal:

1) Download the package from the AMD developer portal.

2) Run the following commands to unzip the package and install the binary:
unzip ZENTORCH_v5.0.1_Python_v3.10.zip
cd ZENTORCH_v5.0.1_Python_v3.10/

Note: zentorch is compatible with Python v3.9-3.12. We have used 3.10 here only as an
example.

3) Install the binary.
pip install zentorch-5.0.1-cp310-cp310-manylinux_2_28_x86_64.whl

4) To use the recommended environment settings, execute:
source scripts/benchmarking_optimal_env_setup.sh

Note: While importing zentorch, if you get the error: ImportError: /lib64/libstdc++.so.6:
version `GLIBCXX_.a.b.cc' not found (required by <path-to-conda>/envs/<env-name>/
lib/python<py-version>/site-packages/zentorch-5.0.1-pyx.y-linux-x86_64.egg/zentorch/
_C.cpython-xy-x86_64-linux-gnu.so), export LD_PRELOAD as:
export LD_PRELOAD=<path-to-conda>/envs/<env-name>/lib/libstdc++.so.6:$LD_PRELOAD

2.3.2  Build from Source
To build the zentorch pip package from source:

1. Clone the repository and check out the r5.0.1 branch.
git clone https://github.com/amd/ZenDNN-pytorch-plugin.git 
cd ZenDNN-pytorch-plugin/

2. Follow instructions provided here to configure, build, and install zentorch.

3. After the build is successful, the wheel file will be generated in the folder: <path to zentorch repo>/
dist/zentorch-*.whl.

2.4  Usage
The custom zentorch backend can be called through torch.compile. See the Examples section for a few
code examples.

Note: For optimal performance when using torch.compile with zentorch as a backend in PyTorch,
it is recommended to set a warm-up count of five. This entails running the inference section of the
code five times—such as within a loop—before executing the actual run used for measuring inference
performance.

Note: The warm-up process allows the compiled model to be pre-loaded into memory, reducing the
likelihood of costly cache misses and improving overall efficiency.
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2.4.1  Using torch.compile
In most cases, you can simply set backend='zentorch' as an argument in torch.compile()
to enable optimizations. Additionally, for Hugging Face large language models, we provide
zentorch.llm.optimize(), a specialized method that delivers further performance enhancements. For
additional guidance on usage scenarios, refer to the Recommendations section.

import torch 
import zentorch
from torchvision import models
model = models.__dict__['resnet50'](pretrained=True).eval()
compiled_model = torch.compile(model, backend='zentorch', dynamic = False) 
with torch.no_grad():
    output = compiled_model(input)

2.4.2  Examples
Here are examples of running inference for various models in PyTorch. Note that additional packages
may be required in your environment. If the zentorch plugin is already installed, you can add the
remaining packages by running the following command:

pip install datasets scikit-learn pillow transformers

2.4.2.1  BERT-based Models
import torch
import zentorch 
from transformers import BertTokenizer, BertModel
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("imdb", split="test")

print(dataset[0]['text'])

# Load the tokenizer and the model
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased', trust_remote_code=True)

# Load the model
model_id = "google-bert/bert-large-uncased"
model = BertModel.from_pretrained(
            model_id,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
        )
model = model.eval()

############### Code modification ###############
model.forward = torch.compile(model.forward, backend="zentorch")
#################################################

# Inference
with torch.inference_mode(), torch.no_grad():
    # Prepare inputs by tokenizing the examples
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    inputs = tokenizer(dataset['text'][:3], return_tensors="pt", padding=True, truncation=True)

    # Generate outputs
    outputs = model(**inputs)

# Get last hidden states
last_hidden_states = outputs.last_hidden_state

# Print the shape of the last hidden states
print("Last hidden states shape:", last_hidden_states.shape)

Sample Output
Last hidden states shape: torch.Size([3, 339, 1024])

2.4.2.2  Hugging Face Language Models

Here is an example of using the new zentorch.llm.optimize() method in BFloat16.

For this example, you will need a Hugging Face token and configure accordingly in the code snippet
below.

import torch
import zentorch 
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load Tokenizer and Model
model_id = "meta-llama/Llama-3.1-8B"
model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torchscript=True,
            return_dict=False,
            torch_dtype=torch.bfloat16,
        )
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = model.eval()

# Prepare Inputs
generate_kwargs = dict(
            do_sample=False,
            temperature=0.0,
            num_beams=4,
            max_new_tokens=10,
            min_new_tokens=2,
        )
prompt = "Hi, How are you today?"

# Inference
############### Code modification ###############
model = zentorch.llm.optimize(model, dtype=torch.bfloat16) 
#################################################

with torch.inference_mode(), torch.no_grad(), torch.amp.autocast('cpu', enabled=True):
    ############### Code modification ###############
    model.forward = torch.compile(model.forward, backend="zentorch")
    #################################################
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    output = model.generate(input_ids, **generate_kwargs)
    gen_text = tokenizer.batch_decode(output, skip_special_tokens=True)
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print(gen_text)

Sample output
Hi! I'm here and ready to help. How are you?

ZenDNN supports INT4 weight-only quantization with BFloat16 activations (W4A16). Here is an
example of how to load a pre-quantized INT4 model from Hugging Face. This model has been quantized
using AMD Quark. For detailed instructions on using the tool, please refer to the AMD Quark User
Guide.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import zentorch 

# Load Tokenizer and Model
model_id = "meta-llama/Llama-3.1-8B"
config = AutoConfig.from_pretrained(
            model_id,
            torchscript=True,
            return_dict=False,
            torch_dtype=torch.bfloat16,
        )
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True, torch_dtype=torch.bfloat16)

# Load WOQ model
############### Code modification ###############
safetensor_path = "<Path to Quantized Model"
model = zentorch.load_quantized_model(model, safetensor_path)
model = model.eval() 
#################################################

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, padding_side="left",use_fast=False)

# Prepare Inputs
generate_kwargs = dict(
            do_sample=False,
            temperature=0.0,
            num_beams=4,
            max_new_tokens=10,
            min_new_tokens=2,
        )

prompt = "Hi, How are you today?"

