
TUNING GUIDE
AMD EPYC 9004

High Performance Toolchain:
Compilers, Libraries & Profilers

Publication 58020
Revision 1.4
Issue Date September, 2023

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

ii 58020 – 1.4

© 2023 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution
has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and
AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations
or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel,
to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s
products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, 3D V-Cache, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux
is a registered trademark of Linus Torvalds. Microsoft, Windows, and Azure are registered trademarks of Microsoft Corporation in the
US and other countries. Other product names and links to external sites used in this publication are for identification purposes only
and may be trademarks of their respective companies.

* Links to third party sites are provided for convenience and unless explicitly stated, AMD is not responsible for the contents of such
linked sites and no endorsement is implied.

Audience
This guide lists high performance tools to help develop your code using high-performance math libraries and compilers,
and to profile your applications to more fully leverage the performance of AMD EPYC™ 9004 processors. This guide is not
all-inclusive; please see Tools and SDKs for the latest information and instructions

Author
Ashish Jha

Note: All of the settings described in this Tuning Guide apply to all AMD EPYC 9004 Series Processors of all core counts
with or without AMD 3D V-Cache™ except where explicitly noted otherwise.

Date Version Changes

July, 2022 0.1 Initial NDA partner release
Sep, 2022 0.2 Misc. updates
Nov, 2022 1.0 Initial public release
Dec, 2022 1.1 Minor errata corrections
Mar, 2023 1.2 Added 97xx OPN and AMD 3D V-Cache™ technology information
Jun, 2023 1.3 Second public release
Sep, 2023 1.4 Added preliminary version 4.1 information

https://developer.amd.com/tools-and-sdks/

58020 – 1.4 iii

Chapter 1 Introduction - 1

Chapter 2 AMD EPYC™ 9004 Series Processors -3

2.1 General Specifications ... 3
2.2 Model-Specific Features ... 3
2.3 Operating Systems .. 4
2.4 Processor Layout ... 4
2.5 “Zen 4” Core .. 4
2.6 Core Complex (CCX) ... 5
2.7 Core Complex Dies (CCDs) ... 5
2.8 AMD 3D V-Cache™ Technology .. 6
2.9 I/O Die (Infinity Fabric™) ...7
2.10 Memory and I/O .. 8
2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h) .. 9

2.11.1 Models 91xx-96xx (“Genoa”) .. 9
2.11.2 Models 97xx (“Bergamo”) ..10

2.12 NUMA Topology ...10
2.12.1 NUMA Settings ...10

2.13 Dual-Socket Configurations ... 12

Chapter 3 Compilers - 13

3.1 AMD Optimizing CPU Compiler (AOCC) .. 13
3.1.1 AOCC Clang/Clang++ ...14
3.1.2 AOCC FLang ...14
3.1.3 Clang and Flang Options ...14

3.2 GCC Compiler .. 15

Chapter 4 High Performance Math Libraries - 17

4.1 AMD Optimizing CPU Libraries (AOCL) ... 17
4.1.1 BLIS ...18
4.1.2 libFLAME ...18
4.1.3 FFTW ...18
4.1.4 LibM ..18
4.1.5 ScaLAPACK ..18
4.1.6 AMD Random Number Generator ... 19
4.1.7 AMD Secure RNG ... 19
4.1.8 AOCL-Sparse ... 19
4.1.9 AOCL- Cryptography .. 19
4.1.10 AOCL- LibMem .. 19
4.1.11 AOCL-Compression ... 19

Table of Contents

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

iv 58020 – 1.4

4.2 AOCL Tuning Guidelines .. 20
4.2.1 AOCL Dynamic .. 20
4.2.2 BLIS DGEMM Multi-thread Tuning ... 20
4.2.3 Performance Suggestions for Skinny Matrices .. 21
4.2.4 AMD-Optimized FFTW .. 21
4.2.5 AOCL-libFLAME Multi-Threading ..22

