
TUNING GUIDE
AMD EPYC 9004

Kubernetes® Containers

Publication 58008
Revision 1.3
Issue Date June, 2023

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

ii 58008 – 1.3

© 2023 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution
has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and
AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations
or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel,
to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s
products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, 3D V-Cache, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Kubernetes is a registered trademark of The Linux Foundation. Other product names and links to external sites used in this
publication are for identification purposes only and may be trademarks of their respective companies.

* Links to third party sites are provided for convenience and unless explicitly stated, AMD is not responsible for the contents of such
linked sites and no endorsement is implied.

Audience
This tuning guide is intended for a technical audience such as production deployment and performance engineering
teams with:

• A background in configuring servers.

• Administrator-level access to both the server management Interface (BMC) and the OS.

• Familiarity with setting up Kubernetes clusters.

• Familiarity with both the BMC and OS-specific configuration, monitoring, and troubleshooting tools.

Author
Sonemaly Phrasavath

Note: All of the settings described in this Tuning Guide apply to all AMD EPYC 9004 Series Processors of all core counts
with or without AMD 3D V-Cache™ except where explicitly noted otherwise.

Date Version Changes

July, 2022 0.1 Initial NDA partner release
Sep, 2022 0.2 Updated BIOS information
Nov, 2022 1.0 Initial public release
Dec, 2022 1.1 Minor errata corrections
Mar, 2023‘ 1.2 Added 97xx OPN and AMD 3D V-Cache™ technology information
Jun, 2023 1.3 Second public release

58008 – 1.3 iii

Chapter 1 Introduction - 1

1.1 About Tuning Kubernetes .. 1

Chapter 2 AMD EPYC™ 9004 Series Processors -3

2.1 General Specifications ... 3
2.2 Model-Specific Features ... 3
2.3 Operating Systems .. 4
2.4 Processor Layout ... 4
2.5 “Zen 4” Core .. 4
2.6 Core Complex (CCX) ... 5
2.7 Core Complex Dies (CCDs) ... 5
2.8 AMD 3D V-Cache™ Technology .. 6
2.9 I/O Die (Infinity Fabric™) ...7
2.10 Memory and I/O .. 8
2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h) .. 9

2.11.1 Models 91xx-96xx (“Genoa”) .. 9
2.11.2 Models 97xx (“Bergamo”) ..10

2.12 NUMA Topology ...10
2.12.1 NUMA Settings ...10

2.13 Dual-Socket Configurations ... 12

Chapter 3 BIOS Defaults Summary - 13

3.1 Processor Core Settings ...14
3.2 Power Efficiency Settings .. 16
3.3 NUMA and Memory Settings ... 17
3.4 Infinity Fabric Settings ..18
3.5 PCIe, I/O, Security, and Virtualization Settings .. 19
3.6 Higher-Level Settings ... 20

Chapter 4 Best Practices for Container Deployment - 21

4.1 General ... 21
4.2 Hardware Configuration ...22

4.2.1 Controller (Control Plane) ..22
4.2.2 Worker Nodes ... 23

4.3 Testing Kubernetes Scheduler CPU Resource Assignment ... 23
4.3.1 Software Configuration .. 23
4.3.2 Test Methodology .. 24

Table of Contents

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

iv 58008 – 1.3

Chapter 5 Recommended Settings -25

5.1 Reserving CPU for Kubelet and System Daemons .. 25
5.2 Container Pinning Settings ... 25

5.2.1 Enable the Static CPU Manager Policy ... 25
5.2.2 Lowest Level Cache Affinity using the Static CPU Manager Policy .. 26

5.3 Resolving the Noisy Neighbor Problem ..27
5.3.1 Pod Resource Limits ..27
5.3.2 SMT Alignment .. 28

5.4 NUMA Alignment Settings ... 28
5.5 NUMA Aware Memory Manager .. 29
5.6 Node Stability Settings ... 30
5.7 SR-IOV Network Device Plugin for High-Perf. Network I/O .. 30
5.8 RDMA Device Plugin for High-Perf. Network I/O .. 33

Chapter 6 Resources - 37

Chapter 7 Glossary - 39

Chapter 8 Processor Identification - 41

8.1 CPUID Instruction ...41
8.2 New Software-Visible Features .. 42

8.2.1 AVX-512 .. 42

58008 – 1.3 1

Containerizing an application platform and its associated dependencies abstracts the underlying infrastructure and OS
differences for efficiency. Each container is bundled into one package containing an entire runtime environment,
including an application with all its dependencies, libraries and other binaries, and configuration files needed to run that
application. Containers running applications in a production environment need management to ensure consistent
uptime. If a container goes down, then another container needs to start automatically.

Kubernetes (K8S) enables automated container deployment and management. According to What is Kubernetes?*,
“K8S is a portable, extensible, open-source platform for managing containerized workloads and services. It takes care of
scaling and failover for your application, provides deployment and more. It has a large, rapidly growing ecosystem. K8S
services, support, and tools are widely available.”

Kubernetes includes the following features:

• Service discovery and load balancing.

• Storage orchestration.

• Automated rollouts and rollbacks.

• Automatic bin packing.

• Self-healing.

• Secret and configuration management.

This tuning guide provides detailed descriptions of Kubernetes configuration settings that can optimize containerized
application performance on servers powered by AMD EPYC™ 9004 Series processors.

1.1 About Tuning Kubernetes
Workloads that scale and perform well on bare metal should see a similar scaling curve in a container environment with
minimal performance overhead. Some containerized workloads can even see close to 0% performance variance
compared to bare metal. Large overhead generally means that application settings and/or container configuration are
not optimally set. These topics are beyond the scope of this tuning guide. However, the CPU load balancing behavior of
Kubernetes or other container orchestration platform scheduler may assign or load balance containerized applications
differently than in a bare metal environment.

For example, a test that deployed multiple concurrent containers with a 1 CPU resource limit using Docker Swarm saw
the scheduler filling the physical cores before filling the logical cores. The Linux scheduler did the same thing when the
same set of containers was manually deployed. By contrast, the Kubernetes scheduler sometimes filled the logical cores
before the physical cores. This unexpected behavior can be interpreted as lowering performance compared to containers
with an identical workload running on a physical core. In another example, the Kubernetes scheduler varies from the
Linux scheduler by sometimes deploying a pod with multi-CPU resource limits across multiple CCX/CCDs or NUMA
nodes.

Chapter

1 Introduction

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

2 58008 – 1.3

Please see “AMD EPYC 9004 Series Processors features by model” on page 3 for detailed information about CCXs, CCDs,
and NUMA references. All three environments (Docker Swarm, Kubernetes, and Linux) implement the Completely Fair
Scheduling (CFS) method but differ in how they schedule applications and their threads to physical or logical cores.

This tuning guide focuses on recommended Kubernetes environment configuration settings that can help mitigate
unexpected scheduler behaviors by assigning application threads to physical and logical cores in a manner similar to a
Linux environment. Additional application-specific BIOS and other settings may further boost performance. See the
latest version of the appropriate application-specific tuning guide for additional information.

58008 – 1.3 3

AMD EPYC™ 9004 Series Processors represent the fourth generation of AMD EPYC server-class processors. This
generation of AMD EPYC processors feature AMD’s latest “Zen 4” based compute cores, next-generation Infinity Fabric,
next-generation memory & I/O technology, and use the new SP5 socket/packaging.

2.1 General Specifications
AMD EPYC 9004 Series Processors offer a variety of configurations with varying numbers of cores, Thermal Design Points
(TDPs), frequencies, cache sizes, etc. that complement AMD’s existing server portfolio with further improvements to
performance, power efficiency, and value. Table 1-1 lists the features common to all AMD EPYC 9004 Series Processors.

2.2 Model-Specific Features
Different models of 4th Gen AMD EPYC processors have different feature sets, as shown in Table 1-2.

Chapter

2
AMD EPYC™ 9004 Series
Processors

Common Features of all AMD EPYC 9004 Series Processors
Compute cores Zen4-based
Core process technology 5nm
Maximum cores per Core Complex (CCX) 8
Max memory per socket 6 TB
Max # of memory channels 12 DDR5
Max memory speed 4800 MT/s DDR5
Max lanes Compute eXpress Links 64 lanes CXL 1.1+
Max lanes Peripheral Component Interconnect 128 lanes PCIe® Gen 5

Table 2-1: Common features of all AMD EPYC 9004 Series Processors

AMD EPYC 9004 Series Processor (Family 19h) Features by Model
Codename “Genoa”* “Bergamo”*
Model # 91xx-96xx 97xx
Max number of Core Complex Dies (CCDs) 12 8
Number of Core Complexes (CCXs) per CCD 1 2
Max number of cores (threads) 96 (192) 128 (256)
Max L3 cache size (per CCX) 1,152 MB (96 MB) 256 MB (16 MB)
Max Processor Frequency 4.4 GHz 3.15 GHz
Includes AMD 3D V-Cache (9xx4X) and high-frequency (9xx4F) models.
*GD-122: The information contained herein is for informational purposes only and is subject to change without notice. Timelines, roadmaps, and/or product
release dates shown herein and plans only and subject to change. “Genoa” and “Bergamo” are codenames for AMD architectures and are not product names.

Table 2-2: AMD EPYC 9004 Series Processors features by model

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

4 58008 – 1.3

2.3 Operating Systems
AMD recommends using the latest available targeted OS version and updates. Please see AMD EPYC™ Processors
Minimum Operating System (OS) Versions for detailed OS version information.