# Inference
############### Code modification ###############
model = zentorch.llm.optimize(model, dtype=torch.bfloat16) 
#################################################

with torch.inference_mode(), torch.no_grad(), torch.amp.autocast('cpu', enabled=True):
    ############### Code modification ###############
    model.forward = torch.compile(model.forward, backend="zentorch")
    #################################################

    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    output = model.generate(input_ids, **generate_kwargs)
    gen_text = tokenizer.batch_decode(output, skip_special_tokens=True)

print(gen_text)
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Sample Output
Hello! I'm here and ready to help. How are you?

2.4.2.3  Recommendation Systems with DLRM

Below is the main code snippet showing how you can accelerate DLRM with zentorch.

To try the code snippet, you will need the DLRM model which is hosted on Github. You can download it
using:
wget https://raw.githubusercontent.com/amd/ZenDNN-pytorch-plugin/refs/heads/main/examples/dlrm_model.py

# Sourced from https://github.com/facebookresearch/dlrm
from dlrm_model import DLRMMLPerf
import torch
import numpy as np
import zentorch 
import random
from sklearn.metrics import roc_auc_score

# Initialize the model
np.random.seed(123)
random.seed(123)
torch.manual_seed(123)
DEFAULT_INT_NAMES = ['int_0', 'int_1', 'int_2', 'int_3', 'int_4', 'int_5', 'int_6', 'int_7', 'int_8', 'int_9', 'int_10',
 'int_11', 'int_12']
model = DLRMMLPerf(
        embedding_dim=128,
        num_embeddings_pool=[
            40000000, 39060, 17295, 7424, 20265, 3, 7122, 1543, 63, 40000000,
            3067956, 405282, 10, 2209, 11938, 155, 4, 976, 14, 40000000,
            40000000, 40000000, 590152, 12973, 108, 36],
        dense_in_features=len(DEFAULT_INT_NAMES),
        dense_arch_layer_sizes=[512, 256, 128],
        over_arch_layer_sizes=[1024, 1024, 512, 256, 1],
        dcn_num_layers=3,
        dcn_low_rank_dim=512,
        use_int8=False,
        use_bf16=True
).bfloat16()

# Prepare Inputs
multi_hot = [3,2,1,2,6,1,1,1,1,7,3,8,1,6,9,5,1,1,1,12,100,27,10,3,1,1,]
batchsize = 32768
densex = torch.randn((batchsize, 13), dtype=torch.float).to(torch.bfloat16)
index = [torch.ones((batchsize * h), dtype=torch.long) for h in multi_hot]
offset = [torch.arange(0, (batchsize + 1) * h, h, dtype=torch.long) for h in multi_hot]

# Inference
############### Code modification ###############
model = torch.compile(model, backend="zentorch")
#################################################

with torch.inference_mode(), torch.no_grad(), torch.amp.autocast('cpu', enabled=True):
    out = model(densex, index, offset)

# Simulating labels
true_labels = torch.randint(0, 2, (32768,))
# Convert to float32 for compatibility with sklearn
predicted_probabilities = out.to(torch.float32).cpu().detach().numpy().reshape(-1)
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true_labels = true_labels.cpu().detach().numpy()

# Calculate AUC
auc_score = roc_auc_score(true_labels, predicted_probabilities)
print(f"AUC Score: {auc_score}")

Sample Output
AUC Score: 0.5

2.4.2.4  ResNet
import torch
import zentorch 
from transformers import AutoImageProcessor, ResNetForImageClassification
from PIL import Image

# Load the ResNet Model
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50", torch_dtype=torch.bfloat16)

# Prepare Inputs
image = Image.open("airplane.jpg") # Pick an image of your choice
inputs = processor(image, return_tensors="pt")
# converting input to BF16
inputs = {k: v.to(torch.bfloat16) for k, v in inputs.items()}

# Inference
############### Code modification ###############
model.forward = torch.compile(model.forward, backend="zentorch")
#################################################

with torch.inference_mode(), torch.no_grad(), torch.amp.autocast('cpu', enabled=True):
    logits = model(**inputs).logits

predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])

Sample Output
plain airliner

2.4.3  Recommendations
It is recommended you use torch.no_grad() for optimal inference performance with zentorch.

CNN

For torchvision CNN models, set dynamic=False when calling for torch.compile as follows:

model = torch.compile(model, backend='zentorch', dynamic=False) 
with torch.no_grad():
    output = model(input)

NLP & RecSys

Optimize Hugging Face NLP models as follows.
model = torch.compile(model, backend='zentorch') 
with torch.no_grad():
    output = model(input)
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Hugging Face Generative LLM Models

For Hugging Face Generative LLM models, usage of zentorch.llm.optimize  is recommended. All
optimizations included in this API are specifically targeted for Generative Large Language Models
from Hugging Face. If a model is not a valid Generative Large Language Model from Hugging Face,
the following warning will be displayed and zentorch.llm.optimize will act as a dummy with no
optimizations applied to the model that is passed to the method:
“Cannot detect the model transformers family by model.config.architectures. Please pass a valid Hugging Face LLM model to the
 zentorch.llm.optimize API.”

This check confirms the presence of the "config" and "architectures" attributes of the model to get the
model ID. Considering the check, two scenarios the zentorch.llm.optimize can still act as a dummy
function:

1. Hugging Face has a plethora of models, of which Generative LLMs are a subset of. So, even if the
model has the attributes of config and architectures, the model ID might not yet be present in
the supported models list from zentorch. In this case zentorch.llm.optimize will act as a dummy
function.

A model can be a valid generative LLM from Hugging Face but may miss the config and
architectures attributes. In this case also, the zentorch.llm.optimize API will act as a dummy
function.

2. If the model passed is valid, all the supported optimizations will be applied, and performant
execution is ensured. To check the supported models, run the following command:
python -c 'import zentorch; print("\n".join([f"{i+1:3}. {item}" for i, item in
 enumerate(zentorch.llm.SUPPORTED_MODELS)]))'

If a model ID other than the listed above are passed, zentorch.llm.optimize will not apply the above
specific optimizations to the model and the following warning will be displayed:
“Complete set of optimizations are currently unavailable for this model.”

Control will pass to the “zentorch” custom backend in torch.compile for applying optimizations.

