
Advanced Micro Devices

ZenDNN User Guide

Publication # 57300 Revision # 4.1
Issue Date September 2023

© 2023 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Contents 3

ZenDNN User Guide57300 Rev. 4.1 September 2023

Contents

Revision History .8

Chapter 1 ZenDNN .9

1.1 Introduction .9

1.2 High-level Overview .10

1.3 Scope .10

1.4 Release Highlights .11

1.5 Supported OS and Compilers .12

1.5.1 OS .12

1.5.2 Compilers .12

1.6 Dependencies .12

1.6.1 Build .12

1.6.2 Runtime .12

1.7 Logs .13

Chapter 2 TensorFlow .15

2.1 Installing ZenDNN with TensorFlow .15

2.1.1 Binary Release Setup .15

2.1.2 Build from Source .16

2.2 Directory Structure .17

2.3 High-level Overview .17

2.4 TensorFlow CNN Benchmarks .17

2.5 TensorFlow v2.12 .19

2.6 Environment Variables .19

2.7 Tuning Guidelines .21

2.7.1 System .21

2.7.2 Environment Variables .21

2.7.3 Thread Wait Policy .22

2.7.4 Thread Affinity .23

2.7.5 Non-uniform Memory Access .24

2.7.6 Transparent Huge Pages .25

4 Contents

57300 Rev. 4.1 September 2023ZenDNN User Guide

2.7.7 Batch Size .25

2.7.8 Memory Allocators .26

2.8 Convolution Algorithm Logic .27

2.9 Limited Precision Support .27

Chapter 3 ONNX Runtime .29

3.1 Installing ZenDNN with ONNX Runtime .29

3.1.1 Binary Release Setup .29

3.1.2 Build from Source .30

3.2 Directory Structure .30

3.3 High-level Overview .30

3.4 ONNX Runtime Benchmarks .31

3.5 ONNX Runtime v1.15.1 .31

3.6 Environment Variables .31

3.7 Tuning Guidelines .34

3.7.1 System .34

3.7.2 Environment Variables .34

3.7.3 Thread Wait Policy .35

3.7.4 Thread Affinity .35

3.7.5 Non-uniform Memory Access .36

3.7.6 Transparent Huge Pages .38

3.7.7 Batch Size .38

3.7.8 Memory Allocators .38

3.7.9 Optimal Setting .40

3.8 Limited Precision Support .40

Chapter 4 PyTorch .42

4.1 Installing ZenDNN with PyTorch .42

4.1.1 Binary Release Setup .42

4.1.2 Build from Source .43

4.2 Directory Structure .43

4.3 High-level Overview .44

4.4 PyTorch CNN Benchmarks .44

Contents 5

ZenDNN User Guide57300 Rev. 4.1 September 2023

4.5 PyTorch v1.13 .46

4.6 Environment Variables .46

4.7 Tuning Guidelines .47

4.7.1 System .47

4.7.2 Environment Variables .47

4.7.3 Thread Wait Policy .48

4.7.4 Thread Affinity .48

4.7.5 Non-uniform Memory Access .49

4.7.6 Transparent Huge Pages .49

4.7.7 Memory Allocators .50

4.8 Limited Precision Support .51

Chapter 5 ONNX Runtime Windows (Beta) .52

5.1 Installing ZenDNN with ONNX Runtime .52

5.1.1 Binary Release Setup .52

5.1.2 Build from Source .54

5.2 Directory Structure .54

5.3 High-level Overview .54

5.4 ONNX Runtime Benchmarks .54

5.5 Environment Variables .55

5.5.1 Tuning Guidelines .57

5.5.2 System .57

5.5.3 Environment Variables .57

5.5.4 Optimal Setting .58

5.6 Limited Precision Support .59

6 List of Figures

57300 Rev. 4.1 September 2023ZenDNN User Guide

List of Figures

Figure 1. ZenDNN Library. .10

List of Tables 7

ZenDNN User Guide57300 Rev. 4.1 September 2023

List of Tables

Table 1. Log Actors. .13

Table 2. Tensorflow-ZenDNN Environment Variables .19

Table 3. System Specification. .21

Table 4. Convolution Algorithm Logic. .27

Table 5. ONNX Runtime-ZenDNN Environment Variables .31

Table 6. System Specification. .34

Table 7. PyTorch-ZenDNN Environment Variables. .46

Table 8. System Specification. .47

Table 9. ONNX Runtime-ZenDNN Windows Environment Variables .55

Table 10. System Specification. .57

8 Revision History

57300 Rev. 4.1 September 2023ZenDNN User Guide

Revision History

Date Revision Description

September 2023 4.1 • Merged all the ZenDNN user guides into one.
• Updated supported TensorFlow, ONNX Runtime, and PyTorch versions.

January 2023 4.0 Updated supported TensorFlow, ONNX Runtime, and PyTorch versions.
June 2022 3.3 • Updated supported TensorFlow and PyTorch versions.

• Removed Chapter 5 Prerequisites and Chapter 6 AOCC and AOCL
(AMD-BLIS) Library Installation.

December 2021 3.2 Updated supported TensorFlow, ONNX Runtime, and PyTorch versions.
August 2021 3.1 Updated supported TensorFlow versions.
April 2021 3.0 Initial version.

Chapter 1 ZenDNN 9

ZenDNN User Guide57300 Rev. 4.1 September 2023

Chapter 1 ZenDNN

1.1 Introduction

ZenDNN (Zen Deep Neural Network) Library accelerates deep learning inference applications on
AMD CPUs. This library, which includes APIs for basic neural network building blocks optimized
for AMD CPUs, targets deep learning application and framework developers with the goal of
improving inference performance on AMD CPUs across a variety of workloads, including computer
vision, natural language processing (NLP), and recommender systems. ZenDNN leverages oneDNN/
DNNL v2.6.3's basic infrastructure and APIs. ZenDNN optimizes several APIs and adds new APIs,
which are currently integrated into TensorFlow, ONNX Runtime, and PyTorch. ZenDNN depends on:

• BLAS-like Library Instantiation Software (AOCL-BLIS) library for its BLAS (Basic Linear
Algebra Subprograms) API needs

• AMD Math Library (LibM) for Core Math needs

AOCL-BLIS and AOCL-LibM are required dependencies for ZenDNN.

10 ZenDNN Chapter 1

57300 Rev. 4.1 September 2023ZenDNN User Guide

1.2 High-level Overview

The following is a high-level block diagram for the ZenDNN library, which uses the AOCL-BLIS
library internally:

Figure 1. ZenDNN Library

In the current release, ZenDNN is integrated with TensorFlow, PyTorch, and ONNX Runtime.

1.3 Scope

The scope of ZenDNN is to support AMD EPYCTM CPUs on the Linux® and Windows® (Beta
support for ONNX Runtime) platforms. ZenDNN v4.1 offers optimized primitives, such as
Convolution, MatMul, Elementwise, and Pool (Max and Average) that improve the performance of
many convolutional neural networks, recurrent neural networks, transformer-based models, and
recommender system models. For the primitives not supported by ZenDNN, execution will fall back
to the native path of the framework.

Chapter 1 ZenDNN 11

ZenDNN User Guide57300 Rev. 4.1 September 2023

1.4 Release Highlights

Following are the highlights of this release:

• ZenDNN library is integrated with:

– TensorFlow v2.12
– PyTorch v1.13
– ONNX Runtime v1.15.1 on Linux and Windows (Beta)

• Python v3.8-v3.11 have been used to generate the following wheel files (*.whl):

– TensorFlow v2.12
– ONNX Runtime v1.15.1 on Linux and Windows (Beta)

• Python v3.7-v3.10 have been used to generate the PyTorch v1.13 wheel files (*.whl).

• Added the following environment variables for tuning performance:

– Memory Pooling (Persistent Memory Caching):
– ZENDNN_ENABLE_MEMPOOL for all the TensorFlow models
– Added MEMPOOL support for INT8 and BF16 models

– Convolution Operation:
– ZENDNN_CONV_ALGO for all the TensorFlow models
– Added new ALGO paths

– Matrix Multiplication Operation:
– ZENDNN_GEMM_ALGO for TensorFlow, PyTorch, and ONNX Runtime models
– Added new ALGO paths and experimental version of auto-tuner

Note: Auto-tuner is available only for TensorFlow.

• NHWC (default format) and Blocked Format (NCHWc8) continue to be supported.

ZenDNN library is intended to be used in conjunction with the frameworks mentioned above and
cannot be used independently. It is inherited from oneDNN v2.6.3.

The latest information on the ZenDNN release and installers is available on AMD Developer Central
(https://www.amd.com/en/developer/zendnn.html).

https://www.amd.com/en/developer/zendnn.html
https://www.amd.com/en/developer/zendnn.html

12 ZenDNN Chapter 1

57300 Rev. 4.1 September 2023ZenDNN User Guide

1.5 Supported OS and Compilers

This release of ZenDNN supports the following Operating Systems (OS) and compilers:

1.5.1 OS

• Ubuntu® 22.04 LTS and later

• Red Hat® Enterprise Linux® (RHEL) 9.1 and later

• CentOS Stream 8.4

• SUSE Linux Enterprise Server (SLES) 15 SP5

• Anolis OS 8.8 for PyTorch v1.13 wheel files

• Windows® 10 and 11

1.5.2 Compilers

• GCC 9.3 and later

• Microsoft Visual Studio 2019 with Clang compiler

1.6 Dependencies

1.6.1 Build

ZenDNN has the following build dependencies:

• For TensorFlow, ONNX Runtime, and PyTorch, Ccache package is required to build from source.

• For TensorFlow, Bazel package is required to build from source.

1.6.2 Runtime

ZenDNN has the following runtime dependencies:

• GNU C library (glibc.so)

• GNU Standard C++ library (libstdc++.so)

• Dynamic linking library (libdl.so)

• POSIX Thread library (libpthread.so)

• C Math Library (libm.so)

• OpenMP (libomp.so and libomp.dll)

Chapter 1 ZenDNN 13

ZenDNN User Guide57300 Rev. 4.1 September 2023

• Python v3.8-3.11 for:

– TensorFlow v2.12
– ONNX Runtime v1.15.1 on Linux and Windows (Beta)

• Python v3.7-3.10 for PyTorch v1.13

Since ZenDNN is configured to use OpenMP, a C++ compiler with OpenMP 2.0 or later is required
for runtime execution.

1.7 Logs

Logging is disabled in the ZenDNN library by default. It can be enabled using the environment
variable ZENDNN_LOG_OPTS before running any tests. Logging behavior can be specified by
setting the environment variable ZENDNN_LOG_OPTS to a comma-delimited list of
ACTOR:DBGLVL pairs.

The different ACTORS are as follows:

For example:

• To turn on info logging, use ZENDNN_LOG_OPTS=ALL:2

• To turn off all logging, use ZENDNN_LOG_OPTS=ALL:-1

• To only log errors, use ZENDNN_LOG_OPTS=ALL:0

• To only log info for ALGO, use ZENDNN_LOG_OPTS=ALL:-1,ALGO:2

• To only log info for CORE, use ZENDNN_LOG_OPTS=ALL:-1,CORE:2

• To only log info for FWK, use ZENDNN_LOG_OPTS=ALL:-1,FWK:2

• To only log info for API, use ZENDNN_LOG_OPTS=ALL:-1,API:2

• To only log info for PROF (profile), use ZENDNN_LOG_OPTS=ALL:-1,PROF:2

Note: For PyTorch NLP models, use ZENDNN_LOG_OPTS=ALL:-1,PROF:4.

Table 1. Log Actors
Actor Description

ALGO Logs all the executed algorithms.
CORE Logs all the core ZenDNN library operations.
API Logs all the ZenDNN API calls.
TEST Logs all the calls used in API, functionality, and regression tests.
PROF Logs the performance of operations in millisecond.
FWK Logs all the framework (Tensorflow, ONNX Runtime, and PyTorch) specific

calls.

