
TUNING GUIDE
AMD EPYC 9004

Hadoop®

Publication 58013
Revision 1.3
Issue Date June, 2023



Hadoop® Server Tuning Guide for AMD EPYC™ 9004 Processors

ii 58013 – 1.3

© 2023 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution 
has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and 
AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations 
or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, 
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the 
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, 
to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s 
products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks 

AMD, the AMD Arrow logo, AMD EPYC, 3D V-Cache, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux 
is a registered trademark of Linus Torvalds. HPE Ezmeral Data Fabric (formerly known as MapR), and HPE Ezmeral Data Fabric 
Control System (formerly MapR Control System), are trademarks of Hewlett Packard Enterprises, Inc. CLOUDERA, the Cloudera Logo 
and Cloudera Manager are trademarks or trade dress of Cloudera. Apache, Hadoop, Spark, MapReduce, HIVE, HDFS, YARN, and the 
Hadoop elephant and Apache project logos are either registered trademarks or trademarks of the Apache Software Foundation in the 
United States or other countries. Hortonworks and the Hortonworks logo are trademarks of Hortonworks, Inc. Other product names 
and links to external sites used in this publication are for identification purposes only and may be trademarks of their respective 
companies.

* Links to third party sites are provided for convenience and unless explicitly stated, AMD is not responsible for the contents of such 
linked sites and no endorsement is implied.

Audience
This document is intended for a technical audience such as Hadoop® application architects, production deployment, and 
performance engineering teams with:

• A background in configuring servers.

• Administrator-level access to both the server management Interface (BMC) and the OS.

• Familiarity with both the BMC and OS-specific configuration, monitoring, and troubleshooting tools.

Authors
Bryon Georgson, Jiacong He, Dinesh Chitlangia, and Gnanakumar Rajaram

Note: All of the settings described in this Tuning Guide apply to all AMD EPYC 9004 Series Processors of all core counts 
with or without AMD 3D V-Cache™ except where explicitly noted otherwise.

Date Version Changes

July, 2022 0.1 Initial NDA partner release
Sep, 2022 0.2 Significant global updates
Nov, 2022 1.0 Initial public release
Dec, 2022 1.1 Minor errata corrections
Mar, 2023 1.2 Added 97xx OPN and AMD 3D V-Cache™ technology information
Jun, 2023 1.3 Second public release



58013 – 1.3 iii

Chapter 1 Introduction  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

1.1 Hadoop Tuning Challenges ......................................................................................................................... 1

Chapter 2 AMD EPYC™ 9004 Series Processors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3

2.1 General Specifications ............................................................................................................................... 3
2.2 Model-Specific Features ........................................................................................................................... 3
2.3 Operating Systems .................................................................................................................................... 4
2.4 Processor Layout ....................................................................................................................................... 4
2.5 “Zen 4” Core .............................................................................................................................................. 4
2.6 Core Complex (CCX) ................................................................................................................................... 5
2.7 Core Complex Dies (CCDs) ......................................................................................................................... 5
2.8 AMD 3D V-Cache™ Technology .................................................................................................................. 6
2.9 I/O Die (Infinity Fabric™) .............................................................................................................................7
2.10 Memory and I/O ........................................................................................................................................ 8
2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h) .................................................................... 9

2.11.1 Models 91xx-96xx (“Genoa”) ........................................................................................................ 9
2.11.2 Models 97xx (“Bergamo”) ............................................................................................................10

2.12 NUMA Topology .......................................................................................................................................10
2.12.1 NUMA Settings ...........................................................................................................................10

2.13 Dual-Socket Configurations ..................................................................................................................... 12

Chapter 3 BIOS Defaults Summary  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

3.1 Processor Core Settings  ...........................................................................................................................14
3.2 Power Efficiency Settings  ........................................................................................................................ 16
3.3 NUMA and Memory Settings  ................................................................................................................... 17
3.4 Infinity Fabric Settings  ............................................................................................................................18
3.5 PCIe, I/O, Security, and Virtualization Settings  ...................................................................................... 19
3.6 Higher-Level Settings ............................................................................................................................. 20

Chapter 4 BIOS Settings  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21

Chapter 5 Linux Optimizations  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23

5.1 Network Configuration ............................................................................................................................ 23
5.2 Disk Configuration ................................................................................................................................... 23

5.2.1 Storage Device to CPU Core Ratios ............................................................................................. 24
5.3 Memory Configuration ............................................................................................................................ 25
5.4 CPU Configuration ................................................................................................................................... 25

5.4.1 Potential Alternative for Higher Core Count Platforms .............................................................. 26
5.4.2 Example SLES 12 Server Configuration Files .............................................................................. 26

Table of Contents



Hadoop® Tuning Guide for AMD EPYC™ 9004 Processors

iv 58013 – 1.3

Chapter 6 Hadoop Settings  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27

6.1 YARN Settings .........................................................................................................................................27
6.1.1 Resource Manager .......................................................................................................................27

6.1.1.1 Settings for Resource Consumption Control .............................................................. 28
6.1.2 Node Manager ............................................................................................................................ 28

6.2 HDFS Settings ......................................................................................................................................... 30
6.2.1 Erasure Coding ............................................................................................................................ 32

6.3 NUMA Optimization for Dual-socket Servers .......................................................................................... 32
6.3.1 NUMA Setting ............................................................................................................................ 32
6.3.2 NUMA Source Code Tuning ........................................................................................................ 33

Chapter 7 Resources - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 37

Chapter 8 Processor Identification  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -39

8.1 CPUID Instruction .................................................................................................................................... 39
8.2 New Software-Visible Features .............................................................................................................. 40

8.2.1 AVX-512 ...................................................................................................................................... 40



58013 – 1.3 1

The Apache™ Hadoop® software library is a framework that allows distributed processing of large datasets across 
clusters of computers using simple programming models. It scales from single servers to thousands of machines that 
can each offer local compute, storage, or both. Hadoop uses software techniques to deliver high availability instead of 
relying on hardware; implementing Hadoop in a cluster leverages the software’s built-in resiliency to deliver high 
availability by tolerating failures from a failed drive to an entirely failed server. Hadoop runs across such a wide range of 
diverse applications and environments that no golden rule exists for tuning the cluster. Different Hadoop distribution 
vendors expose different settings through their management software. This guide recommends parameter settings that 
will have the most impact on Hadoop cluster performance across the following categories:

• Basic Input Output System (BIOS)

• Linux™ OS

• Hadoop Distributed File System (HDFS)

• Yet Another Resource Manager (YARN) 

The AMD testing performed for this Tuning Guide used Cloudera CDH, but they should apply to Hadoop 3.x-based 
distributions, including Cloudera, Cloudera Hortonworks Data Platform (formerly Hortonworks), and HPE Ezmeral Data 
Fabric (formerly MapR).

1.1 Hadoop Tuning Challenges
Hadoop is a sophisticated software framework that consists of several components interacting with each other across 
multiple systems. Bottlenecks in any of these components can and will cause poor Hadoop workload performance. Every 
system element from BIOS settings, OS settings, disk I/O, and networking affects Hadoop performance.

The Hadoop stack itself has several configuration settings that can impact performance and therefore require a certain 
degree of Hadoop ecosystem familiarity to optimize. Changing one setting can influence other settings, making Hadoop 
tuning an iterative process where one must know the implications of a particular settings change before continuing with 
additional tuning.

Chapter

1 Introduction
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‘ 

AMD EPYC™ 9004 Series Processors represent the fourth generation of AMD EPYC server-class processors. This 
generation of AMD EPYC processors feature AMD’s latest “Zen 4” based compute cores, next-generation Infinity Fabric, 
next-generation memory & I/O technology, and use the new SP5 socket/packaging.

2.1 General Specifications
AMD EPYC 9004 Series Processors offer a variety of configurations with varying numbers of cores, Thermal Design Points 
(TDPs), frequencies, cache sizes, etc. that complement AMD’s existing server portfolio with further improvements to 
performance, power efficiency, and value. Table 1-1 lists the features common to all AMD EPYC 9004 Series Processors.  

2.2 Model-Specific Features
Different models of 4th Gen AMD EPYC processors have different feature sets, as shown in Table 1-2.

Chapter

2
AMD EPYC™ 9004 Series 
Processors

Common Features of all AMD EPYC 9004 Series Processors
Compute cores Zen4-based
Core process technology 5nm
Maximum cores per Core Complex (CCX) 8
Max memory per socket 6 TB
Max # of memory channels 12 DDR5
Max memory speed 4800 MT/s DDR5
Max lanes Compute eXpress Links 64 lanes CXL 1.1+
Max lanes Peripheral Component Interconnect 128 lanes PCIe® Gen 5

Table 2-1: Common features of all AMD EPYC 9004 Series Processors

AMD EPYC 9004 Series Processor (Family 19h) Features by Model
Codename “Genoa”* “Bergamo”*
Model # 91xx-96xx 97xx
Max number of Core Complex Dies (CCDs) 12 8
Number of Core Complexes (CCXs) per CCD 1 2
Max number of cores (threads) 96 (192) 128 (256)
Max L3 cache size (per CCX) 1,152 MB (96 MB) 256 MB (16 MB)
Max Processor Frequency 4.4 GHz 3.15 GHz
Includes AMD 3D V-Cache (9xx4X) and high-frequency (9xx4F) models.
*GD-122: The information contained herein is for informational purposes only and is subject to change without notice. Timelines, roadmaps, and/or product 
release dates shown herein and plans only and subject to change. “Genoa” and “Bergamo” are codenames for AMD architectures and are not product names.