Chapter 5 Application Performance Analysis & Optimization - 23

5.1 AMD µProf – Profiling Tool .. 23
5.1.1 Performance Monitoring Tool (AMDuProfPcm) .. 24
5.1.2 AMDuProfSys ... 25
5.1.3 Application Analysis ... 26
5.1.4 HPC Analysis .. 30
5.1.5 MPI Analysis ... 30
5.1.6 MPI Trace Analysis .. 31
5.1.7 Roofline Analysis ... 32
5.1.8 Power Profiling ... 35

5.1.8.1 Profiling Effective Frequency ... 35
5.1.8.2 Live System-Wide Power Profile .. 36

Chapter 6 uProf Quick Reference Guide - 37

6.1 CPU Profiling ..37
6.2 MPI Profiling (Linux only) .. 38
6.3 Power Profiling .. 38
6.4 MPI Tracing (Linux only) .. 39
6.5 OpenMP Tracing (Linux only) .. 39
6.6 HPC Hybrid Tracing .. 40
6.7 OS Tracing (Linux only) .. 40
6.8 AMDuProfPcm (System Analysis) ... 40
6.9 AMDuProfSys (System Analysis) ...41
6.10 Pre-release Features of AMDuProfPcm on Linux .. 42

6.10.1 Roofline Model Analysis ... 42
6.10.2 Pipeline Utilization (Top-Down Analysis) ... 42

6.11 Help Commands .. 42
6.12 Appendices .. 43

6.12.1 Appendix A: Installing BCC and eBPF ... 43
6.12.2 Appendix B: AMDuProf Linux Prerequisites ... 43
6.12.3 Appendix C: AMDuProfSys Linux Prerequisites .. 43
6.12.4 Appendix D: AMDuProf Predefined Configs ... 44

Chapter 7 Resources -45

7.1 AMD Resources ... 45
7.1.1 Other Resources ... 45

v58020 – 1.4

Table of Contents

Chapter 8 Processor Identification -47

8.1 CPUID Instruction .. 47
8.2 New Software-Visible Features .. 48

8.2.1 AVX-512 .. 48

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

vi 58020 – 1.4

This page intentionally left blank.

58020 – 1.4 1

AMD continues to actively develop a high-performance toolchain of compilers, libraries, and application profilers to meet
the needs of High Performance Computing (HPC) and enterprise users and developers looking to better harness the
capabilities and performance of AMD EPYC™ processors. These include:

• The AMD Optimizing CPU Compiler (AOCC) includes optimizations for each AMD EPYC processor generations. The
open-source GNU Compiler Collection (GNU) platform compiler also supports AMD EPYC processors and is available
based on the GNU General Public License.

• AMD also offers the high-performance AMD Optimizing CPU Libraries (AOCL) math library suite, which is optimized
for the AMD “Zen” architectures. Developers can leverage AOCL for high-performance applications.

• The AMD uProf tool allows developers to extract more performance by gaining deeper insights into application
characteristics and identifying optimization opportunities in those applications.

AMD AOCC, AOCL and uProf are now part of AMD Zen Software Studio. The current version of these tools is 4.1, which
was released on August 4, 2023 and includes support for 4th Gen AMD EPYC processors (i.e., the “Zen 4” architecture).
These tools are preferred for AMD EPYC processors. You will also be able to use GCC 12.1.0 and later because it supports
the AVX512 ISA that was introduced in AMD EPYC 9004 Series Processors. GCC version 12.3.0 will have full support for
AMD EPYC 9004 Series Processors. GCC 13.1 is currently released and includes full support for AMD EPYC 9004 Series
Processors.

Visit AMD Zen Software Studio (Zen studio) to access everything mentioned in this chapter, including AMD libraries,
compilers, performance analyzer, and user guides. You need not sign in to download forms; download begins as soon as
you accept the terms. If you have any issues concerning the AMD toolchain, then please either contact your local AMD
Field Application Engineer or send an email to toolchainsupport@amd.com.