14 ZenDNN Chapter 1

57300 Rev. 4.1 September 2023ZenDNN User Guide

Enable Profiling Logs

To enable the profiling logs zendnn_primitive_create and zendnn_primitive_execute, you can use:

ZENDNN_PRIMITIVE_LOG_ENABLE=1

The Different Debug Levels (DBGLVL) are as follows:

CORE, API, and PROF are mandatory logs when ZenDNN library is called. ALGO, TEST, and FW
are optional logs and may not appear in all the cases.

enum LogLevel

{

 LOG_LEVEL_DISABLED = -1,

 LOG_LEVEL_ERROR = 0,

 LOG_LEVEL_WARNING = 1,

 LOG_LEVEL_INFO = 2,

 LOG_LEVEL_VERBOSE0 = 3,

 LOG_LEVEL_VERBOSE1 = 4,

 LOG_LEVEL_VERBOSE2 = 5

};

Chapter 2 TensorFlow 15

ZenDNN User Guide57300 Rev. 4.1 September 2023

Chapter 2 TensorFlow

2.1 Installing ZenDNN with TensorFlow

Note: Refer to the section "ZenDNN" before starting the installation.

In this release, ZenDNN library is supported for TensorFlow v2.12. This is a baseline release for
TensorFlow v2.12 with:

• FP32 support

• AMD UIF INT8 model support

• Limited support for BF16 on AMD UIF ResNet50 and VGG16

2.1.1 Binary Release Setup

This section describes the procedure to setup the ZenDNN binary release for TensorFlow v2.12.

2.1.1.1 Conda

Complete the following steps to setup Conda:

1. Refer to Anaconda documentation (https://docs.anaconda.com/anaconda/install/linux/) to install
Anaconda on your system. The testing has been done with Anaconda3-2020.11-Linux-x86_64.

2. Create and activate a Conda environment which will house all the TensorFlow-ZenDNN specific
installations:

Ensure that you install the TensorFlow-ZenDNN package corresponding to the Python version
with which you created the Conda environment.

If there is any conda environment named tf-v2.12-zendnn-v4.1-rel-env, delete it (using command
conda remove --name tf-v2.12-zendnn-v4.1-rel-env --all) before running scripts/
TF_ZenDNN_setup_release.sh.

Note: TensorFlow-ZenDNN is compatible with Python v3.8-3.11 but 3.8 has been used as an
example.

3. It is recommended to use the naming convention:

conda create -n tf-v2.12-zendnn-v4.1-rel-env python=3.8 -y

conda activate tf-v2.12-zendnn-v4.1-rel-env

tf-v2.12-zendnn-v4.1-rel-env

https://github.com/amd/UIF
https://docs.anaconda.com/anaconda/install/linux/

16 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

4. Install all the necessary dependencies:

2.1.1.2 TensorFlow v2.12

Complete the following steps to install the ZenDNN binary release:

1. Copy the zipped release package to the local system being used. The name of the release package
will be similar to TF_v2.12_ZenDNN_v4.1_Python_v3.8.zip.

2. Execute the following commands:

a. unzip TF_v2.12_ZenDNN_v4.1_Python_v3.8.zip
b. cd TF_v2.12_ZenDNN_v4.1_Python_v3.8/
c. source scripts/TF_ZenDNN_setup_release.sh

This installs the TensorFlow wheel package provided in the zip file.

Note: Ensure that it is sourced only from the folder
TF_v2.12_ZenDNN_v4.1_Python_v3.8/.
You must run the command conda activate tf-v2.12-zendnn-v4.1-rel-env
whenever you open a new terminal.

The release binaries for TensorFlow v2.12 are compiled with manylinux2014 and they provide
compatibility with some older Linux distributions. The support for Docker releases has been
discontinued.

For more information on the supported OS and compilers for the Python wheel file, refer to the
section "Supported OS and Compilers".

The C++ interface will work on operating systems (with glibc version 2.31 or later):

• Ubuntu 22.04 and later

• RHEL 9.1 and later

2.1.2 Build from Source

To build ZenDNN with TensorFlow pip package from source, download TensorFlow-ZenDNN
source code from:

https://github.com/amd/ZenDNN-tensorflow

pip install --upgrade pyparsing

pip install --upgrade appdirs

pip install --upgrade --no-deps --force-reinstall --no-cache-dir numpy absl-py

pip install -U pip six wheel importlib-metadata setuptools mock future

pip install -U keras_applications --no-deps

pip install -U keras_preprocessing --no-deps

https://github.com/amd/ZenDNN-tensorflow

Chapter 2 TensorFlow 17

ZenDNN User Guide57300 Rev. 4.1 September 2023

The repository defaults to the master development branch that does not have ZenDNN support. To
build, you must check out the release branch r2.12_zendnn_rel.

For more information on the building procedure, refer to BUILD_SOURCE.md.

2.2 Directory Structure

The release folder consists of a TensorFlow wheel (.whl) and the following directory:

• scripts contains scripts to set up the environment and run benchmarks

2.3 High-level Overview

For more information, refer to the section "High-level Overview".

2.4 TensorFlow CNN Benchmarks

The benchmark scripts provide performance benchmarking at the TensorFlow level, printing latency
and throughput results for AlexNet, GoogLeNet, InceptionV3, InceptionV4, ResNet50, ResNet152,
VGG16, and VGG19 models.

Complete the following steps:

1. Download the TensorFlow CNN benchmarks repository from GitHub:

https://github.com/tensorflow/benchmarks.git

2. Export the environment variable BENCHMARKS_GIT_ROOT with the path to the benchmarks
repository:

For latency, execute the following commands:

1. cd TF_v2.12_ZenDNN_v4.1_Python_v3.8/

2. source scripts/zendnn_TF_env_setup.sh

3. source scripts/tf_cnn_benchmarks_latency.sh

For throughput, execute the following commands:

1. cd TF_v2.12_ZenDNN_v4.1_Python_v3.8/

2. source scripts/zendnn_TF_env_setup.sh

3. source scripts/tf_cnn_benchmarks_throughput.sh

cd $ZENDNN_PARENT_FOLDER

git clone https://github.com/tensorflow/benchmarks.git $ZENDNN_PARENT_FOLDER/bench-
marks

export BENCHMARKS_GIT_ROOT=$ZENDNN_PARENT_FOLDER/benchmarks

https://github.com/tensorflow/benchmarks.git

18 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

To run the individual models rather than the entire suite, execute the following commands:

Replace <NPS> with the following based on your number of NUMA nodes. Execute the command
lscpu to identify the number of NUMA nodes for your machine:

• If you have 1 NUMA node, replace <NPS> with 0

• If you have 2 NUMA nodes, replace <NPS> with 0-1

• If you have 4 NUMA nodes, replace <NPS> with 0-3

Replace <model_name> with one of the following options:

• For AlexNet, replace <model_name> with alexnet

• For GoogLeNet, replace <model_name> with googlenet

• For InceptionV3, replace <model_name> with inception3

• For InceptionV4, replace <model_name> with inception4

• For ResNet50, replace <model_name> with resnet50

• For ResNet152, replace <model_name> with resnet152

• For VGG16, replace <model_name> with vgg16

• For VGG19, replace <model_name> with vgg19

While executing the commands, make a note of the following:

• For optimal settings, refer to the section “"Tuning Guidelines"”. Current setting refers to 96C, 2P,
SMT=ON configuration.

• If a warning similar to the following appears during benchmark runs, configure your
GOMP_CPU_AFFINITY setting to match the number of CPU cores supported by your machine:

For example, if your CPU has 24 cores, your GOMP_CPU_AFFINITY should be set as "export
GOMP_CPU_AFFINITY=0-23".

cd $BENCHMARKS_GIT_ROOT/scripts/tf_cnn_benchmarks/

numactl --cpunodebind=<NPS> --interleave=<NPS> python tf_cnn_benchmarks.py --
device=cpu --model=<model_name> --data_format=NHWC --batch_size=$BATCH_SIZE --
num_batches=100 --num_inter_threads=1 --num_intra_threads=96 --nodistortions --for-
ward_only=True

OMP: Warning #181: OMP_PROC_BIND: ignored because GOMP_CPU_AFFINITY is defined

OMP: Warning #123: Ignoring invalid OS proc ID 48

OMP: Warning #123: Ignoring invalid OS proc ID 49

.

.

.

OMP: Warning #123: Ignoring invalid OS proc ID 63

Chapter 2 TensorFlow 19

ZenDNN User Guide57300 Rev. 4.1 September 2023

Note: TensorFlow Eager mode execution is supported through ZenDNN operations using only the
following commands:
export ZENDNN_CONV_ALGO=1
export ZENDNN_ENABLE_MEMPOOL=0

2.5 TensorFlow v2.12

In this release of ZenDNN:

• ZenDNN library is supported for TensorFlow v2.12.

• AMD Unified Inference Frontend (UIF) optimized models are supported. For the model details,
refer to the AMD UIF documentation.

• TensorFlow v2.12 wheel file is compiled with GCC v9.3.1.

• TensorFlow v2.12 is expected to deliver similar or better performance as compared to TensorFlow
v2.10.

2.6 Environment Variables

ZenDNN uses the following environment variables to setup paths and control logs, tune performance:
Table 2. Tensorflow-ZenDNN Environment Variables

Environment Variable Default Value/User Defined Value

Generic (Setup paths and control logs)

ZENDNN_LOG_OPTS ALL:0
ZENDNN_PARENT_FOLDER Path to unzipped release folder
TF_ZEN_PRIMITIVE_REUSE_DISABLE FALSE
ZENDNN_ENABLE_MEMPOOL The default value is set to 1, you can provide the

value 0 to disable it. 1 is for Graph-based
MEMPOOL and 2 is for Node-based MEMPOOL.

ZENDNN_PRIMITIVE_CACHE_CAPACITY The default value is set to 1024, you can modify it
as requireda.

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE 0
OMP_DYNAMIC FALSE
ZENDNN_INFERENCE_ONLY Default value is set to 1. ZenDNN does not

currently support training. You can set it to 0 when
you want to enable vanilla training and inference.

Optimized (Tune performance)
OMP_NUM_THREADS The default value is set to 96. You can set it as per

the number of cores in the user systema.

20 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

OMP_WAIT_POLICY ACTIVE
OMP_PROC_BIND false
GOMP_CPU_AFFINITY Set it as per the number of cores in the system being

used. For example, use 0-95 for 96-core server.
ZENDNN_TENSOR_POOL_LIMIT The default value is set to 1024. You can modify it

to 512 for CNNs for optimal performance.
For more information, refer to the section
"Recommended Settings".

ZENDNN_INT8_SUPPORT The default value is set to 0. You can modify it to 1
to enable the INT8 data type support. This works
only with ZENDNN_CONV_ALGO=4.
Note: This environment variable is not required for AMD

UIF models.

ZENDNN_TF_CONV_ADD_FUSION_SAFE The default value is set to 0. You can modify it to 1
to enable Conv, Add fusion. Currently it is safe to
enable this switch for resnet50v1_5, resnet101, and
inception_resnet_v2 models only.

ZENDNN_GEMM_ALGO The default value is 3. You can modify it to one of
the following:
• 0 = Auto
• 1 = AOCL-BLIS path
• 2 = Partial AOCL-BLIS
• 3 = ZenDNN JIT path
• 4 = ZenDNN partial JIT path
Note: Auto is an experimental feature and should be used

with application warmup iteration >=15.

ZENDNN_CONV_ALGO The default value is set to 4. Decides the
convolution algorithm to be used in execution and
the possible values are:
• 1 = im2row followed by GEMM
• 2 = WinoGrad (fallback to im2row GEMM for

unsupported input sizes)
• 3 = Direct convolution with blocked inputs and

filters
• 4 = Direct convolution with blocked filters

ZENDNN_LOG_OPTS=FWK:4 Dump graph after ZenDNN rewrites pass for all the
TensorFlow models.

TF_ENABLE_ZENDNN_OPTS The default value is set to 1 and ZenDNN code path
will be used. You can modify it to 0 to use native
TensorFlow code path.

Table 2. Tensorflow-ZenDNN Environment Variables
Environment Variable Default Value/User Defined Value

Chapter 2 TensorFlow 21

ZenDNN User Guide57300 Rev. 4.1 September 2023

Note: There are a few other environment variables that are initialized by the setup script, however
these are not applicable for the binary release setup.

