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Introduction 
 Recently, AMD introduced the Secure Encrypted Virtualization (SEV) technology [1] that integrates 

memory encryption with AMD-V virtualization to provide support for encrypted virtual machines (VMs).  

Encrypted virtual machines are ideal for multi-tenant environments such as cloud computing as they enable 

protection from a variety of cross-VM and hypervisor-based attacks.  For instance, a hypervisor bug which 

enables a co-resident VM to escape its sandbox and read arbitrary memory on the system cannot be used to 

steal data or compromise an SEV-enabled VM. 

 While no security system is 100% secure, SEV significantly reduces the attack surface of VMs in the 

cloud by encrypting a VM’s memory with a key unique to that VM and unknown to the hypervisor.  Many 

secrets and important information are typically stored in a VM’s memory space and encrypting this content 

helps prevent attacks and leakage of sensitive data. 

 However, when secrets are being actively used by the VM they are often resident in CPU registers as 

well as memory.  Whenever a VM stops running, due to an interrupt or other event, its register contents are 

saved to hypervisor memory and this memory is readable by the hypervisor even if SEV is enabled.  This 

information could allow a malicious or compromised hypervisor to steal information or alter critical values in 

guest state such as an instruction pointer, encryption key, etc. 

 The new SEV with Encrypted State (SEV-ES) feature blocks attacks like these by encrypting and 

protecting all CPU register contents when a VM stops running.  This prevents the leakage of information in 

CPU registers to components like the hypervisor, and can even detect and prevent malicious modifications to 

CPU register state.  SEV-ES builds upon SEV to provide an even smaller attack surface and additional 

protection for a guest VM from the hypervisor. 

 This document presents a technical overview of the SEV-ES feature, the principles behind the 

architecture, and protections offered to further isolate encrypted VMs.  For additional technical details, 

please see the AMD64 Programmer’s Manual [2]. 

Security Goals 
 The SEV-ES technology is intended to protect a guest VM from attacks on its register state from a 

malicious hypervisor.  These attacks may include reading guest register values, writing malicious values, or 

even replaying old state back into the VM.  Reading guest register values from a malicious hypervisor can 

result in silent data exfiltration, for instance by reading the XMM registers typically used to hold AES keys 

when using the x86 AES instructions.  Writing malicious values could be used to directly or indirectly modify 

the control flow of the guest VM, for instance by overwriting the RIP when resuming a VM.  Such a 

modification could lead to potentially unintended behavior inside the guest VM, such as skipping a critical 

security check.  SEV-ES encrypts and integrity protects the guest VM’s register state to protect against these 

types of attacks.  
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 The challenge with protecting VM register state lies 

in the fact that sometimes hypervisors do need access to 

VM registers for purposes of providing services such as 

device emulation, MSR handling, etc.  These accesses must 

be carefully controlled to prevent malicious use, which can 

be difficult to detect.   

To address this, the SEV-ES technology enables the 

guest VM to decide what information it chooses to expose 

to the hypervisor on a per-case basis.  This is similar in 

principle to SEV where guest VMs are in control of which 

pages of memory they choose to share.  By placing this 

functionality inside the guest VM, it is both flexible and customizable for different scenarios. 

Technical Overview 

Encrypted Register State 

 In the legacy AMD-V architecture, saving and restoring guest VM register state is a multi-step 

process.  The VMRUN instruction used to transfer control to a guest VM only saves and loads a subset of 

overall machine state [2].  Many pieces of state, including system registers such as TR as well as general 

purpose registers like RDX, are not automatically saved and restored by the VMRUN instruction.  Before 

resuming a guest, a typical hypervisor will also load the guest’s GPR values, use the VMLOAD instruction to 

load additional system state, and possibly even load the guest floating point register state with XRSTOR. 

 The SEV-ES architecture combines this entire operation into a single atomic hardware instruction, 

VMRUN.  When VMRUN is executed for a guest with SEV-ES enabled, the CPU hardware loads all guest 

register information including system registers, GPRs, and floating point registers.  Similarly when the VM 

stops running (a so-called “VMEXIT”), all of this state is saved automatically by hardware back to memory and 

hypervisor state is loaded.  This single atomic process ensures that the world switch between a hypervisor 

and guest cannot be interrupted and information from the guest cannot leak into the hypervisor. 