Chapter

1 Introduction

mailto:toolchainsupport@amd.com
https://www.amd.com/en/developer/zen-software-studio.html

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

2 58020 – 1.4

This page intentionally left blank.

58020 – 1.4 3

AMD EPYC™ 9004 Series Processors represent the fourth generation of AMD EPYC server-class processors. This
generation of AMD EPYC processors feature AMD’s latest “Zen 4” based compute cores, next-generation Infinity Fabric,
next-generation memory & I/O technology, and use the new SP5 socket/packaging.

2.1 General Specifications
AMD EPYC 9004 Series Processors offer a variety of configurations with varying numbers of cores, Thermal Design Points
(TDPs), frequencies, cache sizes, etc. that complement AMD’s existing server portfolio with further improvements to
performance, power efficiency, and value. Table 1-1 lists the features common to all AMD EPYC 9004 Series Processors.

2.2 Model-Specific Features
Different models of 4th Gen AMD EPYC processors have different feature sets, as shown in Table 1-2.

Chapter

2
AMD EPYC™ 9004 Series
Processors

Common Features of all AMD EPYC 9004 Series Processors
Compute cores Zen4-based
Core process technology 5nm
Maximum cores per Core Complex (CCX) 8
Max memory per socket 6 TB
Max # of memory channels 12 DDR5
Max memory speed 4800 MT/s DDR5
Max lanes Compute eXpress Links 64 lanes CXL 1.1+
Max lanes Peripheral Component Interconnect 128 lanes PCIe® Gen 5

Table 2-1: Common features of all AMD EPYC 9004 Series Processors

AMD EPYC 9004 Series Processor (Family 19h) Features by Model
Codename “Genoa”* “Bergamo”*
Model # 91xx-96xx 97xx
Max number of Core Complex Dies (CCDs) 12 8
Number of Core Complexes (CCXs) per CCD 1 2
Max number of cores (threads) 96 (192) 128 (256)
Max L3 cache size (per CCX) 1,152 MB (96 MB) 256 MB (16 MB)
Max Processor Frequency 4.4 GHz 3.15 GHz
Includes AMD 3D V-Cache (9xx4X) and high-frequency (9xx4F) models.
*GD-122: The information contained herein is for informational purposes only and is subject to change without notice. Timelines, roadmaps, and/or product
release dates shown herein and plans only and subject to change. “Genoa” and “Bergamo” are codenames for AMD architectures and are not product names.

Table 2-2: AMD EPYC 9004 Series Processors features by model

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

4 58020 – 1.4

2.3 Operating Systems
AMD recommends using the latest available targeted OS version and updates. Please see AMD EPYC™ Processors
Minimum Operating System (OS) Versions for detailed OS version information.

2.4 Processor Layout
AMD EPYC 9004 Series Processors incorporate compute cores, memory controllers, I/O controllers, RAS (Reliability,
Availability, and Serviceability), and security features into an integrated System on a Chip (SoC). The AMD EPYC 9004
Series Processor retains the proven Multi-Chip Module (MCM) Chiplet architecture of prior successful AMD EPYC
processors while making further improvements to the SoC components.

The SoC includes the Core Complex Dies (CCDs), which contain Core Complexes (CCXs), which contain the “Zen 4”-based
cores. The CCDs surround the central high-speed I/O Die (and interconnect via the Infinity Fabric). The following sections
describe each of these components.

Figure 2-1: AMD EPYC 9004 configuration with 12 Core Complex Dies (CCD) surrounding a central I/O Die (IOD)

2.5 “Zen 4” Core
AMD EPYC 9004 Series Processors are based on the new “Zen 4” compute core. The “Zen 4” core is manufactured using
a 5nm process and is designed to provide an Instructions per Cycle (IPC) uplift and frequency improvements over prior
generation “Zen” cores. Each core has a larger L2 cache and improved cache effectiveness over the prior generation. Each
“Zen 4” core includes:

• Up to 32 KB of 8-way L1 I-cache and 32 KB of 8-way of L1 D-cache

• Up to a 1 MB private unified (Instruction/Data) L2 cache.