When source scripts/zendnn_TF_env_setup.sh is invoked, the script initializes all the environment
variables except the one(s) which must be set manually. The environment variable
ZENDNN_PARENT_FOLDER is initialized relative to the unzipped release folder. To ensure that
the paths are initialized correctly, it is important that the script is invoked from the unzipped release
folder.

2.7 Tuning Guidelines

The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance.
The details for the environment variables used on a 4th Gen AMD EPYCTM server to achieve the
optimal performance numbers are as follows:

2.7.1 System

A system with the following specifications has been used:

OS Used: Ubuntu 22.04 LTS

2.7.2 Environment Variables

The following environment variables have been used:

ZENDNN_LOG_OPTS=ALL:0

TF_ENABLE_ONEDNN_OPTS=0

TF_ENABLE_ZENDNN_OPTS=1

OMP_NUM_THREADS=96

OMP_WAIT_POLICY=ACTIVE

OMP_PROC_BIND=FALSE

OMP_DYNAMIC=FALSE

a. You must define these environment variables explicitly.

Table 3. System Specification
Model name 4th Gen AMD EPYCTM 9654 1P 96-Core Processor
DPU MHz Up to 3.7 GHz
No. of Cores 96
1P/2P 1
SMT: Thread(s) per Core 2
Mem-Dims 12x64 GB

22 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

ZENDNN_ENABLE_MEMPOOL=1

ZENDNN_GEMM_ALGO=3

Note: For NLP and Recommender models, better performance is observed with
ZENDNN_GEMM_ALGO=4. However, these details should be verified empirically.

ZENDNN_TENSOR_POOL_LIMIT=1024

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE=0

ZENDNN_CONV_ALGO=4

ZENDNN_PARENT_FOLDER=/home/<user_id>/my_work

BENCHMARKS_GIT_ROOT=/home/<user_id>/my_work/benchmarks

ZENDNN_PRIMITIVE_CACHE_CAPACITY=1024

ZENDNN_INT8_SUPPORT=0

ZENDNN_INFERENCE_ONLY=1

ZENDNN_TF_CONV_ADD_FUSION_SAFE=0

Other than the ZENDNN environment variables, there are a few other parameters that influence the
memory policy across the nodes, thread binding to the available physical cores. Considerable
performance improvements may be achieved by setting these parameters carefully. Following
sections describe the behavior and possible values for these parameters.

2.7.2.1 Recommended Settings

A few recommended settings for AMD UIF v1.1 models are as follows:

• UIF v1.1 FP32 tf_efficientnet-edgetpu and INT8 tf_RefineDet-Medical_EDD model
ZENDNN_CONV_ALGO=3 leads to accuracy drop.

For optimal results, use ZENDNN_CONV_ALGO=4.

• UIF v1.1 FP32 tf_mobilebert_SQuADv1.1 ZENDNN_ENABLE_MEMPOOL=1 leads to
accuracy drop.

For optimal results, use ZENDNN_ENABLE_MEMPOOL =2.

• UIF v1.1 FP32 tf_RefineDet-Medical_EDD and densenet169 models lead to segmentation fault
with higher value of ZENDNN_TENSOR_POOL_LIMIT. This should be verified empirically.

For optimal results, use ZENDNN_TENSOR_POOL_LIMIT=32.

2.7.3 Thread Wait Policy

OMP_WAIT_POLICY provides options to the OpenMP runtime library based on the expected
behavior of the waiting threads. It can take the abstract values PASSIVE and ACTIVE. The default
value is ACTIVE. When OMP_WAIT_POLICY is set to PASSIVE, the waiting threads will be

Chapter 2 TensorFlow 23

ZenDNN User Guide57300 Rev. 4.1 September 2023

passive and will not consume the processor cycles. Whereas, setting it to ACTIVE will consume
processor cycles.

Note: For ZenDNN stack, setting OMP_WAIT_POLICY to ACTIVE may give better performance.

2.7.4 Thread Affinity

To improve ZenDNN performance, the behavior of OpenMP threads can be guarded precisely with
thread affinity settings. A thread affinity defined at startup cannot be modified or changed during
runtime of the application. Following are the ways through which you can bind the requested
OpenMP threads to the physical CPUs:

• GOMP_CPU_AFFINITY environment variable binds threads to the physical CPUs, for
example:

export GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"

This command will bind the:

– Initial thread to CPU 0
– Second thread to CPU 3
– Third and fourth threads to CPU 1 and CPU 2 respectively
– Fifth thread to CPU 4
– Sixth through tenth threads to CPUs 6, 8, 10, 12, and 14 respectively
Then, it will start the assigning back from the beginning of the list.

export GOMP_CPU_AFFINITY="0" binds all the threads to CPU 0.

• KMP affinity belongs to LLVM OpenMP runtime library and is used by setting appropriate values
for the environment variable KMP_AFFINITY. It has the following syntax:

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Example:

export KMP_AFFINITY='verbose,respect,granularity=fine,compact,1,0 binds threads as
close as possible to the master thread but on a different core. Once each core is assigned with one
OpenMP thread, the remaining OpenMP threads are assigned in the same order as before, but on
different thread contexts.

Among the two, KMP_AFFINITY takes highest precedence followed by
GOMP_CPU_AFFINITY. If none of them is set, the host system will defer the assignment of
threads to CPUs. Given the same thread binding (see example below), it is expected that both the
affinity settings would give the same performance.

Example:

Following affinity settings should give the same thread bindings:

– export GOMP_CPU_AFFINITY=0-95
– export KMP_AFFINITY='verbose,respect,granularity=fine,compact,1,0'

24 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

2.7.5 Non-uniform Memory Access

2.7.5.1 numactl

numactl provides options to run processes with specific scheduling and memory placement policy. It
can restrict the memory binding and process scheduling to specific CPUs or NUMA nodes:

• --cpunodebind=nodes: Restricts the process to a specific group of nodes.

• --physcpubind=cpus: Restricts the process to a specific set of physical CPUs.

• --membind=nodes: Allocates the memory from the nodes listed. The allocation fails if there is not
enough memory on the listed nodes.

• --interleave=nodes: Memory will be allocated in a round robin manner across the specified nodes.
When the memory cannot be allocated on the current target node, it will fall back to the other
nodes.

Example:

If <tensorflow_script> is the application that needs to run on the server, then it can be triggered using
numactl settings as follows:

The interleave option of numactl works only when the number nodes allocated for a particular
application is more than one. cpunodebind and physcpubind behave the same way for ZenDNN stack,
whereas interleave memory allocation performs better than membind.

2.7.5.2 Concurrent Execution

As every application, AI workload requires special considerations during performance tuning to get
the best out of the non-uniform memory access (NUMA) enabled machine. Improvement in
performance can be achieved by carefully analyzing memory access time, memory bandwidth, and
congestion on the shared bus. These factors depend on how far away the allocated memory and the
process that requested the memory are in the NUMA system. In NUMA machines, the local memory
access is faster as compared to the remote memory access. Consider the following workload:

Performance can be optimized by partitioning the workload into multiple data shards and then
running concurrently on more than one NUMA node. Following example shows the concurrent
execution across 4 NUMA nodes:

numactl --cpunodebind=0-3 -membind=0-3 python <tensorflow_script>

numactl --cpunodebind=0-3 --membind=0-3 python <tensorflow_script>

numactl --cpunodebind=0 --membind=0 python <tensorflow_script> & numactl --cpuno-
debind=1 --membind=1 python <tensorflow_script> & numactl --cpunodebind=2 --membind=2
python <tensorflow_script> & numactl --cpunodebind=3 --membind=3 python <tensor-
flow_script>

Chapter 2 TensorFlow 25

ZenDNN User Guide57300 Rev. 4.1 September 2023

The number of concurrent executions can be increased beyond 4 nodes. The following formula can be
used to decide the number of concurrent executions to be triggered at a time:

This can also be extended to even cores. However, these details should be verified by the user
empirically.

2.7.6 Transparent Huge Pages

Transparent Huge Pages (THPs) are a Linux kernel feature for memory management to improve
performance of the application by efficiently using the processor's memory-mapping hardware. THP
should reduce the overhead of the Translation Lookaside Buffer. You must login as root to enable or
disable THP settings. It operates mainly in two modes:

• always: You can run the following command to set THP to ‘always’:

In this mode, the system kernel tries to assign huge pages to the processes running on the system.

• madvise: You can run the following command to set THP to ‘madvise’:

In this mode, kernel only assigns huge pages to the individual process memory areas.

You can use the following command to disable THP:

It is recommended to use the following THP setting for better performance:

• CNN models - ‘never’ (batch size =1), 'always' (batch size >1)

• NLP and Recommender models - ‘madvise’

Note: These details should be verified empirically.

2.7.7 Batch Size

Batch Size is a sensitive factor for the throughput performance of any model. The following formula
could be used to calculate the optimal Batch Size:

Batch factor may vary from 8-32. The value 32 may provide optimal performance. However, you
should verify this empirically.

Number Concurrent Executions = Number of Cores Per Socket / Numbers of Cores sharing L3
cache

echo always > /sys/kernel/mm/transparent_hugepage/enabled

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Batch Size = number_of_physical_cores * batch_factor

26 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

2.7.8 Memory Allocators

Based on the model, if there is a requirement for a lot of dynamic memory allocations, a memory
allocator can be selected from the available allocators which would generate the most optimal
performance out of the model. These memory allocators override the system provided dynamic
memory allocation routines and use a custom implementation. They also provide the flexibility to
override the dynamic memory management specific tunable parameters (for example, logical page
size, per thread, or per-CPU cache sizes) and environment variables. The default configuration of
these allocators would work well in practice. However, you should verify empirically by trying out
what setting works best for a particular model after analyzing the dynamic memory requirements for
that model.

TCMalloc and jemalloc are the most commonly used allocators.

2.7.8.1 TCMalloc

TCMalloc is a memory allocator which is fast, performs uncontended allocation and deallocation for
most objects. Objects are cached depending on the mode, either per-thread or per-logical CPU. Most
allocations do not need to take locks. So, there is low contention and good scaling for multi-threaded
applications. It has flexible use of memory and hence, freed memory can be reused for different
object sizes or returned to the operating system. Also, it provides a variety of user-accessible controls
that can be tuned based on the memory requirements of the workload.

2.7.8.2 jemalloc

jemalloc is a memory allocator that emphasizes fragmentation avoidance and scalable concurrency
support. It has a powerful multi-core/multi-thread allocation capability. The more cores the CPU has,
the more program threads, the faster jemalloc allocates. jemalloc classifies memory allocation
granularity better, leading to less lock contention. It provides various tunable runtime options, such as
enabling background threads for unused memory purging, allowing jemalloc to utilize transparent
huge pages for its internal metadata, and so on.

Chapter 2 TensorFlow 27

ZenDNN User Guide57300 Rev. 4.1 September 2023

2.7.8.3 Usage

You can install the TCMalloc/jemalloc dynamic library and use LD_PRELOAD environment
variable as follows:

To verify if TCMalloc/jemalloc memory allocator is in use, you can grep for tcmalloc/jemalloc in the
output of lsof command:

2.8 Convolution Algorithm Logic

Convolution kernels take Input and Filter/Weights as arguments and return Output. The table below
describes the expected Layout for each of the convolution algorithms currently supported by
TensorFlow-ZenDNN.

Note: In the context of Filter Layouts, HWIO is equivalent to HWCN but with I instead of C
representing input channels and O instead of N representing output channels.

2.9 Limited Precision Support

Quantization is an active area of research and a popular compression technique to accelerate neural
network performance.