Note: To leverage the best performance of zentorch_llm_optimize, install IPEX corresponding to the
PyTorch version that is installed in the environment.

The PyTorch version for performant execution of supported LLMs should be greater than or equal to
2.3.0. The recommended version for optimal performance is PyTorch 2.5.0.

Case #1: If output is generated through a call to direct model, optimize it as shown here:
model = zentorch.llm.optimize(model, dtype) 
model = torch.compile(model, backend='zentorch')
with torch.no_grad(): 
    output = model(input)

Case #2. If output is generated through a call to model.forward, optimize it as shown here:
model = zentorch.llm.optimize(model, dtype) 
model.forward = torch.compile(model.forward, backend='zentorch')
with torch.no_grad(): 
    output = model.forward(input)
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Case #3: If output is generated through a call to model.generate, optimize it as shown here:

• Optimize the model.forward with torch.compile  instead of model.generate

• However, proceed to generate the output through a call to model.generate
model = zentorch.llm.optimize(model, dtype) 
model.forward = torch.compile(model.forward, backend='zentorch') 
with torch.no_grad(): 
    output = model.generate(input)

Note: For PyTorch versions lower than 2.3.0, if the same model is optimized with torch.compile for
multiple backends within a single script, it is recommended you use torch._dynamo.reset() before
calling the torch.compile on that model.

2.5  Limited Precision Support
Quantization is an active area of research and a popular compression technique to accelerate neural
network performance.

zentorch provides support for BF16 models through casting and AMP. For generative LLMs, zentorch
supports Weight Only Quantization with INT4 weights and BF16 activations as described in Weight Only
Quantized Models.

Note: For INT8, computations fall back to the native framework.

2.5.1  Weight Only Quantized Models
Hugging Face models are quantized using the AMD Quark tool. After downloading the zip file, install
Quark and follow these steps:

1. Navigate to the examples/torch/language_modeling/llm_ptq/ directory.

2. Install the necessary dependencies:
pip install -r requirements.txt
pip install -r ../llm_eval/requirements.txt

3. Run the following command to quantize the model:

• For per-channel quantization:
OMP_NUM_THREADS=<physical-cores-num> numactl --physcpubind=<physical-cores-list> python quantize_quark.py 
--model_dir <hugging_face_model_id> --device cpu --data_type bfloat16 --model_export hf_format 
--custom_mode awq --quant_algo awq --quant_scheme w_int4_per_group_sym --group_size -1 
--num_calib_data 128 --dataset pileval_for_awq_benchmark --seq_len 128 --output_dir <output_dir> 
--pack_method order

• For per-group quantization:
OMP_NUM_THREADS=<physical-cores-num> numactl --physcpubind=<physical-cores-list> python quantize_quark.py 
--model_dir <hugging_face_model_id> --device cpu --data_type bfloat16 --model_export hf_format --custom_mode awq 
--quant_algo awq --quant_scheme w_int4_per_group_sym --group_size <group_size> --num_calib_data 128 
--dataset pileval_for_awq_benchmark --seq_len 128 --output_dir <output_dir> --pack_method order
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Note: The channel/out_features dimension (property of your model) must be divisible by the
specified group_size. To find out the values for channel and out_features in your model, refer to the
model definition. We recommend using a group_size of 128, as this configuration has been validated
by zentorch across a broad set of mainstream models.

For example:

The Llama-3.2  model contains multiple linear layers subject to quantization, with out_features values
of [2048, 512, 512, 2047, 8192, 8192, 2048, 128256].

Similarly, the Llama-2 model has linear layers that can be quantized with out_features values of
[4096, 4096, 4096, 4096, 11008, 11008, 4096, 32000].

The ChatGLM model includes linear layers with out_features values of [4068, 4096, 27392, 4096,
65024].

For effective quantization, the chosen group_size must be a factor of each channel/out_features
value within the model.

OMP_NUM_THREADS=<physical-cores-num> numactl --physcpubind=<physical-cores-list> python quantize_quark.py 
--model_dir <hugging_face_model_id> --device cpu --data_type bfloat16 --model_export quark_safetensors 
--quant_algo awq --quant_scheme w_int4_per_group_sym --group_size -1 --num_calib_data 128 
--dataset pileval_for_awq_benchmark --seq_len 128 --output_dir <output_dir> --pack_method order

Note: zentorch v5.0.1 is compatible with Quark v0.8. Make sure you download the right version.

Table 2.1: Constraints for zentorch WOQ with the AWQ algorithm

Constraint Remarks

--device cpu zentorch only supports CPU device.

--data_type bfloat16
Currently, zentorch only supports the BFloat16 model
data type.

--group_size -1
group-size -1 refers to per-channel quantization;
for per-group quantization, the channel/out_features
dimension should be divisible by group_size value.

--quant_algo awq
Currently, the zentorch release supports only the
AWQ quantization algorithm.

--quant_scheme w_int4_per_group_sym
Currently, the zentorch release supports only the
w_int4_per_group_sym quantization scheme.

--packing_method order
Currently, the zentorch release supports only the
packing_method order.

As Hugging Face currently does not support the AWQ format for CPU, an additional codeblock has to be
added to your inference script for loading the WOQ models.
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config = AutoConfig.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = zentorch.load_quantized_model(model, safetensor_path)

Here, the safetensor_path refers to the "<output_dir>" path of the quantized model. After the loading
steps, the model can be executed in a similar fashion as the cases # 1-3 listed in Recommendations
(Hugging Face Generative LLM Models).

Note: From zentorch 5.0.1, the load_woq_model() API is deprecated and will be removed in future
releases. Use load_quantized_model()  API instead.

2.6  zentorch Optimal Environment Settings
The zentorch zip package which you can download from the AMD ZenDNN Developer Central page
contains a convenient bash script to help you set optimal environment settings for best performance.