Each core supports Simultaneous Multithreading (SMT), which allows 2 separate hardware threads to run independently,
sharing the corresponding core’s L2 cache.

IO Die

Core Complex Die (CCD)

https://www.amd.com/en/processors/epyc-minimum-operating-system
https://www.amd.com/en/processors/epyc-minimum-operating-system

558020 – 1.4

Chapter 2: AMD EPYC™ 9004 Series Processors

2.6 Core Complex (CCX)
Figure 2-2 shows a Core Complex (CCX) where up to eight “Zen 4”-based cores share a L3 or Last Level Cache (LLC).
Enabling Simultaneous Multithreading (SMT) allows a single CCX to support up to 16 concurrent hardware threads.

Figure 2-2: Top view of 8 compute cores sharing an L3 cache (91xx-96xx models)

2.7 Core Complex Dies (CCDs)
The Core Complex Die (CCD) in an AMD EPYC 9xx4 Series Processor may contain either one or two CCXs, depending on the
processor (91xx-96xx “Genoa” vs. 97xx “Bergamo”), as shown in Figure 2-5.

Figure 2-3: 2 CCXs in a single 4th Gen AMD EPYC 97xx CCD

Each of the Core Complex Dies (CCDs) in a 97xx model AMD EPYC 9004 Series Processor contains two CCXs (Figure 2-5):

AMD EPYC 9004 Series Processor 91xx-96xx 97xx
of CCXs within a CCD 1 2

Table 2-3: CCXs per CCD by AMD EPYC model

Sh
are

d
L3

 C
a

ch
e

Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

Sh
are

d
1

6M
B

 L3
 C

a
ch

e

Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

Sh
a

re
d

1
6

M
B

 L3
 C

ach
e

Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache Zen4 Core

Zen4 Core

Zen4 Core

Zen4 Core

L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

L2 Cache L2 Cache

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

6 58020 – 1.4

You can disable cores in BIOS using one or both of the following approaches:

• Reduce the cores per L3 from 8 down to 7,6,5,4,3,2, or 1 while keeping the number of CCDs constant. This approach
increases the effective cache per core ratio but reduces the number of cores sharing the cache.

• Reduce the number of active CCDs while keeping the cores per CCD constant. This approach maintains the
advantages of cache sharing between the cores while maintaining the same cache per core ratio.

2.8 AMD 3D V-Cache™ Technology
AMD EPYC 9xx4X Series Processors include AMD 3D V-Cache™ die stacking technology that enables 97xx to achieve more
efficient chiplet integration. AMD 3D Chiplet architecture stacks L3 cache tiles vertically to provide up to 96MB of L3
cache per die (and up to 1 GB L3 Cache per socket) while still providing socket compatibility with all AMD EPYC™ 9004
Series Processor models.

AMD EPYC 9004 Series Processors with AMD 3D V-Cache technology employ industry-leading logic stacking based on
copper-to-copper hybrid bonding “bumpless” chip-on-wafer process to enable over 200X the interconnect densities of
current 2D technologies (and over 15X the interconnect densities of other 3D technologies using solder bumps), which
translates to lower latency, higher bandwidth, and greater power and thermal efficiencies.

Figure 2-4: Side view of vertically-stacked central L3 SRAM tiles

Different OPNs also may have different numbers of cores within the CCX. However, for any given part, all CCXs will
always contain the same number of cores.