Before using TCMalloc:
export LD_PRELOAD=/path/to/TCMallocLib/

Before using jemalloc:
export LD_PRELOAD=/path/to/jemallocLib/

Or

Benchmarking command using TCMalloc:
LD_PRELOAD=/path/to/TCMallocLib/ < python benchmarking command>

Benchmarking command using jemalloc:
LD_PRELOAD=/path/to/jemallocLib/ < python benchmarking command>

lsof -p <pid_of_benchmarking_command> | grep <tcmalloc/jemalloc>

Table 4. Convolution Algorithm Logic
zenConvAlgoType ZENDNN_CONV_ALGO Input Layout Filter Layout Output Layout

GEMM 1 NHWC HWIO NHWC
WINOGRAD 2 NHWC HWIO NHWC
DIRECT1 3 nChw8c Ohwi8o nChw8c
DIRECT2 4 NHWC Ohwi8o/

Ohwi16o
NHWC

28 TensorFlow Chapter 2

57300 Rev. 4.1 September 2023ZenDNN User Guide

A few of these quantized neural networks models and TensorFlow protobuf (pb) files are publicly
available. On AMD 4th Gen EPYCTM platforms, ZenDNN offers options to enable INT8 quantization
with AMD's UIF INT8 models. These models can be leveraged using AMD UIF benchmarking
scripts.

ZenDNN provides limited support for BF16 on AMD UIF ResNet50 and VGG16.

To optimize performance, use the following environment variables:
export ZENDNN_ENABLE_MEMPOOL=1/2

export ZENDNN_TENSOR_POOL_LIMIT=1024

Chapter 3 ONNX Runtime 29

ZenDNN User Guide57300 Rev. 4.1 September 2023

Chapter 3 ONNX Runtime

3.1 Installing ZenDNN with ONNX Runtime

Note: Refer to the section "ZenDNN" before starting the installation.

In this release, ZenDNN library is supported for ONNX Runtime v1.15.1. This is a baseline release
for ONNX Runtime v1.15.1 with:

• FP32 support

• AMD UIF INT8 model support

• Limited support for BF16 on a few CNN models

3.1.1 Binary Release Setup

3.1.1.1 Conda

Complete the following steps to set up Conda:

1. Refer to Anaconda documentation (https://docs.anaconda.com/anaconda/install/linux/) to install
Anaconda on your system. The testing has been done with Anaconda3-2020.11-Linux-x86_64.

2. Create and activate a Conda environment which will house all the ONNX Runtime-ZenDNN
specific installations:

Ensure that you install the ONNX Runtime-ZenDNN package corresponding to the Python
version with which you created the Conda environment.

If there is any conda environment named onnxrt-v1.15.1-zendnn-v4.1-rel-env, delete it (using the
command conda remove --name onnxrt-v1.15.1-zendnn-v4.1-rel-env --all) before running scripts/
ONNXRT_ZenDNN_setup_release.sh.

Note: ONNX Runtime-ZenDNN is compatible with Python v3.8-3.11 but 3.8 has been used as
an example.

3. It is recommended to use the naming convention:

4. Install all the necessary dependencies:

conda create -n onnxrt-v1.15.1-zendnn-4.1-rel-env python=3.8 -y

conda activate onnxrt-v1.15.1-zendnn-4.1-rel-env

onnxrt-v1.15.1-zendnn-v4.1-rel-env

pip install -U cmake numpy pytest psutil torch==2.0.1 coloredlogs

pip install -U transformers sympy --ignore-installed ruamel.yaml

pip install onnx==1.14.0

https://docs.anaconda.com/anaconda/install/linux/
https://github.com/amd/UIF

30 ONNX Runtime Chapter 3

57300 Rev. 4.1 September 2023ZenDNN User Guide

3.1.1.2 ONNX Runtime v1.15.1

Complete the following steps to install the ZenDNN binary release:

1. Copy the zipped release package to the local system being used. The name of the release packages
will be similar to ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8/.

2. Execute the following commands:

a. unzip ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8.zip
b. cd ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8/
c. source scripts/ONNXRT_ZenDNN_setup_release.sh
d. pip install protobuf==3.20.2
Note: Ensure that it is sourced only from the unzipped release folder.

For more information on the supported OS and compilers for the Python wheel file, refer to the
section "Supported OS and Compilers".

C++ Interface will work on the following operating systems (with glibc version 2.17 or later):

• Ubuntu 22.04 and later

• RHEL 9.1 and later

3.1.2 Build from Source

To build ZenDNN with ONNX Runtime pip package from source, download the ONNX Runtime-
ZenDNN source code from:

https://github.com/amd/ZenDNN-onnxruntime

The repository defaults to the master development branch which does not have ZenDNN support. To
build, you must check out the release branch rel-1.15.1_zendnn_rel.

For more information on the building procedure, refer to BUILD_SOURCE.md.

3.2 Directory Structure

The release folder consists of a ONNX Runtime wheel (.whl) and the following directory:

• scripts/ contains scripts to set up the environment

3.3 High-level Overview

For more information, refer to the section "High-level Overview".

https://github.com/amd/ZenDNN-onnxruntime

Chapter 3 ONNX Runtime 31

ZenDNN User Guide57300 Rev. 4.1 September 2023

3.4 ONNX Runtime Benchmarks

To understand latency and throughput metrics with ZenDNN execution paths, standard models such
as BERT can be run on ONNX Runtime with ZenDNN backend.

Use the following setup scripts and commands to download and run BERT models and derive
performance metrics:

1. cd ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8/

2. source scripts/zendnn_ONNXRT_env_setup.sh

3. Activate your conda environment.

4. The following command runs BERT benchmarking with batch-size=24, sequence length=16, and
threads=96 on a NPS=4 machine setting:

While executing the commands, make a note of the following:

• For optimal settings, refer to the section "Tuning Guidelines". Current setting refers to 96C, 2P,
SMT=ON configuration.

3.5 ONNX Runtime v1.15.1

In this release of ZenDNN:

• ZenDNN library is supported for ONNX Runtime v1.15.1.

• AMD Unified Inference Frontend (UIF) optimized models are supported. For the model details,
refer to the AMD UIF documentation.

• ONNX Runtime v1.15.1 wheel file is compiled with GCC v9.3.1.

3.6 Environment Variables

ZenDNN uses the following environment variables:

numactl --cpunodebind=0-3 --interleave=0-3 python -m onnxruntime.transformers.bench-
mark -m bert-large-uncased --model_class AutoModel -p fp32 -i 3 -t 10 -b 4 -s 16 -n 96
-v --provider zendnn

Table 5. ONNX Runtime-ZenDNN Environment Variables
Environment Variable Default Value/User Defined Value

Generic (Setup paths and control logs)

ZENDNN_LOG_OPTS ALL:0
ZENDNN_PARENT_FOLDER Path to unzipped release folder
ZENDNN_PRIMITIVE_CACHE_CAPACITY The default value is set to 1024, you can modify it

as requireda.

32 ONNX Runtime Chapter 3

57300 Rev. 4.1 September 2023ZenDNN User Guide

OMP_DYNAMIC FALSE

Optimized (Tune performance)

OMP_NUM_THREADS The default value is set to 96. You can set it as per
the number of cores in the user systema.

OMP_WAIT_POLICY ACTIVE
OMP_PROC_BIND FALSE
GOMP_CPU_AFFINITY Set it as per the number of cores in the system being

used. For example, use 0-95 for 96-core servers.
ZENDNN_CONV_ADD_FUSION_ENABLE The flag is to enable convolution and add operator

fusion. It is disabled (set to 0) by default. You can
modify it to 1 to enable the fusion. It is used to
optimize executions on all the variants of ResNet
models.

ZENDNN_RESNET_STRIDES_OPT1_ENABLE The flag is to enable strides trick optimization for
ResNet blocks. It is disabled (set to 0) by default.
You can modify it to 1 to enable the optimization. It
is used to optimize executions on all the variants of
ResNet models.

ZENDNN_BN_RELU_FUSION_ENABLE This flag is disabled by default. You can use export
command in Linux to set it to 1 and enable it. It is
used to optimize executions on limited CNN
models.

ZENDNN_CONV_CLIP_FUSION_ENABLE This flag is disabled by default. You can use export
command in Linux to set it to 1 and enable it. It is
used to optimize executions on all the variants of
MobileNet models.

ZENDNN_CONV_RELU_FUSION_ENABLE The flag is to enable convolution and relu operator
fusion. It is enabled (set to 1) by default. You can
modify it to 0 to disable the fusion. It is used to
optimize executions on all the variants of ResNet
models.

ZENDNN_CONV_ELU_FUSION_ENABLE The flag is to enable convolution and elu operator
fusion. It is disabled (set to 0) by default. You can
modify it to 1 to enable the fusion. It is used to
optimize executions on limited CNN models.

Table 5. ONNX Runtime-ZenDNN Environment Variables
Environment Variable Default Value/User Defined Value

Chapter 3 ONNX Runtime 33

ZenDNN User Guide57300 Rev. 4.1 September 2023

ORT_ZENDNN_ENABLE_INPLACE_CONCAT This flag is used to perform in place concatenation
of intermediate tensors arrays. It is disabled (set to
0) by default. You can modify it to 1 to enable the
optimization. This optimization is useful for the
variants of Inception and GoogleNet models.

ZENDNN_GEMM_ALGO The default value is 3. You can modify it to one of
the following:
• 1 = AOCL-BLIS path
• 2 = Partial AOCL-BLIS
• 3 = ZenDNN JIT path
• 4 = ZenDNN partial JIT path

ONNXRT_ZENDNN_CPU_ALLOC This flag is to enable the usage of the CPU memory
allocator in ZenDNN Execution Provider. By
default, it is disabled.

ZENDNN_CONV_SWISH_FUSION_ENABLE This flag is to enable the fusion of the sigmoid
operator with the preceding conv operator. By
default, it is disabled.

ZENDNN_QUANTIZE_CONV_ADD_FUSION_E
NABLE

This flag is to enable convolution and add operator
fusion in quantized models with QOperator format.
It is disabled (set to 0) by default. You can modify it
to 1 to enable fusion. It is used to optimize
executions on all the variants of ResNet models.

ZENDNN_QUANTIZE_CONV_RELU_FUSION_E
NABLE

The flag is to enable convolution and relu operator
fusion in quantized model with QOperator format. It
is disabled (set to 0) by default. You can modify it to
1 to enable fusion. It is used to optimize executions
on all the variants of ResNet models.

ZENDNN_QCONV_CLIP_FUSION_ENABLE This flag is to enable convolution and clip operator
fusion in the quantize model with QOperator
format. It is disabled (set to 0) by default. You can
modify it to 1 to enable fusion. It is used to optimize
executions on all the variants of MobileNet models.

ZENDNN_ONNXRT_ENABLE_BF16_SUPPORT This flag is disabled (set to 0) by default, you can set
it to 1 to enable the execution of compute expensive
operation in BF16. It optimizes the execution only
for the CNN models.

Note: There are a few other environment variables that are initialized by the setup script, however these are not applicable for
the binary release setup.

a. These environment variables work only for Blocked Format.

Table 5. ONNX Runtime-ZenDNN Environment Variables
Environment Variable Default Value/User Defined Value

34 ONNX Runtime Chapter 3

57300 Rev. 4.1 September 2023ZenDNN User Guide

When source scripts/zendnn_ONNXRT_env_setup.sh is invoked, the script initializes all the environment
variables except the one(s) which must be set manually. The environment variable
ZENDNN_PARENT_FOLDER is initialized relative to the path defined by the unzipped release
folder. To ensure that the paths are initialized correctly, it is important that the script is invoked from
the unzipped release folder.

3.7 Tuning Guidelines

The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance.
The details for the environment variables used on a 4th Gen AMD EPYCTM server to get the best
performance numbers are as follows:

3.7.1 System

A system with the following specifications has been used:

3.7.2 Environment Variables

The following environment variables have been used:

ZENDNN_LOG_OPTS=ALL:0

OMP_NUM_THREADS=96

OMP_WAIT_POLICY=ACTIVE

OMP_PROC_BIND=FALSE

OMP_DYNAMIC=FALSE

ZENDNN_GEMM_ALGO=3

Note: For NLP models, a better performance is observed with ZENDNN_GEMM_ALGO=4.
However, these details should be verified empirically.

