
Advanced Micro Devices

SEV-ES Guest-Hypervisor
Communication Block

Standardization

Publication # 56421 Revision: 2.04
Issue Date: January 2025

[Public]

© 2018–2025 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are
as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.
Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

3

Specification Agreement
This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.
(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification”). If you are accessing the
Specification as part of your performance of work for another party, you acknowledge that you have authority to bind
such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or otherwise
use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set forth in this
Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which
are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product,
service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set
forth in the Specification and (b) to provide Feedback about the information disclosed in the Specification to
AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This
Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual
property rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any
notices from the Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your
rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain
necessary information. Additionally, AMD reserves the right to discontinue or make changes to the Specification
and its products at any time without notice. The Specification is provided entirely “AS IS.” AMD MAKES NO
WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY
WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR
THOSE WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM OF TRADE. AMD SHALL
NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR
EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION
OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF GOODWILL) REGARDLESS OF THE FORM
OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT PRODUCT
LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or
in any other application in which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

4

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the
Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or
obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification,
You agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in
any product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD
any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual
property claim or right of any third party; or (ii) subject to license terms which seek to require any product or
intellectual property incorporating or derived from Feedback or any Product or other AMD intellectual property
to be licensed to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S.
Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council
Regulation (EC) No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the EAR, You hereby
certifies that, except pursuant to a license granted by the United States Department of Commerce Bureau of
Industry and Security or as otherwise permitted pursuant to a License Exception under the U.S. Export
Administration Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in
Country Groups D:1, E:1 or E:2 any restricted technology, software, or source code You receive hereunder, or
(2) export to Country Groups D:1, E:1 or E:2 the direct product of such technology or software, if such foreign
produced direct product is subject to national security controls as identified on the Commerce Control List
(currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group listings, or for
additional information about the EAR or Your obligations under those regulations, please refer to the U.S.
Bureau of Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as
set forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR
52.227-14 or subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.
Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,
California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of
this agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable,
and the remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to take
action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent
enforcement of rights or subsequent actions in the event of future breaches. This Agreement is the entire
agreement between You and AMD concerning the Specification; it may be changed only by a written document
signed by both You and an authorized representative of AMD.

[Public]

http://www.bis.doc.gov/

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

5

Contents
Specification Agreement .. 3

1 Introduction .. 11

1.1 Overview .. 11

1.2 Purpose ... 11

2 Guest-Hypervisor Communication Block (GHCB) .. 12

2.1 Changes for Version 2 ... 12

2.1.1 Changes for Revision 2.01 ... 13

2.1.2 Changes for Revision 2.02 ... 13

2.1.3 Changes for Revision 2.03 ... 13

2.1.4 Changes for Revision 2.04 ... 14

2.2 Hypervisor Feature Support ... 14

2.3 Establishing the GHCB .. 16

2.3.1 GHCB MSR Protocol .. 16

2.3.2 GHCB GPA Registration ... 21

2.4 GHCB Negotiation Example ... 22

2.4.1 SEV-ES (Version 1) ... 23

2.4.2 SEV-SNP (Version 2) .. 24

2.5 GHCB/VMGEXIT Example .. 25

2.6 GHCB Layout .. 27

2.7 SEV-SNP Secrets Page .. 29

2.8 SEV-SNP Confidential Computing Blob EFI Protocol ... 31

3 Guest Exits .. 32

3.1 Automatic Exits (AE) .. 32

3.2 Guest Non-Automatic Exits (NAE) ... 32

4 GHCB Protocol .. 34

4.1 Invoking VMGEXIT .. 48

4.1.1 Standard VMGExit .. 49

4.1.2 IOIO_PROT (0x7b) ... 50

4.1.3 MSR_PROT (0x7c) ... 50

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

6

4.1.4 VMMCALL (0x81) ... 50

4.1.5 #NPF/MMIO Access ... 50

4.1.6 Page State Change ... 51

4.1.7 SNP Guest Request ... 54

4.1.8 SNP Extended Guest Request ... 55

4.1.9 SNP AP Creation ... 57

4.1.10 #HV Doorbell Page ... 58

4.1.11 #HV IPI ... 59

4.1.12 #HV Timer .. 59

4.1.13 APIC ID List ... 60

4.1.14 SNP Run VMPL .. 60

4.1.15 SNP TIO Guest Request .. 61

4.1.16 Secure AVIC ... 63

4.1.17 Termination Request ... 63

4.1.18 Unsupported Non-Automatic Exits ... 64

4.2 Guest Identification of SEV-ES Support .. 64

4.3 SMP Booting ... 64

4.3.1 SEV-ES and SEV-SNP ... 64

4.3.2 SEV-SNP (SNP AP Creation Feature) .. 67

4.4 Non-maskable Interrupts ... 68

4.5 Debug Register Support .. 69

4.6 System Management Mode (SMM) .. 69

4.7 Nested Virtualization .. 69

5 SNP Restricted Injection .. 70

5.1 Hypervisor Doorbells in SNP guests ... 70

5.2 Essential Data .. 70

5.3 Interrupt Shadows ... 71

5.4 Expected Behaviors ... 71

5.4.1 Doorbell configuration .. 71

5.4.2 Host Behavior .. 72

5.4.3 Guest Behavior .. 74

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

7

5.5 Pseudocode .. 75

5.5.1 Host .. 75

5.5.2 Guest .. 76

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

8

List of Tables
Table 1: FEATURES Bitmap .. 15

Table 2: GHCB Address Destination .. 16

Table 3: GHCB Layout ... 27

Table 4: Secrets Page Guest Reserved Area ... 29

Table 5: EFI SNP Confidential Computing Blob Configuration Table .. 31

Table 6: List of Automatic Exits ... 32

Table 7: List of Supported Non-Automatic Events ... 35

Table 8: Invalid GHCB Reason Codes ... 49

Table 9: Page State Change Entry ... 52

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

9

Revision History

Date Revision Description

January 2025 2.04 • Added SEV-TIO Guest Request
• Added Secure AVIC backing page support
• Added GHCB Unregister support

March 2023 2.03 • Provide support to retrieve an APIC ID list and enable running multiple
VMPL levels

o Added two new Hypervisor Feature bits
o Added two new NAE events
o Added a new GHCB MSR Protocol request

• Document the SEV-SNP Confidential Computing Blob EFI protocol
• Add support to allow an SEV-ES guest to use the Page Stage Change

protocols
o Added one new Hypervisor Feature bit

January 2023 2.02 • Added GUID definition for the VLEK certificate
• Added GUID definition for a CRL
• Updated documentation around SNP Guest Request / SNP Extended

Guest Request SW_EXITINFO2 values
July 2022 2.01 • Updated Secrets Page Guest Reserved Area to add upper 32 bits of the

now 64-bit current guest request message sequence number.
• Added documentation for new error code 2 that can be used by

hypervisor to return error information for malformed input
• Clarified language around AP Reset Hold return value

March 2021 2.00 • Updated specification for version 2
March 2021 1.50 • Added SEV_FEATURES input value to SNP AP Creation

o Added a statement around the expected use of the same interrupt
injection mechanism as set in the BSP when creating APs using
SNP AP Creation.

March 2021 1.40 • Removed AP Jump Table and AP Reset Hold deprecation from feature
advertisement

• Clarified when AP Jump Table and AP Reset Hold can be used
• Added two new error codes to SNP Page State Change

o Optional error conditions to help debug guest page state tracking
o An error code to encompass other unspecified error conditions

February 2021 1.30 • Added feature advertisement support in place of versioning
• Added SNP secrets page guest OS usage field definition
• Removed GHCB registration option for SEV-ES guests
• Clarified VALID_BITMAP requirements

January 2021 1.20 • Update the SNP Extended Guest Request to return multiple certificates
• Added support for requesting an IPI with the Restricted Injection feature
• Added support for requesting a timer with the Restricted Injection feature

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

10

Date Revision Description

November 2020 1.10 • Added support for AP reset hold using the MSR protocol
• Restricted use of SW_SCRATCH location
• Added initial support for SEV-SNP

August 2020 1.00 • Added examples of how to obtain the encryption bit position.
• Clarifications related to the supported NAE event list in regard to

hypervisor and guest expectations.
• Clarification of how a VALID_BITMAP bit position for a GHCB quad

word is calculated.
• Added an example of how to trigger MMIO #NPF using reserved bits.
• Added an example of how to set the starting vector (CS:IP) of an AP.

January 2020 0.85 • Added a statement of the CPUID settings that are required to be set for an
SEV-ES guest (beyond normal settings)

• Updated the SMP Booting documentation and introduced an AP Jump
Table set/get functionality to the list of VMGEXIT software definitions.

June 2019 0.80 • Added a CPUID request / response protocol using the GHCB MSR for
use before GHCB page is available.

• Updated how NMIs are handled under SEV-ES.
• Added a statement that the hypervisor must not intercept read and write

access to the GHCB MSR.
• Updated guest termination codes.
• Added a section regarding hypervisor/VMMCALL exit requirements.
• Minor formatting changes and spelling corrections.

March 2019 0.71 • Updated to the GHCB layout for improved hypercall usage.
• Added a way for a guest to request termination through VMGEXIT.
• Clarified GHCB Negotiation Example section.
• Added documentation about ensuring exclusive access to the GHCB

during VMGEXIT usage.
• Added documentation about GHCB usage in NMI context.

October 2018 0.70 • Initial public release.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

11

1 Introduction

1.1 Overview
The Secure Encrypted Virtualization - Encrypted State (SEV-ES) and the Secure Encrypted
Virtualization – Secure Nested Paging (SEV-SNP) features provide protection of the virtual
machine, or guest, register state from the hypervisor. The guest’s register state is encrypted during
world switches and cannot be directly accessed or modified by the hypervisor. SEV-ES and SEV-
SNP are documented in the AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming, Sections 15.35 and 15.36, respectively.

SEV-ES and SEV-SNP include architectural support for notifying a guest operating system (OS)
when certain types of world switches are about to occur; these are called Non-Automatic Exits.
This allows the guest OS to selectively share information with the hypervisor through the Guest-
Hypervisor Communication Block (GHCB).

When SEV-ES or SEV-SNP is enabled, a VMEXIT is classified as either an Automatic Exit (AE)
or a Non-Automatic Exit (NAE), as documented in the AMD64 Architecture Programmer’s
Manual, Volume 2: System Programming, Section 15.35.4. AE events are well defined and are
events that do not involve or require exposing any guest register state. All other exit events are
considered NAE events. For these NAE events, the guest controls what register state to expose in
the GHCB.

1.2 Purpose
The purpose of this document is to standardize the GHCB memory area so that a guest OS can
interoperate with any hypervisor that supports SEV-ES or SEV-SNP, to standardize on the Non-
Automatic Exits that are required to be supported along with the minimum guest state to expose in
the GHCB and to standardize on specific actions that might require unique support when running
as an SEV-ES or SEV-SNP guest (for example, NMI handling, SMP booting, etc.).

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

12

2 Guest-Hypervisor Communication Block (GHCB)

The GHCB must be mapped decrypted by the guest so that the guest and the hypervisor can
communicate. For that reason, the GHCB is defined to be 4,096 bytes (4 KB) in size so that it can
be contained in a single decrypted page. The format of the GHCB attempts to mirror the SEV-ES
VMCB save state area as documented in the AMD64 Architecture Programmer’s Manual, Volume
2: System Programming, Appendix B, Table B-4 (this information is represented in Table 3 within
this document) through offset 0x3ff. The SEV-ES VMCB save state area extends the traditional
VMCB save state area to include additional guest state information. By using this format,
hypervisors that support SEV-ES can map the VMCB save state area to the GHCB and limit the
number of changes required to support interacting with an SEV-ES guest. However, the GHCB
and the SEV-ES save state area can diverge. Not all data from the VMCB save state area will be
required by the hypervisor, so this document proposes the required VMCB save state information
that is to be provided in the GHCB during a VMGEXIT. For brevity, only the fields of the GHCB
that are used will be listed. By providing only the information required for the hypervisor to
successfully handle the VMGEXIT, the amount of guest state exposed to the hypervisor is limited.

SEV-SNP requires the introduction of a new GHCB protocol version. To allow for enhancements
or changes to the SEV-ES GHCB protocol without requiring SEV-SNP support to be
implemented, hypervisor feature support has been added.

2.1 Changes for Version 2
Version 2 includes enhancements and additions to the SEV-ES support, along with the initial
support for SEV-SNP. Version 2 also introduces hypervisor feature advertisement that allows the
hypervisor to advertise its SEV-ES and SEV-SNP support to the guest. This can be useful to allow
a hypervisor to support future enhancements without requiring support for all prior features. Not
all features are optional; there is a minimum set of features required to be implemented in
Version 2 (see 2.2 Hypervisor Feature Support).

In addition to hypervisor feature advertisement, version 2 provides:

• SEV-ES enhancements:
o GHCB Format Version 2:

 The addition of the XSS MSR value (if supported) when CPUID 0xd is
requested.

 The shared area specified in the GHCB SW_SCRATCH field must reside in the
GHCB SharedBuffer area of the GHCB.

o MSR protocol support for AP reset hold.
• SEV-SNP support:

o GHCB GPA registration
o Page state updates
o Guest firmware commands

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

13

o AP (vCPU) creation from within the guest
o Restricted interrupt/exception injection
o Restricted APIC emulation (IPI and timer support)

2.1.1 Changes for Revision 2.01

Revision 2.01 updates the SEV-SNP Secrets Page Guest Reserved Area to account for a change
from 32-bit to 64-bit guest request message sequence numbers. The location for the high-order
32 bits of the guest request message sequence numbers will be taken from the reserved area.

2.1.1.1 Document Additions

A new error code is documented for VMGEXIT processing. A hypervisor may return this error
code for invalid or malformed GHCB input, regardless of version negotiation or support, as a
VMGEXIT failure caused by guest input is a guest kernel bug, and properly hardened guests
should interpret any unexpected error code as a fatal error. A VMGEXIT issued from guest-user
space results in a “don’t care.”

2.1.2 Changes for Revision 2.02

Revision 2.02 adds the GUID definition for the Versioned Loaded Endorsement Key (VLEK)
certificate.

2.1.2.1 Document Additions

The SNP Guest Request and SNP Extended Guest Request have been updated to expand on the
use of the SW_EXITINFO2 return value to better allow for the hypervisor to return error codes. A
hypervisor may return non-zero error codes in the upper-32 bits of SW_EXITINFO2 regardless of
version negotiation or support, as a properly hardened guest should interpret any non-zero value
for SW_EXITINFO2 as an error and handle appropriately.

2.1.3 Changes for Revision 2.03

Revision 2.03 introduces support for retrieving the guest APIC ID list and for running multiple
VMPL levels. A new GHCB MSR protocol function and two new GHCB NAE events are
introduced. The support for these new actions will be advertised in the Hypervisor Feature bitmap.

Revision 2.03 also introduces support for allowing an SEV-ES guest to notify the hypervisor of a
page state change. The support for this new action will be advertised in the Hypervisor Feature
bitmap.

2.1.3.1 Document Additions

Document the SEV-SNP Confidential Computing Blob EFI Protocol used to communicate the
SEV-SNP Secrets Page and SEV-SNP CPUID Page from the firmware to the OS.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

14

2.1.4 Changes for Revision 2.04

Revision 2.04 introduces support for SEV trusted IO (SEV-TIO). SEV-TIO allows for passing
through trusted PCIe devices with TDISP support to SEV-SNP guests.

Revision 2.04 also introduces support for Secure AVIC. Initial support allows a guest to notify a
hypervisor of a vCPU's Secure AVIC guest APIC backing page.

Revision 2.04 also introduces support for a new GHCB MSR protocol function to allow the guest
to request the GHCB GPA be unregistered.

2.1.4.1 Document Additions

Document the SEV-TIO Guest Request Protocol used to communicate the SEV-TIO device
measurements, certificates and SPDM attestation reports to the guest and provide the guest with a
means to enable the device functionality if it is determined that it can be trusted.

Document changes in hardware debug support in an SEV-ES guest.

Document changes specifying the expected behavior of the hypervisor when it receives a GHCB
MSR protocol function that it does not support.