 When hardware saves and restores the guest register state it does so to memory encrypted with the 

VM’s memory encryption key.  This key is not known to any software on the CPUs and cannot be used by the 

hypervisor so the hypervisor is not able to read the actual guest register state.  Furthermore, when saving 

register state the CPU computes an integrity-check value.  This integrity-check value is saved in protected 

DRAM that is not accessible to any CPU software.  It is checked when the guest is later resumed with VMRUN 

by the CPU to ensure that guest register state has not been tampered with by the hypervisor. 

 The SEV-ES architecture therefore ensures that not only can the guest register contents be kept 

secret from the hypervisor, but also that the hypervisor cannot easily manipulate or replay them.  The 

integrity-check value will detect such a modification to the register state since the last VMEXIT and the CPU 

will refuse to resume a guest VM if the integrity-check value is not correct.  In other words, the only state to 

which a guest VM can be resumed is to the exact same state it was last in. 

.
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Figure 1: Stealing AES keys from a VM 
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 Note that in the SEV-ES architecture, the 

Virtual Machine Control Block (VMCB) used to 

describe a particular VM is divided into two sections.  

The first section is called the “control area” and is 

owned and managed by the hypervisor.  The control 

section includes information about what events the 

hypervisor wishes to intercept, interrupt delivery 

information, etc.  The second section, or “save area” 

is used to store the VM register state.  When SEV-ES 

is enabled, this section is encrypted as described 

above and integrity protected.  

VM “Exits” 

 After a VMRUN instruction is executed, the 

CPU hardware continues executing the guest VM until an exit event occurs, referred to as a VMEXIT.  The 

specific events that may result in a VMEXIT are defined by the AMD64 architecture [2] and are configured by 

the hypervisor setting “intercept bits” in the control section of the VMCB.  For example, the hypervisor may 

set bits to configure a VMEXIT to occur on external interrupts, writes to control registers, reads from specific 

ports, etc.  In the traditional AMD-V architecture, when a VMEXIT event occurs the CPU hardware returns 

control back to the hypervisor with an event code indicating what caused the VMEXIT. 

 In the SEV-ES architecture, the set of possible VMEXIT events are divided into two groups referred to 

as Automatic Exits (AE) and Non-Automatic Exits (NAE).  In general, NAE events occur when the guest VM 

does something that will require hypervisor emulation (e.g. MMIO, MSR access, etc.).  In contrast, AE events 

do not require any hypervisor emulation and include asynchronous interrupts, shutdown events, and certain 

types of page faults. 

 When SEV-ES is enabled, AE events are the only VMEXIT events which cause a full world switch and 

transfer control back to the hypervisor.  These events cause the CPU hardware to save and encrypt all guest 

register state and load the hypervisor state as described in the earlier section.  After performing whatever 

tasks the hypervisor desires, it can resume the guest with a VMRUN instruction which will transfer control 

back to the guest at the point where it was suspended. 

 Unlike AE events, NAE events always occur due to specific behavior within the guest such as 

executing particular instructions, accessing emulated device registers, etc.  Unlike traditional AMD-V 

virtualization, these events do not cause a world switch back to the hypervisor when SEV-ES is enabled.  

Instead, when an NAE event occurs a new exception #VC (VMM Communication Exception) is generated and 

must be handled by the guest VM. 

VMM Communication Exception (#VC) 

 The new #VC exception informs the guest VM operating system that it performed an event which 

requires hypervisor emulation.  The #VC exception handler must then decide how to respond and request 
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Virtual Machine Control Block (VMCB)

Figure 2: Virtual Machine Control Block 
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appropriate services from the hypervisor.  To facilitate this communication, the SEV-ES architecture defines a 

Guest Hypervisor Communication Block (GHCB).   The GHCB resides in page of shared memory so it is 

accessible to both the guest VM and the hypervisor.  The structure of the GHCB is not explicitly defined in the 

SEV-ES architecture, but is recommended to mirror the VMCB save area to enable the guest and hypervisor 

to easily communicate state information. 

 Different events require different pieces 

of state to be communicated between the guest 

and the hypervisor.  For this reason, the #VC 

handler must determine at runtime which pieces 

of guest state it should expose to the hypervisor.  

For instance, if the #VC handler is invoked 

because the guest tried to execute a CPUID 

instruction, the guest should share the RAX value 

used with the hypervisor in order to receive 

CPUID emulation.  Alternatively, if the guest 

attempted to write to a port with the OUTW 

instruction, it should share both its AX and DX 

values, etc.  To share the required information, 

the #VC handler copies the relevant pieces of 

state and request for hypervisor services to the 

GHCB.  In this way, the #VC handler is responsible 

for choosing what state it will expose to the 

hypervisor. 