ZENDNN_PARENT_FOLDER=/home/<user_id>/my_work

ZENDNN_PRIMITIVE_CACHE_CAPACITY=1024

ZENDNN_ONNXRT_VERSION=1.15.1

Table 6. System Specification
Model name 4th Gen AMD EPYCTM 9654P 96-Core Processor
CPU MHz Up to 3.7 GHz
No of Cores 96
1P/2P 1
SMT: Thread(s) per Core 2
Mem-Dims 12x64 GB

Chapter 3 ONNX Runtime 35

ZenDNN User Guide57300 Rev. 4.1 September 2023

ZENDNN_ONNX_VERSION=1.14.0

ZENDNN_CONV_ADD_FUSION_ENABLE=0

ZENDNN_RESNET_STRIDES_OPT1_ENABLE=0

GOMP_CPU_AFFINITY=0-95

ZENDNN_CONV_CLIP_FUSION_ENABLE=0

ZENDNN_BN_RELU_FUSION_ENABLE=0

ZENDNN_CONV_ELU_FUSION_ENABLE=0

ORT_ZENDNN_ENABLE_INPLACE_CONCAT=0

ONNXRT_ZENDNN_CPU_ALLOC=0

ZENDNN_CONV_SWISH_FUSION_ENABLE=0

ZENDNN_QUANTIZE_CONV_RELU_FUSION_ENABLE=0

ZENDNN_QUANTIZE_CONV_ADD_FUSION_ENABLE=0

As mentioned in the section "Environment Variables", the script scripts/
zendnn_ONNXRT_env_setup.sh, initializes all the environment variables except the one(s) which you
must set manually. The environment variables OMP_NUM_THREADS, OMP_WAIT_POLICY,
OMP_PROC_BIND, and GOMP_CPU_AFFINITY can be used to tune performance. For optimal
performance, the Batch Size must be a multiple of the total number of cores (used by the threads). On
a 4th Gen AMD EPYC server (configuration: AMD EPYC 9654P 96-Core, 2P, and SMT=ON) with
the above environment variable values, OMP_NUM_THREADS=96 and
GOMP_CPU_AFFINITY=0-95 yield the best throughput numbers for a single socket.

Batch Size is a sensitive factor for the throughput performance of any model. The following formula
could be used to calculate the optimal Batch Size:

Batch Size = number_of_physical_cores * batch_factor

batch_factor may vary from 8-32. Usually, the value 32 gives the optimal performance.

3.7.3 Thread Wait Policy

OMP_WAIT_POLICY environment variable provides options to the OpenMP runtime library based
on the expected behavior of the waiting threads. It can take the abstract values PASSIVE and
ACTIVE. The default value is ACTIVE. When OMP_WAIT_POLICY is set to PASSIVE, the
waiting threads will be passive and will not consume the processor cycles. Whereas, setting it to
ACTIVE will consume processor cycles.

Note: For ZenDNN stack, setting OMP_WAIT_POLICY to ACTIVE may give better performance.

3.7.4 Thread Affinity

To improve ZenDNN performance, the behavior of OpenMP threads can be guarded precisely with
thread affinity settings. A thread affinity defined at start up cannot be modified or changed during

36 ONNX Runtime Chapter 3

57300 Rev. 4.1 September 2023ZenDNN User Guide

runtime of the application. Following are the ways through which you can bind the requested
OpenMP threads to the physical CPUs:

• GOMP_CPU_AFFINITY environment variable binds threads to the physical CPUs, for
example:

export GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"

This command will bind the:

– Initial thread to CPU 0
– Second thread to CPU 3
– Third and fourth threads to CPU 1 and CPU 2 respectively
– Fifth thread to CPU 4
– Sixth through tenth threads to CPUs 6, 8, 10, 12, and 14 respectively
Then, it will start the assigning back from the beginning of the list.

export GOMP_CPU_AFFINITY="0" binds all the threads to CPU 0.

• KMP affinity belongs to LLVM OpenMP runtime library and is used by setting appropriate values
for the environment variable KMP_AFFINITY. It has the following syntax:

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Example:

export KMP_AFFINITY='verbose,respect,granularity=fine,compact,1,0 binds threads as
close as possible to the master thread but on a different core. Once each core is assigned with one
OpenMP thread, the remaining OpenMP threads are assigned in the same order as before, but on
different thread context.

Among the two, KMP_AFFINITY takes highest precedence followed by
GOMP_CPU_AFFINITY. If none of the two is set, the host system will defer the assignment of
threads to CPUs. Given the same thread binding (see example below), it is expected that both the
affinity settings would give the same performance.

Example:

Following affinity settings should give the same thread bindings:

– export GOMP_CPU_AFFINITY=0-95
– export KMP_AFFINITY='verbose,respect,granularity=fine,compact,1,0'

3.7.5 Non-uniform Memory Access

3.7.5.1 numactl

numactl provides options to run processes with specific scheduling and memory placement policy. It
can restrict the memory binding and process scheduling to specific CPUs or NUMA nodes:

• --cpunodebind=nodes: Restricts the process to specific group of nodes.

Chapter 3 ONNX Runtime 37

ZenDNN User Guide57300 Rev. 4.1 September 2023

• --physcpubind=cpus: Restricts the process to specific set of physical CPUs.

• --membind=nodes: Allocates the memory from the nodes listed. The allocation fails if there is not
enough memory on the listed nodes.

• --interleave=nodes: Memory will be allocated in a round robin manner across the specified nodes.
When the memory cannot be allocated on the current target node, it will fall back to the other
nodes.

Example:

If <onnxruntime_script> is the application that needs to run on the server, then it can be triggered
using numactl settings as follows:

The interleave option of numactl works only when the number nodes allocated for a particular
application is more than one. cpunodebind and physcpubind behave the same way for ZenDNN stack,
whereas interleave memory allocation performs better than membind.

3.7.5.2 Concurrent Execution

As every application, AI workload requires special considerations during performance tuning to get
the best out of the non-uniform memory access (NUMA) enabled machine. Improvement in
performance can be achieved by carefully analyzing memory access time, memory bandwidth, and
congestion on the shared bus. These factors depend on how far away the allocated memory and the
process that requested the memory are in the NUMA system. In NUMA machines, the local memory
access is faster as compared to the remote memory access. Consider the following workload:

Performance can be optimized by partitioning the workload into multiple data shards and then
running concurrently on more than one NUMA node. Following example shows the concurrent
execution across 4 NUMA nodes:

The number of concurrent executions can be increased beyond 4 nodes. The following formula can be
used to decide the number of concurrent executions to be triggered at a time:

This can also be extended to even cores. However, these details should be verified empirically.

numactl --cpunodebind=0-3 -membind=0-3 python <onnxruntime_script>

numactl --cpunodebind=0-3 -membind=0-3 python <onnxruntime_script>

numactl --cpunodebind=0 --membind=0 python <onnxruntime_script> & numactl --cpuno-
debind=1 --membind=1 python <onnxruntime_script> & numactl --cpunodebind=2 --membind=2
python <onnxruntime_script> & numactl --cpunodebind=3 --membind=3 python <onnxrun-
time_script>

Number Concurrent Executions = Number of Cores Per Socket / Numbers of Cores sharing L3
cache

38 ONNX Runtime Chapter 3

57300 Rev. 4.1 September 2023ZenDNN User Guide

3.7.6 Transparent Huge Pages

Transparent Huge Pages (THPs) are a Linux kernel feature for memory management to improve
performance of the application by efficiently using processor's memory-mapping hardware. THP
should reduce the overhead of the Translation Lookaside Buffer. User must login as root to enable or
disable THP settings. It operates mainly in two modes:

• always: You can run the following command to set THP to ‘always’:

In this mode, the system kernel tries to assign huge pages to the processes running on the system.

• madvise: You can run the following command to set THP to ‘madvise’:

In this mode, kernel only assigns huge pages to the individual processes memory areas.

You can use the following command to disable THP:

It is recommended to use the following THP setting for better performance:

• CNN and NLP models - ‘madvise’

Note: For AMD UIF CNN models, a better performance is observed with 'always'. However, these
details should be verified empirically.

3.7.7 Batch Size

Batch Size is a sensitive factor for the throughput performance of any model. The following formula
could be used to calculate the optimal Batch Size:

Batch factor may vary from 8-32. The value 32 may provide optimal performance. However, user
should verify this empirically.

3.7.8 Memory Allocators

Based on the model, if there is a requirement for a lot of dynamic memory allocations, a memory
allocator can be selected from the available allocators which would generate the most optimal
performance out of the model. These memory allocators override the system provided dynamic
memory allocation routines and use a custom implementation. They also provide the flexibility to
override the dynamic memory management specific tunable parameters (for example, logical page
size, per thread, or per-cpu cache sizes) and environment variables. The default configuration of these
allocators would work well in practice. However, you should verify empirically by trying out what

echo always > /sys/kernel/mm/transparent_hugepage/enabled

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Batch Size = number_of_physical_cores * batch_factor

Chapter 3 ONNX Runtime 39

ZenDNN User Guide57300 Rev. 4.1 September 2023

setting works best for a particular model after analyzing the dynamic memory requirements for that
model.

Most commonly used allocators are TCMalloc and jemalloc.

3.7.8.1 TCMalloc

TCMalloc is a memory allocator which is fast, performs uncontended allocation and deallocation for
most objects. Objects are cached depending on the mode, either per-thread or per-logical CPU. Most
allocations do not need to take locks. So, there is low contention and good scaling for multi-threaded
applications. It has flexible use of memory and hence, freed memory can be reused for different
object sizes or returned to the operating system. Also, it provides a variety of user-accessible controls
that can be tuned based on the memory requirements of the workload.

3.7.8.2 jemalloc

jemalloc is a memory allocator that emphasizes fragmentation avoidance and scalable concurrency
support. It has a powerful multi-core/multi-thread allocation capability. The more cores the CPU has,
the more program threads, the faster jemalloc allocates. jemalloc classifies memory allocation
granularity better, leading to less lock contention. It provides various tunable runtime options, such as
enabling background threads for unused memory purging, allowing jemalloc to utilize transparent
huge pages for its internal metadata, and so on.

3.7.8.3 Usage

You can install the TCMalloc/jemalloc dynamic library and use LD_PRELOAD environment
variable as follows:

To verify if TCMalloc/jemalloc memory allocator is in use, you can grep for tcmalloc/jemalloc in the
output of lsof command:

Before using TCMalloc:
export LD_PRELOAD=/path/to/TCMallocLib/

Before using jemalloc:
export LD_PRELOAD=/path/to/jemallocLib/

Or

Benchmarking command using TCMalloc:
LD_PRELOAD=/path/to/TCMallocLib/ < python benchmarking command>

Benchmarking command using jemalloc:
LD_PRELOAD=/path/to/jemallocLib/ < python benchmarking command>

lsof -p <pid_of_benchmarking_commad> | grep <tcmalloc/jemalloc>

40 ONNX Runtime Chapter 3

57300 Rev. 4.1 September 2023ZenDNN User Guide

3.7.9 Optimal Setting

Optimal performance of several ZenDNN workloads is observed when interleaving is enabled in
conjunction with the NPS4 mode.

By default, ONNX Runtime uses GNU OpenMP (libgomp) for parallel computation. For ZenDNN
backend, you can preload LLVM OpenMP’s libomp for a better performance compared to libgomp as
follows:

1. Download:

2. Unzip:

3. Web get:

4. Configure cmake command:

5. Build command:

6. Clean command:

7. Build artifacts location:

8. Do LD_PRELOAD to the .so file:

This is a one-time activity and for all the benchmarking, you can just point to the already built lib.

A sample command line to run a Python code with 96C in NPS4 mode is as follows:

3.8 Limited Precision Support

Quantization is an active area of research and a popular compression technique to accelerate neural
network performance.

cd $ZENDNN_PARENT_FOLDER

tar -xf openmp-10.0.1.src.tar.xz
cd openmp-10.0.1.src

wget https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.1/openmp-
10.0.1.src.tar.xz

cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++

make

make clean

$ZENDNN_PARENT_FOLDER/openmp-10.0.1.src/runtime/src/libomp.so

export LD_PRELOAD=$ZENDNN_PARENT_FOLDER/openmp-10.0.1.src/runtime/src/libomp.so:$LD_PRE-
LOAD

export GOMP_CPU_AFFINITY=0-95 && export OMP_NUM_THREADS=96 && numactl --cpunodebind=0-3 --
interleave=0-3 python -m onnxruntime.transformers.benchmark -m bert-large-uncased --mod-
el_class AutoModel -p fp32 -i 3 -t 10 -b 24 -s 16 -n 96 -v

Chapter 3 ONNX Runtime 41

ZenDNN User Guide57300 Rev. 4.1 September 2023

A few of these quantized neural networks models are publicly available. On AMD 4th Gen EPYCTM
platforms, ZenDNN offers options to enable INT8 quantization with AMD's UIF INT8 models. These
models can be leveraged using AMD UIF benchmarking scripts.