Document specifies the GUID format used in SNP Extended Guest Request and SNP TIO Guest
Request.

2.2 Hypervisor Feature Support
Version 2 of the specification introduces advertisement of features that are supported by the
hypervisor. Support for this specification in full is mandatory unless identified as optional through
the feature advertisement support. Note: Some features may have a dependency on other features.

The feature support will be identified through a bitmap, FEATURES, that can be requested by the
guest. Each bit will represent an optional feature. To allow for the FEATURES bitmap to be
returned before a GHCB has been established, the FEATURES bitmap is limited to 52 bits in size
so that it can be returned as part of the GHCB MSR protocol.

The following features are defined:

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

15

Table 1: FEATURES Bitmap

Bit
Position

Feature Name Feature Details

0 SEV-SNP Support provided for base SEV-SNP support:

• Preferred GHCB GPA MSR Protocol
• Register GHCB GPA MSR Protocol
• SNP Page State Change MSR Protocol
• SNP Page State Change NAE Event
• SNP Guest Request NAE Event
• SNP Extended Guest Request NAE Event

1 SEV-SNP AP
Creation

Support provided for SEV-SNP guest AP VMSA creation:

• SNP AP Create NAE Event

Requires SEV-SNP Feature.

2 SEV-SNP Restricted
Injection

Support provided for SEV-SNP Restricted Injection:

• SNP #HV Doorbell Page
• SNP #HV IPI

Requires SEV-SNP
Requires SEV-SNP AP Creation

3 SEV-SNP Restricted
Injection Timer

Support provided for SEV-SNP Restricted Injection Timer

• SNP #HV Timer NAE Event

Requires SEV-SNP
Requires SEV-SNP AP Creation
Requires SEV-SNP Restricted Injection

4 APIC ID List Support provided to return the list of APIC IDs associated with the guest
vCPUs.

5 SEV-SNP Multi-
VMPL

Support provided for running a vCPU at different VMPL levels

• SNP Run VMPL MSR Protocol Request/Response
• SNP Run VMPL NAE Event

Requires SEV-SNP
Requires SEV-SNP AP Creation

6 SEV-ES Page State
Change Support

Support for additionally allowing SEV-ES guests to use the Page State Change
protocols (MSR and NAE Event).

7 SEV-TIO Support Support for additionally allowing SEV-SNP use of trusted IO devices (TDISP).

8 GHCB Unregister
Support

Support for unregistering the currently registered GHCB GPA.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

16

2.3 Establishing the GHCB
The GHCB location in the guest physical address space is specified by the guest. This location is
made available to the hypervisor by mapping the memory as decrypted, or shared, allowing the
hypervisor direct access to the memory.

The guest physical address of the GHCB is saved and restored by hardware on VMRUN/VMEXIT
through the VMCB (offset 0xa0). The guest can read and write the GHCB value through MSR
0xc001_0130. The hypervisor must not intercept access to MSR 0xc001_0130; otherwise, the
guest will not be able to successfully establish the GHCB. The GHCB address must be 4K (page)
aligned, allowing the 12 LSB bits of the GHCB address to be used for providing or requesting
information between the hypervisor and the guest related to the GHCB and SEV-ES, referred to as
the GHCB MSR protocol.

2.3.1 GHCB MSR Protocol

The GHCB MSR protocol is valid at any time but is most useful when the GHCB page cannot be
written by the guest in an unencrypted fashion.

The GHCB MSR protocol uses the lower 12 bits of the GHCB MSR to request an action from the
hypervisor. A guest must use only request values documented as guest source values. Using any
value that is not a guest request value must be interpreted by a hypervisor as an invalid request and
a hypervisor should return to the guest without modifying the GHCB MSR value. For valid
requests, a hypervisor must reply to the guest only with response values documented as hypervisor
source values. Using any value that is not a hypervisor response value must be interpreted by the
guest as an invalid response.

Table 2: GHCB Address Destination

Field
Name

Bit
Position

Definition Source Supported
Versions

GHCBInfo 11:0

0x000 – GHCB Guest Physical Address Guest All

0x001 – SEV Information Hypervisor All

0x002 – SEV Information Request Guest All

0x004 – CPUID Request Guest All

0x005 – CPUID Response Hypervisor All

0x006 – AP Reset Hold Request Guest 2+

0x007 – AP Reset Hold Response Hypervisor 2+

0x010 – Preferred GHCB GPA Request Guest 2+

0x011 – Preferred GHCB GPA Response Hypervisor 2+

0x012 – Register GHCB GPA Request Guest 2+

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

17

0x013 – Register GHCB GPA Response Hypervisor 2+

0x014 – Page State Change Request Guest 2+

0x015 – Page State Change Response Hypervisor 2+

0x016 – SNP Run VMPL Request Guest 2+

0x017 – SNP Run VMPL Response Hypervisor 2+

0x018 – Unregister GHCB GPA Request Guest 2+

0x019 – Unregister GHCB GPA Response Hypervisor 2+

0x080 – Hypervisor Feature Support Request Guest 2+

0x081 – Hypervisor Feature Support Response Hypervisor 2+

0x100 – Termination Request Guest All

GHCBData 63:12 Value dependent upon GHCBInfo

• GHCBInfo:
o 0x000 – GHCB Guest Physical Address

 GHCBData[63:12] specifies bits [63:12] of the guest physical address of the
GHCB. (This implies that the GHCB must be 4K aligned.)

o 0x001 – SEV Information
 GHCBData[63:48] specifies the maximum GHCB protocol version supported.
 GHCBData[47:32] specifies the minimum GHCB protocol version supported.
 GHCBData[31:24] specifies the SEV page table encryption bit number.

Written by the hypervisor before the GHCB address is established (such as on
vCPU creation) to present the guest with the hypervisor’s capabilities. The
guest will choose an appropriate version within the range supplied by the
hypervisor and set the GHCB Protocol Version field. If the guest cannot
support the protocol range supplied by the hypervisor, it should terminate.

The SEV page table encryption bit number is required by the guest when
building the page tables before entering long mode. Normally, the SEV page
table encryption bit number is obtained using the CPUID instruction, which
will now result in a VMM Communication exception. Without knowing the
position of the encryption bit, the GHCB page cannot be marked as decrypted
to allow for communication with the hypervisor. Because of this, the
hypervisor must supply the page table encryption bit number to the guest. This
value can be obtained by the hypervisor from CPUID function 0x8000_001f,
register EBX[5:0]. Alternatively, for CPUID instructions that are required
before the GHCB can be established, the guest can use the CPUID request
protocol documented below and is recommended for an SEV-SNP guest.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

18

o 0x002 –SEV Information Request
 Written by the guest to request the hypervisor provide the SEV information

(GHCBInfo = 0x001) needed to perform protocol negotiation.
o 0x004 – CPUID Request

 GHCBData[63:32] – CPUID function
 GHCBData[31:30] – Requested CPUID register value

• 0b00 – EAX

• 0b01 – EBX

• 0b10 – ECX

• 0b11 – EDX
 GHCBData[29:12] – Reserved, must be zero

Written by the guest to request a CPUID function register value from the
hypervisor. This is useful if CPUID information is required before the GHCB
can be established by the guest. Because only a single register value can be
returned at a time, multiple VMGEXIT invocations are required to obtain all
register values.

The CPUID request protocol does not support CPUID functions that require
non-zero sub-leafs. Additionally, CPUID function 0x0000_000d is not
supported as it requires the value of XCR0.

o 0x005 – CPUID Response
 GHCBData[63:32] – CPUID function register value
 GHCBData[31:30] – Returned CPUID register value

• 0b00 – EAX

• 0b01 – EBX

• 0b10 – ECX

• 0b11 – EDX
 GHCBData[29:12] – Reserved, must be zero

Written by the hypervisor in response to a CPUID request to return the
requested CPUID function register value.

o 0x006 – AP Reset Hold Request
 GHCBData[63:12] – MBZ

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

19

Written by the guest to request the AP be placed in an HLT loop awaiting an
INIT-SIPI-SIPI request. This allows an AP to request AP reset hold without
having to be in long mode. See 4.3.1 SEV-ES and SEV-SNP for a description
of the AP reset hold NAE event.
Not valid for an SEV-SNP guest running with the Restricted Injection feature.
A hypervisor should treat this as an unsupported request in this situation.

o 0x007 – AP Reset Hold Response
 GHCBData[63:12] – Must be non-zero

Written by the hypervisor after an INIT-SIPI-SIPI sequence has been received
for the targeted AP to take it out of HLT. See 4.3.1 SEV-ES and SEV-SNP for
a description of the AP reset hold NAE event.

o 0x010 – Preferred GHCB GPA Request
 GHCBData[63:12] – Must be zero

Written by the guest to request the GHCB guest physical address (GHCB GPA)
that the hypervisor prefers to be used for the vCPU invoking the VMGEXIT.
See 2.3.2 GHCB GPA Registration for further details and restrictions.

o 0x011 – Preferred GHCB GPA Response
 GHCBData[63:12] – Preferred GHCB GFN

Written by the hypervisor in response to a preferred GHCB GPA request. See
2.3.2 GHCB GPA Registration for further details and restrictions.

o 0x012 – Register GHCB GPA Request
 GHCBData[63:12] – GHCB GFN to register

Written by the guest to request the GHCB guest physical address (GHCB GPA
= GHCB GFN << 12) be registered for the vCPU invoking the VMGEXIT. See
2.3.2 GHCB GPA Registration for further details and restrictions.

o 0x013 – Register GHCB GPA Response
 GHCBData[63:12] – Registered GHCB GFN

Written by the hypervisor in response to a register GHCB GPA request. See
2.3.2 GHCB GPA Registration for further details and restrictions.

o 0x014 – Page State Change Request
 GHCBData[63:56] – Reserved, must be zero
 GHCBData[55:52] – Page operation

• 0x0001 – Page assignment, Private

• 0x0002 – Page assignment, Shared

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

20

 GHCBData[51:12] – Guest physical frame number
Written by the guest to request a page state change from the hypervisor based
on the operation requested. The page will be acted on as a 4K page. The page
state change will be against the system physical address (SPA) that is used to
back the guest physical address (GPA) calculated from the supplied guest
physical frame number (GFN) for the requested page size. Support of this
protocol for an SEV-ES guest is based on the Page State Change Support for
SEV-ES feature bit. See 4.1.6 Page State Change for a description of the page
operations.

o 0x015 – Page State Change Response
 GHCBData[63:32] – Error code
 GHCBData[31:12] – Reserved, must be zero

Written by the hypervisor in response to a Page State Change request. Any non-
zero value for the error code indicates that the page state change was not
successful.

o 0x016 – SNP Run VMPL Request
 GHCBData[63:40] – Reserved, must be zero
 GHCBData[39:32] – VMPL level to run
 GHCBData[31:12] – Reserved, must be zero

Written by the guest to request the hypervisor to run the vCPU using the
VMSA associated with the request VMPL level. See 4.1.14 SNP Run VMPL.
Availability is based on the SEV-SNP Multi-VMPL hypervisor feature bit.

o 0x017 – SNP Run VMPL Response
 GHCBData[63:32] – Error code
 GHCBData[31:12] – Reserved, must be zero

Written by the hypervisor in response to a Run VMPL request. Any non-zero
value for the error code indicates that the hypervisor was unable to run the
vCPU at the requested VMPL level.

o 0x018 – Unregister GHCB GPA Request
 GHCBData[63:12] – Reserved, must be zero

Written by the guest to request the currently registered GHCB guest physical
address be unregistered for the vCPU invoking the VMGEXIT. See 2.3.2
GHCB GPA Registration for further details and restrictions.
Availability is based on the GHCB Unregister Support hypervisor feature bit.

o 0x019 – Unregister GHCB GPA Response

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

21

 GHCBData[63:12] – Unregistered GHCB GFN
Written by the hypervisor in response to an unregister GHCB GPA request. See
2.3.2 GHCB GPA Registration for further details and restrictions.

o 0x080 – Hypervisor Feature Support Request
 GHCBData[63:12] – Reserved, must be zero

Written by the guest to request the hypervisor feature support bitmap.
o 0x081 – Hypervisor Feature Support Response

 GHCBData[63:12] – FEATURES bitmap
Written by the hypervisor in response to a Hypervisor Feature Support request.
See 2.2 Hypervisor Feature Support.

o 0x100 – Termination Request
 Written by the guest to communicate to the hypervisor that the guest is

requesting termination. The guest should expect the hypervisor to comply with
the request for termination. As a safeguard, it is recommended that the guest
incorporate an HLT loop or SHUTDOWN following the VMGEXIT.
GHCBData contains the termination reason code where GHCBData[15:12]
specifies the reason code set and GHCBData[23:16] contains the reason code
from that reason code set.

The reason code set is meant to provide hypervisors with their own termination
reason codes. This document defines and owns reason code set 0x0 and the
following reason codes (GHCBData[23:16]):

• 0x00 – General termination request

• 0x01 – SEV-ES/GHCB Protocol range is not supported.

• 0x02 – SEV-SNP features not supported

2.3.2 GHCB GPA Registration

GHCB GPA registration is only supported and required for SEV-SNP guests. Some hypervisors
may prefer that a guest use a consistent and/or specific GPA for the GHCB associated with a
vCPU. Therefore, a guest must use the Register GHCB GPA request MSR protocol function to
establish the GHCB GPA before using a GHCB for a VMGEXIT for the first time.

The registration request allows for two actions to be performed.

• Get preferred GHCB GPA
A guest may request the hypervisor-preferred GHCB GPA for the vCPU by setting
GHCBData to 0 and GHCBInfo to 0x10. The hypervisor must respond with a GFN or

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

22

0xf_ffff_ffff_ffff (the hypervisor does not have a preferred GHCB GPA) in GHCBData and
0x11 in GHCBInfo. If the hypervisor responds with a GFN, the hypervisor must guarantee that
the value cannot otherwise be mapped by the guest. For an SEV-SNP guest, the hypervisor
must update the RMP table to make the page a hypervisor-owned (shared) page. The guest is
not required to use the preferred GHCB GPA, but should the guest decide to use it, it should
verify that the new GPA is outside of its known memory range.

• Register GHCB GPA
A guest must register a vCPU GHCB GPA before using it for the first time. If the guest is not
using the hypervisor-preferred GHCB GPA, the guest must make the GHCB page a
hypervisor-owned (shared) page. Registration is performed by setting GHCBData to the GFN
of GHCB GPA (which could be the hypervisor-preferred value) and GHCBInfo to 0x12. The
hypervisor must respond with the same GFN value or 0xf_ffff_ffff_ffff (the hypervisor does
not accept the supplied GHCB GPA) in GHCBData and 0x13 in GHCBInfo.
Registering a GHCB GPA automatically unregisters any currently registered GHCB GPA.

A hypervisor must terminate the guest if the guest supplies a GHCB GPA that does not match the
currently registered version of the GHCB GPA for the vCPU.

If the hypervisor advertises the SEV-SNP Multi-VMPL hypervisor feature, it must allow for each
VMPL level to register a GHCB GPA.

The guest may request that the currently registered GHCB GPA be unregistered. Using the
Unregister GHCB GPA Request MSR protocol function, the guest can inform the hypervisor that
the currently registered GHCB will no longer be used. This allows the hypervisor to perform any
cleanup that may be needed.

• Unregister GHCB GPA
A guest may unregister the currently registered GHCB GPA for the vCPU. Unregistration is
performed by setting GHCBData to 0 and GHCBInfo to 0x18. The hypervisor must respond with
either the GFN value that was unregistered, 0 (there was no currently registered GHCB GPA), or
0xf_ffff_ffff_ffff (the unregistration failed) in GHCBData and 0x19 in GHCBInfo.