2.4 Processor Layout
AMD EPYC 9004 Series Processors incorporate compute cores, memory controllers, I/O controllers, RAS (Reliability,
Availability, and Serviceability), and security features into an integrated System on a Chip (SoC). The AMD EPYC 9004
Series Processor retains the proven Multi-Chip Module (MCM) Chiplet architecture of prior successful AMD EPYC
processors while making further improvements to the SoC components.

The SoC includes the Core Complex Dies (CCDs), which contain Core Complexes (CCXs), which contain the “Zen 4”-based
cores. The CCDs surround the central high-speed I/O Die (and interconnect via the Infinity Fabric). The following sections
describe each of these components.

Figure 2-1: AMD EPYC 9004 configuration with 12 Core Complex Dies (CCD) surrounding a central I/O Die (IOD)

2.5 “Zen 4” Core
AMD EPYC 9004 Series Processors are based on the new “Zen 4” compute core. The “Zen 4” core is manufactured using
a 5nm process and is designed to provide an Instructions per Cycle (IPC) uplift and frequency improvements over prior
generation “Zen” cores. Each core has a larger L2 cache and improved cache effectiveness over the prior generation. Each
“Zen 4” core includes:

• Up to 32 KB of 8-way L1 I-cache and 32 KB of 8-way of L1 D-cache

• Up to a 1 MB private unified (Instruction/Data) L2 cache.

Each core supports Simultaneous Multithreading (SMT), which allows 2 separate hardware threads to run independently,
sharing the corresponding core’s L2 cache.

IO Die

Core Complex Die (CCD)

https://www.amd.com/en/processors/epyc-minimum-operating-system
https://www.amd.com/en/processors/epyc-minimum-operating-system

558008 – 1.3

Chapter 2: AMD EPYC™ 9004 Series Processors

2.6 Core Complex (CCX)
Figure 2-2 shows a Core Complex (CCX) where up to eight “Zen 4”-based cores share a L3 or Last Level Cache (LLC).
Enabling Simultaneous Multithreading (SMT) allows a single CCX to support up to 16 concurrent hardware threads.

Figure 2-2: Top view of 8 compute cores sharing an L3 cache (91xx-96xx models)

2.7 Core Complex Dies (CCDs)
The Core Complex Die (CCD) in an AMD EPYC 9xx4 Series Processor may contain either one or two CCXs, depending on the
processor (91xx-96xx “Genoa” vs. 97xx “Bergamo”), as shown in Figure 2-5.

Figure 2-3: 2 CCXs in a single 4th Gen AMD EPYC 97xx CCD

Each of the Core Complex Dies (CCDs) in a 97xx model AMD EPYC 9004 Series Processor contains two CCXs (Figure 2-5):

AMD EPYC 9004 Series Processor 91xx-96xx 97xx
of CCXs within a CCD 1 2

Table 2-3: CCXs per CCD by AMD EPYC model

Sh
are

d
L3

 C
a

ch
e

Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

Sh
are

d
1

6M
B

 L3
 C

a
ch

e

Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

Sh
a

re
d

1
6

M
B

 L3
 C

ach
e

Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

6 58008 – 1.3

You can disable cores in BIOS using one or both of the following approaches:

• Reduce the cores per L3 from 8 down to 7,6,5,4,3,2, or 1 while keeping the number of CCDs constant. This approach
increases the effective cache per core ratio but reduces the number of cores sharing the cache.

• Reduce the number of active CCDs while keeping the cores per CCD constant. This approach maintains the
advantages of cache sharing between the cores while maintaining the same cache per core ratio.

2.8 AMD 3D V-Cache™ Technology
AMD EPYC 9xx4X Series Processors include AMD 3D V-Cache™ die stacking technology that enables 97xx to achieve more
efficient chiplet integration. AMD 3D Chiplet architecture stacks L3 cache tiles vertically to provide up to 96MB of L3
cache per die (and up to 1 GB L3 Cache per socket) while still providing socket compatibility with all AMD EPYC™ 9004
Series Processor models.

AMD EPYC 9004 Series Processors with AMD 3D V-Cache technology employ industry-leading logic stacking based on
copper-to-copper hybrid bonding “bumpless” chip-on-wafer process to enable over 200X the interconnect densities of
current 2D technologies (and over 15X the interconnect densities of other 3D technologies using solder bumps), which
translates to lower latency, higher bandwidth, and greater power and thermal efficiencies.

Figure 2-4: Side view of vertically-stacked central L3 SRAM tiles

Different OPNs also may have different numbers of cores within the CCX. However, for any given part, all CCXs will
always contain the same number of cores.

AMD EPYC 9004 Series Processors 9xx4 9004X
(with 3D V-Cache)

Max Shared L3 Cache per CCD 32 MB 96 MB

Table 2-4: L3 cache by processor model

AMD 3D V-Cache Tiles

Zen4 Core L2 Cache Zen4 CoreL2 Cache

Shared L3 Cache

SIDE VIEW

TM

758008 – 1.3

Chapter 2: AMD EPYC™ 9004 Series Processors

2.9 I/O Die (Infinity Fabric™)
The CCDs connect to memory, I/O, and each other through an updated I/O Die (IOD). This central AMD Infinity Fabric™
provides the data path and control support to interconnect CCXs, memory, and I/O. Each CCD connects to the IOD via a
dedicated high-speed Global Memory Interconnect (GMI) link. The IOD helps maintain cache coherency and additionally
provides the interface to extend the data fabric to a potential second processor via its xGMI, or G-links. AMD EPYC 9004
Series Processors support up to 4 xGMI (or G-links) with speeds up to 32Gbps. The IOD exposes DDR5 memory channels,
PCIe® Gen5, CXL 1.1+, and Infinity Fabric links.

All dies (chiplets) interconnect with each other via AMD Infinity Fabric technology. Figure 2-6 (which corresponds to
Figure 2-2, above) shows the layout of a 96-core AMD EPYC 9654 processor. The AMD EPYC 9654 has 12 CCDs, with each
CCD connecting to the IOD via its own GMI connection.

Figure 2-5: AMD EPYC 9654 processor internals interconnect via AMD Infinity Fabric (12 CCD processor shown)

AMD also provides “wide” OPNs (e.g. AMD EPYC 9334) where each CCD connects to two GMI3 interfaces, thereby
allowing double the Core-to-I/O die bandwidth.

Figure 2-6: Standard vs. Wide GMI links

The IOD provides twelve Unified Memory Controllers (UMCs) that support DDR5 memory. The IOD also presents 4 ‘P-
links’ that the system OEM/designer can configure to support various I/O interfaces, such as PCIe Gen5, and/or CXL 1.1+.

I/O DIE

I/O Links

CCDCCD
UMC Infinity

Fabric LinksCCD

CCDCCDCCD

CCDCCDCCD

CCDCCDCCD

UMC

UMC

UMC

UMC
UMC

UMC
UMC

UMC

UMC

UMC
UMC

G Links

P Links

I/O Die

CCD

6
 x U

M
C

GMI Port

CCD

GMI Port

CCD

GMI Port

CCD CCD CCD

CCD CCD CCD CCD CCD CCD

6
 x

 U
M

C

96 cores (12 CCDs, GMI3)

I/O Die

6
 x U

M
C

CCD CCD

CCD CCD

6
 x

 U
M

C

32 cores (4 CCDs, GMI3 -Wide)

GMI Port GMI Port GMI Port

GMI Port GMI Port GMI Port GMI Port GMI Port GMI Port

GMI Port GMI Port GMI Port GMI Port GMI Port GMI Port

GMI Port GMI Port GMI Port GMI Port GMI Port GMI Port

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

8 58008 – 1.3

2.10 Memory and I/O
Each UMC can support up to 2 DIMMs per channel (DPC) for a maximum of 24 DIMMs per socket. OEM server
configurations may allow either 1 DIMM per channel or 2 DIMMs per channel. 4th Gen AMD EPYC processors can support
up to 6TB of DDR5 memory per socket. Having additional and faster memory channels compared to previous generations
of AMD EPYC processors provides additional memory bandwidth to feed high-core-count processors. Memory
interleaving on 2, 4, 6, 8, 10, and 12 channels helps optimize for a variety of workloads and memory configurations.

Each processor may have a set of 4 P-links and 4 G-links. An OEM motherboard design can use a G-link to either connect
to a second 4th Gen AMD EPYC processor or to provide additional PCIe Gen5 lanes. 4th Gen AMD EPYC processors
support up to eight sets of x16-bit I/O lanes, that is, 128 lanes of high-speed PCIe Gen5 in single-socket platforms and up
to 160 lanes in dual-socket platforms. Further, OEMs may either configure 32 of these 128 lanes as SATA lanes and/or
configure 64 lanes as CXL 1.1+. In summary, these links can support:

• Up to 4 G-links of AMD Infinity Fabric connectivity for 2P designs.

• Up to 8 x16 bit or 128 lanes of PCIe Gen 5 connectivity to peripherals in 1P designs (and up to 160 lanes in 2-socket
designs).

• Up to 64 lanes (4 P-links) that can be dedicated to Compute Express Link (CXL) 1.1+ connectivity to extended
memory.

• Up to 32 I/O lanes that can be configured as SATA disk controllers.

958008 – 1.3

Chapter 2: AMD EPYC™ 9004 Series Processors

2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h)
This section depicts AMD EPYC 9004 Series Processors that have been set up with four nodes per socket (NPS=4). Please
see “NUMA Topology” on page 10 for more information about nodes.

2.11.1 Models 91xx-96xx (“Genoa”)
4th Gen AMD EPYC 9004 processors with model numbers 91xx-96xx have up to 12 CCDs that each contain a single CCX, as
shown below.