ZenDNN provides limited support for BF16 with the following CNN models:

• AlexNet

• GoogleNet

• ResNet variants

• SqueezeNet1.1

• VGG11

42 PyTorch Chapter 4

57300 Rev. 4.1 September 2023ZenDNN User Guide

Chapter 4 PyTorch

4.1 Installing ZenDNN with PyTorch

Note: Refer to the section "ZenDNN" before starting the installation.

In this release, we are providing ZenDNN library support for PyTorch v1.13. This is a baseline
release for PyTorch v1.13 with:

• FP32 support

• AMD UIF INT8 model support

• Limited support for BF16 on AMD UIF ResNet50

4.1.1 Binary Release Setup

4.1.1.1 Conda

Complete the following steps to setup Conda:

1. Refer to Anaconda documentation (https://docs.anaconda.com/anaconda/install/linux/) to install
Anaconda on your system. The testing has been done with Anaconda3-2020.11-Linux-x86_64.

2. Create and activate a Conda environment which will house all the PyTorch-ZenDNN specific
installations:

Ensure that you install the PyTorch-ZenDNN package corresponding to the Python version with
which you created the Conda environment.

If there is any conda environment named pt-v1.13-zendnn-v4.1-rel-env, delete it (using command
conda remove --name pt-v1.13-zendnn-v4.1-rel-env --all) before running scripts/
PT_ZenDNN_setup_release.sh.

Note: PyTorch-ZenDNN is compatible with Python v3.7-3.10 but 3.8 has been used as an
example.

3. It is recommended to use the naming convention:

4. Install all the necessary dependencies:

conda create -n pt-v1.13-zendnn-v4.1-rel-env python=3.8 -y

conda activate pt-v1.13-zendnn-v4.1-rel-env

pt-v1.13-zendnn-v4.1-rel-env

pip install --upgrade typing-extensions

pip install --upgrade numpy==1.23.2

https://docs.anaconda.com/anaconda/install/linux/
https://github.com/amd/UIF

Chapter 4 PyTorch 43

ZenDNN User Guide57300 Rev. 4.1 September 2023

Note: For binary packages built with Python v3.7, it is recommended to use numpy v1.21.6
(numpy==1.21.6).

4.1.1.2 PyTorch v1.13

Complete the following steps to install the ZenDNN binary release:

1. Copy the zipped release package to the local system being used. The name of the release package
will be similar to PT_v1.13_ZenDNN_v4.1_Python_v3.8.zip.

2. Execute the following commands:

a. unzip PT_v1.13_ZenDNN_v4.1_Python_v3.8.zip
b. cd PT_v1.13_ZenDNN_v4.1_Python_v3.8/
c. source scripts/PT_ZenDNN_setup_release.sh

This installs the PyTorch wheel package provided in the zip file.

Note: Ensure that it is sourced only from the folder
PT_v1.13_ZenDNN_v4.1_Python_v3.8/.

d. To run the benchmarks with different CNN models at the PyTorch level, refer the section
"PyTorch CNN Benchmarks".

The release binaries for PyTorch v1.13 are now compiled with manylinux2014 and they provide
compatibility with some older Linux distributions.

For more information on the supported OS and compilers for the Python wheel file, refer to the
section "Supported OS and Compilers".

C++ Interface will work on the following operating systems (with glibc version 2.31 or later):

• Ubuntu 22.04 and later

• RHEL 9.1 and later

4.1.2 Build from Source

To build ZenDNN with PyTorch pip package from source, download PyTorch-ZenDNN source code
from:

https://github.com/amd/ZenDNN-pytorch

The repository defaults to the master development branch that does not have ZenDNN support. To
build, you must check out the branch release/1.13_zendnn_rel.

For more information on building procedure, refer to BUILD_SOURCE.md.

4.2 Directory Structure

The release folder consists of a PyTorch wheel (.whl) and the following directory:

• scripts/ contains scripts to install the wheel file and run benchmarks

https://github.com/amd/ZenDNN-pytorch

44 PyTorch Chapter 4

57300 Rev. 4.1 September 2023ZenDNN User Guide

4.3 High-level Overview

For more information, refer to the section "High-level Overview".

4.4 PyTorch CNN Benchmarks

The benchmark scripts provide performance benchmarking at the PyTorch level. It prints the latency
and throughput results for the following torchvision supported models:

ResNet50, ResNet152, GoogLeNet, and VGG11

To install JEMalloc, complete the following steps:

1. Follow the steps on jemalloc installation (https://github.com/jemalloc/jemalloc/blob/dev/
INSTALL.md).

2. Export following environment variables:

To install torchvision, execute the following command:

For latency, execute the following commands:

1. cd PT_v1.13_ZenDNN_v4.1_Python_v3.8/

2. source scripts/zendnn_PT_env_setup.sh

3. conda activate pt-v1.13-zendnn-v4.1-rel-env

4. bash scripts/pt_cnn_benchmarks_latency.sh

For throughput, execute the following commands:

1. cd PT_v1.13_ZenDNN_v4.1_Python_v3.8/

2. source scripts/zendnn_PT_env_setup.sh

3. conda activate pt-v1.13-zendnn-v4.1-rel-env

4. bash scripts/pt_cnn_benchmarks_throughput.sh

To run individual models rather than the entire suite, execute the following commands:

export LD_PRELOAD=<Installation path>lib/libjemalloc.so

export MALLOC_CONF="oversize_threshold:1,background_thread:true,meta-
data_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"

pip install torchvision==0.14.1+cpu --extra-index-url https://download.pytorch.org/whl/cpu

cd $ZENDNN_PARENT_FOLDER/scripts/

numactl --cpunodebind=<NPS> --interleave=<NPS> python pt_cnn_benchmarks.py --arch
<model_name> --batch_size $BATCH_SIZE --iterations $NUM_OF_BATCHES --warmups $WARMUP_-
SIZE

https://github.com/jemalloc/jemalloc/blob/dev/INSTALL.md
https://github.com/jemalloc/jemalloc/blob/dev/INSTALL.md

Chapter 4 PyTorch 45

ZenDNN User Guide57300 Rev. 4.1 September 2023

Replace <NPS> with the following based on your number of NUMA nodes. Execute the command
lscpu to identify the number of NUMA nodes for your machine:

• If you have 1 NUMA node, replace <NPS> with 0

• If you have 2 NUMA nodes, replace <NPS> with 0-1

• If you have 4 NUMA nodes, replace <NPS> with 0-3

Replace <model_name> with one of the following options:

• For ResNet50, replace <model_name> with resnet50

• For ResNet152, replace <model_name> with resnet152

• For GoogLeNet, replace <model_name> with googlenet

• For VGG11, replace <model_name> with vgg11

While executing the commands, make a note of the following:

• For optimal settings, refer to the Tuning Guidelines section. Current setting refers to 96C, 2P,
SMT=ON configuration.

• If a warning similar to the following appears during benchmark runs, configure your
GOMP_CPU_AFFINITY setting to match the number of CPU cores supported by your machine:

For example, if your CPU has 24 cores, your GOMP_CPU_AFFINITY should be set as "export
GOMP_CPU_AFFINITY=0-23".

• If a warnings similar to the following appear during the benchmark runs, they may be ignored:

OMP: Warning #181: OMP_PROC_BIND: ignored because GOMP_CPU_AFFINITY is defined

OMP: Warning #123: Ignoring invalid OS proc ID 48

OMP: Warning #123: Ignoring invalid OS proc ID 49

.

.

.

OMP: Warning #123: Ignoring invalid OS proc ID 63

“../site-packages/torchvision/models/googlenet.py:212: UserWarning: Scripted Goo-
gleNet always returns GoogleNetOutputs Tuplewarnings.warn("Scripted GoogleNet always
returns GoogleNetOutputs Tuple")”

"UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated
since 0.13 and will be removed in 0.15" and "UserWarning: The parameter 'pretrained' is
deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead."

46 PyTorch Chapter 4

57300 Rev. 4.1 September 2023ZenDNN User Guide

4.5 PyTorch v1.13

In this release of ZenDNN:

• ZenDNN library is supported for PyTorch v1.13.

• AMD Unified Inference Frontend (UIF) optimized models are supported. For the model details,
refer to the UIF documentation.

• PyTorch v1.13 wheel file is compiled with GCC v9.3.1.

• PyTorch v1.13 is expected to deliver similar or better performance compared to PyTorch v1.12.

4.6 Environment Variables

ZenDNN uses the following environment variables to setup paths and control logs, tune performance:

Note: There are a few other environment variables that are initialized by the setup script, however
these are not applicable for the binary release setup.

Table 7. PyTorch-ZenDNN Environment Variables
Environment Variable Default Value/User Defined Value

Generic (Setup paths and control logs)

ZENDNN_LOG_OPTS ALL:0
ZENDNN_PARENT_FOLDER Path to unzipped release folder
ZENDNN_PRIMITIVE_CACHE_CAPACITY The default value is set to 1024, you can modify it

as requireda.

a. You must set these environment variables explicitly.

OMP_DYNAMIC FALSE

Optimized (Tune performance)

OMP_NUM_THREADS The default value is set to 96. You can set it as per
the number of cores in the user systema.

OMP_WAIT_POLICY ACTIVE
GOMP_CPU_AFFINITY Set it as per the number of cores in the system being

used. For example, use 0-95 for 96-core servers.
ZENDNN_GEMM_ALGO The default value is 3. You can modify it to any of

the following:
• 1 = AOCL-BLIS path
• 2 = Partial AOCL-BLIS
• 3 = ZenDNN JIT path

ZENDNN_PT_CONV_ADD_FUSION_SAFE The default value is set to 0. You can set it to 1
while running UIF INT8 models.

Chapter 4 PyTorch 47

ZenDNN User Guide57300 Rev. 4.1 September 2023

When source scripts/zendnn_PT_env_setup.sh is invoked, the script initializes all the environment
variables except the one(s) which must be set manually. The environment variable
ZENDNN_PARENT_FOLDER is initialized relative to the unzipped release folder. To ensure that
the paths are initialized correctly, it is important that the script is invoked from the unzipped release
folder.

4.7 Tuning Guidelines

The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance.
The details for the environment variables used on a 4th Gen AMD EPYCTM server to get the best
performance numbers are as follows:

4.7.1 System

A system with the following specifications has been used:

4.7.2 Environment Variables

The following environment variables have been used:

ZENDNN_LOG_OPTS=ALL:0

OMP_NUM_THREADS=96

OMP_WAIT_POLICY=ACTIVE

OMP_DYNAMIC=FALSE

ZENDNN_GEMM_ALGO=3

Note: For latency case of NLP models, a better performance is observed with
ZENDNN_GEMM_ALGO=1. However, these details should be verified empirically.

ZENDNN_PARENT_FOLDER=/home/<user_id>/my_work

ZENDNN_PRIMITIVE_CACHE_CAPACITY=1024

GOMP_CPU_AFFINITY=0-95

As mentioned in the section "Environment Variables", the script scripts/zendnn_PT_env_setup.sh,
initializes all the environment variables except the one(s) which you must set manually. The

Table 8. System Specification
Model name 4th Gen AMD EPYCTM 9654P 96-Core Processor
CPU MHz Up to 3.7 GHz
No of Cores 96
1P/2P 1
SMT: Thread(s) per Core 2
Mem-Dims 12x64 GB

48 PyTorch Chapter 4

57300 Rev. 4.1 September 2023ZenDNN User Guide

environment variables OMP_NUM_THREADS, OMP_WAIT_POLICY, OMP_PROC_BIND,
and GOMP_CPU_AFFINITY can be used to tune performance. For optimal performance, the
Batch Size must be a multiple of the total number of cores (used by the threads). On a 4th Gen AMD
EPYCTM server (configuration: AMD EPYCTM 9654P 96-Core, 2P, and SMT=ON) with the above
environment variable values, OMP_NUM_THREADS=96 and GOMP_CPU_AFFINITY=0-95
yield the best throughput numbers.