 After copying relevant state, the #VC 

handler transfers control to the hypervisor with 

the new VMGEXIT (Virtual Machine General Exit) 

instruction.  This instruction results in an AE exit 

which saves all guest state, and resumes 

execution of the hypervisor. 

 At this point the hypervisor reads the 

GHCB to determine the emulation support 

required by the guest.  As the hypervisor cannot 

directly modify guest state, it should perform the 

emulation required and place any new state 

values for the guest back into the GHCB.  For 

instance, after a CPUID emulation the hypervisor 

should place the new values of RAX/RBX/RCD/RDX into the GHCB. 

Guest triggers 
NAE event

(e.g. CPUID)

Send #VC 
exception to 

the guest

Hypervisor 
handles exit

#VC handler copies 
state to GHCB as 

needed
(e.g. RAX)

VMGEXIT

Save and 
encrypt guest 
state to and 

load HV state

VMRUN

Load and 
decrypt guest 

state

Returns to #VC 
handler

Handler reviews and 
copies new state (e.g. 
RAX/RBX/RCX/RDX)

IRET

Guest CPU Hypervisor

Figure 3: NAE Example Flow 
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 When the hypervisor resumes the guest, execution continues where it left off after the VMGEXIT 

instruction, still inside the #VC handler.  The handler may now inspect the state changes requested by the 

hypervisor in the GHCB and determine if they are acceptable.  If so, the handler copies the new state into the 

relevant registers and finishes the exception handler.  An example of this #VC handler flow is shown in Figure 

3: NAE Example Flow. 

Initializing SEV-ES VMs 

 The initialization of SEV-ES VMs is very similar to existing SEV VMs [3].  Note that with SEV-ES, both 

the initial memory image as well as the initial CPU register state must be encrypted by the AMD Secure 

Processor (AMD-SP) before execution of the guest VM can start.  During this initialization process, the 

memory image and initial CPU register state is measured cryptographically by the AMD-SP to generate a 

launch receipt that may be used for attestation of the guest.  This attestation enables the owner of the guest 

VM to determine if the VM started successfully with the correct image and register state prior to releasing it 

secrets. 

Software Impact 
 As with the SEV feature, no application code changes are required to support SEV-ES and only the 

guest operating system and hypervisor are impacted.  In particular, the guest VM operating system must 

support handling the new #VC exception and communication with the hypervisor to achieve the emulation 

support required.  Note that because all NAE events result in the new #VC exception, drivers within the guest 

VM operating system are not required to be modified or be SEV-ES aware.  All communication with the 

hypervisor for emulation purposes is accomplished through a single centralized handler. 

 Because of the lack of visibility into guest register state with SEV-ES, hypervisor software must 

support the new GHCB structure for communication with the guest #VC handler.  In many cases, this involves 

simply reading/writing to the GHCB structure instead of the VMCB in response to emulation requests.  

Furthermore, in SEV-ES many emulation related tasks (such as instruction cracking/re-execution) are actually 

moved into the #VC handler inside the guest meaning the hypervisor emulation support required is reduced 

substantially. 

Performance Optimizations 
 While the primary goal of SEV-ES is to protect guest register state and put the guest in charge of 

what can be accessed, the #VC exception presents an opportunity to optimize guest/hypervisor 

communication.  In particular, the guest #VC handler can potentially implement logic to reduce world 

switches and/or handle certain NAE events completely within the guest.  For instance, the #VC handler can 

cache static values (e.g. CPUID results), or batch multiple hypervisor requests into a single VMGEXIT.   

Support for such optimizations may require special communication between the guest and hypervisor. 
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Conclusion 
 The SEV-ES feature provides additional hardware enforced security for isolating guest VMs from the 

hypervisor.  It builds upon the memory protection offered by SEV to deliver confidentiality and integrity 

protection for guest register state to protect against information leakage and control flow manipulation by 

the hypervisor.  SEV-ES empowers guest VMs to control which pieces of state the hypervisor can view and 

modify at all times, enabling support for existing functionality such as device emulation without requiring 

major changes to device drivers and hypervisors. 

 While SEV reduced the attack surface of VMs through memory encryption, protecting guest register 

state takes this protection a step further to offer more comprehensive protection from a compromised 

hypervisor. 
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