Figure 2-7: The AMD EPYC 9004 SoC consists of up to 12 CCDs and a central IOD for 91xx-96xx models, including “X” OPNs

Zen4

Zen4

Zen4

Zen4

3
2M

B
 Sh

are
d

L3
 C

ache

Zen4

Zen4

Zen4

Zen4

CCD11

UMC6

I/O DIE

NPS = 4

Zen4

Zen4

Zen4

Zen4

3
2M

B
 Sh

are
d

L3

 C
ache

Zen4

Zen4

Zen4

Zen4

CCD3

Zen4

Zen4

Zen4

Zen4

3
2M

B
 Sh

are
d

L3
 C

ache

Zen4

Zen4

Zen4

Zen4

CCD7

DIMM

DIMM

UMC7
DIMM

DIMM

UMC8
DIMM

DIMM

Zen4

Zen4

Zen4

Zen43
2

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD8

UMC0

Zen4

Zen4

Zen4

Zen43
2

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD0

Zen4

Zen4

Zen4

Zen43
2

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD4

DIMM

DIMM

UMC1
DIMM

DIMM

UMC2
DIMM

DIMM

Zen4

Zen4

Zen4

Zen4

3
2M

B
 S

h
ar

ed

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD9

UMC11

Zen4

Zen4

Zen4

Zen4

3
2M

B
 S

h
ar

ed

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD1

Zen4

Zen4

Zen4

Zen4

3
2M

B
 S

h
ar

ed

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD5

DIMM

DIMM

UMC10
DIMM

DIMM

UMC9
DIMM

DIMM

Zen4

Zen4

Zen4

Zen432
M

B
 Sh

a
re

d

L3 C
ach

e

Zen4

Zen4

Zen4

Zen4

CCD10

UMC5

Zen4

Zen4

Zen4

Zen432
M

B
 Sh

a
re

d

L3 C
ach

e

Zen4

Zen4

Zen4

Zen4

CCD2

Zen4

Zen4

Zen4

Zen432
M

B
 Sh

a
re

d

L3 C
ach

e

Zen4

Zen4

Zen4

Zen4

CCD6

DIMM

DIMM

UMC4
DIMM

DIMM

UMC3
DIMM

DIMM

I/O HUB2

PCIe Gen5
Slots

I/O HUB0

PCIe Gen5
Slots

I/O HUB1

PCIe Gen5
Slots

I/O HUB3

PCIe Gen5
Slots

GMI Link GMI Link GMI Link GMI Link GMI Link GMI Link

GMI Link GMI Link GMI Link GMI Link GMI Link GMI Link

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

10 58008 – 1.3

2.11.2 Models 97xx (“Bergamo”)
97xx 4th Gen AMD EPYC 9004 Series Processors with model numbers 97xx have up to 8 CCDs that each contain two
CCXs, as shown below.

Figure 2-8: The AMD EPYC 9004 System on Chip (SoC) consists of up to 8 CCDs and a central IOD for 97xx models

2.12 NUMA Topology
AMD EPYC 9004 Series Processors use a Non-Uniform Memory Access (NUMA) architecture where different latencies
may exist depending on the proximity of a processor core to memory and I/O controllers. Using resources within the
same NUMA node provides uniform good performance, while using resources in differing nodes increases latencies.

2.12.1 NUMA Settings
A user can adjust the system NUMA Nodes Per Socket (NPS) BIOS setting to optimize this NUMA topology for their
specific operating environment and workload. For example, setting NPS=4 as shown in “Memory and I/O” on page 8
divides the processor into quadrants, where each quadrant has 3 CCDs, 3 UMCs, and 1 I/O Hub. The closest processor-
memory I/O distance is between the cores, memory, and I/O peripherals within the same quadrant. The furthest
distance is between a core and memory controller or IO hub in cross- diagonal quadrants (or the other processor in a 2P
configuration). The locality of cores, memory, and IO hub/devices in a NUMA-based system is an important factor when
tuning for performance.

UMC6

I/O DIE

NPS = 4

DIMM

DIMM

UMC7
DIMM

DIMM

UMC8
DIMM

DIMM

UMC0

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

e
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

DIMM

DIMM

UMC1
DIMM

DIMM

UMC2
DIMM

DIMM

UMC11
DIMM

DIMM

UMC10
DIMM

DIMM

UMC9
DIMM

DIMM

UMC5
DIMM

DIMM

UMC4
DIMM

DIMM

UMC3
DIMM

DIMM

I/O HUB2

PCIe Gen5

Slots

I/O HUB0

PCIe Gen5

Slots

I/O HUB1

PCIe Gen5

Slots

I/O HUB3

PCIe Gen5

Slots

GMI Link GMI Link GMI Link GMI Link

GMI Link GMI Link GMI Link GMI Link

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

CCD0

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

e
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
ar

ed

L3
 C

a
ch

e
Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

CCD4 CCD3 CCD7

CCD1 CCD5 CCD2 CCD6

1158008 – 1.3

Chapter 2: AMD EPYC™ 9004 Series Processors

The NPS setting also controls the interleave pattern of the memory channels within the NUMA Node. Each memory
channel within a given NUMA node is interleaved. The number of channels interleaved decreases as the NPS setting gets
more granular. For example:

• A setting of NPS=4 partitions the processor into four NUMA nodes per socket with each logical quadrant configured
as its own NUMA domain. Memory is interleaved across the memory channels associated with each quadrant. PCIe
devices will be local to one of the four processor NUMA domains, depending on the IOD quadrant that has the
corresponding PCIe root complex for that device.

• A setting of NPS=2 configures each processor into two NUMA domains that groups half of the cores and half of the
memory channels into one NUMA domain, and the remaining cores and memory channels into a second NUMA
domain. Memory is interleaved across the six memory channels in each NUMA domain. PCIe devices will be local to
one of the two NUMA nodes depending on the half that has the PCIe root complex for that device.

• A setting of NPS=1 indicates a single NUMA node per socket. This setting configures all memory channels on the
processor into a single NUMA node. All processor cores, all attached memory, and all PCIe devices connected to the
SoC are in that one NUMA node. Memory is interleaved across all memory channels on the processor into a single
address space.

• A setting of NPS=0 indicates a single NUMA domain of the entire system (across both sockets in a two-socket
configuration). This setting configures all memory channels on the system into a single NUMA node. Memory is
interleaved across all memory channels on the system into a single address space. All processor cores across all
sockets, all attached memory, and all PCIe devices connected to either processor are in that single NUMA domain.

You may also be able to further improve the performance of certain environments by using the LLC (L3 Cache) as NUMA
BIOS setting to associate workloads to compute cores that all share a single LLC. Enabling this setting equates each
shared L3 or CCX to a separate NUMA node, as a unique L3 cache per CCD. A single AMD EPYC 9004 Series Processor with
12 CCDs can have up to 12 NUMA nodes when this setting is enabled.

Thus, a single EPYC 9004 Series Processor may support a variety of NUMA configurations ranging from one to twelve
NUMA nodes per socket.

Note: If software needs to understand NUMA topology or core enumeration, it is imperative to use documented Operating
System (OS) APIs, well-defined interfaces, and commands. Do not rely on past assumptions about settings such as
APICID or CCX ordering.

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

12 58008 – 1.3

2.13 Dual-Socket Configurations
AMD EPYC 9004 Series Processors support single- or dual-socket system configurations. Processors with a ‘P’ suffix in
their name are optimized for single-socket configurations (see the “Processor Identification” chapter) only. Dual-socket
configurations require both processors to be identical. You cannot use two different processor Ordering Part Numbers
(OPNs) in a single dual-socket system.

Figure 2-9: Two EPYC 9004 Processors connect through 4 xGMI links (NPS1)

In dual-socket systems, two identical EPYC 9004 series SoCs are connected via their corresponding External Global
Memory Interconnect [xGMI] links. This creates a high bandwidth, low latency interconnect between the two processors.
System manufacturers can elect to use either 3 or 4 of these Infinity Fabric links depending upon I/O and bandwidth
system design objectives.

The Infinity Fabric links utilize the same physical connections as the PCIe lanes on the system. Each link uses up to 16
PCIe lanes. A typical dual socket system will reconfigure 64 PCIe lanes (4 links) from each socket for Infinity Fabric
connections. This leaves each socket with 64 remaining PCIe lanes, meaning that the system has a total of 128 PCIe
lanes. In some cases, a system designer may want to expose more PCIe lanes for the system by reducing the number of
Infinity Fabric G-Links from 4 to 3. In these cases, the designer may allocate up to 160 lanes for PCIe (80 per socket) by
utilizing only 48 lanes per socket for Infinity Fabric links instead of 64.

A dual-socket system has a total of 24 memory channels, or 12 per socket. Different OPNs can be configured to support a
variety of NUMA domains.

I/O
 D

IE

NUMA 1 NUMA 22 NUMA Domains

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

CC
D

CC
D

CC
D

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
CM

U
CM

U
CM

I/O
 D

IE

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

xGMI Links

58008 – 1.3 13

This chapter provides high-level lists of the default AMD EPYC 9004 BIOS settings and their default values. Please see
Chapter 4 of the BIOS & Workload Tuning Guide for AMD EPYC™ 9004 Series Processors (available from AMD EPYC Tuning
Guides) for detailed descriptions. Later chapters in this Tuning Guide discuss the BIOS options as they relate to a specific
workload or set of workloads.

Note: The default setting names and values described in this chapter are the AMD default names and values that serve as
recommendations for OEMs. End users must confirm their OEM BIOS setting availability and options.