Before you run your workload, activate the conda environment where zentorch 5.0.1 is installed and
source the benchmarking_optimal_env_setup.sh file.
source scripts/benchmarking_optimal_env_setup.sh --help
source scripts/benchmarking_optimal_env_setup.sh --framework <zentorch|ipex> --model <llm|recsys|cnn|nlp> --threads
 <num_threads> --precision <amp|bf16|fp32|woq>

You can set the num_threads variable by checking the output of the following shell command:
lscpu | awk '/^Core\(s\) per socket:/ {print $4}'

For example, if you are running your LLM workload in BF16 format on an AMD 5th Gen EPYC™
Processor (codenamed Turin) with 192 cores, you would source the benchmarking_optimal_env_setup.sh
as follows:
source scripts/benchmarking_optimal_env_setup.sh --framework zentorch --model llm --threads 192 --precision bf16

The script will make sure that necessary utilities like llvm-openmp as well as optimal tools for memory
allocation (for example jemalloc) are installed and made available to zentorch.

Consult the Performance Tuning chapter for more details on the various environment variables.

2.7  Known Limitations
ChatGLM and Falcon-7B are currently compatible with ZenDNN 5.0 and may not work as expected with
ZenDNN 5.0.1. 
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Chapter 3: TensorFlow
TensorFlow provides a PluggableDevice mechanism that enables modular, plug-and-play integration of
device-specific code.

AMD adopted PluggableDevice when developing the zentf plugin for inference on AMD EPYC™ CPUs.
zentf adds custom kernel implementations and operations specific to AMD EPYC™ CPUs to TensorFlow
via its kernel and op registration C APIs.

zentf is a supplemental package to be installed alongside standard TensorFlow packages with
TensorFlow version 2.18.0. From a TensorFlow developer’s perspective, the zentf approach simplifies the
process of leveraging ZenDNN optimizations.

This section provides instructions to setup zentf v5.0.1.

3.1  Release Highlights
This release of AMD's CPU solution for TensorFlow provides a binary built with the PluggableDevice
approach.

This zentf release:

• Supports TensorFlow v2.18.

• Integrates with ZenDNN v5.0.1 as the core inference library and is compiled with GCC v12.2.

ZenTF 5.0 Release highlights

• Merged BF16 and FP32 compute flows and added broadcasting support for BatchMatMul kernel.

• INT8 support for the ResNet50 model.

• Softmax kernel supports up to 5D.

• Deprecated blocked format support for convolution ops and restriction of rewrite for the fused ops
based on the post ops.

• Provides experimental support of C++ APIs.

3.2  Supported OS
Refer to the support matrix for the list of supported operating systems.

3.3  Install ZenDNN Plug-in for TensorFlow (zentf)
Use either the Binary Release or Build from Source option to install zentf.
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3.3.1  Using the Release Binary
zentf can be set up with either Python or C++ interfaces.

Python Interface

Choose from one of two options to access the zentf binary release.

1. PyPI Repo as a wheel (.whl) file.

2. AMD developer portal (as a package). This release package consists of a zentf wheel file with a .whl
extension and a scripts/ folder consisting of the environment setup script.

C++ Interface

You can find the zentf C++ Interface package on the AMD developer portal.

3.3.1.1  Install the Release Binary

This section provides information required to install zentf v5.0.1 for a Python interface.

However, if you are interested in installing zentf v5.0.1 on a C++ interface, click here for the README
instructions.

Create and Setup Conda Environment

Before you begin:

• Choose a unique name for your Conda environment. Example: zentf-5.0.1

• Make sure that you delete any older Conda environment with the same name. For example: If a
Conda environment named zentf-5.0.1 exists, use the following command to remove it.
conda remove --name zentf-5.0.1 --all

Important:  zentf is compatible with Python v3.9-3.12. Make sure you create a Conda environment
only with Python versions supported by zentf.

To setup the Conda environment:

1. Refer to the Anaconda documentation available here to install Anaconda on your system. Testing
has been performed with Anaconda3-2020.11-Linux- x86_64.

2. Create and activate a Conda environment that houses all the zentf specific installations:
conda create -n zentf-5.0.1 python=3.10 -y
conda activate zentf-5.0.1

Install zentf

To install the zentf binary release:

1. Install TensorFlow v2.18.
pip install tensorflow-cpu==2.18
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2. Use one of the following two methods to install zentf:

a. Using the PyPi repo. Run the command:
pip install zentf==5.0.1

For optimal environment settings, refer to Performance Tuning or use the script shipped in the
release package from the AMD developer portal.

b. Using the release package from the AMD developer portal.

1) Download the package from AMD developer portal.

2) Run the following commands to unzip the package:
unzip ZENTF_v5.0.1_Python_v3.10.zip
cd ZENTF_v5.0.1_Python_v3.10

Note: zentf is compatible with Python v3.9-3.12. We have used 3.10 here only as an
example.

3) Install the binary.
pip install  zentf-5.0.1-cp310-cp310-manylinux_2_28_x86_64.whl

4) To use the recommended environment settings, execute:
source scripts/zentf_env_setup.sh

5) Install requirements:
pip install transformers==4.48.3

Setup zentf

Set the following environment variables to enable zentf for inference:

• TF_ENABLE_ZENDNN_OPTS=1

• TF_ENABLE_ONEDNN_OPTS=0

Important: By default, TensorFlow is shipped with oneDNN enabled. To disable ZenDNN
optimizations and revert to the default TensorFlow setting, set TF_ENABLE_ZENDNN_OPTS=0 and
TF_ENABLE_ONEDNN_OPTS=1.

3.3.2  Build from Source
To install zentf using the Build from Source option:

1. Clone the repository and check out the r5.0.1 branch.
$ git clone https://github.com/amd/ZenDNN-tensorflow-plugin.git
$ cd ZenDNN-tensorflow-plugin/

2. Follow the steps to build and install from source given here to configure, build, and install zentf.

3.4  Examples
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Here are examples of running inference for various models in TensorFlow. Note that additional packages
may be required in your environment. If the zentf plugin is already installed, you can add the remaining
packages by running the following command:

pip install pillow transformers tf-keras

3.4.1  BERT-based Model
import tensorflow as tf
from transformers import AutoTokenizer, TFBertModel, BertConfig

# Load the tokenizer, model and the model config
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
model_config = BertConfig.from_pretrained("bert-large-uncased")
model = TFBertModel.from_pretrained("bert-large-uncased", 
                                    config=model_config,)

# Prepare inputs by tokenizing the examples
inputs = tokenizer("My puppy is very cute!", return_tensors="tf")

@tf.function
def generate():
    return model(**inputs)