2.4 GHCB Negotiation Example
The guest will ultimately provide the GPA of the GHCB page via the GHCB MSR. The
hypervisor will obtain this GPA value by reading offset 0x00a0 of the VMCB. Initially, however,
the hypervisor can set the GHCB MSR to allow for the GHCB protocol to be negotiated. This
example assumes that the hypervisor performs its current steps when preparing to create and start
a vCPU and that use of the CPUID instruction is intercepted. The following additional steps
document an example for the GHCB negotiation.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

23

2.4.1 SEV-ES (Version 1)

• Hypervisor sets VMCB offset 0x00a0 before launching the vCPU for the first time:
o The value is used by the guest to negotiate the SEV-ES/GHCB protocol version and

establish the page table encryption bit.
o Given that the hypervisor supports only version 1 and the SEV page table encryption

bit number is 47 (0x2f), the hypervisor will use GHCBInfo value of 0x001 and set
VMCB offset 0x00a0 to:
 0x0001_0001_2f00_0001

• Hypervisor launches the guest vCPU (VMRUN).

• Guest determines the encryption bit position to properly set up the page tables and mark the
GHCB as shared.

o Guest establishes an exception handler for #VC exceptions.
 Guest will perform a series of CPUID instructions to obtain the SEV data. For

an SEV-ES guest, these CPUID instructions result in a #VC exception, where
the CPUID instructions will be emulated.

o Guest issues CPUID for leaf 0x80000000:
 EAX is set to 0x8000001f
 #VC handler returns.

o Guest issues CPUID for leaf 0x8000001f:
 Guest #VC exception handler reads MSR 0xc001_0130
 If GHCBInfo != 0x001:

• Guest requests termination.
 Guest extracts the maximum GHCB protocol version, GHCBData[63:48], and

minimum GHCB protocol version, GHCBData[47:32]. If the guest cannot
support a protocol in the range:

• Guest requests termination.
 Guest extracts the SEV page table encryption bit number, GHCBData[31:24].
 EAX is set to 0x0000000a

• SEV and SEV-ES supported
 EBX is set to the SEV page table encryption bit.
 #VC handler returns.

• Guest continues initialization, which, among other things, includes:

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

24

o Ensuring that 64-bit long mode is established
o Page tables are configured with the encryption bit as required.
o GHCB page is allocated and marked shared in the page tables:

 Guest writes MSR 0xc001_0130 with the GPA of the allocated GHCB page
(GHCBInfo == 0x000).

 Must be done before a VMGEXIT instruction is issued that uses the GHCB
page

The above example is just one way to perform the GHCB negotiation for an SEV-ES guest. For
example, you could use the GHCBInfo = 0x004 CPUID Request to obtain actual values for the
CPUID instructions executed by the guest. Or you could use the GHCBInfo = 0x002 Request for
SEV Information if MSR 0xc001_0130 does not contain the GHCBInfo = 0x001 SEV
Information.

2.4.2 SEV-SNP (Version 2)

The hypervisor may supply the encryption bit position using the SEV Information MSR protocol,
but the guest should use the CPUID information supplied in the CPUID Page to determine the
encryption bit position. The information in the CPUID Page will have been validated by the SEV
firmware.

• Hypervisor sets VMCB offset 0x00a0 before launching the vCPU for the first time:
o The value is used by the guest to negotiate the SEV-ES/GHCB protocol version and

establish the page table encryption bit.
o Given that the hypervisor supports up to version 2 and the SEV page table encryption

bit number is 51 (0x33), the hypervisor will use GHCBInfo value of 0x001 and set
VMCB offset 0x00a0 to:
 0x0002_0001_3300_0001

• Hypervisor launches the guest vCPU (VMRUN).

• Guest determines the encryption bit position to properly set up page tables and mark the
GHCB as shared.

o Guest establishes an exception handler for #VC exceptions.
 Guest will perform a series of CPUID instructions to obtain the SEV data. For

an SEV-SNP guest, these CPUID instructions result in a #VC exception, where
the CPUID instructions will be emulated by setting register values to the values
set in the CPUID Page.

o Guest issues CPUID for leaf 0x80000000:
 #VC exception handler sets EAX/EBX/ECX/EDX for leaf 0x80000000

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

25

 #VC exception handler returns.
o Guest verifies that EAX is at least 0x8000001f
o Guest issues RDMSR for MSR 0xc001_0131 (non-interceptable SEV Status MSR).

 Guest verifies that it is running as an SEV-SNP guest by verifying that
EAX[2:0] == 0x7

o Guest issues CPUID for leaf 0x8000001f:
 #VC exception handler sets EAX/EBX/ECX/EDX for leaf 0x8000001f
 #VC exception handler returns.
 Guest extracts the SEV page table encryption bit position, EBX[5:0]

o Guest uses the MSR Protocol support to issue an SEV Information Request:
 Guest extracts the maximum GHCB protocol version, GHCBData[63:48], and

minimum GHCB protocol version, GHCBData[47:32]. If the guest cannot
support a protocol in the range:

• Guest requests termination.

• Guest continues initialization, which, among other things, includes:
o Ensuring that 64-bit long mode is established
o Page tables are configured with the encryption bit as required.
o GHCB page is allocated and marked shared in the page tables:

 Guest uses MSR Protocol to perform Register GHCB GPA Request using the
GFN of the allocated GHCB page. If the hypervisor does not respond with the
input GFN:

• Guest requests termination.
 Guest writes MSR 0xc001_0130 with the GPA of the allocated GHCB page

(GHCBInfo == 0x000)
 Must be done before a VMGEXIT instruction is issued that uses the GHCB

page.
The above example is just one way to perform the GHCB negotiation for an SEV-SNP guest.

2.5 GHCB/VMGEXIT Example
The following shows an example of a guest and hypervisor that conform to version 1 of the GHCB
protocol:

• Guest executes an instruction resulting in a #VC exception
o Guest #VC handler is invoked

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

26

o Guest #VC handler disables preemption and interrupts
o Guest #VC handler ensures that the physical address of the GHCB is set in MSR

0xc001_0130
o Guest #VC handler clears any previous GHCB field invocation data
o Guest #VC handler sets the GHCB fields as required for the instruction
o Guest #VC handler issues VMGEXIT

• Hypervisor resumes with a VMEXIT code of VMEXIT_VMGEXIT
o Hypervisor reads VMCB offset 0x00a0 to obtain the guest physical address of the

GHCB
o If GHCBInfo == 0x000

 Hypervisor translates GHCB guest physical address into a GHCB hypervisor
virtual address, handles the exit based on the GHCB SW_EXITCODE, updates
the GHCB save state area and resumes the guest.

o If GHCBInfo == 0x002
 Hypervisor recreates the GHCB protocol versioning value, sets this value in the

VMCB at offset 0x00a0 and resumes the guest.
o If GHCBInfo == 0x004

 Hypervisor creates a CPUID response to the CPUID request, sets this value in
the VMCB at offset 0x00a0 and resumes the guest.

o If GHCBInfo == 0x100
 Hypervisor terminates the guest, optionally displaying the associated

GHCBData value.
o If GHCBInfo is any other value

 Hypervisor will be unable to process the VMGEXIT and should terminate the
guest.

• Guest #VC handler resumes processing
o Guest copies the GHCB save state information to the guest register state
o Guest enables interrupts and preemption
o Guest exits the #VC handler

When a guest is running as an SEV-ES guest, it is important not to do anything that would result
in an unplanned NAE event before entering long mode or 32-bit PAE. When not in one of these
modes, all memory accesses by the guest are forced to use encryption under the key associated
with the guest. As a result, the guest and hypervisor would not be able to communicate through the
GHCB because the hypervisor would see encrypted data. The guest should determine encryption
bit position so that the GHCB can be properly established. One way to perform this would be:

o Issue CPUID for function 0x8000_0000 and verify CPUID function 0x8000_001f is
available.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

27

 If the CPUID instruction is being intercepted, this will result in a #VC, where
the CPUID exchange protocol can be used to obtain the CPUID results.

o Issue CPUID for function 0x8000_001f and obtain the encryption bit position.
 If the CPUID instruction is being intercepted, this will result in a #VC, where

the CPUID exchange protocol can be used to obtain the CPUID results.
This is not the only way this can be done. If a #VC is encountered, then software would know that
it is running as an SEV-ES guest and could use GHCBInfo 0x002 to request the SEV information
to obtain the encryption bit position.

2.6 GHCB Layout
Table 3: GHCB Layout

Offset Size Contents Notes Supported
Versions

0x0000 0xcb RESERVED

0x00cb 0x01 CPL All

0x00cc 0x74 RESERVED

0x0140 0x08 XSS 2+

0x0148 0x18 RESERVED

0x0160 0x08 DR7 All

0x0168 0x90 RESERVED

0x01f8 0x08 RAX All

0x0200 0x100 RESERVED

0x0300 0x08 RESERVED (RAX already available at 0x01f8)

0x0308 0x08 RCX All

0x0310 0x08 RDX All

0x0318 0x08 RBX All

0x0320 0x70 RESERVED

0x0390 0x08 SW_EXITCODE Guest controlled exit code All

0x0398 0x08 SW_EXITINFO1 Guest controlled exit information 1 All

0x03a0 0x08 SW_EXITINFO2 Guest controlled exit information 2 All

0x03a8 0x08 SW_SCRATCH Guest controlled additional information All

0x03b0 0x38 RESERVED

0x03e8 0x08 XCR0 All

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

28

Offset Size Contents Notes Supported
Versions

0x03f0 0x10 VALID_BITMAP Bitmap to indicate valid qwords in the save
state area starting from offset 0x000
through offset 0x3ef (126 qwords)

All

0x0400 0x08 X87_STATE_GPA Guest physical address of a page containing
X87 related state information conforming to
the format produced by the XSAVE
instruction.

All

0x0408 0x3f8 RESERVED

0x0800 0x7f0 RESERVED / Shared
Buffer

Can be used as a shared buffer area. Future
versions of the GHCB specification will not
alter this area definition.

All

0x0ff0 0x0a RESERVED

0x0ffa 0x02 SEV-ES/GHCB
Protocol Version

Version of the SEV-ES/GHCB layout used
by the guest
• 0x0001 – SEV-ES/GHCB Protocol

Version 1
• 0x0002 – SEV-ES/GHCB Protocol

Version 2

All

0x0ffc 0x04 GHCB Usage Provides an indicator of the usage and
format of the GHCB:
• 0x00000000 – The GHCB page follows

the format as documented here
• Any other value can be used by the

hypervisor, which can determine its
own format (e.g. for hypercall usage)

On VMGEXIT, the hypervisor should
check the GHCB Usage field and validate
that is a supported value. A hypervisor must
support the GHCB Usage value 0x0000 and
may support other values. For any
unsupported value, the hypervisor can either
terminate the guest or resume the guest
indicating an exception should be raised.
Details of how hypervisors communicate
support for additional GHCB Usage values
is beyond the scope of this document.

All

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

29

2.7 SEV-SNP Secrets Page
The hypervisor should supply an SEV-SNP guest with a secrets page as part of the SEV-SNP
launch process (see SEV Secure Nested Paging Firmware ABI Specification). Within the SNP
secrets page, there is a 96-byte area from offset 0x00a0 to 0x00ff reserved for use by the SEV-
SNP guest.

The Secrets Page Guest Reserved Area can be used to communicate information between
operating environments (e.g., when transferring control from UEFI to the OS). To avoid usage
conflicts, the format and use of this area is defined in Table 4.

• Changes for Revision 2.01:
o A change to the SEV-SNP API after finalization of version 2.00 changed the guest

request message sequence number from 32 bits to 64 bits. As a result, a backward-
compatible update has been made to the Secrets Page Guest Reserved Area format by
using 18 bytes of the 40 reserved (must be zero) bytes to hold the upper 32 bits of the
now 64-bit guest request message sequence numbers and a 16-bit version number.

Table 4: Secrets Page Guest Reserved Area

Offset Size Contents Supported
Revisions

0x0000 0x04 VMPL0 Current Guest Message Sequence Number [31:0] 2+

0x0004 0x04 VMPL1 Current Guest Message Sequence Number [31:0] 2+

0x0008 0x04 VMPL2 Current Guest Message Sequence Number [31:0] 2+

0x000c 0x04 VMPL3 Current Guest Message Sequence Number [31:0] 2+

0x0010 0x08 AP Jump Table Physical Address 2+

0x0018 0x04 RESERVED – MBZ 2

0x04 VMPL0 Current Guest Message Sequence Number [63:32] 2.01+

0x001c 0x04 RESERVED – MBZ 2

0x04 VMPL1 Current Guest Message Sequence Number [63:32] 2.01+

0x0020 0x04 RESERVED – MBZ 2

0x04 VMPL2 Current Guest Message Sequence Number [63:32] 2.01+

0x0024 0x04 RESERVED – MBZ 2

0x04 VMPL3 Current Guest Message Sequence Number [63:32] 2.01+

0x0028 0x16 RESERVED – MBZ 2+

0x003e 0x02 RESERVED – MBZ 2

0x02 Version:
• 1 – Revision 2.01

2.01

[Public]

https://www.amd.com/system/files/TechDocs/56860.pdf

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

30

Offset Size Contents Supported
Revisions

0x0040 0x20 Guest Usage 2+

The VMPL Current Guest Request Message Sequence Number fields allow for communicating
the current message sequence numbers between operating environments so that the next
environment can successfully issue guest requests.

The physical address field of the AP Jump Table allows for communicating the physical address
between operating environments without hypervisor involvement.

The Guest Usage area is for use by the guest in any manner desired.

The format of the area is:

struct secrets_page_os_area {
uint32 vmpl0_message_seq_num;
uint32 vmpl1_message_seq_num;
uint32 vmpl2_message_seq_num;
uint32 vmpl3_message_seq_num;

uint64 ap_jump_table_pa;

union {

/* Revision 2.00 */
uint8 reserved1[40];

/* Revision 2.01 */
struct {

uint32 vmpl0_message_seq_num_hi;
uint32 vmpl1_message_seq_num_hi;
uint32 vmpl2_message_seq_num_hi;
uint32 vmpl3_message_seq_num_hi;
uint8 reserved2[22];
uint16 version; /* == 1 */

};

};

uint8 guest_usage[32];

};

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

31

2.8 SEV-SNP Confidential Computing Blob EFI Protocol
The hypervisor should supply an SEV-SNP guest with a secrets page and a CPUID page as part of
the SEV-SNP launch process (see SEV Secure Nested Paging Firmware ABI Specification). When
an EFI platform is used, the firmware can communicate these pages to the OS using an EFI
configuration table.

The EFI SEV-SNP Confidential Computing Blob configuration table GUID is:

{0x067b1f5f, 0xcf26, 0x44c5, {0x85, 0x54, 0x93, 0xd7, 0x77, 0x91, 0x2d, 0x42}}

The format of the EFI SEV-SNP Confidential Computing Blob configuration table is defined in
Table 5.

Table 5: EFI SNP Confidential Computing Blob Configuration Table

Offset Size Contents Supported
Revisions

0x0000 0x04 Header/signature
• 0x45444d41 – Revision 2.00

2+

0x0004 0x02 Version:
• 1 – Revision 2.00

2+

0x0006 0x02 RESERVED – MBZ 2+

0x0008 0x08 Secrets Page Physical Address 2+

0x0010 0x04 Secrets Page Size 2+

0x0014 0x04 RESERVED – MBZ 2+

0x0018 0x08 CPUID Page Physical Address 2+

0x0020 0x04 CPUID Page Size 2+

0x0024 0x04 RESERVED – MBZ 2+

struct snp_confidential_computing_blob_efi_config_table {
uint32 header; /* == 0x45444d41 */
uint16 version; /* == 1 */
uint16 reserved1;
uint64 secrets_page_physical_address;
uint32 secrets_page_size;
uint32 reserved2;
uint64 cpuid_page_physical_address;
uint32 cpuid_page_size;
uint32 reserved3;

};

[Public]

https://www.amd.com/system/files/TechDocs/56860.pdf

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

32

3 Guest Exits

3.1 Automatic Exits (AE)
Table 6: List of Automatic Exits

Code Name Description

0x52 VMEXIT_MC Machine check exception

0x60 VMEXIT_INTR Physical interrupt

0x61 VMEXIT_NMI Physical NMI

0x63 VMEXIT_INIT Physical INIT

0x64 VMEXIT_VINTR Virtual INTR

0x77 VMEXIT_PAUSE PAUSE instruction

0x78 VMEXIT_HLT HLT instruction

0x7F VMEXIT_SHUTDOWN Shutdown

0x8f VMEXIT_EFER_WRITE_TRAP

0x90 – 0x9f VMEXIT_CR[0-15]_WRITE_TRAP

0x400 VMEXIT_NPF Only if PFCODE[3] == 0 (no reserved bit
error)

0x403 VMEXIT_VMGEXIT VMGEXIT instruction

-1 VMEXIT_INVALID Invalid guest state

-2 VMEXIT_BUSY Busy bit was set in guest state

Refer to AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, Section
15.35.4 for information on how the guest RIP is advanced when an AE exit is encountered.