AMD strongly recommends that customers download and install the latest BIOS update for your AMD EPYC 9004 Series
Processor-based server from your platform vendor. BIOS updates often help customers by providing new and updated
features, bug fixes, enhancements, security features, and other improvements. These improvements can help your
system software stability and dependency modules (such as hardware, firmware, drivers, and software) by giving you a
more robust environment to run your applications.

Chapter

3 BIOS Defaults Summary

https://www.amd.com/en/search/documentation/hub.html#sortCriteria=%40amd_release_date%20descending&f-amd_document_type=Tuning%20Guides&f-amd_product_brand=EPYC

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

14 58008 – 1.3

3.1 Processor Core Settings
Name Default Description

SMT Control Auto • Enabled/Auto: Two hardware threads per core.
• Disabled: Single hardware thread per core.

L1 Stream HW Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L1 Stride Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L1 Region Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L1 Burst Prefetch Mode Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L2 Stream HW Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L2 Up/Down Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

Core Performance Boost Auto • Enabled/Auto: Enables Core Performance Boost.
• Disabled: Disables Core Performance Boost.

BoostFmaxEn Auto • Auto: Use the default Fmax
• Manual: User can set the boost Fmax

BoostFmax Auto Specify the boost Fmax frequency limit to apply to all cores (MHz in
decimal)

Global C-State Control Auto • Enabled/Auto: Controls IO based C-state generation and DF C-
states, including core processor C-States

• Disabled: AMD strongly recommends not disabling this option
because this also disables core processor C-States.

Table 3-1: Processor core BIOS settings

1558008 – 1.3

Chapter 3: BIOS Defaults Summary

X3D Auto Enables or disables AMD 3D V-Cache™ technology on Cache
Optimized (9004X) processors.
• Auto: Enabled on an AMD EPYC 9004 Series processor with AMD

3D V-Cache™ technology, enabling this option enables the AMD
3D V-Cache module in the CCD to increase the total size of the L3
cache memory to 96MB

• Disabled: Disabling this option reduces the L3 cache in the CCD to
32MB.

Note: This option only applies to AMD EPYC 9004 Series Processors
with AMD 3D V-Cache technology.

Note: AMD engineers performed extensive internal testing and
validation for various applications using the X3D BIOS option found in
AMD EPYC 9xx4X processors with AMD 3D V-Cache technology. This
testing and validation cannot cover all applications or use cases.
Testing has shown AMD 3D V-Cache to be beneficial for most
workloads, however AMD recommends that you test and evaluate the
benefits of enabling or disabling the X3D BIOS option for your
application workloads in your environment and proceeding based on
those results.

Table 3-1: Processor core BIOS settings

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

16 58008 – 1.3

3.2 Power Efficiency Settings
Name Default Description

Power Profile Selection Auto • Auto/0: High-performance mode
• 1: Efficiency mode
• 2: Maximum I/O performance mode

Determinism Control Auto • Auto: Use default performance determinism settings.
• Manual: Specify custom performance determinism settings.

Determinism Enable Auto • Auto: Performance.
• 1: Power.

TDP Control Auto • Auto: Use platform- and OPN-default TDP.
• Manual: Set custom configurable TDP.

TDP OPN Max This option appears once the user sets the TDP Control to Manual.
• Values 85-400: Set configurable TDP, in watts.

PPT Control Auto Enables or disables the PPT control.
• Auto: Automatically set PPL in watts.
• Manual: Specify a custom PPL.

PPT OPN Max This option appears once the user sets the PPT Control to Manual.
• Values 85-400: Set configurable PPT, in watts.

CPPC Auto • Enabled/Auto: Allows the OS to make performance/power
optimization requests using ACPI CPPC.

• Disabled: Prevents the OS from making performance/power
optimization requests using ACPI CPPC.

Table 3-2: Power efficiency BIOS settings

1758008 – 1.3

Chapter 3: BIOS Defaults Summary

3.3 NUMA and Memory Settings
Name Default Description

LLC as NUMA Domain
(ACPI SRAT L3 Cache as
NUMA Domain)

Disabled • Disabled (recommended): Both NUMA nodes (cpubind) and
memory interleaving (membind) are determined by the NPS
setting.

• Enabled: Overrides the NPS setting for # of NUMA nodes by
mapping each LLC as a NUMA node. This does not impact the
memory interleaving

Nodes Per Socket (NPS) 1 Memory Interleaving: The NPS setting always determines the
memory interleaving regardless of whether LLC as NUMA is Enabled
or Disabled.

of NUMA nodes (if LLC as NUMA Domain is Disabled):

• NPS1/Auto: One NUMA node per socket (Most cloud providers
use this as it provides consistent average memory latency to all
the accesses within a socket).

• NPS2: Two NUMA nodes per socket.
• NPS4: Four NUMA nodes per socket
• NPS0 (not recommended): Only applicable for dual-socket

systems. A single NUMA node is created for the whole two-
socket platform.

AMD recommends either NPS1 or NPS4 depending on your use case.
Windows systems: Make sure that the number of logical processors
per NUMA node is <=64. You can do this by using NPS2 or NPS4
instead of the default NPS1.

Memory Target Speed Auto • Auto: Determine the maximum memory speed based on SPD
information from populated DIMMs and platform memory speed
support.

Alternatively, you can select:
• Values 3200–5600 MT/s: Run the DRAM memory target clock

speed at the specified speed. The DRAM memory target is the
DDR rate.

Your OEM system default value may vary.
Memory Interleaving Auto • Auto/Enable: Enables memory interleaving.

• Disable: Allows for disabling memory interleaving. The NUMA
Nodes per Socket setting will be honored regardless of this
setting. AMD strongly recommends not disabling this setting
because most production deployments benefit from memory
interleaving.

Table 3-3: NUMA and memory BIOS settings

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

18 58008 – 1.3

3.4 Infinity Fabric Settings
Name Default Description

3-4 xGMI Link Max Speed Auto • 12 Gbps
• 16 Gbps
• 17 Gbps
• 18 Gbps
• 20 Gbps
• 22 Gbps
• 23 Gbps
• 24 Gbps
• 25 Gbps/Auto
• 26 Gbps
• 27 Gbps
• 28 Gbps
• 30 Gbps
• 32 Gbps
Your OEM system default value may vary.

xGMI Link Width Control Auto • Auto: Use the default xGMI link width controller settings.
• Manual: Specify a custom xGMI link width controller setting.

xGMI Force Link Width
Control

Auto • Unforce: Do not force the xGMI to a fixed width.
• Force: Use the xGMI link to the user-specified width.

xGMI Force Link Width Auto • 0: Force xGMI link width to x4.
• 1: Force xGMI link width to x8.
• 2: Force xGMI link width to x16.

xGMI Max Link Width Control Auto • Auto: Use the default xGMI link width controller settings.
• Manual: Specify a custom xGMI link with controller setting.

xGMI Max Link Width Auto • 0: Set max xGMI link width to x8.
• 1: Set max xGMI link width to x16.

APBDIS Auto • 0/Auto: Dynamically switch the Infinity Fabric P-state based on
link usage.

• 1: Enabled fixed Infinity Fabric P-state control.
DfPstate Range Support Auto • Auto: If this feature is enabled, the range value setting should

follow the rule that MaxDfPstate<=MinDfPstate. Otherwise, it
will not work.

• Enable: Add the values MaxDfPstate & MinDfPstate.
• Disable: No MaxDfPstate & MinDfPstate option.

Table 3-4: Infinity Fabric BIOS settings

1958008 – 1.3

Chapter 3: BIOS Defaults Summary

3.5 PCIe, I/O, Security, and Virtualization Settings

DF C-States Auto Controls DF C-states.
• Disabled: Prevents the AMD Infinity Fabric from entering a low-

power state.
• Enabled/Auto: Allows the AMD Infinity Fabric to enter a low-

power state.

Name Default Description

Local APIC Mode Auto(0x02) • xAPIC: Use xAPIC, supports up to 255 cores.
• x2APIC: Supports more than 255 cores.
• Auto: The system will choose the mode that best fits the number

of active cores in the system.
• Compatibility: Threads below 255 run in xAPIC with xAPIC ACPI

structures, and threads 255 and above run in x2 mode with x2
ACPI structures.

• XApicMode (0x01): Forces legacy xAPIC mode.
• X2ApicMode (0x02): Forces x2APIC mode independent of thread

count.
PCIe Speed PMM Control Auto • 0: Dynamic link speed determined by power management

functionality.
• 1: Static Target Link Speed (Gen4); sets the maximum idle link

speed to 16 GT/s.
• Auto/2: Static Target Link Speed (Gen5); sets the maximum idle

link speed to 32 GT/s, thereby disabling the feature).
PCIe ARI Support (SRIOV) Auto • Enabled/Auto: Enables Alternative Routing ID interpretation.

• Disabled: Disables Alternative Routing ID interpretation.
PCIe Ten Bit Tag Support Auto • Enabled/Auto: Enables PCIe 10-bit tags for supported devices.

• Disabled: Disables PCIe 10-bit tags for all devices.
IOMMU Auto • Enabled/Auto: Enables IOMMU. AMD recommends setting this

to pt:pass-through in the Linux kernel settings.
• Disabled: Disables IOMMU.

AVIC Disabled Advanced Virtual Interrupt Controller.
• Disabled: Disables AVIC.
• Enabled: Enables AVIC.

x2AVIC Disabled x2AVIC is an extension of the advanced virtual interrupt controller.
This feature currently requires a custom AMD Linux kernel.
• Disabled: Disables x2AVIC.
• Enabled: Enables x2AVIC.