Table 2-2: AMD EPYC 9004 Series Processors features by model
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2.3 Operating Systems
AMD recommends using the latest available targeted OS version and updates. Please see AMD EPYC™ Processors 
Minimum Operating System (OS) Versions for detailed OS version information.

2.4 Processor Layout
AMD EPYC 9004 Series Processors incorporate compute cores, memory controllers, I/O controllers, RAS (Reliability, 
Availability, and Serviceability), and security features into an integrated System on a Chip (SoC). The AMD EPYC 9004 
Series Processor retains the proven Multi-Chip Module (MCM) Chiplet architecture of prior successful AMD EPYC 
processors while making further improvements to the SoC components.

The SoC includes the Core Complex Dies (CCDs), which contain Core Complexes (CCXs), which contain the “Zen 4”-based 
cores. The CCDs surround the central high-speed I/O Die (and interconnect via the Infinity Fabric). The following sections 
describe each of these components. 

Figure 2-1: AMD EPYC 9004 configuration with 12 Core Complex Dies (CCD) surrounding a central I/O Die (IOD)

2.5 “Zen 4” Core
AMD EPYC 9004 Series Processors are based on the new “Zen 4” compute core. The “Zen 4” core is manufactured using 
a 5nm process and is designed to provide an Instructions per Cycle (IPC) uplift and frequency improvements over prior 
generation “Zen” cores. Each core has a larger L2 cache and improved cache effectiveness over the prior generation. Each 
“Zen 4” core includes:

• Up to 32 KB of 8-way L1 I-cache and 32 KB of 8-way of L1 D-cache

• Up to a 1 MB private unified (Instruction/Data) L2 cache.

Each core supports Simultaneous Multithreading (SMT), which allows 2 separate hardware threads to run independently, 
sharing the corresponding core’s L2 cache.

IO Die

Core Complex Die (CCD)

https://www.amd.com/en/processors/epyc-minimum-operating-system
https://www.amd.com/en/processors/epyc-minimum-operating-system
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2.6 Core Complex (CCX)
Figure 2-2 shows a Core Complex (CCX) where up to eight “Zen 4”-based cores share a L3 or Last Level Cache (LLC). 
Enabling Simultaneous Multithreading (SMT) allows a single CCX to support up to 16 concurrent hardware threads. 

Figure 2-2: Top view of 8 compute cores sharing an L3 cache (91xx-96xx models)

2.7 Core Complex Dies (CCDs)
The Core Complex Die (CCD) in an AMD EPYC 9xx4 Series Processor may contain either one or two CCXs, depending on the 
processor (91xx-96xx “Genoa” vs. 97xx “Bergamo”), as shown in Figure 2-5. 

Figure 2-3: 2 CCXs in a single 4th Gen AMD EPYC 97xx CCD

Each of the Core Complex Dies (CCDs) in a 97xx model AMD EPYC 9004 Series Processor contains two CCXs (Figure 2-5): 

AMD EPYC 9004 Series Processor 91xx-96xx 97xx
# of CCXs within a CCD 1 2

Table 2-3: CCXs per CCD by AMD EPYC model
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You can disable cores in BIOS using one or both of the following approaches: 

• Reduce the cores per L3 from 8 down to 7,6,5,4,3,2, or 1 while keeping the number of CCDs constant. This approach 
increases the effective cache per core ratio but reduces the number of cores sharing the cache.

• Reduce the number of active CCDs while keeping the cores per CCD constant. This approach maintains the 
advantages of cache sharing between the cores while maintaining the same cache per core ratio.

2.8 AMD 3D V-Cache™ Technology
AMD EPYC 9xx4X Series Processors include AMD 3D V-Cache™ die stacking technology that enables 97xx to achieve more 
efficient chiplet integration. AMD 3D Chiplet architecture stacks L3 cache tiles vertically to provide up to 96MB of L3 
cache per die (and up to 1 GB L3 Cache per socket) while still providing socket compatibility with all AMD EPYC™ 9004 
Series Processor models.

AMD EPYC 9004 Series Processors with AMD 3D V-Cache technology employ industry-leading logic stacking based on 
copper-to-copper hybrid bonding “bumpless” chip-on-wafer process to enable over 200X the interconnect densities of 
current 2D technologies (and over 15X the interconnect densities of other 3D technologies using solder bumps), which 
translates to lower latency, higher bandwidth, and greater power and thermal efficiencies. 

Figure 2-4: Side view of vertically-stacked central L3 SRAM tiles 

Different OPNs also may have different numbers of cores within the CCX. However, for any given part, all CCXs will 
always contain the same number of cores.

AMD EPYC 9004 Series Processors 9xx4 9004X
(with 3D V-Cache)

Max Shared L3 Cache per CCD 32 MB 96 MB

Table 2-4: L3 cache by processor model

AMD 3D V-Cache    Tiles

Zen4 Core L2 Cache Zen4 CoreL2 Cache

Shared L3 Cache

SIDE VIEW

TM
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2.9 I/O Die (Infinity Fabric™)
The CCDs connect to memory, I/O, and each other through an updated I/O Die (IOD). This central AMD Infinity Fabric™ 
provides the data path and control support to interconnect CCXs, memory, and I/O. Each CCD connects to the IOD via a 
dedicated high-speed Global Memory Interconnect (GMI) link. The IOD helps maintain cache coherency and additionally 
provides the interface to extend the data fabric to a potential second processor via its xGMI, or G-links. AMD EPYC 9004 
Series Processors support up to 4 xGMI (or G-links) with speeds up to 32Gbps. The IOD exposes DDR5 memory channels, 
PCIe® Gen5, CXL 1.1+, and Infinity Fabric links.

All dies (chiplets) interconnect with each other via AMD Infinity Fabric technology. Figure 2-6 (which corresponds to 
Figure 2-2, above) shows the layout of a 96-core AMD EPYC 9654 processor. The AMD EPYC 9654 has 12 CCDs, with each 
CCD connecting to the IOD via its own GMI connection. 

Figure 2-5: AMD EPYC 9654 processor internals interconnect via AMD Infinity Fabric (12 CCD processor shown)

AMD also provides “wide” OPNs (e.g. AMD EPYC 9334) where each CCD connects to two GMI3 interfaces, thereby 
allowing double the Core-to-I/O die bandwidth. 

Figure 2-6: Standard vs. Wide GMI links

The IOD provides twelve Unified Memory Controllers (UMCs) that support DDR5 memory. The IOD also presents 4 ‘P-
links’ that the system OEM/designer can configure to support various I/O interfaces, such as PCIe Gen5, and/or CXL 1.1+.
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2.10 Memory and I/O
Each UMC can support up to 2 DIMMs per channel (DPC) for a maximum of 24 DIMMs per socket. OEM server 
configurations may allow either 1 DIMM per channel or 2 DIMMs per channel. 4th Gen AMD EPYC processors can support 
up to 6TB of DDR5 memory per socket. Having additional and faster memory channels compared to previous generations 
of AMD EPYC processors provides additional memory bandwidth to feed high-core-count processors. Memory 
interleaving on 2, 4, 6, 8, 10, and 12 channels helps optimize for a variety of workloads and memory configurations.

Each processor may have a set of 4 P-links and 4 G-links. An OEM motherboard design can use a G-link to either connect 
to a second 4th Gen AMD EPYC processor or to provide additional PCIe Gen5 lanes. 4th Gen AMD EPYC processors 
support up to eight sets of x16-bit I/O lanes, that is, 128 lanes of high-speed PCIe Gen5 in single-socket platforms and up 
to 160 lanes in dual-socket platforms. Further, OEMs may either configure 32 of these 128 lanes as SATA lanes and/or 
configure 64 lanes as CXL 1.1+. In summary, these links can support:

• Up to 4 G-links of AMD Infinity Fabric connectivity for 2P designs.

• Up to 8 x16 bit or 128 lanes of PCIe Gen 5 connectivity to peripherals in 1P designs (and up to 160 lanes in 2-socket 
designs).

• Up to 64 lanes (4 P-links) that can be dedicated to Compute Express Link (CXL) 1.1+ connectivity to extended 
memory.

• Up to 32 I/O lanes that can be configured as SATA disk controllers.
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2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h)
This section depicts AMD EPYC 9004 Series Processors that have been set up with four nodes per socket (NPS=4). Please 
see “NUMA Topology” on page 10 for more information about nodes.

2.11.1 Models 91xx-96xx (“Genoa”)
4th Gen AMD EPYC 9004 processors with model numbers 91xx-96xx have up to 12 CCDs that each contain a single CCX, as 
shown below. 

Figure 2-7: The AMD EPYC 9004 SoC consists of up to 12 CCDs and a central IOD for 91xx-96xx models, including “X” OPNs
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2.11.2 Models 97xx (“Bergamo”)
97xx 4th Gen AMD EPYC 9004 Series Processors with model numbers 97xx have up to 8 CCDs that each contain two 
CCXs, as shown below. 