AMD EPYC 9004 Series Processors 9xx4 9004X
(with 3D V-Cache)

Max Shared L3 Cache per CCD 32 MB 96 MB

Table 2-4: L3 cache by processor model

AMD 3D V-Cache Tiles

Zen4 Core L2 Cache Zen4 CoreL2 Cache

Shared L3 Cache

SIDE VIEW

TM

758020 – 1.4

Chapter 2: AMD EPYC™ 9004 Series Processors

2.9 I/O Die (Infinity Fabric™)
The CCDs connect to memory, I/O, and each other through an updated I/O Die (IOD). This central AMD Infinity Fabric™
provides the data path and control support to interconnect CCXs, memory, and I/O. Each CCD connects to the IOD via a
dedicated high-speed Global Memory Interconnect (GMI) link. The IOD helps maintain cache coherency and additionally
provides the interface to extend the data fabric to a potential second processor via its xGMI, or G-links. AMD EPYC 9004
Series Processors support up to 4 xGMI (or G-links) with speeds up to 32Gbps. The IOD exposes DDR5 memory channels,
PCIe® Gen5, CXL 1.1+, and Infinity Fabric links.

All dies (chiplets) interconnect with each other via AMD Infinity Fabric technology. Figure 2-6 (which corresponds to
Figure 2-2, above) shows the layout of a 96-core AMD EPYC 9654 processor. The AMD EPYC 9654 has 12 CCDs, with each
CCD connecting to the IOD via its own GMI connection.

Figure 2-5: AMD EPYC 9654 processor internals interconnect via AMD Infinity Fabric (12 CCD processor shown)

AMD also provides “wide” OPNs (e.g. AMD EPYC 9334) where each CCD connects to two GMI3 interfaces, thereby
allowing double the Core-to-I/O die bandwidth.

Figure 2-6: Standard vs. Wide GMI links

The IOD provides twelve Unified Memory Controllers (UMCs) that support DDR5 memory. The IOD also presents 4 ‘P-
links’ that the system OEM/designer can configure to support various I/O interfaces, such as PCIe Gen5, and/or CXL 1.1+.

I/O DIE

I/O Links

CCDCCD
UMC Infinity

Fabric LinksCCD

CCDCCDCCD

CCDCCDCCD

CCDCCDCCD

UMC

UMC

UMC

UMC
UMC

UMC
UMC

UMC

UMC

UMC
UMC

G Links

P Links

I/O Die

CCD

6
 x U

M
C

GMI Port

CCD

GMI Port

CCD

GMI Port

CCD CCD CCD

CCD CCD CCD CCD CCD CCD

6
 x

 U
M

C

96 cores (12 CCDs, GMI3)

I/O Die

6
 x U

M
C

CCD CCD

CCD CCD

6
 x

 U
M

C

32 cores (4 CCDs, GMI3 -Wide)

GMI Port GMI Port GMI Port

GMI Port GMI Port GMI Port GMI Port GMI Port GMI Port

GMI Port GMI Port GMI Port GMI Port GMI Port GMI Port

GMI Port GMI Port GMI Port GMI Port GMI Port GMI Port

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

8 58020 – 1.4

2.10 Memory and I/O
Each UMC can support up to 2 DIMMs per channel (DPC) for a maximum of 24 DIMMs per socket. OEM server
configurations may allow either 1 DIMM per channel or 2 DIMMs per channel. 4th Gen AMD EPYC processors can support
up to 6TB of DDR5 memory per socket. Having additional and faster memory channels compared to previous generations
of AMD EPYC processors provides additional memory bandwidth to feed high-core-count processors. Memory
interleaving on 2, 4, 6, 8, 10, and 12 channels helps optimize for a variety of workloads and memory configurations.

Each processor may have a set of 4 P-links and 4 G-links. An OEM motherboard design can use a G-link to either connect
to a second 4th Gen AMD EPYC processor or to provide additional PCIe Gen5 lanes. 4th Gen AMD EPYC processors
support up to eight sets of x16-bit I/O lanes, that is, 128 lanes of high-speed PCIe Gen5 in single-socket platforms and up
to 160 lanes in dual-socket platforms. Further, OEMs may either configure 32 of these 128 lanes as SATA lanes and/or
configure 64 lanes as CXL 1.1+. In summary, these links can support:

• Up to 4 G-links of AMD Infinity Fabric connectivity for 2P designs.