# Generate outputs
outputs = generate()

# Get last hidden states
last_hidden_states = outputs.last_hidden_state

# Print the shape of the last hidden states
print("Last hidden states shape:", last_hidden_states.shape)

Sample Output
Last hidden states shape: (1, 8, 1024)

3.4.2  OPT
import tensorflow as tf
from transformers import AutoTokenizer, TFOPTForCausalLM

# Load the model and tokenizer
model = TFOPTForCausalLM.from_pretrained("facebook/opt-350m")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

# Run Inference
prompt = "Are you conscious? Can you talk?"

# Tokenize the input text
input_ids = tokenizer(prompt, return_tensors='tf').input_ids

@tf.function
def generate():
    return model.generate(input_ids, max_length=20)

# Run inference
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outputs = generate()

# Decode the outputs
decoded_outputs = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]

for result in decoded_outputs:
    print(result)

Sample Output
I can talk, but I can't really think

3.4.3  ResNet
from PIL import Image

image = Image.open("airplane.jpg") # Choose an image of your choice and make sure it is in the same folder as this python
 script.

import tensorflow as tf
from transformers import AutoImageProcessor, TFResNetForImageClassification

# Load the model and image processor
model = TFResNetForImageClassification.from_pretrained("microsoft/resnet-50")
image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")

# Run Inference
inputs = image_processor(image, return_tensors="tf")

@tf.function
def predict():
    return model(**inputs)

logits = predict().logits

predicted_label = int(tf.math.argmax(logits, axis=-1))
print(model.config.id2label[predicted_label])

Sample Output
plain airliner

3.5  Limited Precision Support
zentf supports BF16 execution through Automatic Mixed Precision (AMP) optimization. To enable BF16
support, use the environment variable: export TF_ZENDNN_PLUGIN_BF16=1.

Note: For INT8, computations fall back to the native framework except for the ResNet50 model. 
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Chapter 4: Performance Tuning
In this chapter, we discuss performance tuning of the ZenDNN software stack.

4.1  Environment Variables
The environment variables to setup paths and control logs, and tune performance are enumerated here.

The settings given in the following table are used in the ZenDNN library and apply to zentorch and zentf.

Table 4.1: ZenDNN Environment Variables common to all frameworks

Environment Variable Description Default Value/User Defined Value

Generic (Setup paths and control logs)

ZENDNN_LOG_OPTS
Enables ZenDNN logs. See Logging
and Debugging for details on how
to use logs.

ALL:0

ZENDNN_PARENT_FOLDER
Path to the folder where the
unzipped ZenDNN folder is
located.

Path to unzipped release folder.

ZENDNN_PRIMITIVE_CACHE_CAPACITY

Sets maximum capacity of LRU
cache for primitives.

You can modify it as required a.

1024

ZENDNN_WEIGHT_CACHE_CAPACITY

Sets maximum capacity of LRU
cache for blocked weights of
MatMul algo.

You can modify it as required a.

1024

ZENDNN_EB_THREAD_TYPE
Sets Embedding Bag thread type.
This is the recommended setting
for RecSys models.

1

OMP_DYNAMIC

OMP variable to control dynamic
adjustment of OMP threads. Refer
to OpenMP documentation for
details.

FALSE

Optimized (Tune performance)
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Table 4.1: ZenDNN Environment Variables common to all frameworks (continued)

Environment Variable Description Default Value/User Defined Value

OMP_NUM_THREADS

Sets the number of OMP threads.
Generally this is equal to the
number of cores present.

Set it based on the number of

cores in the user system a.

128

OMP_WAIT_POLICY
Sets the behavior of waiting
threads. Refer to the OMP
documentation for details.

ACTIVE

GOMP_CPU_AFFINITY

Binds threads to specific CPUs.
This is a GNU OpenMP library
flag and will work only with GNU
OpenMP.

Set it based on the number of
cores in the system being used.

For example, use 0-127 for 128-
core servers.
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Table 4.1: ZenDNN Environment Variables common to all frameworks (continued)

Environment Variable Description Default Value/User Defined Value

ZENDNN_MATMUL_ALGO

Specifies the MatMul algo to be
used.

For FP32/BF16/INT8:

• AUTO (Auto-Tuner)
• 0 = Static Decision Tree
• 1 = AOCL_BLIS (Blocked with

weight-caching)
• 2 = BRGEMM (Blocked with

weight-caching)
• 3= AOCL_BLIS
• 4 = BRGEMM

Auto is an experimental feature
and should be used with
application warm-up iteration
>=15.

Note: Different workloads on
different frameworks (PyTorch,
TensorFlow) have specific
ZENDNN_MATMUL_ALGO settings for
optimized performance.

• NLP-based models
• FP32 models

• ZENDNN_MATMUL_ALGO
=FP32:2

• BF16 (AMP) models
• ZENDNN_MATMUL_ALGO

=BF16:4
• LLM-based models

• BF16 and WOQ (Per channel
and Per group) models:

• ZENDNN_MATMUL_ALGO
=BF16:0

For RecSys models

• FP32, INT8 and BF16 models
• ZENDNN_MATMUL_ALGO=FP

32:2;INT8:2;BF16:2
• BF16 (AMP) models

• ZENDNN_MATMUL_ALGO=BF
16:4

ZENDNN_MATMUL_ALGO=FP32:4,BF16:
4,INT8:4

a You must set these environment variables explicitly.
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Additional settings used to tune performance with the zentf to the TensorFlow framework

Table 4.2: zentorch Environment Variables-Generic

Environment Variable Description Default Value/User Defined Value

KMP_BLOCKTIME

Sets the amount of time, in
milliseconds, that a thread should
wait before sleeping when a
parallel region ends. Setting it
to 1 minimizes idle time and can
improve responsiveness for short
tasks by quickly putting threads to
sleep after work is complete.

Note: Do not set this for
Recommender System models.

1

KMP_TPAUSE

Controls the behavior of threads
when they are waiting for work,
aiming to reduce CPU usage.
Setting it to 0 indicates threads
should not enter an active wait
state, optimizing CPU efficiency.