Figure 2-8: The AMD EPYC 9004 System on Chip (SoC) consists of up to 8 CCDs and a central IOD for 97xx models

2.12 NUMA Topology
AMD EPYC 9004 Series Processors use a Non-Uniform Memory Access (NUMA) architecture where different latencies 
may exist depending on the proximity of a processor core to memory and I/O controllers. Using resources within the 
same NUMA node provides uniform good performance, while using resources in differing nodes increases latencies.

2.12.1 NUMA Settings
A user can adjust the system NUMA Nodes Per Socket (NPS) BIOS setting to optimize this NUMA topology for their 
specific operating environment and workload. For example, setting NPS=4 as shown in “Memory and I/O” on page 8 
divides the processor into quadrants, where each quadrant has 3 CCDs, 3 UMCs, and 1 I/O Hub. The closest processor-
memory I/O distance is between the cores, memory, and I/O peripherals within the same quadrant. The furthest 
distance is between a core and memory controller or IO hub in cross- diagonal quadrants (or the other processor in a 2P 
configuration). The locality of cores, memory, and IO hub/devices in a NUMA-based system is an important factor when 
tuning for performance.
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The NPS setting also controls the interleave pattern of the memory channels within the NUMA Node. Each memory 
channel within a given NUMA node is interleaved. The number of channels interleaved decreases as the NPS setting gets 
more granular. For example:

• A setting of NPS=4 partitions the processor into four NUMA nodes per socket with each logical quadrant configured 
as its own NUMA domain. Memory is interleaved across the memory channels associated with each quadrant. PCIe 
devices will be local to one of the four processor NUMA domains, depending on the IOD quadrant that has the 
corresponding PCIe root complex for that device.

• A setting of NPS=2 configures each processor into two NUMA domains that groups half of the cores and half of the 
memory channels into one NUMA domain, and the remaining cores and memory channels into a second NUMA 
domain. Memory is interleaved across the six memory channels in each NUMA domain. PCIe devices will be local to 
one of the two NUMA nodes depending on the half that has the PCIe root complex for that device.

• A setting of NPS=1 indicates a single NUMA node per socket. This setting configures all memory channels on the 
processor into a single NUMA node. All processor cores, all attached memory, and all PCIe devices connected to the 
SoC are in that one NUMA node. Memory is interleaved across all memory channels on the processor into a single 
address space.

• A setting of NPS=0 indicates a single NUMA domain of the entire system (across both sockets in a two-socket 
configuration). This setting configures all memory channels on the system into a single NUMA node. Memory is 
interleaved across all memory channels on the system into a single address space. All processor cores across all 
sockets, all attached memory, and all PCIe devices connected to either processor are in that single NUMA domain.

You may also be able to further improve the performance of certain environments by using the LLC (L3 Cache) as NUMA 
BIOS setting to associate workloads to compute cores that all share a single LLC. Enabling this setting equates each 
shared L3 or CCX to a separate NUMA node, as a unique L3 cache per CCD. A single AMD EPYC 9004 Series Processor with 
12 CCDs can have up to 12 NUMA nodes when this setting is enabled.

Thus, a single EPYC 9004 Series Processor may support a variety of NUMA configurations ranging from one to twelve 
NUMA nodes per socket.

Note: If software needs to understand NUMA topology or core enumeration, it is imperative to use documented Operating 
System (OS) APIs, well-defined interfaces, and commands. Do not rely on past assumptions about settings such as 
APICID or CCX ordering.
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2.13 Dual-Socket Configurations
AMD EPYC 9004 Series Processors support single- or dual-socket system configurations. Processors with a ‘P’ suffix in 
their name are optimized for single-socket configurations (see the “Processor Identification” chapter) only. Dual-socket 
configurations require both processors to be identical. You cannot use two different processor Ordering Part Numbers 
(OPNs) in a single dual-socket system. 

Figure 2-9: Two EPYC 9004 Processors connect through 4 xGMI links (NPS1)

In dual-socket systems, two identical EPYC 9004 series SoCs are connected via their corresponding External Global 
Memory Interconnect [xGMI] links. This creates a high bandwidth, low latency interconnect between the two processors. 
System manufacturers can elect to use either 3 or 4 of these Infinity Fabric links depending upon I/O and bandwidth 
system design objectives.

The Infinity Fabric links utilize the same physical connections as the PCIe lanes on the system. Each link uses up to 16 
PCIe lanes. A typical dual socket system will reconfigure 64 PCIe lanes (4 links) from each socket for Infinity Fabric 
connections. This leaves each socket with 64 remaining PCIe lanes, meaning that the system has a total of 128 PCIe 
lanes. In some cases, a system designer may want to expose more PCIe lanes for the system by reducing the number of 
Infinity Fabric G-Links from 4 to 3. In these cases, the designer may allocate up to 160 lanes for PCIe (80 per socket) by 
utilizing only 48 lanes per socket for Infinity Fabric links instead of 64.

A dual-socket system has a total of 24 memory channels, or 12 per socket. Different OPNs can be configured to support a 
variety of NUMA domains.
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This chapter provides high-level lists of the default AMD EPYC 9004 BIOS settings and their default values. Please see 
Chapter 4 of the BIOS & Workload Tuning Guide for AMD EPYC™ 9004 Series Processors (available from AMD EPYC Tuning 
Guides) for detailed descriptions. Later chapters in this Tuning Guide discuss the BIOS options as they relate to a specific 
workload or set of workloads.

Note: The default setting names and values described in this chapter are the AMD default names and values that serve as 
recommendations for OEMs. End users must confirm their OEM BIOS setting availability and options.

AMD strongly recommends that customers download and install the latest BIOS update for your AMD EPYC 9004 Series 
Processor-based server from your platform vendor. BIOS updates often help customers by providing new and updated 
features, bug fixes, enhancements, security features, and other improvements. These improvements can help your 
system software stability and dependency modules (such as hardware, firmware, drivers, and software) by giving you a 
more robust environment to run your applications.

Chapter

3 BIOS Defaults Summary

https://www.amd.com/en/search/documentation/hub.html#sortCriteria=%40amd_release_date%20descending&f-amd_document_type=Tuning%20Guides&f-amd_product_brand=EPYC
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3.1 Processor Core Settings 
Name Default Description

SMT Control Auto • Enabled/Auto: Two hardware threads per core.
• Disabled: Single hardware thread per core.

L1 Stream HW Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L1 Stride Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L1 Region Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L1 Burst Prefetch Mode Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L2 Stream HW Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

L2 Up/Down Prefetcher Auto • Enabled/Auto: Enables the prefetcher.
• Disabled: Disables the prefetcher.

Core Performance Boost Auto • Enabled/Auto: Enables Core Performance Boost.
• Disabled: Disables Core Performance Boost.

BoostFmaxEn Auto • Auto: Use the default Fmax 
• Manual: User can set the boost Fmax 

BoostFmax Auto Specify the boost Fmax frequency limit to apply to all cores (MHz in 
decimal) 

Global C-State Control Auto • Enabled/Auto: Controls IO based C-state generation and DF C-
states, including core processor C-States 

• Disabled: AMD strongly recommends not disabling this option 
because this also disables core processor C-States.

Table 3-1: Processor core BIOS settings
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X3D Auto Enables or disables AMD 3D V-Cache™ technology on Cache 
Optimized (9004X) processors.
• Auto: Enabled on an AMD EPYC 9004 Series processor with AMD 

3D V-Cache™ technology, enabling this option enables the AMD 
3D V-Cache module in the CCD to increase the total size of the L3 
cache memory to 96MB

• Disabled: Disabling this option reduces the L3 cache in the CCD to 
32MB.

Note: This option only applies to AMD EPYC 9004 Series Processors 
with AMD 3D V-Cache technology.

Note: AMD engineers performed extensive internal testing and 
validation for various applications using the X3D BIOS option found in 
AMD EPYC 9xx4X processors with AMD 3D V-Cache technology. This 
testing and validation cannot cover all applications or use cases.  
Testing has shown AMD 3D V-Cache to be beneficial for most 
workloads, however AMD recommends that you test and evaluate the 
benefits of enabling or disabling the X3D BIOS option for your 
application workloads in your environment and proceeding based on 
those results.

Table 3-1: Processor core BIOS settings
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3.2 Power Efficiency Settings 
Name Default Description

Power Profile Selection Auto • Auto/0: High-performance mode 
• 1: Efficiency mode
• 2: Maximum I/O performance mode

Determinism Control Auto • Auto: Use default performance determinism settings.
• Manual: Specify custom performance determinism settings.

Determinism Enable Auto • Auto: Performance.
• 1: Power.

TDP Control Auto • Auto: Use platform- and OPN-default TDP.
• Manual: Set custom configurable TDP.

TDP OPN Max This option appears once the user sets the TDP Control to Manual.
• Values 85-400: Set configurable TDP, in watts.

PPT Control Auto Enables or disables the PPT control.
• Auto: Automatically set PPL in watts.
• Manual: Specify a custom PPL.

PPT OPN Max This option appears once the user sets the PPT Control to Manual.
• Values 85-400: Set configurable PPT, in watts.