3.2 Guest Non-Automatic Exits (NAE)
NAE events are all exit events that are not AE events. When an NAE event occurs, the VMM
Communication Exception (#VC) is always thrown by the hardware when an SEV-ES guest is
running. The error code of the #VC exception is equal to the VMEXIT code of the event that
caused the NAE.

[Public]

http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

33

The guest should inspect the error code to determine the cause of the exception, decide what
register state needs to be copied to the GHCB, and then invoke the VMGEXIT instruction to
generate an AE event. After a subsequent VMRUN instruction by the hypervisor, the guest will
resume at the next instruction following the VMGEXIT instruction. This provides the guest an
opportunity to examine the results provided from the hypervisor in the GHCB and copy them back
to its internal state. The #VC handler exits using the IRET instruction; therefore, the IRET
instruction should not be intercepted (with exception for an NMI, which is discussed in a
subsequent section).

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

34

4 GHCB Protocol

This document will provide the definition for supported versions of the GHCB protocol that will
establish guest and hypervisor requirements. This will consist of the list of required NAE events
that the guest and the hypervisor must support, as well as the required guest state that will be
provided by the guest and returned by the hypervisor during a VMGEXIT. In general, the
SW_EXITCODE will map to the SVM intercept exit codes. There are some exceptions where a
user-defined SW_EXITCODE will be used to provide additional needed information to the
hypervisor.

The following table lists the NAE events that are valid for GHCB protocol, along with the version
associated. A hypervisor is not required to intercept the instructions that generate all the listed
NAE events, but because a guest can invoke VMGEXIT without having taken a #VC, the
hypervisor must be able to handle a VMGEXIT from the guest for the listed NAE events. The
hypervisor can decide if the VMGEXIT event is valid and respond appropriately. A guest must be
able to handle a #VC exception for all the NAE events listed. It is up to the guest to decide how to
handle the NAE event. For example, a guest may decide that it should never receive a particular
NAE event and, instead of performing VMGEXIT processing, can perform some alternate
processing.

The state to and from the hypervisor in the NAE event table is the minimum state information
required. Each GHCB field set by the guest and returned by the hypervisor must have the
appropriate bit set in the GHCB VALID_BITMAP field. At a minimum:

• The guest is expected to set the bits for SW_EXITCODE, SW_EXITINFO1 and
SW_EXITINFO2.

• The hypervisor is expected to set the bits for SW_EXITINFO1 and SW_EXITINFO2.

Before each NAE event, the guest should reset the VALID_BITMAP field by clearing all bits
before setting the bits associated with the NAE event to be performed. Likewise, the hypervisor
should reset the VALID_BITMAP field before setting the bits associated with the results of the
NAE event.

The VALID_BITMAP bit position is calculated by taking the offset of the field in bytes and
dividing by 8, giving the qword offset. Given the qword offset, the byte offset and bit position
within the VALID_BITMAP are calculated. The byte offset is the qword offset divided by 8,
while the bit position within the byte offset is the qword offset mod 8. For example:

• RAX is offset 0x01f8, 0x01f8 / 8 = 0x3f or 63
• VALID_BITMAP byte offset is 63 / 8 = 7
• VALID_BITMAP bit position within the byte offset is 63 % 8 = 7

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

35

The guest and hypervisor can supply an additional state if desired but must not rely on it being
provided. Unless otherwise specified in the table below, SW_EXITINFO1 and SW_EXITINFO2
must be set to 0.

Table 7: List of Supported Non-Automatic Events

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

DR7 Read SW_EXITCODE = 0x27 See 4.5 Debug Register Support All

DR7 Write RAX
SW_EXITCODE = 0x37
SW_EXITINFO1
SW_EXITINFO2 = 0

See 4.5 Debug Register Support

SW_EXITINFO1 will be set as
documented in AMD64
Architecture Programmer’s
Manual, Volume 2: System
Programming, Section 15.8.1

All

RDTSC SW_EXITCODE = 0x6e
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

RAX
RDX

All

RDPMC RCX
SW_EXITCODE = 0x6f
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

RAX
RDX

All

CPUID RAX
RCX
SW_EXITCODE = 0x72
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0
XCR0*

RAX
RBX
RCX
RDX

XCR0 is required to be supplied
only when a request for CPUID
0000_000D is made.

1

RAX
RCX
SW_EXITCODE = 0x72
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0
XCR0*
XSS*

RAX
RBX
RCX
RDX

XCR0 is only required to be
supplied when a request for
CPUID 0000_000D is made.

XSS is only required to be
supplied when a request for
CPUID 0000_000D is made and
the guest supports the XSS MSR
(0x0000_0da0).

2+

INVD SW_EXITCODE = 0x76
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

All

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

36

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

IOIO_PROT RAX (for OUT)
SW_EXITCODE = 0x7b
SW_EXITINFO1
SW_EXITINFO2
SW_SCRATCH =
<ADDR>

RAX (for IN) SW_EXITINFO1 will be set as
documented in AMD64
Architecture Programmer’s
Manual, Volume 2: System
Programming, Section 15.10.2

If string-based port access is
indicated in SW_EXITINFO1,
SW_EXITINFO2 will contain the
REP count, otherwise 0

If string-based port access is
indicated in SW_EXITINFO1,
SW_SCRATCH will have the SRC
(OUTS) or DST (INS) guest
physical address of shared memory

See 4.1.2 IOIO_PROT (0x7b)

All

MSR_PROT
(RDMSR)

RCX
SW_EXITCODE = 0x7c
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

RAX
RDX

See 4.1.3 MSR_PROT (0x7c) All

MSR_PROT
(WRMSR)

RAX
RCX
RDX
SW_EXITCODE = 0x7c
SW_EXITINFO1 = 1
SW_EXITINFO2 = 0

See 4.1.3 MSR_PROT (0x7c) All

VMMCALL RAX
CPL
SW_EXITCODE = 0x81
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

RAX RAX and CPL are the minimum
required state to be provided to the
hypervisor.

The guest can supply additional
information as required by the
hypercall and indicate that in
VALID_BITMAP.

See 4.1.4 VMMCALL (0x81)

All

RDTSCP SW_EXITCODE = 0x87
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

RAX
RCX
RDX

All

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

37

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

WBINVD SW_EXITCODE = 0x89
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

All

MONITOR/
MONITORX

RAX
RCX
RDX
SW_EXITCODE = 0x8a
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

RAX will contain the guest
physical address of the
MONITOR/MONITORX memory
range.

All

MWAIT/
MWAITX

RAX
RCX
SW_EXITCODE = 0x8b
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

All

#AC The #VC handler should forward
this exception on to the #AC
handler.

All

#NPF
MMIO
READ

SW_EXITCODE =
0x8000_0001
SW_EXITINFO1 =
<SRC>
SW_EXITINFO2 =
<LEN>
SW_SCRATCH =
<DST>

SW_EXITINFO1 will have the
SRC guest physical address

SW_EXITINFO2 must be less
than or equal to 0x7fff_ffff for
version 1 and less than or equal to
0x8 for all other versions.

SW_SCRATCH will have the DST
guest physical address of shared
memory

See 4.1.5 #NPF/MMIO Access

All

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

38

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

#NPF/
MMIO
WRITE

SW_EXITCODE =
0x8000_0002
SW_EXITINFO1 =
<DST>
SW_EXITINFO2 =
<LEN>
SW_SCRATCH =
<SRC>

SW_EXITINFO1 will have the
DST guest physical address

SW_EXITINFO2 must be less
than or equal to 0x7fff_ffff for
version 1 and less than or equal to
0x8 for all other versions.

SW_SCRATCH will have the SRC
guest physical address of shared
memory

See 4.1.5 #NPF/MMIO Access

All

NMI
Complete

SW_EXITCODE =
0x8000_0003
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

See 4.4 Non-maskable Interrupts All

AP Reset
Hold

SW_EXITCODE =
0x8000_0004
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

SW_EXITINFO2 SW_EXITINFO2 =
State from Hypervisor:
0 - the vCPU did not receive a SIPI
request.
Non-zero - the vCPU received a
SIPI request.

Not valid for an SEV-SNP guest
running with the Restricted
Injection feature. A hypervisor
should treat this as an unsupported
NAE event in this situation.

See 4.3.1 SEV-ES and SEV-SNP

All

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

39

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

AP Jump
Table

SW_EXITCODE =
0x8000_0005
SW_EXITINFO1
SW_EXITINFO2

SW_EXITINFO2 SW_EXITINFO1 = 0 (SET)
SW_EXITINFO2 =
State to Hypervisor: the guest
physical address to be SET
State from Hypervisor: 0

SW_EXITINFO1 = 1 (GET)
SW_EXITINFO2 =
State to Hypervisor: 0
State from Hypervisor: the guest
physical address as previously SET
(or zero if not previously SET)

Not valid for an SEV-SNP guest.
A hypervisor should treat this as an
unsupported NAE event in this
situation.

See 4.3.1 SEV-ES and SEV-SNP

All

Page State
Change

SW_EXITCODE =
0x8000_0010
SW_SCRATCH =
<DATA>

SW_EXITINFO2 SW_SCRATCH will have the
guest physical address of a Page
State Change structure residing in
shared memory.

SW_EXITINFO2 will contain 0 if
all entries have been processed
successfully or a reason code
identifying why the request has not
completed.

See 4.1.6 Page State Change

2+

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

40

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

SNP Guest
Request

SW_EXITCODE =
0x8000_0011
SW_EXITINFO1 =
<REQ GPA>
SW_EXITINFO2 =
<RSP GPA>

SW_EXITINFO2 SW_EXITINFO1 will have the
guest physical address of the
request page

SW_EXITINFO2
State to Hypervisor: will have the
guest physical address of the
response page
State from Hypervisor: Upper
32-bits (63:32) will contain the
return code from the hypervisor.
Lower 32-bits (31:0) will contain
the return code from the firmware
call (0 = success)

Both the request page and response
page must be assigned to the
hypervisor (shared).

See 4.1.7 SNP Guest Request

2+

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

41

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

SNP
Extended
Guest
Request

RAX = <DATA GPA>
RBX = <DATA PAGE
COUNT>
SW_EXITCODE =
0x8000_0012
SW_EXITINFO1 =
<REQ GPA>
SW_EXITINFO2 =
<RSP GPA>

RBX
SW_EXITINFO2

RAX will have the guest physical
address of the page(s) to hold
returned data

RBX
State to Hypervisor: will contain
the number of guest contiguous
pages supplied to hold returned
data
State from Hypervisor: on error
will contain the number of guest
contiguous pages required to hold
the data to be returned

SW_EXITINFO1 will have the
guest physical address of the
request page

SW_EXITINFO2
State to Hypervisor: will have the
guest physical address of the
response page
State from Hypervisor: Upper
32-bits (63:32) will contain the
return code from the hypervisor.
Lower 32-bits (31:0) will contain
the return code from the firmware
call (0 = success)

The request page, response page
and data page(s) must be assigned
to the hypervisor (shared).

See 4.1.8 SNP Extended Guest
Request

2+

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

42

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

SNP AP
Creation

RAX =
<SEV_FEATURES>
SW_EXITCODE =
0x8000_0013
SW_EXITINFO1
SW_EXITINFO2

RAX, on CREATE/ADD, will
contain the SEV_FEATURES
value used in the VMSA specified
in SW_EXITINFO2.

SW_EXITINFO1[63:32] = APIC
ID
SW_EXITINFO1[31:20] = 0
SW_EXITINFO1[19:16] = VMPL
SW_EXITINFO1[15:0] =
0 (CREATE/ADD)
VMSA state for the specified
VMPL level to be used with the
next INIT-SIPI.
Not valid for an SEV-SNP guest
running with the Restricted
Injection feature. A hypervisor
should treat this as an unsupported
NAE event in this situation.
1 (CREATE/ADD)
VMSA state for the specified
VMPL level to be used
immediately (issue VMRUN).
2 (DESTROY/REMOVE)
Remove VMSA state for the
specified VMPL level (vCPU is no
longer runnnable).

SW_EXITINFO2 is the guest
physical address of the VMSA to
be for the vCPU associated with
the specified APID ID (0 for a
destroy/remove request).

Recognition of the VMPL level is
based on the SEV-SNP Multi-
VMPL hypervisor feature. VMPL
must be zero if the hypervisor does
not support the SEV-SNP Multi-
VMPL feature.

See 4.1.9 SNP AP Creation and
4.3.2 SEV-SNP (SNP AP Creation
Feature)

2+

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

43

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

#HV
Doorbell
Page

SW_EXITCODE =
0x8000_0014
SW_EXITINFO1
SW_EXITINFO2

SW_EXITINFO2 SW_EXITINFO1 =
0 (GET_PREFERRED)

SW_EXITINFO2
State from hypervisor: is the
hypervisor preferred guest
physical address to use for the
doorbell page.

1 (SET)
SW_EXITINFO2
State to hypervisor: is the
guest physical address to use
for the doorbell page.

2 (QUERY)
SW_EXITINFO2
State from hypervisor: is the
guest physical address that is
in use for the doorbell page.

3 (CLEAR)

See 4.1.10 #HV Doorbell Page

2+

#HV IPI SW_EXITCODE =
0x8000_0015
SW_EXITINFO1
SW_EXITINFO2 = 0

SW_EXITINFO1 will be set to the
x2APIC Interrupt Command
Register format.

See 4.1.11 #HV IPI

2+

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

44

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

#HV Timer RAX
RBX
RCX
SW_EXITCODE =
0x8000_0016
SW_EXITINFO1
SW_EXITINFO2 =
<MASK>

RAX
RBX
RCX
RDX

SW_EXITINFO1 =
0 (SET)

Set register(s) as identified by
the mask in SW_EXITINFO2
(Current Count is not settable)

1 (GET)
Get register(s) as identified by
the mask in SW_EXITINFO2

The registers follow the format of
the APIC Timer Registers as
documented in AMD64
Architecture Programmer’s
Manual, Volume 2: System
Programming, Section 16.4.1 and
10.5.4:
MASK[0]
 RAX = Timer LVT

MASK[1]
 RBX = Divide Configuration

MASK[2]
 RCX = Timer Initial Count

MASK[3]
 RDX = Timer Current Count

See 4.1.12 #HV Timer

2+

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

45

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

APIC ID List RAX
SW_EXIT_CODE=
0x8000_0017
SW_EXITINFO1

RAX SW_EXITINFO1 will have the
guest physical address of the
page(s) to hold the list of APIC
IDs

RAX
State to Hypervisor: is the
number of guest contiguous pages
provided to hold the list of APIC
IDs
State from Hypervisor: is the
number of pages required to hold
the list of APIC IDs if the input
number of pages is not large
enough, unchanged otherwise

See 4.1.13 APIC ID List

Availability based on APIC ID List
hypervisor feature.

2+

SNP Run
VMPL

SW_EXITCODE=
0x8000_0018
SW_EXITINFO1
SW_EXITINFO2 = 0

SW_EXITINFO1[31:0] = VMPL
level to run

See 4.1.14 SNP Run VMPL

Availability based on SEV-SNP
Multi-VMPL hypervisor feature.