Table 3-5: PCIe, I/O, security, and virtualization BIOS settings

Table 3-4: Infinity Fabric BIOS settings

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

20 58008 – 1.3

3.6 Higher-Level Settings
The system powers on to an initial state, after which succeeding software layers may affect system settings:

1. System firmware validates basic hardware functionality and allows users to change various settings via the BIOS
Setup menus.

2. UEFI provides a shell environment that allows users to further interact with the system.

3. The operating system or hypervisor is the next software layer that provides control over system hardware.

4. Lastly, certain applications can also affect underlying hardware.

Each of the lines above may alter settings made by prior line, and some user changes require a reboot to take effect.

Please refer to your OEM documentation and/or applicable AMD Tuning Guide(s) for further guidance.

TSME Auto • Auto/Disabled: Disables transparent secure memory encryption.
• Enabled: Enables transparent secure memory encryption.

SEV Disabled In a multi-tenant environment (such as a cloud), Secure Encrypted
Virtualization (SEV) mode isolates virtual machines from each other
and from the hypervisor.
• Disabled: SEV is disabled.
• Enabled: SEV is enabled.

SEV-ES Disabled Secure Encrypted Virtualization-Encrypted State (SEV-ES) mode
extends SEV protection to the contents of the CPU registers by
encrypting them when a virtual machine stops running. Combining
SEV and SEV-ES can reduce the attack surface of a VM by helping
protect the confidentiality of data in memory.
• Disabled: SEV-ES is disabled.
• Enabled: SEV-ES is enabled.

SEV-SNP Disabled Secure Encrypted Virtualization-Secure Nested Paging (SEV-SNP)
mode builds on SEV and SEV-ES by adding strong memory integrity
protection to create an isolated execution environment that helps
prevent malicious hypervisor-based attacks such as data replay and
memory re-mapping. SEV-SNP also introduces several additional
optional security enhancements that support additional VM use
models, offer stronger protection around interrupt behavior, and
increase protection against recently-disclosed side channel attacks.
• Disabled: SEV-SNP is disabled.
• Enabled: SEV-SNP is enabled.

Table 3-5: PCIe, I/O, security, and virtualization BIOS settings

58008 – 1.3 21

ZM

This chapter recommends best practices for container deployment on Kubernetes

4.1 General
• Increase max-pods for AMD EPYC Processor SKUs that can handle more density. The default maximum number of

pods that can run on a worker node is 110. AMD EPYC processors can potentially handle many more than this
depending on container resource sizing. Modify the –max-pods kubelet flag to take advantage of the compute,
memory, and IO density found in some AMD EPYC SKUs.

• Reserve CPUs and memory resources for kubelet and system daemons and eviction thresholds. Kubelet services
run on every Kubernetes node in a cluster. Worker nodes communicate with the Controller node by sending
heartbeats every few seconds to determine node availability and pass other health check data. The kubelet service
therefore uses CPU resources even when no workload is running. A Kubernetes node can be scheduled to capacity,
meaning that pods can consume all available capacity and leave few resources for system daemons that power the
OS and Kubernetes itself. Competition between pods and the daemons could cause node resource starvation and
issues unless sufficient resources are allocated to these tasks. Kubelet can use eviction thresholds to proactively
terminate pods and reclaim resources. Kubelet monitors node resources such CPU, memory, and filesystem I/O on
the nodes and can fail one or more pod(s) on that node when one or more resources reach a specific consumption
level, thereby reclaiming resources and preventing starvation.

• Implement pod resource limits and enable SMT awareness to reduce noisy neighbor scenarios: Each container has
unlimited access to host CPU cycle by default, which means that a “noisy neighbor” container can drain resources
from another container on the same host. You can mitigate this problem by limiting the CPU, memory, and/or I/O
resources available to each container in the pod definition file. Defining container resource requests and limits
determines the Quality of Service (QoS) class of the pod. Kubernetes automatically classifies pods into one of three
QoS categories:

- Guaranteed: Pods receive this classification when the container in the pod has a CPU and memory request and
limit. The requests and limits must be equal.

- Burstable: Pods receive this classification when it does not meet the Guaranteed QoS class and has a container
with either a memory or CPU request.

- BestEffort: Pods receive this classification if the container has no CPU or memory request or limit. BestEffort
pods have the lowest scheduling priority and could be evicted to make room for Guaranteed or Burstable pods.

On a SMT enabled node, kubelet treats physical and logical cores with the same scheduling priority. SMT threads are
sometimes scheduled even when physical cores are available. Resource contention typically occurs on SMT threads,
which can seem like a performance regression because the container is running on a thread as opposed to a physical
core. In some cases, pods could be assigned virtual and physical cores that are not siblings, which can cause different
containers to share a physical core and contribute to a noisy neighbor problem. Kubernetes 1.23 has a beta feature to
modify the cpu-manager-policy-options flag, When this flag is set to full-pcpus-only=true, the static
policy option will always allocate full physical cores. Kubelet will only admit pods if the entire CPU request for all

Chapter

4
Best Practices for Container
Deployment

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

22 58008 – 1.3

containers can be fulfilled by allocating full physical cores. For example, kubelet will not admit a Guaranteed pod
with 1 CPU in an SMT environment. The result will generate a SMTAlignmentError message.

• Implement CPU pinning for better performance: Kubernetes uses CFS to enforce pod CPU limits. Again, a container
has unlimited access to host CPU cycles by default. A single compute node in a Kubernetes cluster can run multiple
pods, some of which may be running CPU-intensive workloads. Pods in this scenario might contend for the CPU
resources available to that compute node. The workload can move (load balance) to different CPUs when the level of
contention rises depending on whether the pod is throttled and the current CPU availability at scheduling time.
Some workloads have no problem with this; however the scheduler may spend more time load balancing than
processing the application if the system is heavily utilized. Some workloads may be sensitive to context switches.
Both scenarios may impact workload performance, and pinning the containers may be helpful. This feature is
disabled by default.

• Implement Node level NUMA topology alignment for CPU and PCI devices: CPU pinning alone is not enough for
latency-sensitive workloads. For example, a multi-threaded, network-I/O-intensive workload may be pinned to CCXs
or CCDs from different NUMA nodes. By default, Kubernetes does not guarantee that a container application will be
assigned resources that are local to a NUMA node. The Topology Manager provides the Hint Provider interface for
Kubernetes components to send and receive topology information. This acts as a source of truth that allows other
kubelet components to make topology-aligned resource allocation choices. Topology Manager aligns the resources
requested by Hint Provider so as to assign CPU and I/O to the container or pod from the same NUMA node. The
Topology Manager provides two distinct settings:

- Scope: Aligns resources at the pod or container level.

- Defines how the alignment is carried out, which will be best-effort, restricted, or single-numa-node.

• Use NUMA-Aware Memory Manager for platforms with NUMA nodes greater than one: Get the best performance
and latency for your workload by aligning container CPUs, peripheral devices, and memory to the same NUMA
locality. Kubernetes versions prior to v1.22 included a kubelet with a NUMA topology manager that aligned CPUs and
PCI devices, but not memory. The Linux kernel made best-effort attempts to allocate memory for tasks from the
same NUMA node where the executing container was placed but could not guarantee that placement.

4.2 Hardware Configuration
Kubernetes can theoretically support up to 5,000 nodes. Think of a Kubernetes cluster as a “super node/machine” that
is an abstraction of sets of individual nodes. The total cluster compute capacity is the sum of the CPU and memory in the
individual nodes.

Every node must be able to communicate with every other node. The control plane manages this communication. The
Kubernetes manager regularly iterates through all the nodes in the cluster to run a health check. More nodes mean a
higher controller node.

A Kubernetes cluster includes two main components: a control plane and worker nodes. In production environments, the
control plane usually runs across multiple computers, and a cluster usually runs multiple nodes, thereby providing fault-
tolerance and high availability.

Note: Add-on Kubernetes components such as health monitoring are beyond the scope of this tuning guide.

4.2.1 Controller (Control Plane)
The control plane manages the worker nodes and the pods in the cluster. The control plane components make global
decisions about the cluster such as scheduling and detecting and responding to cluster events. Here are a few examples
of controller node sizes used by cloud providers, and you can find more information at Architecting Kubernetes clusters —
Choosing a Worker Node Size*.

https://learnk8s.io/kubernetes-node-size
https://learnk8s.io/kubernetes-node-size

2358008 – 1.3

Chapter 4: Best Practices for Container Deployment

• Google Compute Platform:

- 5 nodes (n2d-standard-2 master nodes): 8 GiB of memory, 2 vCPU.

- 500 nodes (n2d-standard-64 worker nodes): 256 GiB of memory, 64 vCPU.

• AWS:

- 5 nodes (m6a.large master nodes): 8 GiB of memory, 2 vCPU.

- 500 nodes (c6a.8xlarge worker nodes): 128 GiB of memory, 64 vCPU.

4.2.2 Worker Nodes
Nodes run containerized applications. The Kubelet, kube-proxy, and container runtime components run on every node to
maintain running pods and provide the Kubernetes runtime environment.

Determine the cluster compute need, and then consider what type of worker nodes to deploy. There are pros and cons
around deploying a larger number of less-powerful worker nodes instead versus fewer nodes with more CPU, memory,
and I/O capacity. For example, if the total cluster compute need is 128 CPU and 8TB of memory, then you can deploy
either 2 nodes with 64 CPU and 4TB of memory each or 4 nodes with 32 CPU and 2TB of memory each. The type of
applications being deployed and other factors are described in Architecting Kubernetes clusters — Choosing a Worker
Node Size*.

