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Purpose  
This document is intended to provide generic guidelines on database related tuning for Linux OS. 
Refer to the Operating System Tuning methods given by individual database vendors.    

 

 

 

  

 

 

 

 

 

 

 

 



 

 

Chapter 1 Introduction 

The AMD EPYC™ 7002 Series Processors are built with leading-edge 7nm technology, Zen2 
core and microarchitecture. The AMD EPYC™ SoC offers a consistent set of features across 8 to 
64 cores, including 128 lanes of PCIe® Gen 4, 8 memory channels and access to up to 4 TB of 
high-speed memory. AMD EPYC 7002 processors are built with the following specifications: 

AMD EPYC™ 7002 Series 

Process technology 7nm 

Max Processor speed 3.4GHz 

Max number of cores 64 

Max memory speed 3200MHz 

Max memory capacity 4TB 

Peripheral Component 
Interconnect 

128 lanes (max) 
PCIeGen4 

 



 

 

Chapter 2 Microarchitecture Overview 

2.1 Overview 
Processor cores, memory controllers, I/O controllers, and security are incorporated into a Multi-
Chip Module (MCM) of the AMD EPYC™ 7002 Series Processors. 

 

Figure 1 EPYC 7002 Configuration with 8 Core Complex Dies (CCDs) and central I/O Die (IOD) 

2.2 Zen 2 core 
The EPYC 7002 series processor is based the new Zen2 processor core, that includes an L1 write-
back cache.  Each core can support Simultaneous Multi-threading (SMT), allowing 2 execution 
threads to execute simultaneously per core.  Each core includes a private 512KB L2 cache. 

2.3 Core Complex Die (CCD) and Core-Complex (CCX) 
Up to four Zen2 cores share a 16MB (last level) L3 cache. While the two L3 Caches are on the 
same chiplet, they are separate. The 4 cores and their associated caches are referred to as a Core-
Complex (CCX).  Each Core Complex Die (CCD) contains 2 CCXs 

   

Figure 2 Two Core Complexes (CCXs) on a Core Complex Die (CCD) 



 

 

Two CCDs may be abstracted as a quadrant.  The CCDs connect to memory, I/O, and each other 
through the I/O Die (IOD).  This die supports dual DDR4 memory channels. 

 

Figure 3 Single socket EPYC 7002 Processor internal connection between CCDs and Memory through memory IOD 

2.4 Memory and I/O 
Each EPYC 7002 processor supports 8 memory channels. Each memory channel supports up to 2 
DIMMs.  Based upon BIOS settings these channels can be interleaved across a quadrant (2-way), 
all the way through 16-channel interleave, that is, across all memory channels of a 2-socket 
system.  The system can have access to a maximum of 4TB of DDR4 memory at 3200MHz per 
processor. 

The PCI subsystem provides up to 128 lanes of high speed I/O. 

While all memory and I/O connect to the single I/O Die, they can be abstracted into separate 
quadrants each with 2 DIMM channels and 32 I/O lanes. 

Two EPYC 7002 SoCs are interconnected via Socket to Socket Global Memory Interconnect 
(xGMI) links, referred to as the Infinity Fabric. 

2.5 NUMA 
The EPYC 7002 Series processors use a Non-Uniform Memory Access (NUMA) Micro-
architecture. The four logical quadrants in an AMD EPYC 7002 processor (as described in Core 
Complex Die (CCD) and Core-Complex (CCX)) allow the processor to be partitioned into 
different NUMA domains. These domains are designated as NUMA per socket (NPS). 



 

 

 NPS1 

The processor is a single NUMA domain, i.e. all the cores on the processor, all memory connected 
to it and all PCIe devices connected to the processor are in one NUMA domain. Memory is 
interleaved across the eight memory channels.  

 NPS2 

The processor is partitioned into two NUMA domains. Half the cores and half the memory 
channels connected to the processor are grouped together into one NUMA domain. Memory is 
interleaved across the four memory channels in each NUMA domain. 

 NPS4 

The processor is partitioned into four NUMA domains. Each logical quadrant of the processor is a 
NUMA domain. Memory is interleaved across the two memory channels in each quadrant. PCIe 
devices will be local to one of four NUMA domains on the processor depending on the quadrant 
of the IO die that has the PCIe root for that device. 

 L3 Cache as NUMA Domain 

Each L3 Cache (as explained in Core Complex Die (CCD) and Core-Complex (CCX)) is exposed 
as a NUMA node. On a dual processor system, with upto 16 L3 Caches per processor, this setting 
will expose 32 NUMA domains. 

Using BIOS settings, each server can be configured as NPS1, NPS2 or NPS4, with an additional 
option to configure L3 cache as NUMA nodes. 

AMD EPYC 7002 models are available in different core counts per processor and not all of them 
can support all NPS settings. See https://developer.amd.com/wp-
content/resources/56338_1.00_pub.pdf for details on NUMA architecture and settings. 

https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf
https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf


 

 

Chapter 3 Database Tuning on Linux OS 

3.1 Overview 
Operating Systems require tuning to increase the efficiency of database platforms and to minimize 
unnecessary slowdown on the overall system performance and the performance of the applications 
stack that rely on the database platform. To make an effective tuning for your specific system you 
must have a baseline of your current system including your observations/readings. This 
understanding of system requirements helps to tune the systems in a slow and steady pace until you 
reach the best golden ratio of parameters for your system. 