CPPC Auto • Enabled/Auto: Allows the OS to make performance/power 
optimization requests using ACPI CPPC.

• Disabled: Prevents the OS from making performance/power 
optimization requests using ACPI CPPC.

Table 3-2: Power efficiency BIOS settings
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3.3 NUMA and Memory Settings 
Name Default Description

LLC as NUMA Domain
(ACPI SRAT L3 Cache as 
NUMA Domain)

Disabled • Disabled (recommended): Both NUMA nodes (cpubind) and 
memory interleaving (membind) are determined by the NPS 
setting.

• Enabled: Overrides the NPS setting for # of NUMA nodes by 
mapping each LLC as a NUMA node. This does not impact the 
memory interleaving

Nodes Per Socket (NPS) 1 Memory Interleaving: The NPS setting always determines the 
memory interleaving regardless of whether LLC as NUMA is Enabled 
or Disabled.

# of NUMA nodes (if LLC as NUMA Domain is Disabled):

• NPS1/Auto: One NUMA node per socket (Most cloud providers 
use this as it provides consistent average memory latency to all 
the accesses within a socket).

• NPS2: Two NUMA nodes per socket.
• NPS4: Four NUMA nodes per socket
• NPS0 (not recommended): Only applicable for dual-socket 

systems. A single NUMA node is created for the whole two-
socket platform.

AMD recommends either NPS1 or NPS4 depending on your use case.
Windows systems: Make sure that the number of logical processors 
per NUMA node is <=64. You can do this by using NPS2 or NPS4 
instead of the default NPS1.

Memory Target Speed Auto • Auto: Determine the maximum memory speed based on SPD 
information from populated DIMMs and platform memory speed 
support.

Alternatively, you can select:
• Values 3200–5600 MT/s: Run the DRAM memory target clock 

speed at the specified speed. The DRAM memory target is the 
DDR rate.

Your OEM system default value may vary.
Memory Interleaving Auto • Auto/Enable: Enables memory interleaving.

• Disable: Allows for disabling memory interleaving. The NUMA 
Nodes per Socket setting will be honored regardless of this 
setting. AMD strongly recommends not disabling this setting 
because most production deployments benefit from memory 
interleaving.

Table 3-3: NUMA and memory BIOS settings
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3.4 Infinity Fabric Settings 
Name Default Description

3-4 xGMI Link Max Speed Auto • 12 Gbps
• 16 Gbps
• 17 Gbps
• 18 Gbps
• 20 Gbps
• 22 Gbps
• 23 Gbps
• 24 Gbps
• 25 Gbps/Auto
• 26 Gbps
• 27 Gbps
• 28 Gbps
• 30 Gbps
• 32 Gbps
Your OEM system default value may vary.

xGMI Link Width Control Auto • Auto: Use the default xGMI link width controller settings.
• Manual: Specify a custom xGMI link width controller setting.

xGMI Force Link Width 
Control

Auto • Unforce: Do not force the xGMI to a fixed width.
• Force: Use the xGMI link to the user-specified width.

xGMI Force Link Width Auto • 0: Force xGMI link width to x4.
• 1: Force xGMI link width to x8.
• 2: Force xGMI link width to x16.

xGMI Max Link Width Control Auto • Auto: Use the default xGMI link width controller settings.
• Manual: Specify a custom xGMI link with controller setting.

xGMI Max Link Width Auto • 0: Set max xGMI link width to x8.
• 1: Set max xGMI link width to x16.

APBDIS Auto • 0/Auto: Dynamically switch the Infinity Fabric P-state based on 
link usage.

• 1: Enabled fixed Infinity Fabric P-state control.
DfPstate Range Support Auto • Auto: If this feature is enabled, the range value setting should 

follow the rule that MaxDfPstate<=MinDfPstate. Otherwise, it 
will not work.

• Enable: Add the values MaxDfPstate & MinDfPstate.
• Disable: No MaxDfPstate & MinDfPstate option.

Table 3-4: Infinity Fabric BIOS settings
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3.5 PCIe, I/O, Security, and Virtualization Settings 

DF C-States Auto Controls DF C-states.
• Disabled: Prevents the AMD Infinity Fabric from entering a low-

power state.
• Enabled/Auto: Allows the AMD Infinity Fabric to enter a low-

power state.

Name Default Description

Local APIC Mode Auto(0x02) • xAPIC: Use xAPIC, supports up to 255 cores.
• x2APIC: Supports more than 255 cores.
• Auto: The system will choose the mode that best fits the number 

of active cores in the system. 
• Compatibility: Threads below 255 run in xAPIC with xAPIC ACPI 

structures, and threads 255 and above run in x2 mode with x2 
ACPI structures. 

• XApicMode (0x01): Forces legacy xAPIC mode.
• X2ApicMode (0x02): Forces x2APIC mode independent of thread 

count.
PCIe Speed PMM Control Auto • 0: Dynamic link speed determined by power management 

functionality.
• 1: Static Target Link Speed (Gen4); sets the maximum idle link 

speed to 16 GT/s.
• Auto/2: Static Target Link Speed (Gen5); sets the maximum idle 

link speed to 32 GT/s, thereby disabling the feature).
PCIe ARI Support (SRIOV) Auto • Enabled/Auto: Enables Alternative Routing ID interpretation.

• Disabled: Disables Alternative Routing ID interpretation.
PCIe Ten Bit Tag Support Auto • Enabled/Auto: Enables PCIe 10-bit tags for supported devices.

• Disabled: Disables PCIe 10-bit tags for all devices.
IOMMU Auto • Enabled/Auto: Enables IOMMU. AMD recommends setting this 

to pt:pass-through in the Linux kernel settings.
• Disabled: Disables IOMMU.

AVIC Disabled Advanced Virtual Interrupt Controller.
• Disabled: Disables AVIC.
• Enabled: Enables AVIC.

x2AVIC Disabled x2AVIC is an extension of the advanced virtual interrupt controller. 
This feature currently requires a custom AMD Linux kernel.
• Disabled: Disables x2AVIC.
• Enabled: Enables x2AVIC.

Table 3-5: PCIe, I/O, security, and virtualization BIOS settings

Table 3-4: Infinity Fabric BIOS settings
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3.6 Higher-Level Settings
The system powers on to an initial state, after which succeeding software layers may affect system settings:

1. System firmware validates basic hardware functionality and allows users to change various settings via the BIOS 
Setup menus.

2. UEFI provides a shell environment that allows users to further interact with the system.

3. The operating system or hypervisor is the next software layer that provides control over system hardware.

4. Lastly, certain applications can also affect underlying hardware.

Each of the lines above may alter settings made by prior line, and some user changes require a reboot to take effect.

Please refer to your OEM documentation and/or applicable AMD Tuning Guide(s) for further guidance.

TSME Auto • Auto/Disabled: Disables transparent secure memory encryption.
• Enabled: Enables transparent secure memory encryption.

SEV Disabled In a multi-tenant environment (such as a cloud), Secure Encrypted 
Virtualization (SEV) mode isolates virtual machines from each other 
and from the hypervisor.
• Disabled: SEV is disabled.
• Enabled: SEV is enabled.

SEV-ES Disabled Secure Encrypted Virtualization-Encrypted State (SEV-ES) mode 
extends SEV protection to the contents of the CPU registers by 
encrypting them when a virtual machine stops running. Combining 
SEV and SEV-ES can reduce the attack surface of a VM by helping 
protect the confidentiality of data in memory.
• Disabled: SEV-ES is disabled.
• Enabled: SEV-ES is enabled.

SEV-SNP Disabled Secure Encrypted Virtualization-Secure Nested Paging (SEV-SNP) 
mode builds on SEV and SEV-ES by adding strong memory integrity 
protection to create an isolated execution environment that helps 
prevent malicious hypervisor-based attacks such as data replay and 
memory re-mapping. SEV-SNP also introduces several additional 
optional security enhancements that support additional VM use 
models, offer stronger protection around interrupt behavior, and 
increase protection against recently-disclosed side channel attacks.
• Disabled: SEV-SNP is disabled.
• Enabled: SEV-SNP is enabled.

Table 3-5: PCIe, I/O, security, and virtualization BIOS settings
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Tuning BIOS settings can improve performance for specific workloads. Evaluate all of the options discussed in this 
section to determine their impact on your specific workload.

Table 4-1 describes the BIOS options that have the greatest impact to Hadoop Server performance using the BIOS 
parameters and settings found on AMD Customer Reference Boards (CRB), and OEM settings may vary. Please see your 
OEM BIOS documentation for platform-specific BIOS information. Please also see the BIOS & Workload Tuning Guide for 
AMD EPYC™ 9004 Series Processors (available from AMD EPYC Tuning Guides) for additional BIOS tuning information. 

Chapter

4 BIOS Settings

Name Value Description

SMT Control Enabled Enables Symmetric Multi-Threading (SMT), which creates two 
computing threads per core. Consider disabling this setting when 
using AMD EPYC processors with more than 32 cores.

NUMA Node per Socket 
(NPS)

NPS1  The default value is 1, but there are times when setting this to 4 
boosts performance. This is especially true for MapReduce tasks 
where only one core is dedicated to each task and for applications 
that are sensitive to memory latency.