4.7.3 Thread Wait Policy

OMP_WAIT_POLICY environment variable provides options to the OpenMP runtime library based
on the expected behavior of the waiting threads. It can take the abstract values PASSIVE and
ACTIVE. The default value is ACTIVE. When OMP_WAIT_POLICY is set to PASSIVE, the
waiting threads will be passive and will not consume the processor cycles. Whereas, setting it to
ACTIVE will consume processor cycles.

Note: For ZenDNN stack, setting OMP_WAIT_POLICY to ACTIVE may give better performance.

4.7.4 Thread Affinity

To improve ZenDNN performance, the behavior of OpenMP threads can be guarded precisely with
thread affinity settings. A thread affinity defined at start up cannot be modified or changed during
runtime of the application. Following are the ways through which you can bind the requested
OpenMP threads to the physical CPUs:

GOMP_CPU_AFFINITY environment variable binds threads to the physical CPUs, for example:

export GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"

This command will bind the:

• Initial thread to CPU 0

• Second thread to CPU 3

• Third and fourth threads to CPU 1 and CPU 2 respectively

• Fifth thread to CPU 4

• Sixth through tenth threads to CPUs 6, 8, 10, 12, and 14 respectively

Then, it will start the assigning back from the beginning of the list.

export GOMP_CPU_AFFINITY="0" binds all the threads to CPU 0.

Example:

Following affinity settings should give the same thread bindings:

export GOMP_CPU_AFFINITY=0-95

Chapter 4 PyTorch 49

ZenDNN User Guide57300 Rev. 4.1 September 2023

4.7.5 Non-uniform Memory Access

4.7.5.1 numactl

numactl provides options to run processes with specific scheduling and memory placement policy. It
can restrict the memory binding and process scheduling to specific CPUs or NUMA nodes:

• --cpunodebind=nodes: Restricts the process to specific group of nodes.

• --physcpubind=cpus: Restricts the process to specific set of physical CPUs.

• --membind=nodes: Allocates the memory from the nodes listed. The allocation fails if there is not
enough memory on the listed nodes.

• --interleave=nodes: Memory will be allocated in a round robin manner across the specified nodes.
When the memory cannot be allocated on the current target node, it will fall back to the other
nodes.

Example:

If <pytorch_script> is the application that needs to run on the server, then it can be triggered using
numactl settings as follows:

The interleave option of numactl works only when the number nodes allocated for a particular
application is more than one. cpunodebind and physcpubind behave the same way for ZenDNN stack,
whereas interleave memory allocation performs better than membind.

The number of concurrent executions can be increased beyond 4 nodes. The following formula can be
used to decide the number of concurrent executions to be triggered at a time:

This can also be extended to even cores. However, these details should be verified by the user
empirically.

4.7.6 Transparent Huge Pages

Transparent Huge Pages (THPs) are a Linux kernel feature for memory management to improve
performance of the application by efficiently using processor's memory-mapping hardware. THP
should reduce the overhead of the Translation Lookaside Buffer. User must login as root to enable or
disable THP settings. It operates mainly in two modes:

• always: You can run the following command to set THP to ‘always’:

In this mode, the system kernel tries to assign huge pages to the processes running on the system.

numactl --cpunodebind=0-3 -interleave=0-3 python <pytorch_script>

Number Concurrent Executions = Number of Cores Per Socket / Numbers of Cores sharing L3
cache

echo always > /sys/kernel/mm/transparent_hugepage/enabled

50 PyTorch Chapter 4

57300 Rev. 4.1 September 2023ZenDNN User Guide

• madvise: You can run the following command to set THP to ‘madvise’:

In this mode, kernel only assigns huge pages to the individual processes memory areas.

You can use the following command to disable THP:

It is recommended to use the following THP setting for better performance:

• CNN models - ‘always’

• NLP models - ‘madvise’

4.7.7 Memory Allocators

Based on the model, if there is a requirement for a lot of dynamic memory allocations, a memory
allocator can be selected from the available allocators which would generate the most optimal
performance out of the model. These memory allocators override the system provided dynamic
memory allocation routines and use a custom implementation. They also provide the flexibility to
override the dynamic memory management specific tunable parameters (for example, logical page
size, per thread, or per-cpu cache sizes) and environment variables. The default configuration of these
allocators would work well in practice. However, you should verify empirically by trying out what
setting works best for a particular model after analyzing the dynamic memory requirements for that
model.

Most commonly used allocator is jemalloc.

4.7.7.1 jemalloc

jemalloc is a memory allocator that emphasizes fragmentation avoidance and scalable concurrency
support. It has a powerful multi-core/multi-thread allocation capability. The more cores the CPU has,
the more program threads, the faster jemalloc allocates. jemalloc classifies memory allocation
granularity better, leading to less lock contention. It provides various tunable runtime options, such as
enabling background threads for unused memory purging, allowing jemalloc to utilize transparent
huge pages for its internal metadata, and so on.

4.7.7.2 Usage

You can install the jemalloc dynamic library and use LD_PRELOAD environment variable as
follows:

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Before using jemalloc:
export LD_PRELOAD=/path/to/jemallocLib/

Benchmarking command using jemalloc:
LD_PRELOAD=/path/to/jemallocLib/ <python benchmarking command>

Chapter 4 PyTorch 51

ZenDNN User Guide57300 Rev. 4.1 September 2023

To verify if jemalloc memory allocator is in use, you can grep for jemalloc in the output of lsof
command:

4.8 Limited Precision Support

Quantization is an active area of research and a popular compression technique to accelerate neural
network performance.

A few of these quantized neural networks models are publicly available. On AMD 4th Gen EPYCTM
platforms, ZenDNN offers options to enable INT8 quantization with AMD's UIF INT8 models. These
models can be leveraged using AMD UIF benchmarking scripts.

ZenDNN provides limited support for BF16 on AMD UIF ResNet50.

lsof -p <pid_of_benchmarking_commad> | grep <jemalloc>

52 ONNX Runtime Windows (Beta) Chapter 5

57300 Rev. 4.1 September 2023ZenDNN User Guide

Chapter 5 ONNX Runtime Windows (Beta)

5.1 Installing ZenDNN with ONNX Runtime

Note: Refer to the section "ZenDNN" before starting the installation.

In this release, ZenDNN library is supported for ONNX Runtime v1.15.1. This is a baseline release
for ONNX Runtime v1.15.1 with:

• FP32 support

• AMD UIF INT8 model support

• Limited support for BF16 on a few CNN models

• WinML application support

5.1.1 Binary Release Setup

5.1.1.1 Conda

Complete the following steps to setup Conda:

1. Refer to Anaconda documentation (https://docs.anaconda.com/anaconda/install/windows/) to
install Anaconda on your system. The testing has been done with Anaconda v4.8.3.

2. Install visual C++ Redistributable for Windows. It installs Microsoft C and C++ (MSVC) runtime
libraries. These libraries are required by many applications built by using Microsoft C and C++
tools.

3. Create and activate a Conda environment which will house all the ONNX Runtime-ZenDNN
specific installations:

Ensure that you install the ONNX Runtime-ZenDNN package corresponding to the Python
version with which you created the Conda environment.

If there is any conda environment named onnxrt-v1.15.1-zendnn-v4.1-rel-env already present,
delete the conda environment onnxrt-v1.15.1-zendnn-v4.1-rel-env (using command conda remove -
-name onnxrt-v1.15.1-zendnn-v4.1-rel-env --all).

Note: ONNX Runtime-ZenDNN is compatible with Python v3.8-3.11 but 3.8 has been used as
an example.

4. It is recommended to use the naming convention:

conda create -n onnxrt-v1.15.1-zendnn-v4.1-rel-env python=3.8 -y

conda activate onnxrt-v1.15.1-zendnn-v4.1-rel-env

onnxrt-v1.15.1-zendnn-v4.1-rel-env

https://github.com/amd/UIF
https://docs.anaconda.com/anaconda/install/windows/

Chapter 5 ONNX Runtime Windows (Beta) 53

ZenDNN User Guide57300 Rev. 4.1 September 2023

5. Install all the necessary dependencies:

6. Download AOCL-BLIS from AMD Developer Central (https://developer.amd.com/amd-aocl/).

7. Add BLIS path to the environment variable “Path”. For example, C:\amd-blis\lib\ILP64.

8. Download and install LLVM (Windows 64-bit) for libomp.dll (OpenMP: used for parallel
programming) from GitHub (https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.6).

9. Add libomp.dll, libiomp5d.dll path to the environment variable “Path”. For example, C:\Program
Files\LLVM\lib.

5.1.1.2 ONNX Runtime v1.15.1

Complete the following steps to install the ZenDNN binary release:

1. Copy the zipped release package to the local system being used. The name of the release package
will be similar to ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8_Win.zip.

2. Execute the following commands:

a. Extract ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8_Win.zip
b. ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8_Win/
c. call scripts/zendnn_ONNXRT_env_setup_win.bat

This script will set up the required environment to run ONNX Runtime in optimal mode.

d. python -m pip install <whlfile.whl>
e. pip install protobuf==3.20.2

Notes:
1. Ensure that it is sourced only from the unzipped release folder.

2. If there is any conda environment named onnxrt-v1.15.1-zendnn-v4.1-rel-env already
present, delete the conda environment onnxrt-v1.15.1-zendnn-v4.1-rel-env (using
command conda remove --name onnxrt-v1.15.1-zendnn-v4.1-rel-env --all) before
running scripts/zendnn_ONNXRT_env_setup_win.bat.

The Python release binaries are tested with the recent Windows releases, such as Windows 10 and 11.

C++ Interface will work on operating systems, such as Windows 10 and 11.

5.1.1.3 Building WinML Application

To build a WinML application, complete the following steps:

1. For building ONNXRT, execute the command enable --use_winml --skip_winml_tests along with
other arguments for the .bat file.

pip install -U cmake numpy pytest psutil torch coloredlogs

pip install -U transformers sympy --ignore-installed ruamel.yaml

pip install onnx==1.14.0

https://developer.amd.com/amd-aocl/
https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.6
https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.6

54 ONNX Runtime Windows (Beta) Chapter 5

57300 Rev. 4.1 September 2023ZenDNN User Guide

2. For building WinML application, install Microsoft.AI.MachineLearning package for the project
vcxproj.

3. Change the import statements from Windows.AI.MachineLearning to Microsoft.AI.MachineLearning in
the .cpp files.

4. Build with debug mode.

5.1.2 Build from Source

To build ZenDNN with ONNX Runtime pip package from source, download the ONNX Runtime-
ZenDNN source code from:

https://github.com/amd/ZenDNN-onnxruntime

The repository defaults to the master development branch which does not have ZenDNN support. To
build, you must check out the release branch rel-1.15.1_zendnn_rel.

For more information on the building procedure, refer to BUILD_SOURCE.md.

5.2 Directory Structure

The release folder consists of a ONNX Runtime wheel (.whl) and the following directory:

• scripts/ contains scripts to set up the environment

5.3 High-level Overview

For more information, refer to the section "High-level Overview".

5.4 ONNX Runtime Benchmarks

The benchmark scripts provide performance benchmarking at the ONNX Runtime level, printing
latency and throughput results for BERT models.

To use the benchmarking scripts, execute the following commands:

1. ONNXRT_v1.15.1_ZenDNN_v4.1_Python_v3.8_Win/

2. call scripts/zendnn_ONNXRT_env_setup_win.bat

3. Activate your conda environment.

4. The following command runs BERT benchmarking with batch-size=4, sequence length=16, and
threads=64:
set ORT_ZENDNN_SUBGRAPH=0 && set OMP_NUM_THREADS=64 && python -m onnxruntime.transform-
ers.benchmark -s 16 -b 4 -t 5 -n 64 -m bert-large-uncased --provider zendnn

https://github.com/amd/ZenDNN-onnxruntime

Chapter 5 ONNX Runtime Windows (Beta) 55

ZenDNN User Guide57300 Rev. 4.1 September 2023

5.5 Environment Variables

ZenDNN uses the following environment variables to setup paths and control logs, tune performance:
Table 9. ONNX Runtime-ZenDNN Windows Environment Variables

Environment Variable Default Value/User Defined Value

Generic (Setup paths and control logs)

ZENDNN_LOG_OPTS ALL:0
ZENDNN_PARENT_FOLDER Path to unzipped release folder
ZENDNN_PRIMITIVE_CACHE_CAPACITY The default value is set to 1024, you can modify it

as requireda.
OMP_DYNAMIC FALSE

Optimized (Tune performance)

OMP_NUM_THREADS The default value is set to 64. You can set it as per
the number of cores in the user systema.