2+

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

46

SNP TIO
Guest
Request

RAX = <DATA GPA>
RBX = <DATA PAGE
COUNT>
RCX = <GUEST PCI
ID>
RDX
SW_EXITCODE =
0x8000_0019
SW_EXITINFO1 =
<REQ GPA>
SW_EXITINFO2 =
<RSP GPA>

RBX
RDX
SW_EXITINFO2

RAX will have the guest physical
address of the page(s) to hold sent
and/or returned data

RBX
State to Hypervisor: will contain
the number of guest contiguous
pages supplied to hold sent and/or
returned data
State from Hypervisor: on error
will contain the number of guest
contiguous pages required to hold
the data to be returned

RCX will have the guest device
PCI device ID which is in BDFn
format

RDX
State to Hypervisor: will have the
MMIO range (when request is
TIO_MSG_MMIO_VALIDATE_
REQ), 0 otherwise
State from Hypervisor: will have
TDISP state (when
TIO_MSG_TDI_INFO_RSP
request), undefined otherwise

SW_EXITINFO1 will have the
guest physical address of the
request page

SW_EXITINFO2
State to Hypervisor: will have the
guest physical address of the
response page
State from Hypervisor: Upper
32-bits (63:32) will contain the
return code from the hypervisor.
Lower 32-bits (31:0) will contain
the return code from the firmware
call (0 = success)

The request page, response page
and data page(s) must be assigned
to the hypervisor (shared).

2+

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

47

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

See 4.1.15 SNP TIO Guest
Request

Secure AVIC RAX = <APIC ID >
RBX

SW_EXITCODE=
0x8000_001a
SW_EXITINFO1

RBX SW_EXITINFO1 =
0
(REGISTER_BACKING_PAGE
)

The guest is using the supplied
GPA as the AVIC backing
page for the specified vCPU

RBX
State to Hypervisor: will
have the guest physical
address of the Secure AVIC
backing page for the specified
vCPU

1
(UNREGISTER_BACKING_PA
GE)

The guest is no longer using
the previously set GPA for the
vCPU AVIC backing page.

RBX
State from Hypervisor: will
have the guest physical
address of the Secure AVIC
backing page for the specified
vCPU that was REGISTER or
0 if no page was previously
REGISTER

RAX will have the APIC ID of the
target vCPU or 0xffff_ffff_ffff_ffff
for the vCPU doing the call

See 4.1.16 Secure AVIC

2+

Hypervisor
Feature
Support

SW_EXITCODE=
0x8000_fffd
SW_EXITINFO1 = 0
SW_EXITINFO2 = 0

SW_EXITINFO2 SW_EXITINO2
State from Hypervisor: is the
FEATURES bitmap.

See 2.2 Hypervisor Feature
Support

2+

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

48

NAE Event State to Hypervisor State from
Hypervisor

Notes Supported
Versions

Termination
Request

SW_EXITCODE =
0x8000_fffe
SW_EXITINFO1 =
<ERR_CODE>
SW_EXITINFO2 =
<ERR_INFO>

SW_EXITINFO1 will have the
termination reason code

SW_EXITINFO2 may contain an
error information code

See 4.1.17 Termination Request

2+

Unsupported
Event

SW_EXITCODE =
0x8000_ffff
SW_EXITINFO1 =
<ERR_CODE>
SW_EXITINFO2 = 0

SW_EXITINFO1 will have the
error code on entry to the VMM
Communication exception

All

4.1 Invoking VMGEXIT
In general, all NAE events are handled in a standard fashion, except for a few. The standard
method is documented in Section 4.1.1. The exceptions are documented following the standard
method. The guest has the option of using the #VC handler to trigger VMGEXIT processing or it
can para-virtualize the instructions that would cause a #VC and, instead, invoke VMGEXIT
processing directly.

Software should ensure that an invocation of VMGEXIT is protected on the vCPU that it will be
issued from. For that reason, software should disable interrupts and disable preemption before
updating the GHCB and setting the GHCB MSR as well as when accessing the contents of the
GHCB following the return from VMGEXIT.

In the context of NMI, it is recommended to have a separate GHCB for use or to save the active
GHCB information on entry and restore on exit.

The hypervisor can communicate back to the guest in the event of an error during VMGEXIT
processing. The SW_EXITINFO1 and SW_EXITINFO2 fields are used for this purpose. Any
non-zero value in SW_EXITINFO1[31:0] should be considered an error returned by the
hypervisor.

SW_EXITINFO1[31:0] defines the action requested by the hypervisor:

• 0x0000
o No action requested by the hypervisor.

• 0x0001
o The hypervisor has requested that an exception be issued. The SW_EXITINFO2

field contains the Event Injection (EVENTINJ) value as documented in AMD64

[Public]

http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

49

Architecture Programmer’s Manual, Volume 2: System Programming, Section 15.20.
The currently supported exceptions that can be requested are:
 #GP
 #UD

• 0x0002
o The hypervisor encountered malformed input for the VMGEXIT. The

SW_EXITINFO2 field may contain further information as documented in
Table 8.

Table 8: Invalid GHCB Reason Codes

Value Description

0x0001 The GHCB address was not registered (SEV-SNP)

0x0002 The GHCB Usage value was not valid

0x0003 The SW_SCRATCH field was not valid / could not be mapped

0x0004 The required input fields(s) for the NAE event were not marked valid in the
GHCB VALID_BITMAP field

0x0005 The NAE event input was not valid (e.g., an invalid SW_EXITINFO1 value
for the AP Jump Table NAE event)

0x0006 The NAE event was not valid

0x0007 –
0xffff

Reserved

0x10000
and above

Available for hypervisor specific reason codes.

4.1.1 Standard VMGExit
• Before issuing the VMGEXIT instruction:

o Disable interrupts and preemption.
o Copy the register contents of the faulting context documented in the “State to

Hypervisor” column into the corresponding location in the GHCB.
o Set the bits in the GHCB VALID_BITMAP field that correspond to the registers

documented in the “State to Hypervisor” column.
o Set the GHCB SW_EXITCODE, SW_EXITINFO1 and SW_EXITINFO2 to the

values documented in the “State to Hypervisor” column.
o Verify or set the GHCB MSR to the guest physical address of the GHCB being

used.
• Issue the VMGEXIT instruction.
• After return from the VMGEXIT instruction:

o Advance the RIP over the instruction that generated the #VC.
o GHCB SW_EXITINFO1[31:0] == 0

[Public]

http://support.amd.com/TechDocs/24593.pdf

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

50

 Copy the contents of the GHCB registers documented in the “State from
Hypervisor” into the corresponding registers to be made available to the
faulting context upon completion of the #VC handler.

o GHCB SW_EXITINFO1[31:0] == 1
 Invoke the requested exception handling routine, providing as the error

code the value contained in GHCB SW_EXITINFO2.
o Enable preemption and interrupts.

4.1.2 IOIO_PROT (0x7b)
The guest #VC handler will be required to parse and decode the instruction that caused the
IOIO_PROT fault (a type of IN/OUT instruction) or it can para-virtualize the instruction to avoid
the #VC. In either case, the guest will construct the SW_EXITINFO1 field as defined in AMD64
Architecture Programmer’s Manual, Volume 2: System Programming, Section 15.10.2. If the
instruction is a string-based operation, the guest must supply a decrypted buffer for the string
operation. The RESERVED shared buffer area within the GHCB (offset 0x800) can be used for
this purpose. The guest physical address of the buffer area must be set in the SW_SCRATCH
field. The guest can issue multiple VMGEXIT calls to read or write all the string data.

4.1.3 MSR_PROT (0x7c)
The guest #VC handler will be required to parse and decode the instruction that caused the
MSR_PROT fault to determine whether the fault is for a RDMSR or WRMSR or the guest can
para-virtualize the instruction to avoid the #VC. In either case, the guest must use the appropriate
entry in the NAE Event table for determining the state to supply in the GHCB.

4.1.4 VMMCALL (0x81)

Hypercalls are specific to the hypervisor under which the guest is running. It is up to the
hypervisor to provide support in the guest OS to supply the registers that are required for that
specific hypercall. Should the hypervisor not provide support within the guest OS, then only those
registers documented in Table 7: List of Supported Non-Automatic Events will be provided.

4.1.5 #NPF/MMIO Access
To properly determine an MMIO access, MMIO ranges must have a reserved bit set in the nested
page tables such that an #NPF will be generated with the page fault error code RSV bit set to 1.
This type of #NPF will cause the #VC handler to execute. This can be accomplished by setting
bits 51:n in the nested page table entry, where n is equal to the physical address size (CPUID
Fn_8000_0008_EAX[7:0]) minus the reduction in physical address size when memory encryption
is enabled (CPUID Fn_8000_001F_EBX[11:6]).

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

51

The guest will be required to parse and decode the instruction that caused the #NPF fault or the
guest can para-virtualize the MMIO access. If either the destination, for an MMIO read, or the
source, for an MMIO write, is a memory location, the guest will need to use either the
#NPF/MMIO_READ or #NPF/MMIO_WRITE NAE events. Based on the instruction, the guest
will construct the SW_EXITCODE, SW_EXITINFO1, SW_EXITINFO2 fields. The guest must
supply a decrypted buffer for the MMIO operation source/destination. The RESERVED shared
buffer area within the GHCB (offset 0x800) can be used for this purpose. The guest physical
address of the buffer area must be set in the SW_SCRATCH field. The guest can issue multiple
VMGEXIT calls to read or write all the data:

• MMIO Read:
o SW_EXITCODE is set to 0x8000_0001
o SW_EXITINFO1 is the guest physical address of the MMIO source address
o SW_EXITINFO2 is the number of bytes to read
o SW_SCRATCH is the guest physical address of the decrypted buffer area

 If the number of bytes to read is greater than the size of the decrypted buffer
area, the VMGEXIT can be called multiple times with SW_EXITINFO2
adjusted to match the actual amount of data to be transferred in the
VMGEXIT.

o Upon return from the VMGEXIT, the contents of the decrypted buffer area are
copied to the true destination address of the MMIO instruction.

• MMIO Write:
o SW_EXITCODE is set to 0x8000_0002
o SW_EXITINFO1 is the guest physical address of the MMIO destination address
o SW_EXITINFO2 is the number of bytes to write
o SW_SCRATCH is the guest physical address of the decrypted buffer area

 If the number of bytes to write is greater than the size of the decrypted
buffer area, the VMGEXIT can be called multiple times with
SW_EXITINFO2 adjusted to match the actual amount of data to be
transferred in the VMGEXIT.

o Before issuing the VMGEXIT, the contents of the true source address of the MMIO
instruction are copied to the decrypted buffer area.

4.1.6 Page State Change

The Page State Change NAE event allows for an SEV-ES guest, support for which is based on the
Page State Change Support for SEV-ES feature bit, or an SEV-SNP guest to request page state
changes using the GHCB protocol. The GHCB SW_SCRATCH area must point to a Page State
Change structure that resides in the GHCB Shared Buffer area. The format of the Page State
Change structure is:

struct page_state_change {
struct {

uint16 cur_entry;
uint16 end_entry;

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

52

uint32 reserved;
} page_state_change_header;

struct { // See Table 9: Page State Change Entry
uint64 cur_page:12;
uint64 gfn:40;
uint64 operation:4;
uint64 pagesize:1;
uint64 reserved:7;

} page_state_change_entry[];
};

The GHCB Shared Buffer can hold up to 253 Page State Change Entry requests.

Table 9: Page State Change Entry

Bit Position Description

[63:57] Reserved, must be zero

[56] Page size (0 = 4K, 1 = 2MB)

[55:52] Page operation:

• 0x0001 – Page assignment, Private
• 0x0002 – Page assignment, Shared
• 0x0003 – PSMASH hint
• 0x0004 – UNSMASH hint

[51:12] Guest physical frame number (GFN) to perform page operation against

[11:0] Current page:

Input: current page is the offset, in 4K increments, on which to begin the page state change
operation. For a page size of 4K, this must be 0.

Output: current page is the offset, in 4K increments, that have been successfully processed. For a
page size of 4K, a value of 1 indicates the page has been successfully processed. For a page size of
2M, a value of 512 indicates all the pages have been successfully processed.

A page state change is performed by the hypervisor based on the operation requested. The page
state change will be against the system physical address (SPA) that is used to back the guest
physical address (GPA) calculated from the supplied guest physical frame number (GFN) for the
requested page size (GPA = GFN << 12).

• 0x0001 – Page assignment, Private
Requests the hypervisor to make the page private. For an SEV-SNP guest, the hypervisor is
requested to also update the RMP table to make the GPA private (guest owned). For a 2MB
page size, the provided GFN must represent a 2MB aligned GPA.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

53

• 0x0002 – Page assignment, Shared
Requests the hypervisor to make the page shared. For an SEV-SNP guest, the hypervisor is
requested to also update the RMP table to make the GPA shared (hypervisor owned). For a
2MB page size, the provided GFN must represent a 2MB aligned GPA.

• 0x0003 – PSMASH hint
For an SEV-SNP guest, the guest is supplying a hint to the hypervisor to update the RMP table
to create 512 4K pages from a single 2M page for the GPA. The provided GFN must represent
a 2MB aligned GPA. The hypervisor is not required to perform the PSMASH.

• 0x0004 – UNSMASH hint
For an SEV-SNP guest, the guest is supplying a hint to the hypervisor to update the RMP table
to combine 512 4K pages into a single 2M page for the GPA. The provided GFN must
represent a 2MB aligned GPA. The hypervisor is not required to perform the UNSMASH.

The page_state_change_header.cur_entry is the entry at which the page state change request is to
begin processing. The page_state_change_header.end_entry is the last entry to process. The
hypervisor should ensure that cur_entry and end_entry represent values within the limits of the
GHCB Shared Buffer.

Checking for errors is a bit different than the standard VMGEXIT method. A value of zero in
SW_EXITINFO1 does not guarantee that all operations have completed or completed
successfully. As the page state changes are performed against a Page State Change Entry, the Page
State Change structure in shared memory must be updated. For each successful update to the RMP
table for a Page State Change Entry, page_state_change_header.cur_entry must be incremented.
Additionally, when the page size is 2MB, the page_state_change_entry.cur_page must be
incremented for each successful 4K page processed. This allows for the hypervisor to resume the
guest at any point during the page state change request and allows the guest to resume the page
state change request from the point where it was interrupted. If all entries have been successfully
processed, page_state_change_header.cur_entry will be greater than
page_state_change_header.end_entry.

If page_state_change_header.cur_entry is not greater than page_state_change_header.end_entry,
SW_EXITINFO2 will contain a reason code. The reason codes are defined as follows:

• SW_EXITINFO2 == 0x00000000
The page state change request was interrupted. Retry the request.

• SW_EXITINFO2[63:32] == 0x00000001

o SW_EXITINFO2[31:0] == 0x00000001
The page_state_change_header structure is not valid

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

54

o SW_EXITINFO2[31:0] == 0x00000002
The page_state_change_entry structure, identified by
page_state_change_header.cur_entry, is not valid.

• SW_EXITINFO2[63:32] == 0x00000002

o SW_EXITINFO2[31:0] contains the SNP_PAGE_UNSMASH firmware command
error code associated with the failing request as identified by
page_state_change_header.cur_entry.

• SW_EXITINFO2[63:32] == 0x00000003
This error code can be used to help debug guest page state tracking.

o SW_EXITINFO2[31:0] == 0x00000001
The page_state_change_entry, identified by page_state_change_header.cur_entry,
requested a change to the page state, but the page was already in the requested state.
The hypervisor can ignore this condition and not return an error for this page state
change request.

o SW_EXITINFO2[31:0] == 0x00000002
The page_state_change_entry, identified by page_state_change_header.cur_entry,
requested a change to the page state, but a 4KB page and 2MB page RMP overlap was
detected. The hypervisor can attempt to correct this condition and not return an error
for this page state change request.

• SW_EXITINFO2[63:32] == 0x00000100
The hypervisor encountered some other error situation and was not able to complete the
request identified by page_state_change_header.cur_entry. It is left to the guest to decide how
to proceed in this situation.

4.1.7 SNP Guest Request

The SNP Guest Request NAE event allows for an SEV-SNP guest to make requests to the SEV-
SNP firmware through the hypervisor using the SNP_GUEST_REQUEST API (see SEV Secure
Nested Paging Firmware ABI Specification for a list of possible requests).

The Guest Request NAE event requires two unique pages, one page for the request and one page
for the response. Both pages must be assigned to the hypervisor (shared). The guest must supply
the guest physical address of the pages (i.e., page aligned) as input.