0

KMP_FORKJOIN_BARRIER_PATTERN

Specifies the synchronization
pattern for fork/join barriers.
dist,dist means a distributed
barrier pattern is applied both
when threads are forked and
joined, potentially reducing
synchronization contention.

dist,dist

KMP_PLAIN_BARRIER_PATTERN

Sets the synchronization pattern
for plain barriers to dist,dist
indicating a distributed pattern
that helps manage thread
synchronization efficiently during
plain barriers.

dist,dist

KMP_REDUCTION_BARRIER_PATTERN

Controls the barrier pattern used in
reduction operations (for example,
sum or product of arrays across
threads). Using dist,dist specifies
a distributed pattern to enhance
efficiency.

dist,dist

57300    Revision: 5.0.1                                                                                                                                                                            28

Performance Tuning

March 2025                   



Table 4.2: zentorch Environment Variables-Generic (continued)

Environment Variable Description Default Value/User Defined Value

KMP_AFFINITY

Determines how threads are
bound to CPU cores. The setting
granularity=fine,compact,1,0
specifies fine-grained affinity with
threads compacted to as few cores
as possible, minimizing memory
access latency and maximizing
cache utilization.

granularity=fine,compact,1,0

LLVM OpenMP

LLVM OpenMP runtimes provides the necessary libraries and compiler directives for implementing
parallelism in programs.

Developers can use LLVM OpenMP 18.1.18 to compile and run parallel programs written in Fortran and
C/C++, taking advantage of shared memory parallelism and improving the performance and scalability of
their applications.

The LLVM OpenMP implementation supports various features, including:

• Compiler directives for specifying parallel regions, tasks, and data dependencies

• Library routines for creating and managing teams, parallel loops, and synchronization

• Environment variables for controlling OpenMP behavior

Complete the following steps to install and leverage llvm openmp in your Conda environment:

1. conda install -c conda-forge llvm-openmp=18.1.8=hf5423f3_1 --no-deps -y

2. export LD_PRELOAD="<path to conda>/pkgs/llvm-openmp-18.1.8-hf5423f3_1/lib/libiomp5.so:
$LD_PRELOAD"

Additional settings used to tune performance with the zentf to the TensorFlow framework

Table 4.3: zentf Environment Variables-Generic

Environment Variable Description
Default Value/

User Defined Value

TF_ZEN_PRIMITIVE_REUSE_DISABLE False

ZENDNN_ENABLE_MEMPOOL

Set it to 0 if you want to disable it.

Set it to:

• 1 for Graph-based MEMPOOL
• 2 for Node-based MEMPOOL
• 3 for Output buffer caching

1
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Table 4.3: zentf Environment Variables-Generic (continued)

Environment Variable Description
Default Value/

User Defined Value

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE 0

TF_ENABLE_ZENDNN_OPTS

Set TF_ENABLE_ONEDNN_OPTS=0  when
you want to enable vanilla training and
inference.

Set it to 1 along with
TF_ENABLE_ONEDNN_OPTS=0 to enable
ZenDNN for inference.

0

TF_ENABLE_ONEDNN_OPTS
By default, TensorFlow is shipped with
oneDNN optimizations enabled. Hence, set
it to 0 when you enable ZenDNN.

1

TF_ZENDNN_PLUGIN_BF16
Set it to 1 to enable Automatic Mixed
Precision (AMP) for BF16.

0

Table 4.4: zentf Environment Variables-Optimization

Environment Variable Description Default Value/User Defined Value

ZENDNN_TENSOR_POOL_LIMIT

For optimal performance, you can
modify it to:

• 512 for CNNs
• 32 for densenet model

1024

ZENDNN_CONV_ALGO

It decides the convolution
algorithm to be used in execution.
The possible values are:
• 1 = im2row followed by GEMM
• 2 = WinoGrad (fallback to im2row

GEMM for unsupported input sizes)
• 3 = Direct convolution with blocked

filters

1

4.2  Performance Tuning Guidelines
Hardware configuration, OS, Kernel, and BIOS settings play an important role in performance. Details of

the environment variables used on a 5th Gen AMD EPYC™ server to get the best performance numbers
are enumerated in the following sections.
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4.3  System Used for Performance Tuning
Performance tuning settings are with respect to a system with the following specifications.

Table 4.5: System Specification

Specification Value

Model Name 5th Gen AMD EPYC™ 9755 128-Core Processor

CPU MHz Up to 4.1 GHz

Core(s) per Socket 128

Socket(s) used 1

Thread(s) per Core 2

Mem-Dims 24x64 GB

4.4  Common Optimal Environment Variable Settings
The following environment variable settings are common to both frameworks.

• ZENDNN_LOG_OPTS=ALL:0

• OMP_NUM_THREADS=128 # For a system with 128 cores per socket

• OMP_WAIT_POLICY=ACTIVE

• OMP_DYNAMIC=FALSE

• ZENDNN_MATMUL_ALGO=FP32:4,BF16:4

• ZENDNN_PRIMITIVE_CACHE_CAPACITY=1024

• GOMP_CPU_AFFINITY=0-127

The environment variables OMP_NUM_THREADS, OMP_WAIT_POLICY, OMP_PROC_BIND, and GOMP_CPU_AFFINITY
can be used to tune performance. These are OpenMP variables. Refer to the OpenMP documentation for
details.

For optimal performance, the Batch Size must be a multiple of the total number of cores (used by the
threads).

Thread Wait Policy

OMP_WAIT_POLICY environment variable provides options to the OpenMP runtime library based on the
expected behavior of the waiting threads. It can take the abstract values PASSIVE and ACTIVE. The
default value is ACTIVE. When OMP_WAIT_POLICY is set to PASSIVE, the waiting threads will be passive and
will not consume the processor cycles. Whereas, setting it to ACTIVE will consume processor cycles.
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Note: For ZenDNN stack, setting OMP_WAIT_POLICY to ACTIVE may give better performance.

4.5  Thread Affinity
To improve ZenDNN performance, the behavior of OpenMP threads can be guarded precisely with
thread affinity settings. A thread affinity defined at start up cannot be modified or changed during
runtime of the application. Following are the ways through which you can bind the requested OpenMP
threads to the physical CPUs:

GOMP_CPU_AFFINITY environment variable binds threads to the physical CPUs.