OMP_WAIT_POLICY ACTIVE
OMP_PROC_BIND FALSE
ZENDNN_CONV_ADD_FUSION_ENABLE The flag is to enable convolution and add operator

fusion. It is disabled (set to 0) by default. You can
modify it to 1 to enable the fusion. It is used to
optimize executions on all the variants of ResNet
models.

ZENDNN_RESNET_STRIDES_OPT1_ENABLE The flag is to enable strides trick optimization for
ResNet blocks. It is disabled (set to 0) by default.
You can modify it to 1 to enable the optimization. It
is used to optimize executions on all the variants of
ResNet models.

ZENDNN_BN_RELU_FUSION_ENABLE This flag is disabled by default. You can use set
command (with value 1) in Windows to enable it. It
is used to optimize executions on limited CNN
models.

ZENDNN_CONV_CLIP_FUSION_ENABLE This flag is disabled by default. You can use set
command (with value 1) in Windows to enable it. It
is used to optimize executions on all the variants of
MobileNet models.

ZENDNN_CONV_RELU_FUSION_ENABLE The flag is to enable convolution and relu operator
fusion. It is enabled (set to 1) by default. You can
modify it to 0 to disable the fusion. It is used to
optimize executions on all the variants of ResNet
models.

56 ONNX Runtime Windows (Beta) Chapter 5

57300 Rev. 4.1 September 2023ZenDNN User Guide

ZENDNN_CONV_ELU_FUSION_ENABLE The flag is to enable convolution and elu operator
fusion. It is disabled (set to 0) by default. You can
modify it to 1 to enable the fusion. It is used to
optimize executions on limited CNN models.

ORT_ZENDNN_ENABLE_INPLACE_CONCAT This flag is used to perform in place concatenation
of intermediate tensors arrays. It is disabled (set to
0) by default. You can modify it to 1 to enable the
optimization. This optimization is useful for the
variants of Inception and GoogleNet models.

ZENDNN_GEMM_ALGO The default value is 4. You can modify it to one of
the following:
• 1 = AOCL-BLIS path
• 2 = Partial AOCL-BLIS
• 3 = ZenDNN JIT path
• 4 = ZenDNN partial JIT path

ONNXRT_ZENDNN_CPU_ALLOC This flag is to enable the usage of the CPU memory
allocator in ZenDNN Execution Provider. By
default, it is disabled.

ZENDNN_CONV_SWISH_FUSION_ENABLE This flag is to enable the fusion of the sigmoid
operator with the preceding conv operator. By
default, it is disabled.

ZENDNN_QUANTIZE_CONV_ADD_FUSION_E
NABLE

This flag is to enable convolution and add operator
fusion in quantized models with QOperator format.
It is disabled (set to 0) by default. You can modify it
to 1 to enable fusion. It is used to optimize
executions on all the variants of ResNet models.

ZENDNN_QUANTIZE_CONV_RELU_FUSION_E
NABLE

The flag is to enable convolution and relu operator
fusion in quantized model with QOperator format. It
is disabled (set to 0) by default. You can modify it to
1 to enable fusion. It is used to optimize executions
on all the variants of ResNet models.

ZENDNN_QCONV_CLIP_FUSION_ENABLE This flag is to enable convolution and clip operator
fusion in the quantize model with QOperator
format. It is disabled (set to 0) by default. You can
modify it to 1 to enable fusion. It is used to optimize
executions on all the variants of MobileNet models.

ZENDNN_ONNXRT_ENABLE_BF16_SUPPORT This flag is disabled (set to 0) by default, you can set
it to 1 to enable the execution of compute expensive
operation in BF16. It optimizes the execution only
for the CNN models.

a. These environment variables work only for Blocked Format.

Table 9. ONNX Runtime-ZenDNN Windows Environment Variables
Environment Variable Default Value/User Defined Value

Chapter 5 ONNX Runtime Windows (Beta) 57

ZenDNN User Guide57300 Rev. 4.1 September 2023

There are a few other environment variables that are initialized by the setup script, however these are
not applicable for the binary release setup.

When call scripts/zendnn_ONNXRT_env_setup_win.bat is invoked, the script initializes all the
environment variables except the one(s) which must be set manually. The environment variable
ZENDNN_PARENT_FOLDER is initialized relative to the path defined by the unzipped release
folder. To ensure that the paths are initialized correctly, it is important that the script is invoked from
the unzipped release folder.

5.5.1 Tuning Guidelines

The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance.
The details for the environment variables used on a 4th Gen AMD RyzenTM ThreadripperTM to get
the best performance numbers are as follows:

5.5.2 System

A system with the following specifications has been used:

Note: Optimal performance is observed on this system. ONNX Runtime-ZenDNN (Windows) library
can be used on AMD ‘Zen3’ and AMD ‘Zen4’ processors including AMD Ryzen Notebook
Series.

5.5.3 Environment Variables

The following environment variables have been used:

ZENDNN_LOG_OPTS=ALL:0

OMP_NUM_THREADS=64

OMP_WAIT_POLICY=ACTIVE

OMP_PROC_BIND=FALSE

OMP_DYNAMIC=FALSE

ZENDNN_GEMM_ALGO=4

Table 10. System Specification
Processor AMD RyzenTM ThreadripperTM PRO 3995WX
RAM 512 GB
Socket 1
Physical Core 64
SMT: Thread(s) per Core 2
ONNXRT Version 1.15.1
ZenDNN Version 4.1

58 ONNX Runtime Windows (Beta) Chapter 5

57300 Rev. 4.1 September 2023ZenDNN User Guide

ZENDNN_PARENT_FOLDER=/home/<user_id>/my_work

BENCHMARKS_GIT_ROOT=/home/<user_id>/my_work/benchmarks

ZENDNN_PRIMITIVE_CACHE_CAPACITY=1024

ZENDNN_ONNXRT_VERSION=1.15.1

ZENDNN_ONNX_VERSION=1.14.0

ZENDNN_CONV_ADD_FUSION_ENABLE=0

ZENDNN_RESNET_STRIDES_OPT1_ENABLE=0

ONNXRT_ZENDNN_CPU_ALLOC=0

ZENDNN_CONV_SWISH_FUSION_ENABLE=0

ZENDNN_QUANTIZE_CONV_ADD_FUSION_ENABLE=0

ZENDNN_QUANTIZE_CONV_RELU_FUSION_ENABLE=0

As mentioned in the section "Environment Variables", the script scripts/
zendnn_ONNXRT_env_setup_win.bat, initializes all the environment variables except the one(s)
which you must set manually. The environment variables OMP_NUM_THREADS,
OMP_WAIT_POLICY and OMP_PROC_BIND can be used to tune performance. For optimal
performance, the Batch Size must be a multiple of the total number of cores (used by the threads). On
a 3rd Gen AMD RyzenTM ThreadripperTM workstation (configuration: AMD RyzenTM
ThreadripperTM PRO 3995WX, 1P and SMT=ON) with the above environment variable values,
OMP_NUM_THREADS=64 yield the best throughput numbers for a single socket.

KMP_DUPLICATE_LIB_OK=TRUE is used to load multiple libomp instances.

Batch Size is a sensitive factor for the throughput performance of any model. The following formula
could be used to calculate the optimal Batch Size:

Batch Size = number_of_physical_cores * batch_factor

batch_factor may vary from 8-32. Usually, the value 32 gives the optimal performance.

5.5.4 Optimal Setting

By default, ONNX Runtime uses Visual Studio OpenMP (libomp) for parallel computation. For
ZenDNN backend, you can download LLVM OpenMP’s libomp for better performance.

You can download:

• LLVM from GitHub (https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.6)

• Visual Studio from Microsoft website (https://learn.microsoft.com/en-us/visualstudio/releases/
2019/history).

https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.6
https://learn.microsoft.com/en-us/visualstudio/releases/2019/history
https://learn.microsoft.com/en-us/visualstudio/releases/2019/history

Chapter 5 ONNX Runtime Windows (Beta) 59

ZenDNN User Guide57300 Rev. 4.1 September 2023

5.6 Limited Precision Support

Quantization is an active area of research and a popular compression technique to accelerate neural
network performance.

A few of these quantized neural networks models are publicly available. On AMD 4th Gen EPYCTM
platforms, ZenDNN offers options to enable INT8 quantization with AMD's UIF INT8 models. These
models can be leveraged using AMD UIF benchmarking scripts.

ZenDNN provides limited support for BF16 with the following CNN models:

• AlexNet

• GoogleNet

• ResNet variants

• SqueezeNet1.1

• VGG11

	Contents
	List of Figures
	List of Tables
	Revision History
	Chapter 1 ZenDNN
	1.1 Introduction
	1.2 High-level Overview
	1.3 Scope
	1.4 Release Highlights
	1.5 Supported OS and Compilers
	1.5.1 OS
	1.5.2 Compilers

	1.6 Dependencies
	1.6.1 Build
	1.6.2 Runtime

	1.7 Logs

	Chapter 2 TensorFlow
	2.1 Installing ZenDNN with TensorFlow
	2.1.1 Binary Release Setup
	2.1.2 Build from Source

	2.2 Directory Structure
	2.3 High-level Overview
	2.4 TensorFlow CNN Benchmarks
	2.5 TensorFlow v2.12
	2.6 Environment Variables
	2.7 Tuning Guidelines
	2.7.1 System
	2.7.2 Environment Variables
	2.7.3 Thread Wait Policy
	2.7.4 Thread Affinity
	2.7.5 Non-uniform Memory Access
	2.7.6 Transparent Huge Pages
	2.7.7 Batch Size
	2.7.8 Memory Allocators

	2.8 Convolution Algorithm Logic
	2.9 Limited Precision Support

	Chapter 3 ONNX Runtime
	3.1 Installing ZenDNN with ONNX Runtime
	3.1.1 Binary Release Setup
	3.1.2 Build from Source

	3.2 Directory Structure
	3.3 High-level Overview
	3.4 ONNX Runtime Benchmarks
	3.5 ONNX Runtime v1.15.1
	3.6 Environment Variables
	3.7 Tuning Guidelines
	3.7.1 System
	3.7.2 Environment Variables
	3.7.3 Thread Wait Policy
	3.7.4 Thread Affinity
	3.7.5 Non-uniform Memory Access
	3.7.6 Transparent Huge Pages
	3.7.7 Batch Size
	3.7.8 Memory Allocators
	3.7.9 Optimal Setting

	3.8 Limited Precision Support

	Chapter 4 PyTorch
	4.1 Installing ZenDNN with PyTorch
	4.1.1 Binary Release Setup
	4.1.2 Build from Source

	4.2 Directory Structure
	4.3 High-level Overview
	4.4 PyTorch CNN Benchmarks
	4.5 PyTorch v1.13
	4.6 Environment Variables
	4.7 Tuning Guidelines
	4.7.1 System
	4.7.2 Environment Variables
	4.7.3 Thread Wait Policy
	4.7.4 Thread Affinity
	4.7.5 Non-uniform Memory Access
	4.7.6 Transparent Huge Pages
	4.7.7 Memory Allocators

	4.8 Limited Precision Support

	Chapter 5 ONNX Runtime Windows (Beta)
	5.1 Installing ZenDNN with ONNX Runtime
	5.1.1 Binary Release Setup
	5.1.2 Build from Source

	5.2 Directory Structure
	5.3 High-level Overview
	5.4 ONNX Runtime Benchmarks
	5.5 Environment Variables
	5.5.1 Tuning Guidelines
	5.5.2 System
	5.5.3 Environment Variables
	5.5.4 Optimal Setting

	5.6 Limited Precision Support