 Linux OS Tools 

Linux provides multiple tools such as sar, iostat, vmstat, dstat, fio, strace, numactl, numastat etc. 
that help with observing metrics to identify bottlenecks and assess improvements on Processors, 
Network, Storage etc.  

3.2 Memory and NUMA Settings 
AMD EPYC Processors bring up to 8 Memory Channels for memory intensive Database and 
Applications and respective Memory allocations (Database Buffer Cache) for higher scalability and 
superior performance.  

In AMD EPYC processors the memory is divided into multiple NUMA nodes, it could be NPS 1/2/4 
where you could modify in the BIOS settings. By default, the system allocates memory on the same 
node as a thread and scheduled to run the application. The system uses the allocated memory region 
locally to the DRAM of the associated NUMA node. In a two NUMA node system, 50% of the 
memory is allocated to each NUMA node. 

Using NUMA policies through NUMACTL command will help to run an application in a way you 
want to execute and make affinity to the respective cpunodes/cores/memory. For the database 
platform you could force the NUMA through Database specific NUMA settings. This will help you 
to adjust the buffer cache according to your database requirements. 

Making more DRAM available to the database enables the database to have a larger cache to fit 
your active dataset into memory. This reduces the I/O and boosts the database performance. 

3.3 I/O Schedulers and Elevators 
SSD / NVMe drives give better performances for different multi-threaded, I/O intensive applications 
which are constantly doing the transactions. To ensure better performance on the SSDs, you must 
make sure that your I/O schedulers / Elevators are kept in correct settings based on your I/O test. 
See tools recommendations for the AMD EPYC processors on Phoronix.com to identify the right 
scheduler for your system.  

 

https://www.phoronix.com/scan.php?page=article&item=linux417-nvme-io&num=1


 

 

Example 

• Solid State Drives (SSD) with SATA / SAS 

o Much more IOPS than traditional HDD 

o Low latency 

o To host your Operating System or other multi-threaded applications on SSD, use 
"deadline" / "noop" to start. 

cat /sys/class/block/sda/queue/schedulernoop [deadline] cfq 

• NVMe drives connected with PCIe 

o More IOPS than SSD 

o Lower latency 

o To host your I/O intensive Database Platform and/or similar multi-threaded 
applications on NVMe, use "deadline" / "none" to start.  

cat /sys/class/block/nvme0n1/queue/scheduler 
[none] mq-deadline kyber 

3.4 Transparent HugePages (THP) 

Based on the guidelines provided by  https://www.kernel.org/,  performance critical computing 
applications dealing with large memory working sets are already running on top of libhugetlbfs 
and in turn hugetlbfs. Transparent HugePages support is an alternative means of using hugepages 
for the backing of virtual memory with hugepages that supports the automatic promotion and 
demotion of page sizes and without the shortcomings of hugetlbfs. Databases like PostgreSQL 
have a choice of using THP to improve the systems performance. 

The first factor takes a single page fault for each 2M virtual region touched by user and reduces 
the enter/exit kernel frequency by 512 times factor. This only matters the first time the memory is 
accessed for the lifetime of a memory mapping.  

The second factor will affect all subsequent accesses to the memory during the entire application 
run time. This includes the following two components: 

• TLB miss will run faster (especially with virtualization using nested page tables but almost 
always also on bare metal without virtualization) 

• A single TLB entry maps to larger amount of virtual memory and reduces the number of 
TLB misses. 

https://www.kernel.org/


 

 

When transparent hugepages are enabled you can see the following results 

cat /sys/kernel/mm/transparent_hugepage/enabled 
[always] madvise never 

Note: Transparent HugePages (THP) reduces the complexity of using huge pages. As the goal 
of THP is improving performance, its developers (both from the community and Red Hat) 
have tested and optimized THP across a wide range of systems, configurations, applications, 
and workloads. This allows the default settings of THP to improve the performance of most 
system configurations. However, THP is not recommended for all database workloads. Make 
sure to check the individual database administration guide for better support of THP. 

HugePages are in 2 MB size instead of the default 4K pages in Linux x86_64, which allows 
databases to use their shared buffers allocations on these pre-allocated memory segments. 

vm.nr_hugepages=NNNNN (Depends on your Database Shared Buffers / SGA requirement)  

 Formula 

If you have 256 GB DRAM on your system and if you'd like to allocate, for example, 150 GB for 
your Shared Buffers / SGA, then do the following in the OS Settings, 

Requirements at /etc/sysctl.conf 
• Edit this file and add the below values with a good ceiling (90000 * 2 MB = 180,000 MB = 

175 GB) 
vm.nr_hugepages = 90000 

• After completing, run the below command to verify and validate that the values are 
accepted by Linux 
# sysctl -p 
# sysctl -a | grep -w vm.nr_hugepages 
vm.nr_hugepages = 90000 