ACPI SRAT L3 Cache as 
NUMA Domain

Disable This setting is disabled by default. In some cases, enabling this 
feature will improve L3 cache hits from the processor, thereby 
improving memory latency and overall performance. This is especially 
true when ≤4GB of memory is allocated to a Map or Reduce task.

X3D Enabled In an AMD EPYC 9004 processor with AMD 3D V-Cache technology, 
enabling this option enables the AMD 3D V-Cache module in the CCD 
to increase the total size of the L3 cache memory to 96MB. Disabling 
this option reduces the L3 cache in the CCD to 32MB. AMD 
recommends enabling this option, if available and if doing so benefits 
your workload after testing. This option is only available on AMD 
EPYC 9004 Series Processors with AMD 3D V-Cache.

Table 4-1: BIOS Settings for optimal Hadoop performance

https://www.amd.com/en/search/documentation/hub.html#sortCriteria=%40amd_release_date%20descending&f-amd_document_type=Tuning%20Guides&f-amd_product_brand=EPYC


Hadoop® Tuning Guide for AMD EPYC™ 9004 Processors

22 58013 – 1.3

This page intentionally left blank.



58013 – 1.3 23

mzm

Tuning Linux for Hadoop involves looking at how various system subcomponents interact. This is particularly true for 
network and disk I/O because they often conflict with each other. The goal of this tuning is to optimize each subsystem 
for throughput while using simple stress test tools to look for and address any performance issues or bottlenecks. This 
will rule out any performance issues in the subsystems before proceeding to tune the Hadoop instance.

5.1 Network Configuration
The Linux® Network Tuning Guide for AMD EPYC™ 9004 Series Processors (available from AMD EPYC Tuning Guides) 
describes how to properly configure the network for systems in a Hadoop cluster. Per that guide:

• Tune the sizes of the TX and RX rings.

• Change the number of interrupts queues to match the cores on the NUMA node on which the NIC is collocated, and 
pin those interrupts to the correct CPU cores.

• Use the iperf utility to stress test the network infrastructure and verify proper configuration.

• Be sure to follow OS IOMMU setting recommendations, because this will significantly impact system performance. 
This normally entails setting the IOMMU to passthrough mode by adding the kernel parameter iommu=pt on the 
kernel boot line. To do this, modify /etc/default/grub and then run either:

- SLES or RHEL: grub2-mkconfig

- Ubuntu: sudo update-grub

- Setup Reverse DNS to ensure that a node’s hostname can be looked up via its IP address. Both Kerberos 
authentication and certain Hadoop functionalities utilize and require reverse DNS.

5.2 Disk Configuration
Look at the following parameters when optimizing disk I/O in a Hadoop environment:

• Partition alignment. This is more critical when using SSD and NVMe drives because misaligning partitions will 
increase disk I/O operations and significantly impact performance.

• Scheduler

• Queue depth

• Number of requests allowed

• Filesystem mount options. 

Chapter

5 Linux Optimizations

https://www.amd.com/en/search/documentation/hub.html#sortCriteria=%40amd_release_date%20descending&f-amd_document_type=Tuning%20Guides&f-amd_product_brand=EPYC
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5.2.1 Storage Device to CPU Core Ratios
The ratios in Table 5-1 are guidelines to help you determine the minimum number of devices needed to establish ideal I/
O throughput. 

The best scheduler option for most Hadoop environments is either deadline or noop. There is no standard, so test both 
options in your environment. You can make system-wide scheduler changes via the Linux boot command line using the 
elevator=<scheduler> kernel option. You can view and modify a device scheduler post-boot using /sys/block/
<device>/queue/scheduler. For example, if the square brackets ([ and ]) are around deadline, then the device is 
configured to use the deadline scheduler. You can execute the command echo noop into the file for device sda and 
then list the contents of the file again to see that the square brackets are now around the noop scheduler.

cat /sys/block/sda/queue/scheduler
noop [deadline] cfq
echo noop > /sys/block/sda/queue/scheduler
cat /sys/block/sda/queue/scheduler
[noop] deadline cfg

Set /sys/block/<device>/device/Queue_depth and /sys/block/<device>/queue nr_requests to ensure 
they don’t overwhelm the device. Use performance monitoring tools such as sar or iostat to look for large queue times 
and adjust these settings as needed to optimize performance.

Formatting and tuning options are important. Tools like tunefs let you set the reserve size to zero percent, which can 
free over 25 GB on a 1 TB disk. If the underlying file system contains many large files, then you can free more space by 
lowering the number of inodes at format time accordingly.

Most Hadoop deployments use either the ext4 or xfs filesystem, while HPE Ezmeral Data Fabric (formerly MapR™) 
deploys on unformatted disks. The noatime filesystem option is important for any Hadoop data mounts. Include the 
discard option if your system is running on an SSD that supports this feature. You can set these options using the  -o 
parameter when manually executing the mount command, or include them in the options section of the data drive 
entries in fstab, such as by either:

• Executing the command mount -o noatime /dev/sda1 /data/1

• Modifying /etc/fstab for filesystems that are mounted during the boot process. For example:

UUID=a6f3ee72-5fef-4ec5-8074-49f4ae109a88 /data/1 xfs defaults,noatime 0 0
UUID=30375f23-b704-4b3b-ae33-349bb0dac416 /data/2 xfs defaults,noatime 0 0
UUID=0c347985-6c1f-469e-918e-ae6ad4ee5002 /data/3 xfs defaults,noatime 0 0
UUID=a970c80a-c9ea-47c4-9fbe-acddf9ab7ffb /data/4 xfs defaults,noatime 0 0
UUID=69045795-a472-477c-9115-35bc4b940224 /data/5 xfs defaults,noatime 0 0
UUID=3531c522-3f82-4b9e-876f-ee44e133dc3c /data/6 xfs defaults,noatime 0 0
UUID=fa96cd17-37a0-441b-b001-527e7765de42 /data/7 xfs defaults,noatime 0 0
UUID=5036062a-06a2-4227-98b3-a1224cb3f649 /data/8 xfs defaults,noatime 0 0

Drive Type Drive to Core Ratio

10K rpm SATA Hard Drives 1 drive for every core
SATA Solid State Disks 1 drive for every 2 to 4 cores
PCIe Generation 3 NVMe Drive 1 drive for every 4 to 8 cores
PCIe Generation 4 NVMe Drive 1 drive for every 8 to 16 cores
PCIe Generation 5 NVMe Drive 1 drive for every 16 to 20 cores

Table 5-1: Storage Device Type to CPU Core Ratio
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Use the fio test to stress test the disk subsystems and determine maximum disk throughput in both I/O per second 
(IOPS) and MB/sec. This utility can also see whether any disks are running slower than the rest. 

The java.io.FileNotFoundException (too many open files) error will occur, and jobs will fail if the default number 
of open files is too small. To avoid this, execute the ulimit command as the root user to increase the number of open 
files to 32768 or even 65536, such as ulimit -n 65536. Add the following lines to /etc/security/limits.conf:

*     -     nofile    65536
*     -     nproc     65536

You may sometimes need to increase the system-wide fs.file-max setting. To do this, either:

• Execute the command sysctl -w fs.file-max <maximum number of open files>

• Make this setting persistent across reboots by adding fs.file-max=<maximum number of open files> to
/etc/sysctl.conf

5.3 Memory Configuration 
Use all memory channels evenly when populating memory. To do this:

• Place the same number and size memory DIMMs in each memory channel to keep the NUMA nodes balanced.

• Either:

- Use the OS sysctl utility to set vm.overcommit_memory and vm.swappiness to minimize swapping, and to 
set vm.dirty_ratio and vm.dirty_background_ratio to tune down the OS cache buffers. For example:

sysctl -w vm.overcommit_memory=0 vm.swappiness=1 vm.dirty_ratio=20 
vm.dirty_background_ratio=1

- Make these settings persistent across reboots by adding them to /etc/sysctl.conf, as described in 
“Example SLES 12 Server Configuration Files” on page 26.

- Disable Transparent Huge Pages.

5.4 CPU Configuration
Each compute node should ideally have 32 processor cores because the YARN scheduler has some inefficiencies for both 
MapReduce and Spark frameworks at core counts above ~48 node.

Check the performance governor on all processor cores. SLES allows you to:

• View the available frequency governors by executing the cpupower frequency-info –governor command.

• Set the frequency governor by executing the cpupower frequency-set –governor performance command.

The tuned-adm throughput-performance profile sets the governor to performance, which generally works best for 
Hadoop workloads.
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5.4.1 Potential Alternative for Higher Core Count Platforms
Implementing containers or virtualization allows users to use Hadoop nodes with higher core counts. Either of these 
options allow you to carve out a container or VM that is 32 cores or less while leveraging AMD EPYC memory and I/O 
resources. Hadoop allows this kind of consolidation, but software licensing costs could increase. Consult your Hadoop 
software vendor licensing agreement to ensure optimal TCO. When running in virtual environments, binding the VM to 
specific cores and memory within a NUMA node or LLC is usually going to improve performance.

5.4.2 Example SLES 12 Server Configuration Files
This sample configuration file includes the tuning options described in the preceding sections of this chapter.