4.3 Testing Kubernetes Scheduler CPU Resource Assignment
AMD used a test environment with one worker node to observe how the Kubernetes scheduler assigned CPU resources
for Guaranteed and Burstable QoS-class pods. Testing did not consider BestEffort QoS-class pods because they are the
lowest-priority pod type. Table 4-1 describes the test environment.

4.3.1 Software Configuration
Table 4-1 lists the software configurations used for testing.

Name Version Description

BIOS OPTION N/A • NUMA per SOCKET=2
• SMT = ON

Ubuntu 20.04 OS distribution
Kernel 5.4.0-58-generic Host OS
Kubernetes 1.23.3 Container orchestration platform
Docker CE 19.03.13 Container runtime environment
Containerd 1.3.7 Container runtime that abstracts system calls or OS-

specific functions to run containers on Linux, Windows,
or other operating systems.

Runc 1.0.0-rc10 Container runtime environment
Multi-threaded Kernel Compilation
https://hub.docker.com/_/gcc

gcc:latest tag Multi-threaded kernel compilation script that leverages
the official gcc container image on Docker Hub.

Table 4-1: Software configuration

https://learnk8s.io/kubernetes-node-size
https://learnk8s.io/kubernetes-node-size

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

24 58008 – 1.3

4.3.2 Test Methodology
The tuning knobs suggested in “General” on page 21 can be categorized as tuning for either node stability or
performance. These tests enabled each performance-related tuning knob, such as CPU Pinning, NUMA Topology
Manager, SMT Awareness, and NUMA-Aware Memory Manager one at a time. A validation run occurred after enabling
each knob. Each test run deployed Sysbench and GCC pods to observe kublet behavior, with workload metrics collected to
measure the effect or benefits. Htop was used to visually verify that pods were correctly assigned to CPU resources
corresponding to the kubelet flag enabled.

GCC pods run a Linux kernel compilation workload utilizing more than two parallel threads. Compilation time is the
metric for a GCC pod. The Sysbench workload is a single-threaded CPU intensive test. A Sysbench container was
deployed using two types of Guaranteed pods: one with a 1CPU resource requirement, and another for 2CPUs.

In general:

• Guaranteed pods using a static cpu-manager policy performed better.

• Setting Numa-topology-manager to restricted policy improved Guaranteed pod performance.

• Enabling SMT Awareness resulted in consistent performance across multiple Guaranteed pods.

• Enabling NUMA-Aware Memory Manager did not make much difference, but this could be related to the type of
workload used for testing.

Validating node stability knob settings is typically a function of pod density. You will see examples of how to set those
values in subsequence sections of this tuning guide.

Ubuntu Container Image 16.04 Base OS image for running Sysbench
Sysbench 0.4.12 CPU-intensive single-thread application running on an

Ubuntu container image used for testing Kubernetes
scheduler behavior under various tuning conditions.

Table 4-1: Software configuration (Continued)

58008 – 1.3 25

‘vM

Kubernetes provides a few tuning knobs to optimize containerized workload deployment. These settings affect
scheduler behavior of Guaranteed QoS pods. The following sections describe how to enable those tuning knobs and other
settings that assist with node stability. These settings are all associated with the kublet service and modifications are
contained in one file.

5.1 Reserving CPU for Kubelet and System Daemons
reserved-cpus is a kubelet flag that defines an explicit CPU set for the OS system daemons and Kubernetes system
daemons. For example:

vi /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Append –reserved-cpus to the ExecStart parameter.

For AMD EPYC 9xx4 processors (1P):

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,96-103 \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARG

For AMD EPYC 97xx processors (1P):

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,128-135 \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARG

Restart the kubelet service.

systemctl restart kubelet

5.2 Container Pinning Settings

5.2.1 Enable the Static CPU Manager Policy
By default, the scheduler load balances such that the containerized application will bounce around to different CPUs. Set
CPU Manager to static to pin the pods or containers.

Append the option --cpu-manager-policy=static and - - reserved-cpus to the ExecStart parameter.

Chapter

5 Recommended Settings

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

26 58008 – 1.3

For AMD EPYC 9xx4 processors:

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,96-103 \
--cpu-manager-policy=static \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

Setting –reserved-cpus is a requirement to enable the Static CPU Manager. The indicated CPUs will not be allocatable
to pods and are dedicated for system and kubelet daemons.

Delete the cpu_manager_state file before restarting the kubelet service.

rm /var/lib/kubelet/cpu_manager_state

Restart the kubelet service. Only Guaranteed QoS pods will be pinned to CPUs when the Static CPU Manager Policy is
enabled.

5.2.2 Lowest Level Cache Affinity using the Static CPU Manager Policy
Some workloads may see a performance boost when affinitized to the cores of the lowest level cache. Pods can be
affinitized to a L3 cache grouping of cores by utilizing the Static CPU Manager Policy. The Static CPU Manager will assign
Guaranteed QoS pods their cores in numerical order respective to the order which the pods are deployed and the user
specified CPU resources for the pod. Figure 5-1 shows an example of how cores will be scheduled to guaranteed pods
when the static policy is enabled.

Figure 5-1: Scheduling cores to pods with the static policy enabled

The Static CPU Manager is SMT-aware. Static Guaranteed QoS pods will take precedence over Burtsable and Best Effort
QoS pods. Burstable and Best Effort QoS pods can be deployed concurrently with Guaranteed QoS pods and will not
impact the numerical core scheduling of static Guaranteed QoS pods.

94

92

90

88

62

60

58

56

30

28

26

24

L3

L3

L3

95

93

91

89

63

61

59

57

31

29

27

25

C6

C4

C2

C0

C6

C4

C2

C0

C6

C4

C2

C0

C7

C5

C3

C1

C7

C5

C3

C1

C7

C5

C3

C1

70

68

66

64

38

36

34

32

6

4

2

0

L3

L3

L3

71

69

67

65

39

37

35

33

7

5

3

1

C6

C4

C2

C0

C6

C4

C2

C0

C6

C4

C2

C0

C7

C5

C3

C1

C7

C5

C3

C1

C7

C5

C3

C1

IOD

9

11

13

15

41

43

45

47

73

75

77

79

L3

L3

L3

8

10

12

14

40

42

44

46

72

74

76

78

C1

C3

C5

C7

C1

C3

C5

C7

C1

C3

C5

C7

C0

C2

C4

C6

C0

C2

C4

C6

C0

C2

C4

C6

17

19

21

23

49

51

53

55

81

83

85

87

L3

L3

L3

16

18

20

22

48

50

52

54

80

82

84

86

C1

C3

C5

C7

C0

C2

C4

C6

C1

C3

C5

C7

C0

C2

C4

C6

C1

C3

C5

C7

C0

C2

C4

C6

CCD 11

CCD 7

CCD 3

CCD 8

CCD 4

CCD 0

CCD 1

CCD 5

CCD 9

CCD 2

CCD 6

CCD 10

Pod 4: 4 CPUs

Pod 3: 4 CPUs

reserved-cpus=0-7

Pod 1: 8 CPUs

Pod 2: 8 CPUs

Pod 4: 8 CPUs

Pod 3: 8 CPUs

reserved-cpus=0-7,96-103

Pod 1: 16 CPUs

Pod 2: 16 CPUs

SMT OFF SMT ON

reserved-cpus

2758008 – 1.3

Chapter 5: Recommended Settings

5.3 Resolving the Noisy Neighbor Problem

5.3.1 Pod Resource Limits
Defining a pod resource limit mitigates some noisy neighbor problem. It is good practice to set pod limits. Here are some
examples of how to define QoS class for pods:

• Pods are given Guaranteed QoS class if their CPU and memory request match their limits.

apiVersion: batch/v1 kind: Job
metadata:
 name: sysbench1
 namespace: sysbench
spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: sysbench1 image: sb-test:latest
 imagePullPolicy: IfNotPresent resources:
 limits: cpu: "2"
 memory: "500M" requests:
 cpu: "2" memory: "500M"
 nodeSelector:
 name: controller

• Pods are given Burstable QoS class if it has a CPU or memory request.

apiVersion: batch/v1 kind: Job
metadata:
 name: sysbench1
 namespace: sysbench
spec:
 template: spec:
 restartPolicy: Never
 containers:
 - name: sysbench1 image: sb-test:latest
 imagePullPolicy: IfNotPresent resources:
 limits: cpu: "2"
 requests: cpu: "1"
nodeSelector:
 name: controller

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

28 58008 – 1.3

5.3.2 SMT Alignment
Another factor that could contribute to a noisy neighbor scenario occurs when multiple pods share the same physical
CPUs. The static cpu-manager policy for kubelet includes an option that forces Guaranteed pods to use only full physical
cores.

Append --cpu-manager-policy-options=”full-pcpus-only=true” to the ExecStart parameter.

For AMD EPYC 9xx4 processors (1P):

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,96-103 \
--cpu-manager-policy=static \
--cpu-manager-policy-options=”full-pcpus-only=true” \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS

Restart the kubelet service. If the service doesn’t start because it failed to initialize the CPU manager policy, then delete
/var/lib/kubelet/cpu_manager_state, and then restart the service.

5.4 NUMA Alignment Settings
CPU pinned containers can be assigned resources from different NUMA nodes. Enabling Topology Manager and setting it
to Restricted forces the kubelet to align CPU, memory, or I/O resources to the same NUMA locality without limiting the
pod/container to just single_numa_node. The Restricted policy limits the preferred kubelet alignment to the
minimum possible NUMA nodes for a given request size on a given machine. For example, consider a system with the
following NUMA configuration:

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 64 65 66 67 68 69 70 71 72 73 74 75 76
77 78 79
node 0 size: 128642 MB
node 0 free: 125955 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95
node 1 size: 128974 MB
node 1 free: 127234 MB
node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 96 97 98 99 100 101 102 103 104
105 106 107 108 109 110 111
node 2 size: 129014 MB
node 2 free: 128342 MB
node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127

• A Guaranteed pod with a CPU request size less than or equal to 32 will be restricted to a single NUMA node.

