
WHITEPAPER: MAXIMIZE GPU EFFICIENCY WITH AMD EPYC™ HIGH-FREQUENCY PROCESSORS | 2025 1

MAXIMIZE GPU EFFICIENCY WITH
AMD EPYC™ HIGH-FREQUENCY PROCESSORS
WHITEPAPER | 2025

WHITEPAPER: MAXIMIZE GPU EFFICIENCY WITH AMD EPYC™ HIGH-FREQUENCY PROCESSORS | 2025 2

In the world of AI and machine learning, running training and inference workloads at scale requires significant computational resources.
For many workloads GPUs have become essential in the development and deployment of large AI models. Data center operators of all
sizes and scale need to ensure that their investments in GPUs are returning maximum value. Increasing the utilization and efficiency of
GPUs should be an essential priority for anyone using or supporting GPU based AI workloads.

While GPUs have been top of mind for AI applications handling the heavy lifting for training and inference, CPUs play an essential role in
orchestrating the overall workload and have significant impact over the efficiency of GPUs. Host CPUs perform crucial tasks like pre- and
post-processing of data and managing data movement. Inference requests using a Large Language Model (LLM) are typically executed
by a GPU-based system containing a host CPU that manages incoming requests or model queries, also known as prompts. Some of
the most common examples of applications using LLM inference include sentiment analysis, language translation, content creation,
summarization, and question-answer chatbots. Each of these applications have different structures of their prompt and response and
coordinating the processing of each request to reduce idle time on the GPUs is the core function of a host CPU.

In this blog, we will explore how the host CPU in a GPU-based system can significantly impact the overall performance and cost-
efficiency of LLM inference. We will focus on the key functions of the CPU during inference, show how host CPU performance can reduce
end-to-end latency, and quantify the benefits up to 24% and an average improved latency of 9% with AMD Instinct MI300 and 8% with
Nvidia H100 respectively of using AMD EPYC™ high-frequency CPUs as the host processor.

Host CPU Involvement in LLM Inference
In the world of AI and machine learning, running training and inference workloads at scale requires significant computational resources.
For many workloads GPUs have become essential in the development and deployment of large AI models. Data center operators of all
sizes and scale need to ensure that their investments in GPUs are returning maximum value. Increasing the utilization and efficiency of
GPUs should be an essential priority for anyone using or supporting GPU based AI workloads.

Figure 1: Generalized Host CPU Fundamental Functional Block

Inference
Request/Response

Inference API Server

Runtime Engine Detokenization

Tokenization

Dynamic/
Continuous

Batching

KV-Cache
Paging

Graph
Orchestration

Figure 1 illustrates the fundamental flow of an inference request in a GPU-based system with the model (shown in blue) running on
the GPU and the other functions running on the host CPU. The following describes the fundamental and optional functions that are
employed in providing an inference service.

Host Processor

GPU(s)

MODEL

WHITEPAPER: MAXIMIZE GPU EFFICIENCY WITH AMD EPYC™ HIGH-FREQUENCY PROCESSORS | 2025 3

Inference API Server:
The Inference API server processes an incoming request and forwards it to the Runtime Engine. The Runtime Engine generates a
response on completion that is sent back to the requester. The actions of the Inference API can largely be decoupled from the Runtime
Engine using queues at the interface between the two. This is an especially important function when there are multiple concurrent users
to service, ie multiple prompts, multiple concurrent models, and or multiple GPUs operating with a shared host CPU. The API ensures
that the response to a prompt is returned to the appropriate requester.

Runtime Engine:
The Runtime Engine is represented by the functions in the orange box in Figure 1. The Runtime Engine within the CPU performs critical
resource management functions, such as dynamic batching and K-V cache paging, to ensure that the GPU’s compute efficiency and
memory usage are optimized. It must also manage orchestration tasks such as kernel-launch and synchronization across multiple
GPUs. These tasks can be on the critical path and directly impact the end-to-end latency of inference requests. Additionally, as model
architectures evolve to include elements like data dependent control flow, there will be more pressure on the CPU response time.

Draft Model Execution (optional):
For certain applications, a draft model may be used to speculate in advance of running full inference and make early predictions.These
early predictions allow the primary LLM to be run with higher batch sizes, effectively reducing the number of token generation steps on
that model. In this mode of operation, the draft model can be executed on the host CPU to allow the GPU compute and memory
resources to be dedicated to the primary LLM.

Pre-Processing:
For some applications, pre-processing involves running smaller models like Sentence BERT to generate embeddings for retrieval
systems, known as “prompt engineering.” Once pre-processed, the prompts within a batch are tokenized and prepared for execution on
the GPU(s) during the main inference phase. The execution of the embedding model and the subsequent vector database similarity
search by the retriever could be on the inference-critical path. The overhead of this action can benefit from a high-performance host
CPU.

Post-Processing:
Once the GPU completes the model execution, the CPU finalizes the response by managing token sampling and performing other
output processing tasks such as formatting, error handling, or visualization of the response data to present the user.

ML Ops:
In a production environment where an inference request makes a choice between multiple models (See https://arxiv.org/
pdf/2405.07518), model loading time is especially important. A CPU with good IPC, memory and IO bandwidth can significantly improve
the performance of model loading.