/etc/default/grub
GRUB_CMDLINE_LINUX="mitigations=auto splash=silent quiet showopts crashkernel=207M,high 
crashkernel=72M,low iommu=pt"

/etc/init.d/boot.local
#configure Mellanox network card.
mlnx_tune -p HIGH_THROUGHPUT
set_irq_affinity_bynode.sh 3 ens2f0 ens2f1
#disable transparent hugepages
echo never > /sys/kernel/mm/transparent_hugepage/defrag
echo never > /sys/kernel/mm/transparent_hugepage/enabled
#disk tuning
for a in sda sdb sdc sdd sde sdf sdg sdh
do
  echo “deadline” > /sys/block/${a}/queue/scheduler
  echo 512 > /sys/block/${a}/queue/nr_requests
done

/etc/sysctl.conf
#Network Tunings
net.ipv4.conf.default.rp_filter=1
net.ipv4.tcp_timestamps=0
net.ipv4.tcp_sack = 1
net.core.netdev_max_backlog = 25000
net.core.rmem_max = 2147483647
net.core.wmem_max = 2147483647
net.core.rmem_default = 33554431
net.core.wmem_default = 33554432
net.core.optmem_max = 33554432
net.ipv4.tcp_rmem =8192 33554432 2147483647
net.ipv4.tcp_wmem =8192 33554432 2147483647
net.ipv4.tcp_low_latency=1
net.ipv4.tcp_adv_win_scale=1
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv4.conf.all.arp_filter=1
net.ipv4.tcp_retries2=5
net.ipv6.conf.lo.disable_ipv6 = 1
net.core.somaxconn = 65535
#memory cache settings
vm.swappiness=1
vm.overcommit_memory=0
vm.dirty_background_ratio=1
vm.dirty_ratio=20
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The Hadoop Distributed File System (HDFS) and Yet Another Resource Negotiator (YARN) are the main components that 
form the data management layer for Hadoop, where:

• HDFS is the storage management framework.

• YARN is the resource management framework.

There are no universal settings for all Hadoop environments. The settings you use are highly dependent on workload 
characteristics and hardware subsystem choices. This chapter provides brief descriptions and tuning guidelines for 
various interactive Hadoop. 

6.1 YARN Settings
YARN includes two major component daemons:

• Resource Manager: See “Resource Manager” on page 27.

• Node Manager: See “Node Manager” on page 28.

6.1.1 Resource Manager
ResourceManager is the master YARN daemon. It manages resource assignment among the competing applications. 
The scheduler is most significant part of the ResourceManager because most Hadoop installations rely on either:

• The Fair scheduler, which tries to assign resources equally across jobs over time.

• The Capacity scheduler, which tries to give each user or job a minimum capacity guarantee while allowing any excess 
capacity not utilized by one user or organization to be accessed by others.

Note: If only one job is running at a time, then either scheduler will work.

The MapReduce concept often breaks a job into hundreds or even thousands of tasks and reduces the task footprint to a 
single thread and smaller memory footprint. This footprint represents the minimum container size allocations for both 
memory and vCPU cores. As a general rule of thumb, calculate this value by dividing the total memory available to the 
YARN NodeManager (yarn.nodemanager.resource.memory-mb) by the number of vCPU cores 
(yarn.nodemanager.resource.vcores) available to it. In other cases, large container applications such as. SPARK 
or Hive with LLAP can have large container memory footprints and many vCPU cores. These latter cases require 
considering the AMD EPYC processor’s NUMA architecture, specifically the number of CPU cores and the amount of 
memory available per NUMA node. Tune these settings in either:

• The cluster management software (Cloudera Manager for CDH, Ambari for HDP, HPE Ezmeral Data Fabric Control 
System for HPE Ezmeral Data Fabric).

• Directly in the yarn-site.xml files in a manual Apache Hadoop configuration.

Chapter

6 Hadoop Settings
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6.1.1.1 Settings for Resource Consumption Control

The following are the scheduler settings for controlling resource consumption for individual YARN containers. These 
settings define the minimum, maximum, and stepping allocation of memory and vcore (virtual CPU) resources of the 
YARN containers in the cluster. 

6.1.2 Node Manager
The NodeManager runs on each of the worker nodes. The key settings for proper NodeManager configuration are 
specifying the maximum processing threads and memory Hadoop can use on a particular worker node. These properties 
are what control how much of a node’s resources YARN can use. 

YARN Scheduler Settings and Explanations

Name Value Description
yarn.scheduler.minimum-allocation-vcores 1 Minimum vCPU cores allocated per 

YARN container.
yarn.scheduler.maximum-allocation-vcores Restrict to vCPU cores in a 

NUMA node or LLC if LLC as 
NUMA enabled

Maximum vCPU cores allocated per 
YARN container.

yarn.scheduler.increment-allocation-vcores 1 Incremental step from min to max 
vCPU core allocation per YARN 
container.

yarn.scheduler.minimum-allocation-mb Yarn.nodeman-
ager.resource.memory-mb / 
yarn.nodemanager.resource-
cpu-vcpus

Minimum memory to allocate to each 
YARN container.

yarn.scheduler.maximum-allocation-mb Application dependent. Keep 
this less than the total 
memory in a NUMA node or 
LLC, if LLC as NUMA enabled.

Maximum memory allocated to a 
YARN container.

yarn.scheduler.increment-allocation-mb 512 or 1024 Incremental step from min to max 
memory allocation per container.

Table 6-1: YARN Scheduler settings

YARN NodeManager Settings and Explanations

Name Description
yarn.nodemanager.resource.memory-mb Total memory in worker node to be used by 

NodeManager.
Yarn.nodemanager.resource.cpu-vcores Total vCPU cores in the worker node to be used by 

NodeManager.

Table 6-2: YARN NodeManager settings
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Different Hadoop vendors offer recommended settings with worksheets and scripts for some of these based upon any 
other Hadoop components installed on your nodes (e.g. HIVE, Spark, etc.). For example, configure a datanode with a 
single 32-core/64-thread AMD EPYC 9004 Series Processor and 512 GB of memory as follows:

yarn.scheduler.minimum-allocation-vcores: 1
yarn.scheduler.maximum-allocation-vcores: 4
yarn.scheduler.increment-allocation-vcores: 1
yarn.scheduler.minimum-allocation-mb: 1024
yarn.scheduler.maximum-allocation-mb: 32768
yarn.scheduler.increment-allocation-mb: 1024
yarn.nodemanager.resource.memory-mb: 507904
yarn.nodemanager.resource.cpu-vcores: 64
yarn.nodemanager.local-dirs: <List of local directories (one per disk) that YARN will use 
to store intermediate and temporary data.>

Using native task libraries on map outputs can significantly boost performance. Native libraries include:

• Components for compression codecs (bzip2, gzip, lzo lz4, snappy, and zlib).

• Native I/O utilities for HDFS Short-Circuit Local Reads and Centralized Cache Management.

• CRC32 checksum implementation

High I/O (shuffle) intensive applications can see significant performance gains from using these libraries. CDH 5.14 
includes the Enable Optimized Map-side Output Collector checkbox to enable this feature.

Verify that the native libraries are properly installed by executing the hadoop checknative -a command:

# hadoop checknative -a
21/02/23 05:55:33 INFO bzip2.Bzip2Factory: Successfully loaded & initialized native-bzip2 
library system-native
21/02/23 05:55:33 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib 
library
Native library checking:
hadoop:  true /opt/cloudera/parcels/CDH-7.1.4-1.cdh7.1.4.p0.6300266/lib/hadoop/lib/native/
libhadoop.so.1.0.0
zlib:    true /lib64/libz.so.1
zstd  :  true /opt/cloudera/parcels/CDH-7.1.4-1.cdh7.1.4.p0.6300266/lib/hadoop/lib/native/
libzstd.so.1
snappy:  true /opt/cloudera/parcels/CDH-7.1.4-1.cdh7.1.4.p0.6300266/lib/hadoop/lib/native/
libsnappy.so.1
lz4:     true revision:10301
bzip2:   true /usr/lib64/libbz2.so.1
openssl: true /usr/lib64/libcrypto.so
ISA-L:   true /lib64/libisal.so.2
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AMD also recommends checking the map task system logs when expected native task utilization is enabled and looking 
for the following message(s):

2021-02-23 10:42:45,474 INFO [main] org.apache.hadoop.mapred.nativetask.NativeRuntime: 
Nativetask JNI library loaded.
2021-02-23 10:42:45,523 INFO [main] 
org.apache.hadoop.mapred.nativetask.NativeBatchProcessor: NativeHandler: direct buffer 
size: 1048576
2021-02-23 10:42:45,545 INFO [main] org.apache.hadoop.mapred.nativetask.util.OutputUtil: 
nativetask.output.manager = org.apache.hadoop.mapred.nativetask.util.NativeTaskOutputFiles
2021-02-23 10:42:45,546 INFO [main] 
org.apache.hadoop.mapred.nativetask.NativeMapOutputCollectorDelegator: Native output 
collector can be successfully enabled!
2021-02-23 10:42:45,546 INFO [main] org.apache.hadoop.mapred.MapTask: Map output collector 
class = org.apache.hadoop.mapred.nativetask.NativeMapOutputCollectorDelegator2018-08-23 
15:30:36,019 INFO [main] org.apache.hadoop.mapred.nativetask.NativeRuntime: Nativetask JNI 
library loaded.