The hypervisor must translate the guest physical address (GPA) of each page into a system
physical address (SPA). The SPA is used to verify that the request and response pages are
assigned to the hypervisor.

[Public]

https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

55

Before invoking the SNP_GUEST_REQUEST API, the hypervisor must assign the response page
to the firmware using the RMPUPDATE instruction and the SPA of the response page. After the
firmware has completed processing the request, the hypervisor must reclaim the response page by
invoking the SNP_PAGE_RECLAIM API and then assign the page to the hypervisor using the
RMPUPDATE instruction and the SPA of the response page.

The SNP_GUEST_REQUEST API updates a sequence number, MSG_SEQNO, when
successfully processing the request. It is recommended that the hypervisor validate the guest
physical address of the response page before invoking the SNP_GUEST_REQUEST API so that
the sequence numbers do not get out of sync for the guest, possibly resulting in all successive
requests failing.

The hypervisor must save the SNP_GUEST_REQUEST return code in the lower 32 bits of the
SW_EXITINFO2 field before completing the Guest Request NAE event.

It is not expected that a guest would issue many Guest Request NAE events. However, access to
the SNP firmware is a sequential and synchronous operation. To avoid the possibility of a guest
creating a denial-of-service attack against the SNP firmware, it is recommended that some form of
rate limiting be implemented should it be detected that a high number of Guest Request NAE
events are being issued. To allow for this, the hypervisor may set the SW_EXITINFO2 field to
0x0000000200000000, which will inform the guest to retry the request.

Because the message sequence number is used as part of the AES-GCM IV, it is important that the
guest retry the request before allowing another request to be performed so that the IV cannot be
reused on a new message payload.

A SW_EXITINFO2 value of 0 indicates a successful completion of the SNP Guest Request.

4.1.8 SNP Extended Guest Request

The SNP Extended Guest Request NAE event is very similar to the SNP Guest Request NAE
event. The difference is related to the additional data that can be returned based on the guest
request. Any SNP Guest Request that does not support returning additional data must execute as if
invoked as an SNP Guest Request.

The details associated with the SNP Guest Request also apply to the SNP Extended Guest
Request. This section documents the additional requirements associated with the data page(s).

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

56

4.1.8.1 MSG_REPORT_REQ

The SNP Extended Guest Request uses the data page(s) to provide certificate data back to the
guest. The returned certificates are identified by GUID. Certificate GUIDs are formatted and
encoded as defined in RFC 4122. This specification defines the following certificate data GUIDs:

• Versioned Chip Endorsement Key (VCEK) certificate
o 63da758d-e664-4564-adc5-f4b93be8accd

• AMD SEV Signing Key (ASK) certificate
o 4ab7b379-bbac-4fe4-a02f-05aef327c782

• AMD Root Signing Key (ARK) certificate
o c0b406a4-a803-4952-9743-3fb6014cd0ae

• Versioned Loaded Endorsement Key (VLEK) certificate
o a8074bc2-a25a-483e-aae6-39c045a0b8a1

• Certificate Revocation List
o 92f81bc3-5811-4d3d-97ff-d19f88dc67ea

The certificate page(s) must be guest contiguous pages if supplying more than one page and all
certificate pages must be assigned to the hypervisor (shared).

Returned certificates are identified in a table starting at offset 0x0 of the DATA GPA. Each entry
consists of a 16-byte GUID, a 4-byte offset from DATA GPA to where the certificate data starts
and a 4-byte length representing the length of the certificate data. The table is terminated with an
entry containing all zeroes for the GUID, offset and length.

struct cert_table {
struct {

unsigned char guid[16];
uint32 offset;
uint32 length;

} cert_table_entry[];
};

The hypervisor must validate that the guest has supplied enough pages to hold the certificates that
will be returned before performing the SNP guest request. If there are not enough guest pages to
hold the certificate table and certificate data, the hypervisor will return the required number of
pages needed to hold the certificate table and certificate data in the RBX register and set the
SW_EXITINFO2 field to 0x0000000100000000.

This usage allows the attestation report and the certificates required to verify the report to be
returned at the same time. The hypervisor is not required to, or limited to, returning the certificates
defined in this specification.

How the hypervisor determines or obtains the certificates to be returned is beyond the scope of this
document.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

57

4.1.9 SNP AP Creation

The AP Creation NAE event allows for an SEV-SNP guest to cause the creation/destruction of, or
a change to, the register state of an AP at the specified VMPL level, which can provide an
alternate method of booting an AP under SEV-SNP (see 4.3.2 SEV-SNP (SNP AP Creation
Feature). An AP Creation request can:

• Create or Add
Update or create a vCPU at the specified VMPL level for the specified APIC ID. The
hypervisor should validate that the supplied VMPL level and the supplied APIC ID is
valid for the SEV-SNP guest.

Before invoking the hypervisor, the guest must issue an RMPADJUST instruction against
the target page to indicate it will be used as a VMSA page. There are two forms of
Create/Add:

o A VMSA page is provided that is not to be used/installed until an INIT-SIPI
sequence is received for the target vCPU.

o A VMSA page is provided that is to be used/installed immediately for the target
vCPU. (The hypervisor should make the vCPU immediately runnable.)

• Destroy or Remove
Update, or destroy, a vCPU with the specified VMPL level and the specified APIC ID.
The hypervisor should validate that the supplied VMPL level and the supplied APIC ID is
valid for the SEV-SNP guest. After removing the VMSA for the specified vCPU, the
vCPU cannot be run at the specified VMPL level until a VMSA is (re)assigned to the
vCPU.

When assigning the VMSA address to the vCPU, the hypervisor must use the VMSA page’s
system physical address (SPA) that is used to back the specified VMSA guest physical address
(GPA). Should the hypervisor encounter an error during the request, the vCPU cannot be run at
the specified VMPL level until a VMSA is successfully (re)assigned to the vCPU.

Specification of a VMPL level is only valid if the hypervisor advertises the SEV-SNP Multi-
VMPL hypervisor feature.

The guest is responsible for tracking what pages it creates and uses as a VMSA page.

It is expected that the SEV_FEATURES associated with the VMSA for the AP use the same
interrupt injection mechanism as the BSP. The hypervisor can fail the SNP AP Creation request if
they do not match.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

58

4.1.10 #HV Doorbell Page

The #HV doorbell page NAE event allows for an SEV-SNP guest to register a doorbell page for
use with the hypervisor injection exception (#HV). The doorbell page allows the hypervisor to
notify the guest of pending events when the Restricted Injection feature is enabled.

The #HV doorbell page NAE event consists of the following actions:

• GET_PREFERRED
A guest may use this action to request the hypervisor preferred guest physical address to use
for the doorbell page for the vCPU issuing the request. The hypervisor must respond with a
page-aligned GPA or 0xffff_ffff_ffff_ffff (the hypervisor does not have a preferred GPA) in
the SW_EXITINFO2 field. If the hypervisor responds with a GPA, it must guarantee that the
value cannot otherwise be mapped by the guest. The hypervisor must update the RMP table to
make the page a hypervisor-owned (shared) page. The guest should verify that the new GPA is
outside of its known memory range.

• SET
A guest must use this action to set the doorbell page to be used for the vCPU issuing the
request when the Restricted Injection feature is enabled. The guest must supply a page-aligned
GPA in the SW_EXITINFO2 field. The value can be the hypervisor-preferred value, or a value
determined by the guest. If the value is not the hypervisor-preferred value, the guest must
make the page a hypervisor-owned (shared) page. If the hypervisor accepts the GPA, then it
must respond with the input GPA in the SW_EXITINFO2 field. If the hypervisor does not
accept the GPA, it should follow the standard VMGEXIT error processing protocol to signal a
#GP exception.

• QUERY
A guest may use this action to determine if a doorbell page has already been set for the vCPU
issuing the request. The hypervisor must respond with the previously set doorbell page GPA in
SW_EXITINFO2. If a doorbell page was not previously set, the hypervisor must respond with
0 in SW_EXITINFO2.

• CLEAR
A guest may use this action to clear the doorbell page that is currently assigned to the vCPU.
The hypervisor will no longer attempt to deliver events using the hypervisor injection
exception (#HV) to the vCPU. If the page will no longer be used as a doorbell page, the guest
should make the page a guest-owned (private) page.

Refer to SNP Restricted Injection for the specification associated with #HV doorbell page layout
and restricted injection support.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

59

4.1.11 #HV IPI

The #HV Send IPI NAE event allows for an SEV-SNP guest to send an IPI to other vCPUs in the
guest when the Restricted Injection feature is enabled. The SW_EXITINFO1 field contains the
information necessary to perform the IPI. The format of the SW_EXITINFO1 field is the same as
the x2APIC Interrupt Command Register, allowing hypervisors to possibly reuse existing x2APIC
IPI emulation support.

Interrupts are delivered as specified in SNP Restricted Injection.

If the Restricted Injection feature is not enabled, the hypervisor may request standard VMGEXIT
error processing protocol to signal a #GP exception.

4.1.12 #HV Timer

The #HV Timer NAE event allows for an SEV-SNP guest to request timer support from the
hypervisor when the Restricted Injection feature is enabled. The hypervisor must provide emulated
APIC timer functionality through this NAE event. The APIC timer structure and rules are used for
setting and getting timer values. Specifically, the APIC timer registers (Timer LVT, Divide
Configuration, Timer Initial Count and Timer Current Count) and the APIC timer rules for starting
and stopping the timer, allowing hypervisors to possibly reuse existing APIC timer emulation
support.

The #HV Timer NAE event consists of the following actions:

• SET
A guest may use this action to set the various #HV Timer values. The SW_EXITINFO2 field
contains the timer register MASK that identifies the virtual APIC timer registers to set and the
registers containing the values to be used:

o MASK[0] – RAX: Timer LVT
o MASK[1] – RBX: Divide Configuration
o MASK[2] – RCX: Timer Initial Count

If multiple bits are set in MASK, the order of assignment is the Timer LVT, Divide
Configuration, and then Timer Initial Count.

• GET
A guest may use this action to get the various #HV Timer values. The SW_EXITINO2 field
contains the timer register MASK that identifies the virtual APIC timer register to get and the
registers to return the values in.

o MASK[0] – RAX: Timer LVT
o MASK[1] – RBX: Divide Configuration
o MASK[2] – RCX: Timer Initial Count
o MASK[3] – RDX: Timer Current Count

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

60

Interrupts are delivered as defined in SNP Restricted Injection.

If the Restricted Injection feature is not enabled, the hypervisor may request standard VMGEXIT
error processing protocol to signal a #GP exception.

4.1.13 APIC ID List

The APIC ID List NAE event allows a guest to request the list of APIC IDs associated with the
executing guest from the hypervisor. This can be used in place of performing a broadcast INIT-
SIPI sequence to discover the APIC IDs. For an SEV-SNP guest, knowing the APIC IDs in
advance allows for the booting of APs using the SNP AP Creation NAE event from the very start.

The APIC ID List NAE event requires the minimum number of contiguous guest pages to hold all
the APIC IDs that are associated with the guest. All pages supplied must be assigned to the
hypervisor (shared). The guest must supply the guest physical address (GPA) of the first page (i.e.
page aligned) as input, as well as the number of contiguous pages associated with the GPA. The
hypervisor must validate that the guest has supplied enough pages to hold the APIC ID list. If
there are not enough guest pages to hold the complete list, the hypervisor must return the required
number of pages needed to hold the complete list in the RAX register. Upon return from the NAE
event, the guest can determine if the list has been populated by comparing that the supplied
number of guest contiguous pages is equal to the returned RAX value.

The hypervisor must translate the GPA of the pages into system physical addresses (SPA). For an
SEV-SNP guest, the SPA is used to verify that the pages are assigned to the hypervisor.

The APIC ID list consists of a 4-byte count of APIC ID entries in the list, followed by a 4-byte
APIC ID entry for each APIC ID assigned to the guest. The format of the APIC ID list is:

struct apic_id_list {
u32 count;
u32 apic_ids[];

};

4.1.14 SNP Run VMPL

The SNP Run VMPL NAE event allows a guest to request the hypervisor to run the current vCPU
at a different VMPL level. This is accomplished by associating a unique VMSA with each VMPL.
Not every VMPL level is required to have a VMSA. If a VMPL level is requested that does not
have a VMSA, an error must be returned by the hypervisor.

Each VMPL level may also have a unique GHCB associated with it. When changing VMPL
levels, the hypervisor must update the system physical address (SPA) for the VMSA and the
GHCB before running the vCPU.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

61

4.1.15 SNP TIO Guest Request

The SEV-TIO extension provides a mechanism for guests to bind to and use trusted devices within
their guest private address space.

The SNP guest discovers the new request type support via the TEE-IO PCIe capabilities register of
a passed through device.

The device is bound to the SNP Guest upon the first SNP TIO Guest Request. For TIO-
unenlightened guests willing to run devices in a trusted manner, a firmware running at VMPL0 is
expected to perform the necessary setup. Otherwise, the OS running in the SNP guest performs the
setup which includes: fetching the device info, fetching and validating the interface report,
configuring MMIO, and configuring the IOMMU.

The SNP TIO Guest Request NAE event is very similar to the SNP Guest Request and SNP
Extended Guest Request NAE events.

The difference is related to the non-optional unencrypted data that needs to be supplied by the
guest and returned by the hypervisor based on the encrypted guest request, which includes:

• Guest PCI ID (RCX) to identify the TDI context page required for calling the SEV-SNP
firmware, and potentially allow the firmware to interact with the host PCI function;

• MMIO range (RDX) to be transitioned to the firmware state before proceeding with the
MMIO_VALIDATE_REQ request, the range is encoded as follows:

o [0..2] range ID;
o [3] desired state to set RMP.Validated for the range;
o [4..11] size as order of 4KB pages;
o [12..51] guest physical page number of the MMIO range;

• TDISP status (RDX) to inform the SNP guest about the current state of a TDI on the
TDI_INFO_REQ request, defined in the SEV-TIO specification.

The details associated with the SNP Guest Request also apply to the SNP TIO Guest Request. This
section documents the additional requirements associated with the data pages.

The SNP TIO Guest Request uses the data pages to optionally provide data to the hypervisor and
to provide measurements, certificates and a TDISP attestation report back to the guest. The
hypervisor always returns the number of pages required to store measurements, certificates, and
the TDISP attestation report. The data pages must be guest contiguous pages if providing more
than one page and all data pages must be assigned to the hypervisor (shared). Providing memory
for this data is optional.

For a TIO_MSG_TDI_INFO_REQ guest request, the data pages can be used by the guest to
provide a 32 byte nonce. If data pages are provided and the first 32 bytes of the data pages are

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

62

non-zero, the hypervisor will issue the TDI_DEV_MEASUREMENTS command to the SEV
firmware, using the first 32-bytes as the measurements nonce, before continuing with the guest
TIO_MSG_TDI_INFO_REQ command. Upon receiving the TDI_DEV_MEASUREMENTS
command, SEV firmware will read new measurements from the device and use the measurements
nonce to calculate a new measurements digest to guarantee freshness of the measurements
returned to the guest. After completion of the TDI_DEV_MEASURMENTS command, the
hypervisor will then forward the TIO_MSG_TDI_INFO_REQ guest request on to the SEV
firmware.

The data pages must be guest contiguous pages if supplying more than one page and all date pages
must be assigned to the hypervisor (shared).

Returned data are identified in a table starting at offset 0x0 of the DATA GPA. Each entry consists
of a 16-byte GUID, a 4-byte offset from DATA GPA to where the data blob starts and a 4-byte
length representing the length of the data. The table is terminated with an entry containing all
zeroes for the GUID, offset and length. Data GUIDs are formatted and encoded as defined in RFC
4122.

struct blob_table {
struct {

 unsigned char guid[16];
 uint32 offset;
 uint32 length;

} table_entry[];
};

This specification defines the following data GUIDs:

• Measurements blob:
o 5caa80c6-12ef-401a-b364-ec59a93abe3f

• Certificates blob:
o 078ccb75-2644-49e8-afe7-5686c5cf72f1

• Attestation report:
o 70dc5b0e-0cc0-4cd5-97bb-ff0ba25bf320

The hypervisor must validate that the guest has supplied enough pages to hold the data that will be
returned before performing the SNP guest request. If there are not enough guest pages to hold all
the data, the hypervisor will return the required number of pages in the RBX register and set the
SW_EXITINFO2 field to 0x0000_0001_0000_0000.