Each of these functions that the host CPU performs has the potential to materially impact the efficiency of the GPU(s) performing
inference and therefore the total response time of an inference request.

The Role of High-Frequency CPUs
While some of the actions listed in the previous section can run concurrently with GPU inference execution, others — such as kernel
launch, tokenization, dynamic batching, draft model execution, data dependent control flow, synchronization, and more etc. — can reside
in the latency-critical path. When performed in the latency critical path, the efficiency and speed at which these functions perform their
task can become an important factor in the total inference response time. These host CPU actions become more critical when inference
runtimes are latency constrained.

Our previous internal studies have included extensive measurements of host CPU activity for inference and training workloads across
Nvidia H100 and AMD Instinct™ MI300 based systems. We have collected these profiles running TRT-LLM (H100 system) and vLLM for
inference. For training, we collected profiles running JAX, Pytorch, and Megratron-LM frameworks.

These profiles have informed us that single-thread performance of the host CPU is more critical than throughput to mitigate potential
overhead from host CPU activity.

https://arxiv.org/pdf/2405.07518
https://arxiv.org/pdf/2405.07518

WHITEPAPER: MAXIMIZE GPU EFFICIENCY WITH AMD EPYC™ HIGH-FREQUENCY PROCESSORS | 2025 4

TABLE 1: HOST SENSITIVITY EXPERIMENT SETUP

RUNTIME: VLLM :0.7 MODELS: HOST CPU: SYSTEMS:

• Continuous batching enabled
• Num-scheduler-steps = 1
• (prompt length, output tokens)

• Chatbot = (128,128)
• Content Creation =

(128,1024/2048)
• Summarization =

(1024/2048, 128)
• Translation = (1024/2048,

1024/2048)
• Batch Sizes = [32, 1024]
• Tokenization = offline
• Detokenization = online

• Llama3.1-70B-Instruct (FP8) ; Par-
allelism (Tensor) = 8

• Llama3.1-8B-Instruct (FP8);
Parallelism (Tensor) = 1

• Mixtral 8x7B-Instruct (FP8);
Parallelism (Tensor) = 8

• AMD EPYC™ 9575F with a TDP of
320-400 W; Fmax=5 Ghz

• Intel Xeon 8592+ with a TDP of
350 W; Fmax=3.9 Ghz

• 8x AMD Instinct™ MI300 - Device
74a1-XGMI-192GB-750W; ROCm™
6.3.0-39

• Host OS: 9575F – Ubuntu
24.04 LTS; 8592+ 24.04.1 LTS

• 8x H100 NVIDIA H100-80GB-
HBM3-700W; Cuda version 12.6

• Host OS: 9575F- Ubuntu
22.04.4 LTS; 8592+ - Ubuntu
22.04.5 LTS

As such, AMD offers a series of high frequency parts with core counts ranging from 16 to 64 enabling users to effectively address host
processor requirements while providing control over system specifications and costs. For large GPU systems, AMD and AI ecosystem
partners recommend a system based on AMD EPYC™ 9575F with 64 cores which has a TDP range of 320-400 Watts and a maximum
core frequency (Fmax) of 5GHz to help improve overall end-to-end inference performance.

Host Sensitivity - Test Setup and Results
To demonstrate the performance impact of the host CPU on the overall system performance, which we refer to as “host sensitivity” we
conducted a study. We lay out the details of the experiment performed to highlight the benefits of AMD EPYC™ 9575F as a host CPU in
a GPU based system. Our study focused primarily on measuring end-to-end latency of inference using prompt length and output length
combinations that are representative of chatbot, content-creation, summarization and translation inference tasks. We chose batch sizes
of 32 and 1024 as representatives for online and offline inference, respectively.

We did not implement an inference server, a RAG pipeline, multi-model COE inference or a draft model for speculation in this study. This
study was performed using FP8 checkpoints of popular open-source models for inference.

Host Sensitivity - Results
The following tables show the performance advantage of a EPYC 9575F host CPU over Xeon 8592+ in 8x AMD Instinct™ MI300x based
and 8x Nvidia H100 based GPU systems on a variety of inference tasks. For every test case, we performed three runs and collected
measurements for each run. The median of those measurements is reported in the following tables.