• Also change memlock values (KB) and make sure it's lesser than the total available 
System's DRAM. This is a locked-in memory space which is highly useful for Databases 

Requirements at /etc/security/limits.conf 
• Edit memlock settings in the /etc/security/limits.conf file and add/modify to a value which 

is reasonable and is not exceeding the total available System's DRAM 
* soft memlock 10000000 
* hard memlock 10000000 

• You could represent the (*) as the particular userid of the database instead of global users 
locked-in memory on that system 

•  After completing, login to the database userid (e.g.) oracle / postgres and type the 
following command 
$ ulimit -l 
10000000 



 

 

3.5 Socket Buffer Size 
The default 16 K Linux socket buffer size is insufficient. Increasing socket buffers will be helpful 
for any N-tier type applications such as Java for sending and receiving buffers up to 4 MB 
(4194304 bytes) during communication with the Database server. 

Requirements at /etc/sysctl.conf 

• Edit this file and add the below values with a good socket buffer size 
net.core.rmem_max = 4194304 
net.core.wmem_max = 4194304 

• After completing, run the below command to check and validate the values are accepted by 
Linux 
# sysctl -p 

# sysctl -a | egrep -w "net.core.rmem_max|net.core.wmem_max" 
net.core.rmem_max = 4194304 
net.core.wmem_max = 4194304 

3.6 File Systems 
File systems provide better user data management. Many types of File systems are available in 
Linux and each of them bring capabilities based on the media used (HDD / SSD / NVMe etc.). To 
obtain the best performance, you must select the optimal File system of your choice and follow 
recommendations provided by the Database Administrator's Guide of each databases. 

Most commonly used Database File systems are 

• ext4 - This is the most current version of the native Linux file systems and compatible with 
the older ext2 and ext3 versions. It supports disk volumes up to 1 exabyte and file sizes up 
to 16 terabytes. It is the standard choice for Linux file systems. 

o Common ext4 File system mount options used: defaults, noatime, _netdev, 
nofail, nosuid, nobarrier 

• xfs - High performance journal file system, great for a system with large files such as a 
media server. 

o Common xfs File system mount options used: nobarrier, noatime 

3.7 RAID 
Redundant Array of Independent Disks (RAID) puts multiple drives together to improve on what a 
single drive can do. Depending on your configuration requirements, RAID can increase your 
system's performance. RAID (Striping and Mirroring) will be very helpful for I/O bound 
applications on a Database where multiple files such as data files, index files, temporary files, 
rollback files, redolog / WAL files can reside. RAID Mirror protects from media failures. 

 



 

 

The following are few commonly used RAID: 

• RAID0: fast writes, reads, no redundancy 
• RAID1: slower writes, fast reads 
• RAID5: slow for random writes, fast for sequential writes, fast reads and slow recovery 
• RAID10: fast reads and writes 

3.8 Processor Settings 
 Performance 

Tuned is a profile-based system tuning tool that uses the udev device manager to monitor 
connected devices and enable both static and dynamic tuning of system settings. 

When tuned has an effective profile you can see the following results 

tuned-adm active 
Current active profile: throughput-performance 

 Power 

The default power scheme is "ondemand" and it's better to use performance governor: 

Use the following command to verify: 

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor 
performance 

If it's not performance, then use the command below to change 

echo “performance” > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor 

Use tools such as cpufrequtils, cpupower and turbostat to monitor and understand performance 
frequencies. 

 Network 

Network plays an important role in Databases and dependent applications to function properly to 
deliver the data ingress and egress through a properly configured switch, port, F/W etc. You can 
do the following for efficient Database performance:  

• Use higher bandwidth Ethernet to lower latency such as 10 / 25 / Greater GigE.  
• Use Trunking/Bonding for Higher Availability and better Bandwidth.  
• Enable ARP to filter ARP flux. 
• Set higher MTU 9000 (Jumbo Frames) for Cluster Databases environment will help to 

reduce per-packet overhead both at the end host and at the network switches.  



 

 

Thus, expected microscopic benefits of jumbo frames are increased throughput and 
reduced number of CPU cycles and instructions for packet processing. 

Use tools such as nmap, tc, sar -n, dropwatch, ss -ntmp – to identify network traffic packet drops 
and issues between the servers on your topology. 

3.9 Swappiness 
The default swappiness setting on Linux is a value range between 0 and 100. For Database server 
environment we recommend having "0" to keep the coherency and avoid swapping processes out 
of memory.  

Useful metrics to measure swappiness,  

cat /proc/sys/vm/swappiness 
0 

if your value is greater than "0" then then run the below command in root as 

 # echo 0 > /proc/sys/vm/swappiness 



 

 

Chapter 4 Tuning is a Continuous Effort for 
Continuous Best Performance 

Make sure to understand the system and the multiple components and resources. This helps you 
with understanding the best options for performance in the BIOS settings such as NUMA Per 
Socket (NPS), Memory Interleaving, Enabling and Disabling SMT etc. When the system is in 
operation, review the performance metrics from the Database, OS, Filesystems, I/O and 
Networking Parameters. The results from the metric review will help you to precisely tune your 
system to achieve its best performance level. 
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