• A Guaranteed pod with a CPU request size equal to or greater than 32 but less than 64 will be restricted to 2 NUMA
nodes.

In this example, a single_numa_node policy will not admit the second pod. See “NUMA Aware Memory Manager” on
page 29.

2958008 – 1.3

Chapter 5: Recommended Settings

Append --topology-manager-policy=single-numa-node to the ExecStart parameter.

For AMD EPYC 9xx4 processors (1P):

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,96-103 \
--cpu-manager-policy=static \
--cpu-manager-policy-options=”full-pcpus-only=true” \
--topology-manager-policy=restricted \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

Restart the kubelet service.

systemctl kubelet restart

5.5 NUMA Aware Memory Manager
Memory Manager provides guaranteed memory and hugepages allocation for Guaranteed QoS class pods. Other policy
managers should be set prior to the Memory Manager. This policy has an accompanied flag called –reserved-memory.

If the policy is set to static and other node allocatable mechanisms such as –eviction-threshold are utilized, then
--reserved-memory is mandatory.

“Node Stability Settings” on page 30 shows the –eviction-threshold for memory is set to 1Gi. Therefore, set the
following memory-manager-policy and reserved-memory values:

Append --memory-manager-policy and -–reserved-memory to the ExecStart parameter.

For AMD EPYC 9xx4 processors (1P):

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,96-103 \
--cpu-manager-policy=static \
--cpu-manager-policy-options=”full-pcpus-only=true” \
--topology-manager-policy=single-numa-node \
--memory-manager-policy=Static \
--reserved-memory=”0:memory=1Gi” \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

30 58008 – 1.3

5.6 Node Stability Settings
Eviction thresholds are the minimum amount of resources that should be available on the node. Eviction signals are the
current state of a particular resource at a specific time.

Kubelet uses eviction signals to make eviction decisions by comparing the signals to the thresholds. Please see K8S
node-presssure-eviction for a list of evictions signals used by kubelet,

Append --eviction-hard=memory.available<1Gi to the ExecStart parameter.

For AMD EPYC 9xx4 processors (1P):

ExecStart=/usr/bin/kubelet --node-ip=192.168.1.200 \
--reserved-cpus=0-7,96-103 \
--cpu-manager-policy=static \
--cpu-manager-policy-options=”full-pcpus-only=true” \
--topology-manager-policy=single-numa-node \
--memory-manager-policy=Static \
--reserved-memory=”0:memory=1Gi” \
--eviction-hard=memory.available<1Gi \
$KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

5.7 SR-IOV Network Device Plugin for High-Perf. Network I/O
Single Root I/O Virtualization (SR-IOV) allows a physical PCIe device to present itself multiple times as a virtual instance
of the device. This is called Virtual Functions (VFs). A device plugin can be deployed as a Kubernetes DaemonSet to allow
the node to recognize and assign particular VFs available on the host node to pods. Applications that require high
bandwidth and low latency can see performance and reliability improvements by allocating dedicated VFs to its
respective pod. The implementation described here used a Broadcom P2100G PCIe Network Interface Card (NIC), but any
SR-IOV capable Ethernet NIC will work as well.

To install:

1. Ensure that SR-IOV is enabled in BIOS.

2. Identify the Physical Function (PF) name of the port of the SR-IOV-enabled card, and then run the following
command to create 64 VFs:

echo 64 > /sys/class/net/${PF_NAME}/device/sriov_numvfs

3. You must install a SR-IOV CNI plugin Kubernetes node to allow configuring and using VF networks in Kubernetes.
This plugin requires Go 1.17+ to build. Clone the SR-IOV CNI plugin repository and run make inside the cloned
repository to build the plugin binary:

git clone https://github.com/k8snetworkplumbingwg/sriov-cni

Upon build, the plugin binary will be located in build/sriov.

4. Move the binary to /opt/cni/bin.

5. Begin deploying the SR-IOV device plugin as a Kubernetes DaemonSet by building the device plugin image on each
Kubernetes node. Do this by executing the following commands:

git clone https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin

3158008 – 1.3

Chapter 5: Recommended Settings

make image

6. You will need to define the SR-IOV resource pool on each node to create device plugin endpoints based on your
resource configuration. Here is an example of a SRIOVConfigMap.yaml file for the two ports of the Broadcom
P2100G NIC:

apiVersion: v1
kind: ConfigMap
metadata:
 name: sriovdp-config
 namespace: kube-system
data:
 config.json: |
 {
 "resourceList": [{
 "resourceName": "broadcom_sriov_netdevice_portA",
 "resourcePrefix": "broadcom.com",
 "selectors": {
 "rootDevices": ["0000:81:00.0"]
 }
 },
 {
 "resourceName": "broadcom_sriov_netdevice_portB",
 "resourcePrefix": "broadcom.com",
 "selectors": {
 "rootDevices": ["0000:81:00.1"]
 }
 }
]
 }

You can customize the resourceName and resourcePrefix fields to identify the node’s PF. You must fill the
rootDevices field with the corresponding SR-IOV-enabled NIC PCI address.

7. Execute the following command to deploy the configuration map:

kubectl apply -f SRIOVConfigMap.yaml

8. You must also create a Network Attachment Definition in order to expose and request an SR-IOV interface in a
container. Here is an example of a NetworkAttachmentDefinition-Port-A.yaml file for a single port of the
Broadcom P2100G:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: sriov-net-a
 annotations:
 k8s.v1.cni.cncf.io/resourceName: broadcom.com/broadcom_sriov_netdevice_portA
spec:
 config: '{
 "type": "sriov",
 "ipam": {
 "type": "host-local",
 "subnet": "11.11.1.0/24",
 "rangeStart": "11.11.1.10",
 "rangeEnd": "11.11.1.73",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

32 58008 – 1.3

 "gateway": "11.11.1.1"
 }
}'

You can customize the name field of the Network Attachment Definition to identify the network of a single NIC port.
Populate the k8s.v1.cni.io/resourceName field with the resourcePrefix/resourceName fields that were
provided in the previous Configuration Map. The rangeStart and rangeEnd fields need to provide a range of
addresses that equal the required number of SR-IOV VFs. Each port of the SR-IOV-enabled NIC requires a Network
Attachment Definition.

9. Execute the following command to apply the Network Attachment Definition:

kubectl apply -f NetworkAttachmentDefinition-Port-A.yaml

10. Having defined the node’s networking resources, deploy the SR-IOV Device Plugin DaemonSet using the following
command inside the SR-IOV Network Device Plugin repository:

kubectl create -f sriov-network-device-plugin/deployments/k8s-v1.16/sriovdp-
daemonset.yaml

11. A compatible CNI meta-plugin is required to enable the capability to attach the VF network interfaces to a pod. This
implementation used Multus CNI was utilized, which can be installed by executing the following commands:

git clone https://github.com/k8snetworkplumbingwg/multus-cni
kubectl apply -f multus-cni/deployments/multus-daemonset-thick.yml

12. Upon a successful installation, the allocatable resource list for the node should discover the VF resources provided by
the device plugin. Check this by executing the following command:

kubectl get node ${Node_Name} -o json | jq ‘.status.allocatable’

In order to attach a discovered VF to a pod, ensure the pod asks for the required amount of VF resources from a specified
device pool using the following format:

 apiVersion: v1
kind: Pod
metadata:
 name: testpod1
 labels:
 env: test
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-net-a
spec:
 containers:
 - name: iperf
 image: docker.io/library/iperf:latest
 ports:
 - containerPort: 2000
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "--"]
 args: ["iperf3 -s -p 2000"]
 resources:
 requests:
 broadcom.com/broadcom_sriov_netdevice_portA: '1'
 cpu: "1"
 memory: "512Mi"
 limits:

3358008 – 1.3

Chapter 5: Recommended Settings

 broadcom.com/broadcom_sriov_netdevice_portA: '1'
 cpu: "1"
 memory: "512Mi"
 restartPolicy: "Never"

The k8s.v1.cni.cncf.io/networks field will be populated with the name field specified in the Network
Attachment Definition of the desired VF resource pool. In order to attach the VF to the pod, the pod .yaml file must
specify resource request and limits using the corresponding resourcePrefix and resourceName fields as shown
above. More than one VF can be assigned to the pod.

5.8 RDMA Device Plugin for High-Perf. Network I/O
Remote Direct Memory Access (RDMA) allows direct data transfer between systems without CPU intervention to greatly
improve throughput while lowering latency. A RDMA device plugin can be deployed on your Kubernetes cluster to allow
pods to run native RDMA applications on the InfiniBand fabric. The implementation described below is for any NVIDIA
Connect-X adapter card and was tested using a Connect-X 7 InfiniBand adapter card.