TABLE 2: HOST COMPARISON: 8x AMD INSTINCT™ MI300x GPU BASED SYSTEM

MODEL TASK BATCH SIZE INPUT TOKENS OUTPUT TOKENS LATENCY IMPROVEMENT
AMD EPYC™ 9575F/XEON 8592+

Llama-3.1-8B-
Instruct-FP8

Chatbot
32 128 128 1.06x

1024 128 128 1.05x

Content Creation
32 128 1024 1.07x

1024 128 1024 1.03x

Summarization
32 1024 128 1.05x

1024 1024 128 1.03x

Translation
32 128 1024 1.05x

1024 1024 1024 1.03x

WHITEPAPER: MAXIMIZE GPU EFFICIENCY WITH AMD EPYC™ HIGH-FREQUENCY PROCESSORS | 2025 5

TABLE 2 CONT-D: HOST COMPARISON: 8x AMD INSTINCT™ MI300x GPU BASED SYSTEM

MODEL TASK BATCH SIZE INPUT TOKENS OUTPUT TOKENS LATENCY IMPROVEMENT
AMD EPYC™ 9575F/XEON 8592+

Llama-3.1-70B-
Instruct-FP8

Chatbot
32 128 128 1.13

1024 128 128 1.08

Content Creation
32 128 1024 1.10

1024 128 1024 1.05

Summarization
32 1024 128 1.08

1024 1024 128 1.03

Translation
32 1024 1024 1.10

1024 1024 1024 1.05

Mixtral 8x7B-
Instruct-FP8

Chatbot
32 128 128 1.19

1024 128 128 1.15

Content Creation
32 128 1024 1.13

1024 128 1024 1.16

Summarization
32 1024 128 1.24

1024 1024 128 1.11

Translation
32 1024 1024 1.11

1024 1024 1024 1.15

TABLE 3: HOST COMPARISON 8X NVIDIA H100 GPU BASED SYSTEM

MODEL TASK BATCH SIZE INPUT TOKENS OUTPUT TOKENS LATENCY IMPROVEMENT AMD
EPYC™ 9575F/XEON 8592+

Llama-3.1-8B-
Instruct-FP8

Chatbot
32 128 128 1.12x

1024 128 128 1.18x

Content Creation
32 128 2048 1.09x

1024 128 2048 1.09x

Summarization
32 2048 128 1.05x

1024 2048 128 1.04x

Translation
32 2048 2048 1.05x

1024 2048 2048 1.04x

Llama-3.1-70B-
Instruct-FP8

Chatbot
32 128 128 1.04x

1024 128 128 1.11x

Content Creation
32 128 2048 1.04x

1024 128 2048 1.09x

Summarization
32 2048 128 1.01x

1024 2048 128 1.03x

Translation
32 2048 2048 1.02x

1024 2048 2048 1.05x

Mixtral 8x7B-
Instruct-FP8

Chatbot
32 128 128 1.09x

1024 128 128 1.20x

Content Creation
32 128 2048 1.10x

1024 128 2048 1.19x

Summarization
32 2048 128 1.06x

1024 2048 128 1.05x

Translation
32 2048 2048 1.08x

1024 2048 2048 1.13x

WHITEPAPER: MAXIMIZE GPU EFFICIENCY WITH AMD EPYC™ HIGH-FREQUENCY PROCESSORS | 2025 6

DISCLAIMERS
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to
change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented
or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the
content hereof without obligation of AMD to notify any person of such revisions or changes. GD-18.

COPYRIGHT NOTICE
© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Instinct, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Intel and Xeon are trademarks
of Intel Corporation or its subsidiaries. NVIDIA is a trademark or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective owners. Certain AMD technologies may require third-party enablement or activation. Supported features may vary by operating system. Please confirm
with the system manufacturer for specific features. No technology or product can be completely secure.

CONCLUSION
The above tables clearly show that inference latency is impacted by the choice of host CPU. The higher frequency and exceptional single-
thread performance of AMD EPYC™ 9575F helps reduce the CPU overhead associated with performing an offline or online inference task.

Across the three representative models and the four inference tasks in our experiment, AMD EPYC™ 9575F provides an average
performance improvement of 9% on the 8x AMD Instinct™ MI300 and 8% on the 8x Nvidia H100 GPU based systems. For the chatbot
use case, a significant portion of the end-to-end latency is spent in setting up batching and memory management of the GPU device.
For the cases involving many token generation steps such as content-creation and translation, detokenization was observed to be
significant contributor to overall latency.

Our future work is projected to include a detailed breakdown of the host activity across these inference cases. We will also study the
host sensitivity for an inference serving workload with latency constraints.

AUTHORS:
Ram Sivaramakrishnan: Fellow Systems Design Eng. AI Architect Server Solutions.
ram.sivaramakrishnan@amd.com

Matt Ouellette: Director Product Development Eng. AIG-AI Product Mgt.
matt.ouelette@amd.com

Ajith Sirra: MTS Product Application Eng. AIG-AI Product Mgmt.
ajith.sirra@amd.com

Shubin Zhao: SMTS Software Systems Design Eng. DCGPU Perf Eng.
shubin.zhao@amd.com

Danyang Zhang: SMTS Software Development Eng. AIG-AI Product Mgt.
danyang.zhang@amd.com

Jeremy Arnold: PMTS Software System Design Eng. DCGPU Perf Eng.
jeremy.arnold@amd.com

Mary Cirino: MTS Software Development Eng. DCGPU Perf Eng.
mary.cirino@amd.com

mailto:ram.sivaramakrishnan%40amd.com?subject=
mailto:matt.ouelette%40amd.com?subject=
mailto:ajith.sirra%40amd.com?subject=
mailto:shubin.zhao%40amd.com?subject=
mailto:danyang.zhang%40amd.com?subject=
mailto:jeremy.arnold%40amd.com?subject=
mailto:mary.cirino%40amd.com?subject=