6.2 HDFS Settings
This section describes the main parameters that will need testing with your workload. As before, you can make these 
changes via either the cluster management software (Cloudera Manager for CDH or Ambari for HDP) or by modifying 
hdfs-site.xml directly.

The HDFS (Hadoop Distributed File System) is the heart of the Hadoop platform. Regardless of which other projects/
applications you use (Hive, Spark, Kafka etc), they all depend on the HDFS filesystem.  As such, HDFS performance is 
undeniably critical to the overall platform availability, performance, and throughput.

Note: HPE Ezmeral Data Fabric has its own filesystem that is managed via the HPE Ezmeral Data Fabric Control System.

Various components like Hive, Spark, HBase, Kafka etc use HDFS as their filesystem. As such, the HDFS acts as a single 
point of failure for the data platform. This means that availability, performance, and throughput are largely governed by 
that of HDFS performance and availability.

HDFS has many configurations, many of which depend on the specific use of the data platform. Keeping those aside, 
here are some features that you must consider enabling on the platform:

• Enable High Availability with Automatic Failover*.

• Optimize RPC performance using:

- Service RPC: The service RPC port gives the DataNodes a dedicated port to report their status via block reports 
and heartbeats. The port is also used by Zookeeper Failover Controllers for periodic health checks by the 
automatic failover logic. The port is never used by client applications and hence reduces RPC queue contention 
between client requests and DataNode messages.

- Tuning handler counts: dfs.datanode.handler.count, dfs.namenode.handler.count, and 
dfs.namenode.service.handler.count. Generally, dfs.namenode.service.handler.count = 50% of 
dfs.namenode.handler.count.

- RPC Congestion Control: This feature was designed to help Hadoop services respond more predictably under 
high loads. RPC queue overflow can cause request timeouts and eventual job failures. This problem can be 
mitigated if the NameNode sends an explicit signal back to the client when its RPC queue is full. Instead of 
waiting for a request that may never complete, the client throttles itself by re-submitting the request with an 

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
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exponentially increasing delay. If you are familiar with the Transmission Control Protocol, this is similar to how 
senders react when they detect network congestion.

You can enable this feature using the following setting in core-site.xml, being sure to replace 8020 with your 
NameNode RPC port number if it is different. Do not enable this setting for the Service RPC port or the 
DataNode lifeline port.

ipc.8020.backoff.enable=true

- RPC Faircall Queue: This replaces the single RPC queue with multiple prioritized queues (not to be confused 
with Yarn queues). The RPC server maintains a history of recent requests grouped by user. It places incoming 
requests into an appropriate queue based on the user's history. RPC handler threads will dequeue requests from 
higher priority queues with a higher probability. FairCallQueue complements RPC congestion control very well 
and works best when you enable both features together. FairCallQueue can be enabled with the following 
core-site.xml setting. Replace 8020 with your NameNode RPC port if it is different. Do not enable this 
setting for the Service RPC port or the DataNode lifeline port.

ipc.8020.callqueue.impl= org.apache.hadoop.ipc.FairCallQueue

• Datanode Lifeline Protocol: Datanode Lifeline Protocol introduces a new lightweight RPC message that is used by 
the DataNodes to report their health to the NameNode. It was developed in response to problems seen in some 
overloaded clusters where the NameNode was too busy to process heartbeats and spuriously marked DataNodes as 
dead.

• Tune the Datanode and Namenode Heap memory size: For the Datanode, this is the number of replicas of its hosts. 
For the Namenode, this is the number of files on the system govern the heap size requirements. A conservative 
approach is to set a heap size of 1 GB for every million blocks stored in the HDFS.

• Optimal logging:

- Enable async logging in hdfs-site.xml
dfs.namenode.edits.asynclogging = true
dfs.namenode.audit.log.async = true

- Minimize StateChange logging (log4j.properties):
log4j.logger.BlockStateChange=WARN
log4j.logger.org.apache.hadoop.hdfs.StateChange=WARN

• dfs.datanode.data.dir: List of directories where HDFS data will be stored (one per disk).

• dfs.blocksize: Default HDFS block size. Jobs can overwrite this setting.
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6.2.1 Erasure Coding
Erasure coding attempts to achieve the same or better protection against data loss as three-way replication while 
reducing the total amount of stored data. Using the RS-6-3-1024K erasure coding policy breaks HDFS files down into 
block groups with each block group consisting of 6 blocks of data and 3 blocks of parity. This creates a 50% overhead for 
redundant storage and thus requires 150% of the total data stored. By contrast, replication-3 makes 3 copies of the data 
and thus requires 300% of the total data stored. Erasure coding thus offers the same level of protection as replication-3 
while needing only half the disk space. 

Figure 6-1: Data chunking

Each block in a block group is stored on a different DataNode, and at least one DataNode is therefore required to obtain 
the full benefit of erasure coding. Erasure coding places additional compute and network stress on the data nodes, 
making it important to consider the balance between storage gains and resource consumption.

Erasure Coding has been around for a while but is relatively new to HDFS. This feature can achieve significant 
performance and storage benefits, and AMD thus recommends testing it in development before attempting to use it in 
any production environment.

6.3 NUMA Optimization for Dual-socket Servers
NUMA is a computer memory design used in multiprocessing where the memory access time depends on the memory 
location relative to the processor. NUMA allows a processor to access its local memory faster than non-local memory, 
that is, memory that is either local to another processor or memory that is shared between processors. Hadoop YARN 
containers can benefit from NUMA design and achieve higher performance by binding a specific NUMA node and all 
subsequent memory allocations served by the same node to reduce remote memory accesses. Also, the NUMA nodes 
allocated for YARN containers within sockets have better performance compared to NUMA nodes allocated across the 
sockets.

6.3.1 NUMA Setting 
To modify the NUMA configuration:

1. Configure the NodeManager to use the LinuxContainerExecutor (LCE) in yarn-site.xml:

yarn.nodemanager.container-executor.class = 
org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor  
yarn.nodemanager.linux-container-executor.group = Hadoop

2. Configure the container-executor.cfg file required by the LCE and read by the container-executor program:

yarn.nodemanager.linux-container-executor.group=hadoop
banned.users=hdfs,yarn,mapred,bin
min.user.id=1000
feature.terminal.enabled=1

Original data

Divided into chunks

Calculated redundancy chunks
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3. Enable the NodeManager NUMA awareness feature for the containers.

yarn.nodemanager.numa-awareness.enabled = true

4. Enable the NUMA topology reading, which decides whether to read the NUMA topology from the system or from the 
configurations. Setting this property to true reads the topology system by executing the numactl –hardware 
command in UNIX systems, and similarly in Windows.

yarn.nodemanager.numa-awareness.read-topology = true

6.3.2 NUMA Source Code Tuning
This section describes some optimizations that AMD has been looking at to improve CPU and memory allocation. NUMA 
source code tuning can significantly improve performance, especially on dual-socket systems. This requires you to 
modify Hadoop source code and may violate support agreements. Check with your Hadoop vendor/service provider to 
verify that this is allowed before attempting these changes in production environments.

Hadoop allocates node CPU and memory resources to allow containers to execute tasks. This may occur across both 
sockets of a dual-socket AMD EPYC-powered server depending on the existing Hadoop NUMA source code. This can 
cause long-latency memory access between the two sockets and degrade performance accordingly. Consider modifying 
the Hadoop NUMA source code to allocate CPU and memory resources within one socket to remove cross-socket 
memory access and improve performance. The modified algorithm and Hadoop source code appear below. 

The Hadoop NUMA source code uses the numactl command to bind memory and CPU resources to a task. You can use 
membind as the argument in the numactl command in the Hadoop source code, which enables local memory allocations 
from the nodes.To do this, modify the public List<PrivilegedOperation> preStart(Container 
container) function in NumaResourceHandlerImpl.java by changing the interleave line to membind:

"--membind=" + String.join(",", numaAllocation.getMemNodes()))
//"--interleave=" + String.join(",", numaAllocation.getMemNodes())

To modify the algorithm for Hadoop resource allocation:

1. Search every NUMA node in the dual-socket server to verify that the node can provide enough resources for the 
Hadoop container. Return this node if the node can provide enough resources, else proceed Step to 2.

2. Check NUMA nodes for the memory resources on Socket 1 and Socket 2 separately.

3. Check NUMA nodes for the CPU resources on Socket 1 and Socket 2 separately.

4. If the NUMA nodes in Socket 1 have enough memory and CPU resources for the Hadoop container, then allocate 
these nodes in Socket 1. Similarly, if the NUMA nodes in Socket 2 have enough memory and CPU resources for the 
Hadoop container, then allocate these nodes to Socket 2. 