To install:

1. Ensure that the MLNX_OFED driver is properly installed.

2. Pull the RDMA Device Plugin Docker image by executing the following command:
docker pull mellanox/k8s-rdma-shared-dev-plugin

3. If you are using ContainerD as the container runtime for the cluster, then use Docker to save the container image and
import to ContainerD by executing the following commands:
docker save -o k8s-rdma-shared-dev-plugin.tar mellanox/k8s-rdma-shared-dev-plugin

sudo ctr -n=k8s.io images import k8s-rdma-shared-dev-plugin.tar

4. You will need to define the RDMA resource pool on each node with your Connect-X adapter to create device plugin
endpoints based on your resource configuration. Here is an example of a k8s-rdma-shared-dev-plugin-
config-map.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
 name: rdma-devices
 namespace: kube-system
data:
 config.json: |
 {
 "periodicUpdateInterval": 300,
 "configList": [{
 "resourceName": "hca_shared_devices",
 "rdmaHcaMax": 1000,
 "devices": ["ibp225s0"]
 }
]
 }

You can customize the periodicUpdateInterval in a time interval in seconds to update the resources according
to available host devices in the event of changes. The default is 60 seconds if none is specified. The resourceName
is a customizable field to allow you to identify your Connect-X adapter. The maximum number of RDMA resources
that you want the device plugin to provide can be customized using the rdmaHcaMax field. The devices field will
require the PF of your Connect-X adapter.

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

34 58008 – 1.3

5. Execute the following command to apply to device plugin configuration map:
kubectl create -f k8s-rdma-shared-dev-plugin-config-map.yaml

6. Create the DaemonSet for the RDMA device plugin. Here is an example of a k8s-rdma-shared-dev-plugin-
ds.yaml when using ContainerD as the container runtime:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: rdma-shared-dp-ds
 namespace: kube-system
spec:
 selector:
 matchLabels:
 name: rdma-shared-dp-ds
 template:
 metadata:
 labels:
 name: rdma-shared-dp-ds
 spec:
 hostNetwork: true
 priorityClassName: system-node-critical
 containers:
 - image: docker.io/mellanox/k8s-rdma-shared-dev-plugin:latest
 name: k8s-rdma-shared-dp-ds
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: true
 volumeMounts:
 - name: device-plugin
 mountPath: /var/lib/kubelet/
 - name: config
 mountPath: /k8s-rdma-shared-dev-plugin
 - name: devs
 mountPath: /dev/
 volumes:
 - name: device-plugin
 hostPath:
 path: /var/lib/kubelet/
 - name: config
 configMap:
 name: rdma-devices
 items:
 - key: config.json
 path: config.json
 - name: devs
 hostPath:
 path: /dev/

7. Execute the following command to apply the DaemonSet:
kubectl create -f k8s-rdma-shared-dev-plugin-ds.yaml

The cluster is now able to assign RDMA devices to pods. Here is an example of a test-hca-pod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: mofed-test-pod
spec:
 restartPolicy: OnFailure
 containers:
 - image: mellanox/rping-test

3558008 – 1.3

Chapter 5: Recommended Settings

 name: mofed-test-ctr
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 resources:
 limits:
 rdma/hca_shared_devices: 1
 command:
 - sh
 - -c
 - |
 ls -l /dev/infiniband /sys/class/infiniband /sys/class/net
 sleep 1000000

- You can assign more than one RDMA HCA device to a pod.

8. Execute the following command to run the pod:
kubectl create -f test-hca-pod.yaml

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

36 58008 – 1.3

This page intentionally left blank.

58008 – 1.3 37

M‘vM

• What is Kubernetes?*

• Architecting Kubernetes Clusters — Choosing a Worker Node Size*

• Reserve Compute Resources for System Daemons*

Chapter

6 Resources

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://learnk8s.io/kubernetes-node-size
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/

Kubernetes® Container Tuning Guide for AMD EPYC™ 7004 Processors

38 58008 – 1.3

This page intentionally left blank.

58008 – 1.3 39

• K8S: Shorthand for Kubernetes.

• Pod: Smallest unit of work known to Kubernetes. Pod can contain one of more containers. Node – Worker machine
within the K8S cluster.

• QoS: Quality of Service.

• CFS: Completely Fair Scheduler.

• SMT: Simultaneous Multiple Threading.

Chapter

7 Glossary

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

40 58008 – 1.3

This page intentionally left blank.

58008 – 1.3 41

Figure 8-1 shows the processor naming convention for AMD EPYC 9004 Series Processors and how to use this convention
to identify particular processors models:

Figure 8-1: AMD EPYC SoC naming convention

8.1 CPUID Instruction
Software uses the CPUID instruction (Fn0000_0001_EAX) to identify the processor and will return the following values:

• Family: 19h identifies the “Zen 4” architecture

• Model: Varies with product. For example, EPYC Family 19h, Model 10h corresponds to an “A” part “Zen 4” CPU.

- 91xx-96xx (including “X” OPNs): Family 19h, Model 10-1F

- 97xx: Family 19h, Model A0-AF

• Stepping: May be used to further identify minor design changes

For example, CPUID values for Family, Model, and Stepping (decimal) of 25, 17, 1 correspond to a “B1” part “Zen 4” CPU.

Chapter

8 Processor Identification

EPYC 9554P CPUTM

PRODUCT FAMILY

PRODUCT SERIES
- 9xx4 = Socket SP5

PRODUCT MODEL
Indicates core count within the series

100s Digit

Cores

2 3 4 5 60

24 32 48 64 84-968

PERFORMANCE
10s digit indicates performance within the series
- 9 = Reserved
- 8, 7, 6, 5, 4, 3, 2, 1
 - relative performance w/in core count
 - higher number = higher performance.

GENERATION
4 = 4th Gen 9004

FEATURE MODIFIER
- P = 1P only
- F = Frequency Optimized
- X = Cache Optimized

1

16

7

112-128

Kubernetes® Container Tuning Guide for AMD EPYC™ 9004 Processors

42 58008 – 1.3

8.2 New Software-Visible Features
AMD EPYC 9004 Series Processors introduce several new features that enhance performance, ISA updates, provide
additional security features, and improve system reliability and availability. Some of the new features include:

• 5-level Paging

• AVX-512 instructions on a 256-byte datapath, including BFLOAT16 and VNNI support.

• Fast Short Rep STOSB and Rep CMPSB

Not all operating systems or hypervisors support all features. Please refer to your OS or hypervisor documentation for
specific releases to identify support for these features.

Please also see the latest version of the AMD64 Architecture Programmer’s Manuals or Processor Programming
Reference (PPR) for AMD Family 19h.

8.2.1 AVX-512
AVX-512 is a set of individual instructions supporting 512-bit register-width data (i.e., single instruction, multiple data
[SIMD]) operations. AMD EPYC 9004 Series Processors implement AVX 512 by “double-pumping” 256-bit-wide registers.
AMD’s AVX-512 design uses the same 256-bit data path that exists throughout the Zen4 core and enables the two parts
to execute on sequential clock cycles. This means that running AVX-512 instructions on AMD EPYC 9004 Series will cause
neither drops on effective frequencies nor increased power consumption. On the contrary, many workloads run more
energy-efficiently on AVX-512 than on AVX-256P.

Other AVX-512 support includes:

• Vectorized Neural Network Instruction (VNNI) instructions that are used in deep learning models and accelerate
neural network inferences by providing hardware support for convolution operations.

• Brain Floating Point 16-bit (BFLOAT16) numeric format. This format is used in Machine Learning applications that
require high performance but must also conserve memory and bandwidth. BFLOAT16 support doubles the number of
SIMD operands over 32-bit single precision FP, allowing twice the amount of data to be processed using the same
memory bandwidth. BFLOAT16 values mantissa dynamic range at the expense of one radix point.

https://www.amd.com/en/support/tech-docs?keyword=amd64+architecture+programmer%27s+manual
https://www.amd.com/en/support/tech-docs?keyword=preliminary+processor
https://www.amd.com/en/support/tech-docs?keyword=preliminary+processor

	Kubernetes® Containers
	Introduction
	1.1 About Tuning Kubernetes

	AMD EPYC™ 9004 Series Processors
	2.1 General Specifications
	2.2 Model-Specific Features
	2.3 Operating Systems
	2.4 Processor Layout
	2.5 “Zen 4” Core
	2.6 Core Complex (CCX)
	2.7 Core Complex Dies (CCDs)
	2.8 AMD 3D V-Cache™ Technology
	2.9 I/O Die (Infinity Fabric™)
	2.10 Memory and I/O
	2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h)
	2.11.1 Models 91xx-96xx (“Genoa”)
	2.11.2 Models 97xx (“Bergamo”)

	2.12 NUMA Topology
	2.12.1 NUMA Settings

	2.13 Dual-Socket Configurations

	BIOS Defaults Summary
	3.1 Processor Core Settings
	3.2 Power Efficiency Settings
	3.3 NUMA and Memory Settings
	3.4 Infinity Fabric Settings
	3.5 PCIe, I/O, Security, and Virtualization Settings
	3.6 Higher-Level Settings

	Best Practices for Container Deployment
	4.1 General
	4.2 Hardware Configuration
	4.2.1 Controller (Control Plane)
	4.2.2 Worker Nodes

	4.3 Testing Kubernetes Scheduler CPU Resource Assignment
	4.3.1 Software Configuration
	4.3.2 Test Methodology

	Recommended Settings
	5.1 Reserving CPU for Kubelet and System Daemons
	5.2 Container Pinning Settings
	5.2.1 Enable the Static CPU Manager Policy
	5.2.2 Lowest Level Cache Affinity using the Static CPU Manager Policy

	5.3 Resolving the Noisy Neighbor Problem
	5.3.1 Pod Resource Limits
	5.3.2 SMT Alignment

	5.4 NUMA Alignment Settings
	5.5 NUMA Aware Memory Manager
	5.6 Node Stability Settings
	5.7 SR-IOV Network Device Plugin for High-Perf. Network I/O
	5.8 RDMA Device Plugin for High-Perf. Network I/O

	Resources
	Glossary
	Processor Identification
	8.1 CPUID Instruction
	8.2 New Software-Visible Features
	8.2.1 AVX-512