This usage allows the certificates, the measurements, the TDISP attestation report required to
verify the report to be returned at the same time. The hypervisor may not have some of the data
loaded from a device if the TIO setup has not been completed, in such case the corresponding
length field will be 0. It is the hypervisor's responsibility to have the data available at the time of
the SNP TIO Guest Request NAE request.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

63

How the hypervisor obtains the certificates, measurements and SPDM attestation report to be
returned is beyond the scope of this document.

4.1.16 Secure AVIC

The Secure AVIC feature provides support for managing guest-owned APIC state for SEV-SNP
guests using a private, guest-owned backing page per vCPU.

4.1.16.1 Backing Page Support

Secure AVIC requires the guest vCPU APIC backing page to be always present in the guest’s
nested paging table (NPT) while the vCPU is running. Two actions are available to the guest to
notify the hypervisor of these pages. The APIC ID (RAX) is used to identify the vCPU to which
the backing page action is related. An APIC ID value of 0xffff_ffff_ffff_ffff means that the
backing page action is for the vCPU performing the call.

• REGISTER_BACKING_PAGE
A guest should use this action to inform the hypervisor of the page-aligned GPA (RBX) that
will be used as the Secure AVIC backing page for the specified vCPU. The hypervisor must
then ensure that the specified GPA is always present in the NPT of the guest while the
specified vCPU is running. Setting a Secure AVIC backing page GPA automatically clears any
currently set Secure AVIC backing page GPA.

• UNREGISTER_BACKING_PAGE
A guest may use this action to inform the hypervisor that the previously set GPA is no longer
being used as the Secure AVIC backing page for the specified vCPU. This removes the
requirement on the hypervisor to ensure that the specified GPA is always present in the NPT
of the guest while the specified vCPU is running. The hypervisor will return (RBX) the GPA
that was currently SET or 0 if there was no previously set GPA.

A feature bit isn't required to advertise the availability of this NAE event and these actions. The
setting of Secure AVIC in SEV_FEATURES implies that the support is present.

4.1.17 Termination Request
The termination request NAE event allows for the guest to request termination. The guest should
expect the hypervisor to comply with the request for termination. As a safeguard, it is
recommended that the guest incorporate an HLT loop or SHUTDOWN following the VMGEXIT.

The termination request will follow the same general format as the MSR protocol termination
request with the added ability to provide 64 bits of termination information in SW_EXITINFO2.
SW_EXITINFO1 contains the termination reason code where SW_EXITINFO1[3:0] specifies the
reason code set and SW_EXITINFO1[11:4] contains the reason code from that reason code set.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

64

The reason code set is meant to provide hypervisors with their own termination reason codes. This
document defines and owns reason code set 0x0 and the following reason codes
(SW_EXITINFO1[11:4]):

• 0x00 – General termination request

• 0x01 – SEV-ES / GHCB Protocol range is not supported

• 0x02 – SEV-SNP feature(s) not supported
o SW_EXITINFO2 contains a mask of the unsupported features that are specified in the

SEV_FEATURES field of the VMSA (read via the SEV_STATUS MSR)

4.1.18 Unsupported Non-Automatic Exits
Should the #VC handler be invoked for a NAE that is not part of the negotiated protocol version, it
should perform a VMGEXIT using the “Unsupported Event” exit code.

4.2 Guest Identification of SEV-ES Support
A guest must be able to determine that it is running as an SEV-ES guest. To accomplish this, the
hypervisor must provide additional CPUID properties to an SEV-ES guest. These properties allow
the SEV-ES guest to determine that it is safe to issue the required CPUID and RDMSR
instructions, as well as provide required information. The hypervisor must be sure that the
following CPUID information is set:

• CPUID leaf 0x0000_0001:
o ECX[31] must be set to indicate running under a hypervisor

• CPUID leaf 0x8000_001f:
o EAX[1] must be set to indicate SEV support
o EBX[5:0] must be the encryption bit position as discovered by the hypervisor
o EBX[11:6] must be the reduction in physical address space bits for the guest

4.3 SMP Booting
4.3.1 SEV-ES and SEV-SNP

SMP booting under SEV-ES presents new challenges. Traditionally, the INIT-SIPI-SIPI sequence
is used to boot an AP. Under virtualization, the SIPI request results in the hypervisor setting the
vCPU CS segment register and IP register. The challenge here is that the hypervisor is not allowed
to set the vCPU registers after they have been measured and encrypted, which occurs before the
guest is started. A new way of booting an AP must be performed. The very first time an AP is
started, it must use the register values that were initially set and measured when
LAUNCH_UPDATE_VMSA was invoked.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

65

SMP booting under SEV-SNP when the hypervisor does not support the SEV-SNP AP Creation
NAE event has the same challenges. After the registers have been set and measured by
SNP_LAUNCH_UPDATE, they cannot be updated. Note that when the Restricted Injection
feature is active in an SEV-SNP guest, the AP Reset Hold NAE event is not available because an
APIC is not available, removing the ability of the guest to issue an INIT-SIPI-SIPI sequence.
Restricted Injection requires the use of the SEV-SNP AP Creation NAE event (see 4.3.2 SEV-
SNP (SNP AP Creation Feature)).

The following are examples of setting the initial CS segment register and IP register for the APs
first boot:

• Using the standard reset vector location:
o Update the code mapped at the reset vector to check a memory location. This

memory location, if non-zero, will contain the target address (SIPI vector) for the
CPU that is booting.

1. On initial BSP boot, the value will be zero so normal BSP initialization will
be performed.

2. When the BSP attempts to start an AP, it will place the AP target address
into the memory location. The AP will see a non-zero value and jump to
that location.

• Using a supplied reset vector location:
o Provide a predetermined location to the hypervisor as the initial CS segment

register value and IP register value.
1. For example, the UEFI firmware used to initialize the guest can have a

compiled-in location consisting of a CS segment register value and an IP
register value that can be discovered by the hypervisor prior to guest
execution. These values can be used as the initial values for the guest APs.

2. When the BSP attempts to start an AP, it will place code into this initial
location to direct the AP to the desired target address.

The hypervisor is then required to do the following:

• For the first reset of the AP, the following is required:
o The hypervisor must not update any register values and, instead, run the vCPU with

the initial register values.
• For subsequent resets of the AP, the following is required:

o When a guest AP reaches its HLT loop (or similar method for parking the AP), it
instead can either:

1. Issue an AP Reset Hold NAE event.
• This requires the AP to be in PAE or long mode to write decrypted

values to the GHCB. The AP does not have to remain in PAE or
long mode after the GHCB has been updated.

2. Issue the AP Reset Hold Request MSR Protocol.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

66

o The hypervisor treats either request like the guest issued an HLT instruction and
marks the vCPU as halted.

o When the hypervisor receives a SIPI request for the vCPU, it will not update any
register values. Instead, it will complete either the AP Reset Hold NAE event or the
AP Reset Hold MSR protocol.

o Mark the vCPU as active, allowing the VMGEXIT to complete.
o Upon return from the VMGEXIT, the AP must transition from its current execution

mode into real mode and begin executing at the reset vector supplied in the SIPI
request.

1. The AP should verify that the SW_EXITINFO2 field or GHCBData[63:12]
field is non-zero. If zero, the guest should reissue the hold request.

2. The following registers must be set to the Initial Processor State after INIT
(see AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming, Table 14-1):

• RAX, RBX, RCX, RDX, RSI, RDI, RBP, R8 – R15, RFLAGS
3. The remaining registers are not required to be set to the Initial Processor

State after INIT.

4.3.1.1 vCPU Parking

Another challenge that arises is transferring control from one environment to the next, for
example, from UEFI to an OS. Using the UEFI-to-OS example, before control is handed to the
OS, UEFI will park all APs using an HLT loop or similar. This code will be in reserved memory
and be running in 32-bit protected mode with paging disabled. This allows the AP HLT loop to
execute should a signal bring the AP out of the HLT instruction. However, instead of issuing an
HLT instruction, the AP will issue a VMGEXIT with SW_EXITCODE of 0x8000_0004. (This
implies that the GHCB was updated prior to leaving 64-bit long mode.)

When the OS attempts to boot the AP, the code that will execute will be that of UEFI. At this
point, the AP needs to have been told by the OS where to execute. To this end, UEFI needs to
supply an AP jump table to the OS. The OS will use this memory to set the address of the AP reset
vector:

• Upon return from the VMGEXIT, the AP must transition from its current execution mode into
real mode and begin executing at the reset vector supplied by the OS in the AP jump table.
The 4-byte value from the AP jump table will be in the first 4 bytes of the page and match the
following format:

struct Ap_Reset_Address {
uint16 reset_ip;
uint16 reset_cs;

};

For example, to begin executing at physical address 0x9f000, the value 0x0000 would be
stored at offset 0x00 of the AP jump table and the value 0x9f00 would be stored at offset 0x02

[Public]

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

67

of the AP jump table. The UEFI code could push RFLAGS onto the stack, followed by the CS
value of 0x9f00 and finally the RIP value of 0x0000 and then issue an IRET to begin
executing at 0x9f000. An alternative is to use a far jump to load the new CS/RIP value.

• If the same reset vector is used for all APs, there is no need for serialization of the AP jump
table entry. However, if different values are used for different APs or different situations, then
the use of the AP reset address field must be serialized.

The AP jump table must be communicated by UEFI to the OS. The requirements are different,
depending on the type of guest:

• SEV-ES guest:
UEFI must use the AP Jump Table SET software NAE Event to tell the hypervisor to set/save
the AP jump table guest physical address.

The OS must use the AP Jump Table GET software NAE Event to retrieve the location of the
AP jump table when starting an AP.

• SEV-SNP guest
UEFI must supply the AP jump table guest physical address in the SEV-SNP Secrets Page (see
2.7 SEV-SNP Secrets Page).

The OS must use the AP jump table guest physical address as set in the SEV-SNP Secrets
Page when starting an AP.

The AP jump table must be 4K in size, in encrypted memory, and it must be 4K (page) aligned.
There can be only one AP jump table, and it should reside in memory that has been marked as
reserved by UEFI.

4.3.1.2 vCPU Hotplug

Because of the requirements to measure and encrypt the VM register state before launching the
guest, vCPU hotplug cannot be supported at this time.

4.3.2 SEV-SNP (SNP AP Creation Feature)

Using VMGEXIT SW_EXITCODE 0x8000_0013, an SEV-SNP guest can create or update the
vCPU state of an AP, which may allow for a simpler and more secure method of booting an AP.

An SEV-SNP guest must use the RMPADJUST instruction to mark a page as a VM Save Area
(VMSA) page. This page can then be used to initialize or change the vCPU state of an AP using
VMGEXIT SW_EXITCODE 0x8000_0013. Using this method, a guest no longer is required to
issue the AP Reset Hold NAE event.

There are two forms of the AP Create NAE event for creating or adding a VMSA page that can be
performed depending upon the value supplied in SW_EXITINFO1:

• 0

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

68

o The VMSA page is not to be used until an INIT request for the target AP is received.
(This request is not compatible with the Restricted Injection feature.)

• 1
o The VMSA page is to be used immediately (makes the vCPU runnable) for the target

AP.

4.3.2.1 vCPU Parking

No special requirements are needed for parking a vCPU. The AP state can be set via
SW_EXITCODE 0x8000_0013, allowing the guest to control bringing an AP out of the parked
state. Using this method, a guest no longer is required to save the AP Jump Table address in the
SEV-SNP Secrets Page.

4.3.2.2 vCPU Hotplug

Because of the ability for a guest to supply VMSA pages to the hypervisor, the AP creation NAE
event allows for vCPU hotplug to be supported.

4.4 Non-maskable Interrupts
When injecting an NMI, the hypervisor must not intercept IRET, but must intercept #DB. The
hypervisor must use the “NMI Complete” message from the guest as the indicator of when another
NMI can be injected. Intercepting #DB, which a hypervisor typically already does today, provides
the guest with flexibility in determining when to send the “NMI Complete” message.

The benefit of this method is that the guest processing does not need to be documented in the
GHCB specification, just the requirement that the guest only issue the “NMI Complete” message
when it can safely handle another NMI. This allows a guest OS to do what is easiest/best for it.

Here is one example of how the guest OS could do this:

• Use the #DB exception
o NMI handler sets a per-CPU variable to indicate in NMI
o Just before the actual NMI IRET, the TF flag is set:

 PUSHF, OR flags on stack to set TF, POPF
 The IRET must be the next instruction after the POPF

o Execute IRET
 #VC is triggered with an error code for a #DB intercept (0x41)

o #VC handler is invoked and checks for NMI scenario:
 Checks for error code of #DB intercept (0x41)
 Checks per-CPU variable to ensure that an NMI was running
 Clears per-CPU variable
 Issues "NMI Complete" message using VMGEXIT
 Exits the #VC handler

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

69

4.5 Debug Register Support
Full virtualization of hardware debug registers is supported for SEV-ES guests on hardware that
supports "DebugVirtualization." This support is enabled by setting the "DebugVirtualization" bit
in the SEV_FEATURES field of the VM Save Area (VMSA). Hardware will restore and save the
debug register state in the VMSA. The hypervisor should clear all intercepts for all the hardware
debug registers.

If virtualization of hardware debug registers is not supported for SEV-ES guests, the hypervisor
must set the intercept for both read and write of the debug control register (DR7). With the
intercepts in place, the #VC handler will be invoked when the guest accesses DR7. For a write to
DR7, the #VC handler should perform Standard VMGExit processing. The #VC handler must not
update the actual DR7 register, but rather it should cache the DR7 value being written. For a read
of DR7, the #VC handler should return the cached value of the DR7 register.

4.6 System Management Mode (SMM)
SMM will not be supported in this version of the specification.

4.7 Nested Virtualization
Nested virtualization is not supported under SEV-ES and SEV-SNP.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

70

5 SNP Restricted Injection

5.1 Hypervisor Doorbells in SNP guests
Safe isolation between an SNP-protected guest and its host environment requires restrictions on
the type of exception and interrupt dispatch that can be performed in the guest. Isolated guests are
expected to run with the SNP RestrictInjection feature active, limiting the host to ringing a
doorbell with a #HV exception. The majority of information communicated by the host is specific
to the virtualization architecture (e.g. Virtio or VMBus messages) and will be delivered in a
manner that is understood by the specific drivers running within the guest. However, dispatch of
these messages is typically driven by interrupt delivery, which is core to the operating system
rather than to the drivers themselves. Consequently, it is advantageous to define a common format
to describe notifications whose dispatch is integral to OS functionality. At the same time, it is
advantageous to avoid a common format for information that is normally only interpreted by
drivers, so these drivers have the flexibility to optimize their communication paths as they see fit.
This document defines the set of information that provides the common core of host notification,
and the format by which it is communicated.

5.2 Essential Data
Virtual machines typically rely on interrupt delivery through an architectural APIC, even for
synthetic messages delivered by the host. The common #HV doorbell data is structured to align
with APIC behavior, so that existing guest interrupt dispatch and management logic can be used.

Two fields are defined in the #HV doorbell page: a pending event field (“PendingEvent”) and an
EOI assist (“NoEoiRequired)”. PendingEvent is a 16-bit field in bytes 0..1 of the page, and
NoEoiRequired is byte 2 of the page. Bytes 3..63 are reserved to accommodate future expansion of
required functionality. The structure of the remainder of the page is not specified and should be
used by the virtualization stack as required for its own message formats.

Because the doorbell page is shared with the host, the physical page that backs it must be a host-
owned page (not assigned with RMPUPDATE). All guest accesses must be made with C=0.

PendingEvent is defined as follows:

• PendingEvent[15] (“NoFurtherSignal”) - indicates that the host will not signal #HV due to
another non-maskable event until this bit is cleared by the guest.