The following example shows this algorithm implementation. In NumaResourceAllocator.java file, the function 
private NumaResourceAllocation allocate(ContainerId containerId, Resource resource) is 
modified as shown below:

 private NumaResourceAllocation allocate(ContainerId containerId,
      Resource resource) {
// check every NUMA node for the Hadoop container resource requirement
 for (int index = 0; index < numaNodesList.size(); index++) {
      NumaNodeResource numaNode = numaNodesList.get(index);
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      if (numaNode.isResourcesAvailable(resource)) {
        numaNode.assignResources(resource, containerId);
        LOG.info("Assigning NUMA node " + numaNode.getNodeId() + " for memory, "
            + numaNode.getNodeId() + " for cpus for the " + containerId);
        return new NumaResourceAllocation(numaNode.getNodeId(),
            resource.getMemorySize(), numaNode.getNodeId(),
            resource.getVirtualCores());
      }
    }

    // If there is no single node matched for the container resource
    // Check the NUMA nodes for Memory resources from socket 1 and socket 2 respectively. 
    long memoryRequirement = resource.getMemorySize();
Map<String, Long> memoryAllocations = Maps.newHashMap();
for (int i = 0; i < numaNodesList.size() / 2; ++i) {
      long memoryRemaining = numaNodesList.get(i).
          assignAvailableMemory(memoryRequirement, containerId);
      memoryAllocations.put(numaNodesList.get(i).getNodeId(),
          memoryRequirement - memoryRemaining);
      memoryRequirement = memoryRemaining;
      if (memoryRequirement == 0) {
        break;
      }
    }

    long memoryRequirement1 = resource.getMemorySize();
    Map<String, Long> memoryAllocations1 = Maps.newHashMap();
      for (int i = numaNodesList.size() / 2; i < numaNodesList.size(); ++i) {
      long memoryRemaining = numaNodesList.get(i).
          assignAvailableMemory(memoryRequirement1, containerId);
      memoryAllocations1.put(numaNodesList.get(i).getNodeId(),
          memoryRequirement1 - memoryRemaining);
      memoryRequirement1 = memoryRemaining;
      if (memoryRequirement1 == 0) {
        break;
      }
    }

    if (memoryRequirement != 0 || memoryRequirement1 != 0) {
      LOG.info("There is no available memory:" + resource.getMemorySize()
          + " in numa nodes for " + containerId);
      releaseNumaResource(containerId);
      return null;
    }

    // Check the NUMA nodes for CPU resources from socket 1 and socket 2 respectively.
    int cpusRequirement = resource.getVirtualCores();
    Map<String, Integer> cpuAllocations = Maps.newHashMap();
    for (int index = 0; index < numaNodesList.size() / 2; index++) {
      int cpusRemaining = numaNodesList.get(index).
          assignAvailableCpus(cpusRequirement, containerId);
      cpuAllocations.put(numaNodesList.get(index).getNodeId(), cpusRequirement - 
cpusRemaining);
      cpusRequirement = cpusRemaining;
      if (cpusRequirement == 0) {
        break;
      }
    }

    int cpusRequirement1 = resource.getVirtualCores();
    Map<String, Integer> cpuAllocations1 = Maps.newHashMap();
    for (int index = numaNodesList.size() / 2; index < numaNodesList.size(); index++) {
      int cpusRemaining = numaNodesList.get(index).
          assignAvailableCpus(cpusRequirement1, containerId);
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      cpuAllocations1.put(numaNodesList.get(index).getNodeId(), cpusRequirement1 - 
cpusRemaining);
      cpusRequirement1 = cpusRemaining;
      if (cpusRequirement1 == 0) {
        break;
      }
    }

// allocate nodes from socket 1 if there are enough CPU and memory for the Hadoop 
containers
    if (memoryRequirement == 0 && cpusRequirement == 0) {
    NumaResourceAllocation assignedNumaNodeInfo =
        new NumaResourceAllocation(memoryAllocations, cpuAllocations);
    LOG.info("Assigning multiple NUMA nodes ("
        + StringUtils.join(",", assignedNumaNodeInfo.getMemNodes())
        + ") for memory, ("
        + StringUtils.join(",", assignedNumaNodeInfo.getCpuNodes())
        + ") for cpus for " + containerId);
        return assignedNumaNodeInfo;
        } else if ( memoryRequirement1 == 0 && cpusRequirement1 == 0) {
  // allocate nodes from socket 2 if there are enough CPU and memory for the Hadoop 
containers
    NumaResourceAllocation assignedNumaNodeInfo =
        new NumaResourceAllocation(memoryAllocations1, cpuAllocations1);
    LOG.info("Assigning multiple NUMA nodes ("
        + StringUtils.join(",", assignedNumaNodeInfo.getMemNodes())
        + ") for memory, ("
        + StringUtils.join(",", assignedNumaNodeInfo.getCpuNodes())
        + ") for cpus for " + containerId);

      return assignedNumaNodeInfo;
    }
    releaseNumaResource(containerId);
    return null;
}
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• Memory Population Guidelines for AMD EPYC 9004 Series Processors (login required)

• Socket SP5 Platform NUMA Topology for AMD Family 19h Models 10h–1Fh (login required)

• From AMD EPYC Tuning Guides:

- Linux® Network Tuning Guide for AMD EPYC™ 9004 Series Processors

- Windows® Network Tuning Guide for AMD EPYC™ 9004 Series Processors

• Tuning YARN*

Chapter

7 Resources

https://docs.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_yarn_tuning.html
https://www.amd.com/en/search/documentation/hub.html#sortCriteria=%40amd_release_date%20descending&f-amd_document_type=Tuning%20Guides&f-amd_product_brand=EPYC
https://devhub.amd.com/search/Memory+Population+Guidelines+for+AMD+Family+19h+Models+10h-Fh/
https://devhub.amd.com/search/Memory+Population+Guidelines+for+AMD+Family+19h+Models+10h-Fh/
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Figure 8-1 shows the processor naming convention for AMD EPYC 9004 Series Processors and how to use this convention 
to identify particular processors models: 

Figure 8-1: AMD EPYC SoC naming convention

8.1 CPUID Instruction
Software uses the CPUID instruction (Fn0000_0001_EAX) to identify the processor and will return the following values:

• Family: 19h identifies the “Zen 4” architecture

• Model: Varies with product. For example, EPYC Family 19h, Model 10h corresponds to an “A” part “Zen 4” CPU.

- 91xx-96xx (including “X” OPNs): Family 19h, Model 10-1F

- 97xx: Family 19h, Model A0-AF

• Stepping: May be used to further identify minor design changes

For example, CPUID values for Family, Model, and Stepping (decimal) of 25, 17, 1 correspond to a “B1” part “Zen 4” CPU.

Chapter

8 Processor Identification

EPYC   9554P CPUTM

PRODUCT FAMILY

PRODUCT SERIES
-   9xx4 = Socket SP5

PRODUCT MODEL
Indicates core count within the series

100s Digit

Cores

2 3 4 5 60

24 32 48 64 84-968

PERFORMANCE
10s digit indicates performance within the series
-   9 = Reserved
-   8, 7, 6, 5, 4, 3, 2, 1
     - relative performance w/in core count
     - higher number = higher performance.

GENERATION
4 = 4th Gen 9004

FEATURE MODIFIER
-   P = 1P only
-   F = Frequency Optimized
-   X = Cache Optimized

1

16

7

112-128
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8.2 New Software-Visible Features
AMD EPYC 9004 Series Processors introduce several new features that enhance performance, ISA updates, provide 
additional security features, and improve system reliability and availability. Some of the new features include:

• 5-level Paging

• AVX-512 instructions on a 256-byte datapath, including BFLOAT16 and VNNI support.

• Fast Short Rep STOSB and Rep CMPSB

Not all operating systems or hypervisors support all features. Please refer to your OS or hypervisor  documentation for 
specific releases to identify support for these features.

Please also see the latest version of the AMD64 Architecture Programmer’s Manuals or Processor Programming 
Reference (PPR) for AMD Family 19h.

8.2.1 AVX-512
AVX-512 is a set of individual instructions supporting 512-bit register-width data (i.e., single instruction, multiple data 
[SIMD]) operations. AMD EPYC 9004 Series Processors implement AVX 512 by “double-pumping” 256-bit-wide registers. 
AMD’s AVX-512 design uses the same 256-bit data path that exists throughout the Zen4 core and enables the two parts 
to execute on sequential clock cycles. This means that running AVX-512 instructions on AMD EPYC 9004 Series will cause 
neither drops on effective frequencies nor increased power consumption. On the contrary, many workloads run more 
energy-efficiently on AVX-512 than on AVX-256P.

Other AVX-512 support includes:

• Vectorized Neural Network Instruction (VNNI) instructions that are used in deep learning models and accelerate 
neural network inferences by providing hardware support for convolution operations.

• Brain Floating Point 16-bit (BFLOAT16) numeric format. This format is used in Machine Learning applications that 
require high performance but must also conserve memory and bandwidth. BFLOAT16 support doubles the number of 
SIMD operands over 32-bit single precision FP, allowing twice the amount of data to be processed using the same 
memory bandwidth. BFLOAT16 values mantissa dynamic range at the expense of one radix point.

https://www.amd.com/en/support/tech-docs?keyword=amd64+architecture+programmer%27s+manual
https://www.amd.com/en/support/tech-docs?keyword=preliminary+processor
https://www.amd.com/en/support/tech-docs?keyword=preliminary+processor
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