Example

export GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"

This command will bind the:

• Initial thread to CPU 0

• Second thread to CPU 3

• Third and fourth threads to CPU 1 and CPU 2, respectively

• Fifth thread to CPU 4

• Sixth through tenth threads to CPUs 6, 8, 10, 12, and 14, respectively. It will then start the
assignment back from the beginning of the list.

export GOMP_CPU_AFFINITY="0" binds all the threads to CPU 0.

Example

The affinity setting: export GOMP_CPU_AFFINITY=0-127, should give the same thread bindings.

Note: GOMP_CPU_AFFINITYwill be ignored if you export the KMP_AFFINITYvariable.

4.6  Non-uniform Memory Access
numactl

numactl provides options to run processes with specific scheduling and memory placement policy. It can
restrict the memory binding and process scheduling to specific CPUs or NUMA nodes.

• cpunodebind=nodes: Restricts the process to a specific group of nodes.

• physcpubind=cpus: Restricts the process to a specific set of physical CPUs.

• membind=nodes: Allocates the memory from the nodes listed. The allocation fails if there is not
enough memory on the listed nodes.

• interleave=nodes: Memory will be allocated in a round robin manner across the specified nodes.
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When the memory cannot be allocated on the current target node, it will fall back to the other
nodes.

Example

If <model_run_script> is the application that needs to run on the server, then it can be triggered using
numactlsettings as follows:
numactl --cpunodebind=0-3 -interleave=0-3 python <model_run_script>

The interleave option of numactl works only when the number nodes allocated for a particular
application is more than one. cpunodebind and physcpubind behave the same way for ZenDNN stack,
whereas interleave memory allocation performs better than membind.

The number of concurrent executions can be increased beyond 4 nodes. The following formula can be
used to decide the number of concurrent executions to be triggered at a time:
Number Concurrent Executions = Number of Cores Per Socket / Numbers of Cores sharing
L3 cache

This can also be extended to even cores. However, you must verify these details empirically.

4.7  Transparent Huge Pages
Transparent Huge Pages (THPs) are a Linux kernel feature for memory management to improve
performance of the application by efficiently using processor's memory-mapping hardware. THP should
reduce the overhead of the Translation Lookaside Buffer. It operates mainly in two modes:

• always: In this mode, the system kernel tries to assign huge pages to the processes running on the
system. You can run the following command to set THP to always.
echo always > /sys/kernel/mm/transparent_hugepage/enabled

• madvise: In this mode, the kernel only assigns huge pages to the individual processes memory areas.
You can run the following command to set THP to madvise.
echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

Disable THP

Log in as root to enable or disable THP settings. Use the following command to disable THP.
echo never > /sys/kernel/mm/transparent_hugepage/enabled

These are the recommended THP settings for better performance.

• For zentorch

• CNN models: always

• NLP and LLM models: madvise

• For zentf

• CNN models: never (batch size =1), always (batch size >1)

• NLP and Recommender models: madvise
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4.8  Memory Allocators
Based on the model, if there is a requirement for a lot of dynamic memory allocations, a memory
allocator can be selected from the available allocators which would generate the most optimal
performance out of the model. These memory allocators override the system provided dynamic memory
allocation routines and use a custom implementation. They also provide the flexibility to override the
dynamic memory management specific tunable parameters (for example, logical page size, per thread,
or per-cpu cache sizes) and environment variables. The default configuration of these allocators would
work well in practice. However, you should verify empirically by trying out what setting works best for a
particular model after analyzing the dynamic memory requirements for that model.

Most commonly used allocators are TCMalloc and jemalloc.

TCMalloc

TCMalloc is a memory allocator which is fast, performs uncontended allocation and deallocation for
most objects. Objects are cached depending on the mode, either per-thread or per-logical CPU. Most
allocations do not need to take locks. So, there is low contention and good scaling for multi-threaded
applications. It has flexible use of memory and hence, freed memory can be reused for different object
sizes or returned to the operating system. Also, it provides a variety of user-accessible controls that can
be tuned based on the memory requirements of the workload.

jemalloc

jemalloc is a memory allocator that emphasizes fragmentation avoidance and scalable concurrency
support. It has a powerful multi-core/multi-thread allocation capability. The more cores the CPU has,
the more program threads, the faster jemalloc allocates. jemalloc classifies memory allocation granularity
better leading to less lock contention. It provides various tunable runtime options such as enabling
background threads for unused memory purging, allowing jemalloc to use THPs for its internal metadata,
and so on.

Usage

You can install the TCMalloc and jemalloc dynamic libraries and use the LD_PRELOAD environment variable
as follows:

Table 4.6: LD_PRELOAD environment variables in case of TCMalloc and jemalloc

Use this command TCMalloc jemalloc

Before you begin
export LD_PRELOAD=/path/to/
TCMallocLib/

export LD_PRELOAD=/path/to/
jemallocLib/

For benchmarking
LD_PRELOAD=/path/to/
TCMallocLib/ < python
benchmarking command>

LD_PRELOAD=/path/to/
jemallocLib/ <python
benchmarking command>
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Table 4.6: LD_PRELOAD environment variables in case of TCMalloc and jemalloc (continued)

Use this command TCMalloc jemalloc

To verify if TCMalloc or jemalloc
memory allocator is in use

lsof -p
<pid_of_benchmarking_command> |
grep tcmalloc

lsof -p
<pid_of_benchmarking_command> |
grep jemalloc

4.9  Optimal Environment Variable Settings for zentf
The following environment variable settings are optimal settings for zentf, and should be used in addition
to the environment variable settings.

• ZENDNN_ENABLE_MEMPOOL=2 (for NLP and LLM models)

• ZENDNN_ENABLE_MEMPOOL=3 (for CNN models)

• ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE=0

• ZENDNN_CONV_ALGO=3

• TF_NUM_INTEROP_THREADS=1 (for Hugging Face NLP and LLM Models)

• TF_NUM_INTRAOP_THREADS=128 (for Hugging Face NLP and LLM Models) 
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Chapter 5: Logging and Debugging
In this chapter, logging mechanisms in both the ZenDNN library and the plug-ins are discussed.