• PendingEvent[14:10] – reserved for future use
• PendingEvent[[9] - indicates that the host is presenting a virtual #MC to the guest. This is an

example of a non-maskable event.
• PendingEvent[8] - indicates that the host is presenting an NMI to the guest. This is an example

of a non-maskable event.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

71

• PendingEvent[7:0] - an 8-bit interrupt vector number. When this number is non-zero, it
indicates that the host is presenting an interrupt on the specified vector. After the guest
acknowledges receipt of the vector (as described below), the interrupt is placed in service in
the host-emulated APIC. When the guest has completed service of the interrupt, it must issue
an end-of-interrupt cycle with the host-emulated APIC.

It is desirable to optimize end-of-interrupt indications without requiring exiting the VM. When it
is possible to perform an EOI without exiting the guest, NoEoiRequired will be set to a non-zero
value by the host, indicating that no explicit EOI is required. When the guest wishes to perform an
EOI, it should attempt to atomically change NoEoiRequired from non-zero to zero. If successful,
no further processing is necessary; if unsuccessful, the guest must request an explicit EOI by
performing VMGEXIT to request a WRMSR to the X2APIC EOI MSR.

Specific treatment of the PendingEvent and NoEoiRequired fields is amplified below.

5.3 Interrupt Shadows
Typical interrupt delivery involves a careful use of interrupt shadows leading up to an HLT
instruction to ensure that a guest can never inadvertently dispatch all pending interrupts before
executing HLT. Because #HV is delivered without regard to interrupt shadows, guests lose the
ability to control interaction between HLT and interrupts. Consequently, a different convention is
required. When a guest is ready to enter a halt state, it should not examine pending interrupt state,
nor should it enable interrupts; it should execute HLT with interrupts disabled. If the host receives
an HLT intercept while the guest has any interrupts or non-maskable events pending, it should
immediately re-enter the guest. When a guest resumes following an HLT instruction, it should
immediately proceed to examine interrupt state as if it has just received a #HV. This convention
ensures that a guest can properly suspend when no interrupts are pending while also ensuring that
a guest will neither miss pending interrupts nor suspend before all interrupt processing has
properly completed.

5.4 Expected Behaviors
5.4.1 Doorbell configuration

Configuration of the doorbell page should be performed through specific VMGEXIT requests
communicated via the GHCB.

Configuration of the #HV doorbell page can be performed using VMGEXIT SW_EXITCODE
0x8000_0014. A brief outline of the available functions is listed below. Refer to 4.1.10 #HV
Doorbell Page for a full description of the operations.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

72

• GET_PREFERRED
A guest may use this action to request the hypervisor-preferred guest physical address to use
for the doorbell page for the vCPU issuing the request.

• SET
A guest must use this action to set the doorbell page to be used for the vCPU issuing the
request when the Restricted Injection feature is enabled.

• QUERY
A guest may use this action to determine if a doorbell page has already been set for the vCPU
issuing the request.

Whenever the host accepts a mapping of a doorbell page, it is free to execute RMPUPDATE to
clear the RMP assignment of the page mapped at that guest physical address. Note that a well-
behaved guest will execute PVALIDATE to relinquish access to the page prior to handing it over
to the host, as is typically required to ensure security of the RMP (as documented elsewhere).
After the page is mapped, it must be accessed by the guest with C=0 in the guest PTE. If the host
is asked to remap the doorbell page at a new location, it is not expected to execute RMPUPDATE
to assign a guest page at the old guest physical address; if the guest wants to make use of that
guest physical address again, it must use a page assignment protocol (documented elsewhere) to
request an assigned page at that location before attempting to use it again with C=1.

5.4.2 Host Behavior

The host is expected to emulate APIC behavior faithfully, at least with respect to interrupt
presentation (ready, acknowledge, in-service, and EOI semantics). The manner in which
individual interrupt sources are configured is presumed to be specific to the virtualization stack,
but the lifecycle of an interrupt vector through the emulated APIC should adhere to the APIC
architecture.

Whenever the host determines that an interrupt source is ready to be delivered (i.e., ready, not in
service, and at a higher priority than the highest-priority interrupt presently in service), it must
present it to the guest by writing to the vector number to vector field of PendingEvent in the
doorbell page. The host does not have the ability to determine the logical TPR in use by the guest,
nor the guest value of EFLAGS.IF, so it should simply present the interrupt by writing the APIC
vector number. This should occur at a time that the guest vCPU is not running.

• If PendingEvent.Vector was previously zero AND if PendingEvent.NoFurtherSIgnal was
previously zero, the host should schedule delivery of a #HV to indicate to the guest that a new
interrupt is available.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

73

• If PendingEvent.Vector was previously non-zero, because the guest has not yet chosen to
acknowledge the interrupt, the previous vector number can be overwritten by the new vector
number without sending another #HV (regardless of the value of
PendingEvent.NoFurtherSignal), because the guest should already have been informed that a
vector was pending. If the host is required to send #HV, it must also set
PendingEvent.NoFurtherSignal to ensure that no additional #HV is sent as a result of a non-
maskable event (as explained below) until the guest indicates that it is ready to receive it.

Note: The host is always expected to present the highest-priority ready interrupt, so if a non-zero
vector number is overwritten, it should always be overwritten with a higher-priority vector.
The host must additionally record internally the last vector that was presented.

Whenever the host presents an interrupt, and there are no other interrupts ready to be presented
(i.e., all lower-priority interrupts are already in service), the host should set NoEoiRequired to
indicate that no explicit EOI is required. The host should additionally record internally that
NoEoiRequired was set. If, on the other hand, multiple interrupts are ready, the host should clear
NoEoiRequired, and should record internally that NoEoiRequired was cleared. When multiple
interrupts are ready, the host must know precisely when the guest is ready to receive the second
interrupt, and this requires an explicit EOI cycle.

Whenever the host wishes to present a non-maskable event such as an NMI or #MC, the host
should set the appropriate bit in the PendingEvent field. The host should also set
PendingEvent.NoFurtherSignal. If NoFurtherSignal was previously zero, the host should deliver
#HV, while if NoFurtherSignal was previously non-zero, then the guest should already be aware
that event processing is required.

Whenever the host observes that PendingEvent.Vector is zero but has internally recorded that a
non-zero vector was presented, it indicates that the interrupt was acknowledged by the guest. As
this is analogous to an interrupt being acknowledged at the APIC by the CPU, the host must mark
the interrupt in service so that it can be cancelled by a subsequent EOI.

Whenever the host observes NoEoiRequired is zero and has internally recorded that
NoEoiRequired was previously set, it should perform an EOI cycle as if the APIC EOI register
had been written. This must occur after examining PendingEvent.Vector, as an EOI may be
pending for the interrupt that was just acknowledged by the guest.

Whenever an EOI cycle is completed (either implicitly by clearing NoEoiRequired or explicitly
via an APIC register write), the host should set NoEoiRequired again if any interrupts remain in
service and no interrupts are pending (and should additionally record internally that the flag was
set). Note that the guest is not obligated to clear NoEoiRequired and may elect to perform a virtual
APIC register write to complete the EOI. The host must treat both types of EOI signals identically.

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

74

Examination of PendingEvent and NoEoiRequired can be performed by the host at any time the
guest vCPU is not running, but must be performed at any time the emulated APIC state is
evaluated. Examination of those fields is not required if the host has not recorded that it has placed
any data into them.

If a non-cooperative guest chooses to write a non-zero vector into PendingEvent.Vector when no
interrupt is pending or chooses to set PendingEvent.NoFurtherSignal without receiving a #HV
signal, it may result in the loss of a #HV notification when the host is prepared to deliver an
interrupt. Any bad behavior that results in the guest is a consequence of its non-cooperation, but it
will not affect the integrity of the host in any way. Similarly, the host will not be affected if a non-
cooperative guest chooses to modify NoEoiRequired when no EOI assist is possible.

5.4.3 Guest Behavior

Whenever a guest receives a #HV notification, it must be prepared to receive an interrupt from the
emulated APIC. This can occur at any time; the guest may choose to acknowledge it immediately
or to defer acknowledgement until EFLAGS.IF permits interrupt delivery.

When the guest chooses to acknowledge an interrupt, it must perform an atomic exchange to
retrieve the pending event information and to zero the contents of PendingEvent. Because the
guest can be interrupted on any instruction boundary, and because the host has the right to
exchange one non-zero vector for another without issuing another #HV, the guest must not act on
any vector number observed in the doorbell page unless it is atomically exchanged with zero.
After the vector number has been observed, the guest can process the interrupt as it sees fit, either
dispatching it immediately or deferring dispatch until such time that dispatch is safe. After the
guest has acknowledged the interrupt, it must assume that the interrupt has been acknowledged in
accordance with the standard APIC architecture (i.e., no additional interrupt of equal or lower
priority can be presented until an end-of-interrupt cycle is performed).

When the guest is ready to perform an EOI, it should perform an atomic exchange of zero with
NoEoiRequired. If the previous value was non-zero, then no further action is required because the
act of clearing NoEoiRequired is sufficient to prompt an end of interrupt before delivery of the
next interrupt. If the previous value was zero, then the guest must perform an APIC register write
(via VMGEXIT to write the X2APIC MSR) to complete the EOI.

Even when EFLAGS.IF=0, a guest should be prepared to dispatch non-maskable events as
indicated in PendingEvent. If a guest chooses to dispatch only non-maskable events without
clearing the pending vector, it must perform an atomic exchange to clear the non-maskable event
flags as well as NoFurtherSignal before proceeding to dispatch any accumulated events. Leaving
PendingEvent.Vector unchanged ensures that the guest will not receive a #HV signal due only to
changes in maskable interrupt state, while clearing NoFurtherSignal ensures that the guest will
receive another #HV if an additional non-maskable event is delivered.

[Public]

56421 Rev. 2.04 January 2025 SEV-ES Guest-Hypervisor Communication Block
Standardization

75

Because a non-cooperative host may write random numbers into the doorbell page, the guest must
validate each vector it observes to ensure that it corresponds to a legitimate, expected interrupt. A
non-cooperative host may choose not to send #HV and may similarly choose to ignore
NoEoiRequired; both of these cases result in denial of service to the guest rather than any
corruption of guest state. A non-cooperative host may signal #HV at any time it chooses, possibly
resulting in recursive handling by the guest; however, a guest can assume that under normal
operation, the host will never inject #HV if PendingEvent.NoFurtherSignal is non-zero, and any
receipt of #HV at any other time is grounds for a system panic.

5.5 Pseudocode
5.5.1 Host
; when ready to update APIC state (e.g. evaluation of ready interrupts,
; EOI requests)

; check to see whether the guest has acknowledged a previously presented
; interrupt
IF APIC.PendingVector != 0 AND Doorbell.PendingEvent.Vector = 0
 ; acknowledge interrupt
 APIC.Ready[APIC.PendingVector] := 0
 APIC.InService[APIC.PendingVector] := 1
 APIC.PendingVector := 0
FI

; check to see whether the guest has requested an EOI without explicitly
; writing the EOI register
IF APIC.NoEoiRequired AND Doorbell.NoEoiRequired = 0 AND APIC.PendingVector = 0
 APIC.EndOfInterrupt()
 APIC.NoEoiRequired := 0
FI

; calculate ready interrupt state
HV_Required := false
IF NMI is pending
 Doorbell.PendingEvent.NMI := 1
 HV_Required := true
FI
IF #MC is pending
 Doorbell.PendingEvent.MC := 1
 HV_Required := true
FI
IF APIC.Ready is not empty
 ; an explicit EOI is required unless the interrupt being presented is the
 ; only ready interrupt
 IF APIC.NumberOfReadyInterrupts = 1

APIC.NoEoiRequired := true
Doorbell.NoEoiRequired := 1

 ELSE
APIC.NoEoiRequired := false
Doorbell.NoEoiRequired := 0

 FI

 APIC.PendingVector := next ready interrupt

[Public]

SEV-ES Guest-Hypervisor Communication
Block Standardization

56421 Rev. 2.04 January 2025

76

 IF Doorbell.PendingEvent.Vector = 0
; only send #HV if there is no interrupt already pending
HV_Required := true

 FI
 Doorbell.PendingEvent.Vector := APIC.PendingVector
FI
IF HV_Required
 IF Doorbell.PendingEvent.NoFurtherSignal = 0

Doorbell.PendingEvent.NoFurtherSignal := 1
 ELSE

HV_Required := FALSE
 FI
FI
IF HV_Required
 Schedule #HV
FI

5.5.2 Guest
; when the guest is ready to dispatch interrupts
IF EFLAGS.IF = 0
 NonMaskableEvents := XCHG(Doorbell.PendingEvent[15..8], 0)
 ; handle NMI or #MC as required
 ; leave handler
FI

PendingEvent := XCHG(Doorbell.PendingEvent, 0)
IF (PendingEvent.NMI OR PendingEvent.MC)
 ; handle NMI or #MC as required
FI

IF PendingEvent.Vector != 0
 ; dispatch interrupt or schedule it internally for future delivery
FI

; upon completion of the active interrupt
NoEoiRequired := XCHG(Doorbell.NoEoiRequired, 0)
IF NoEoiRequired = 0
 WRMSR(X2APIC_EOI)
FI

[Public]

	SEV-ES Guest-Hypervisor Communication Block Standardization
	Specification Agreement
	1 Introduction
	1.1 Overview
	1.2 Purpose

	2 Guest-Hypervisor Communication Block (GHCB)
	2.1 Changes for Version 2
	2.1.1 Changes for Revision 2.01
	2.1.1.1 Document Additions

	2.1.2 Changes for Revision 2.02
	2.1.2.1 Document Additions

	2.1.3 Changes for Revision 2.03
	2.1.3.1 Document Additions

	2.1.4 Changes for Revision 2.04
	2.1.4.1 Document Additions

	2.2 Hypervisor Feature Support
	2.3 Establishing the GHCB
	2.3.1 GHCB MSR Protocol
	2.3.2 GHCB GPA Registration

	2.4 GHCB Negotiation Example
	2.4.1 SEV-ES (Version 1)
	2.4.2 SEV-SNP (Version 2)

	2.5 GHCB/VMGEXIT Example
	2.6 GHCB Layout
	2.7 SEV-SNP Secrets Page
	2.8 SEV-SNP Confidential Computing Blob EFI Protocol

	3 Guest Exits
	3.1 Automatic Exits (AE)
	3.2 Guest Non-Automatic Exits (NAE)

	4 GHCB Protocol
	4.1 Invoking VMGEXIT
	4.1.1 Standard VMGExit
	4.1.2 IOIO_PROT (0x7b)
	4.1.3 MSR_PROT (0x7c)
	4.1.4 VMMCALL (0x81)
	4.1.5 #NPF/MMIO Access
	4.1.6 Page State Change
	4.1.7 SNP Guest Request
	4.1.8 SNP Extended Guest Request
	4.1.8.1 MSG_REPORT_REQ

	4.1.9 SNP AP Creation
	4.1.10 #HV Doorbell Page
	4.1.11 #HV IPI
	4.1.12 #HV Timer
	4.1.13 APIC ID List
	4.1.14 SNP Run VMPL
	4.1.15 SNP TIO Guest Request
	4.1.16 Secure AVIC
	4.1.16.1 Backing Page Support

	4.1.17 Termination Request
	4.1.18 Unsupported Non-Automatic Exits

	4.2 Guest Identification of SEV-ES Support
	4.3 SMP Booting
	4.3.1 SEV-ES and SEV-SNP
	4.3.1.1 vCPU Parking
	4.3.1.2 vCPU Hotplug

	4.3.2 SEV-SNP (SNP AP Creation Feature)
	4.3.2.1 vCPU Parking
	4.3.2.2 vCPU Hotplug

	4.4 Non-maskable Interrupts
	4.5 Debug Register Support
	4.6 System Management Mode (SMM)
	4.7 Nested Virtualization

	5 SNP Restricted Injection
	5.1 Hypervisor Doorbells in SNP guests
	5.2 Essential Data
	5.3 Interrupt Shadows
	5.4 Expected Behaviors
	5.4.1 Doorbell configuration
	5.4.2 Host Behavior
	5.4.3 Guest Behavior

	5.5 Pseudocode
	5.5.1 Host
	5.5.2 Guest