5.1  ZenDNN Library Logs
Logging is disabled in the ZenDNN library by default. It can be enabled using the environment variable
ZENDNN_LOG_OPTS before running any test. Logging behavior can be specified by setting the environment
variable ZENDNN_LOG_OPTS to a comma-delimited list of ACTOR:DBGLVL pairs.

The different ACTORS are as follows.

Table 5.1: Log Actors

Actor Description

ALGO Logs all the executed algorithms.

CORE Logs all the core ZenDNN library operations.

API Logs all the ZenDNN API calls.

TEST Logs all the calls used in API, functionality, and regression tests.

PROF Logs the performance of operations in millisecond.

FWK Logs all the framework (TensorFlow and PyTorch) specific calls.

Example

• To turn on info logging, use ZENDNN_LOG_OPTS=ALL:2

• To turn off all logging, use ZENDNN_LOG_OPTS=ALL:-1

• To only log errors, use ZENDNN_LOG_OPTS=ALL:0

• To only log info for ALGO, use ZENDNN_LOG_OPTS=ALL:-1,ALGO:2

• To only log info for CORE, use ZENDNN_LOG_OPTS=ALL:-1,CORE:2

• To only log info for FWK, use ZENDNN_LOG_OPTS=ALL:-1,FWK:2

• To only log info for API, use ZENDNN_LOG_OPTS=ALL:-1,API:2

• To only log info for PROF (profile), use ZENDNN_LOG_OPTS=ALL:-1,PROF:2

Enable Log Profiling

To enable the log profiling of zendnn_primitive_create and zendnn_primitive_execute, set
ZENDNN_PRIMITIVE_LOG_ENABLE=1

The Different Debug Levels (DBGLVL) are as follows.
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Table 5.2: Debug Levels

Debug Level Value

LOG_LEVEL_DISABLED -1

LOG_LEVEL_ERROR 0

LOG_LEVEL_WARNING 1

LOG_LEVEL_INFO 2

LOG_LEVEL_VERBOSE0 3

LOG_LEVEL_VERBOSE1 4

LOG_LEVEL_VERBOSE2 5

CORE, API, and PROF are mandatory logs when ZenDNN library is invoked. ALGO, TEST, and FWK are
optional logs and might not appear in all the cases.

5.2  zentorch Logging and Debugging
For zentorch, enable CPP specific logging by setting the environment variable TORCH_CPP_LOG_LEVEL. This
has four levels: INFO, WARNING, ERROR and FATAL in decreasing order of verbosity.

Similarly, enable Python logging by setting the environment variable ZENTORCH_PY_LOG_LEVEL. This has
five levels: DEBUG, INFO, WARNING, ERROR, and CRITICAL, again in decreasing order of verbosity.

Here is an example of how to enable INFO level logs for cpp and DEBUG level for Python (most
verbose):
export TORCH_CPP_LOG_LEVEL=INFO 
export ZENTORCH_PY_LOG_LEVEL=DEBUG

WARNING  is the default level of logs for both cpp and Python sources, but it can be overridden.

Note: The log levels are the same as those provided by the Python logging module.

INFO: As all Operators implemented in zentorch are registered with torch using the TORCH_LIBRARY()
and TORCH_LIBRARY_IMPL() macros in bindings, the PyTorch profiler can be used without any
modification to measure the operator level performance.

5.3  Debugging
PyTorch offers a debugging toolbox that comprises a built-in stats and trace function. This functionality
facilitates the display of the time spent by each compilation phase, output code, output graph
visualization, and IR dump. TORCH_COMPILE_DEBUG invokes this debugging tool that allows for better
problem-solving while troubleshooting the internal issues of TorchDynamo and TorchInductor.
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This functionality works for the models optimized using zentorch, and hence it can be leveraged
to debug these models too. To enable this functionality, either set the environment variable
TORCH_COMPILE_DEBUG=1 or specify the environment variable with the runnable file (for example, test.py)
as input.

For example, if the file test.py contains a model optimized by torch.compile with zentorch as backend,
use:
TORCH_COMPILE_DEBUG=1 python test.py 
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Chapter 6: Support
We welcome feedback, suggestions, and bug reports.

If you need technical support on ZenDNN, please file an issue ticket on the respective Github page:

• ZenDNN Library: https://github.com/amd/ZenDNN

• ZenDNN Plugin for PyTorch: https://github.com/amd/ZenDNN-pytorch-plugin

• ZenDNN Plugin for TensorFlow: https://github.com/amd/ZenDNN-tensorflow-plugin 
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Additional Resources and Legal Notices

Appendix A: Additional Resources and
Legal Notices
A.1 Revision History
A summary of the revisions made to this document.

Table A.1: Revision History

Version Number Date Description

1 28-May-2024
Ported document to the new template, rearranged sections, and
updated content for the 4.2 release.

2 30-May-2024 Fixed formatting issues

3 09-Jul-2024
• Added TCMalloc information to the Performance Tuning guidelines.
• Updated the list of installation commands for ONNX Runtime release

binary.

4 08-Nov-2024
Documented 5.0 release features and updated Readme for ZenDNN
5.0.

5 03-Mar-2025 Updates to 5.0.1 release.

A.2 Legal Notices
© 2024 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without
notice. While every precaution has been taken in the preparation of this document, it may contain
technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or
otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties
with respect to the accuracy or completeness of the contents of this document, and assumes no liability
of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular
purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted
by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set
forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.
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HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks
of their respective companies.

Dolby Laboratories, Inc.

Manufactured under license from Dolby Laboratories.

Rovi Corporation

This device is protected by U.S. patents and other intellectual property rights. The use of Rovi
Corporation's copy protection technology in the device must be authorized by Rovi Corporation and is
intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by
Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS
EXPRESSLY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2
PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS
GREEN CIRCLE, SUITE 400E, GREENWOOD VILLAGE, COLORADO 80111. 
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Appendix B: Notices
© Copyright 2025 Advanced Micro Devices, Inc.

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. The information contained herein is subject to change
and may be rendered inaccurate for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or
the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented
or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information.
However, AMD reserves the right to revise this information and to make changes from time to time to
the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED "AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR
ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.
AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD
BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED
HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

B.1 Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks
of their respective companies. 
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