• Up to 8 x16 bit or 128 lanes of PCIe Gen 5 connectivity to peripherals in 1P designs (and up to 160 lanes in 2-socket
designs).

• Up to 64 lanes (4 P-links) that can be dedicated to Compute Express Link (CXL) 1.1+ connectivity to extended
memory.

• Up to 32 I/O lanes that can be configured as SATA disk controllers.

958020 – 1.4

Chapter 2: AMD EPYC™ 9004 Series Processors

2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h)
This section depicts AMD EPYC 9004 Series Processors that have been set up with four nodes per socket (NPS=4). Please
see “NUMA Topology” on page 10 for more information about nodes.

2.11.1 Models 91xx-96xx (“Genoa”)
4th Gen AMD EPYC 9004 processors with model numbers 91xx-96xx have up to 12 CCDs that each contain a single CCX, as
shown below.

Figure 2-7: The AMD EPYC 9004 SoC consists of up to 12 CCDs and a central IOD for 91xx-96xx models, including “X” OPNs

Zen4

Zen4

Zen4

Zen4

3
2M

B
 Sh

are
d

L3
 C

ache

Zen4

Zen4

Zen4

Zen4

CCD11

UMC6

I/O DIE

NPS = 4

Zen4

Zen4

Zen4

Zen4

3
2M

B
 Sh

are
d

L3

 C
ache

Zen4

Zen4

Zen4

Zen4

CCD3

Zen4

Zen4

Zen4

Zen4

3
2M

B
 Sh

are
d

L3
 C

ache

Zen4

Zen4

Zen4

Zen4

CCD7

DIMM

DIMM

UMC7
DIMM

DIMM

UMC8
DIMM

DIMM

Zen4

Zen4

Zen4

Zen43
2

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD8

UMC0

Zen4

Zen4

Zen4

Zen43
2

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD0

Zen4

Zen4

Zen4

Zen43
2

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD4

DIMM

DIMM

UMC1
DIMM

DIMM

UMC2
DIMM

DIMM

Zen4

Zen4

Zen4

Zen4

3
2M

B
 S

h
ar

ed

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD9

UMC11

Zen4

Zen4

Zen4

Zen4

3
2M

B
 S

h
ar

ed

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD1

Zen4

Zen4

Zen4

Zen4

3
2M

B
 S

h
ar

ed

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

CCD5

DIMM

DIMM

UMC10
DIMM

DIMM

UMC9
DIMM

DIMM

Zen4

Zen4

Zen4

Zen432
M

B
 Sh

a
re

d

L3 C
ach

e

Zen4

Zen4

Zen4

Zen4

CCD10

UMC5

Zen4

Zen4

Zen4

Zen432
M

B
 Sh

a
re

d

L3 C
ach

e

Zen4

Zen4

Zen4

Zen4

CCD2

Zen4

Zen4

Zen4

Zen432
M

B
 Sh

a
re

d

L3 C
ach

e

Zen4

Zen4

Zen4

Zen4

CCD6

DIMM

DIMM

UMC4
DIMM

DIMM

UMC3
DIMM

DIMM

I/O HUB2

PCIe Gen5
Slots

I/O HUB0

PCIe Gen5
Slots

I/O HUB1

PCIe Gen5
Slots

I/O HUB3

PCIe Gen5
Slots

GMI Link GMI Link GMI Link GMI Link GMI Link GMI Link

GMI Link GMI Link GMI Link GMI Link GMI Link GMI Link

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

10 58020 – 1.4

2.11.2 Models 97xx (“Bergamo”)
97xx 4th Gen AMD EPYC 9004 Series Processors with model numbers 97xx have up to 8 CCDs that each contain two
CCXs, as shown below.

Figure 2-8: The AMD EPYC 9004 System on Chip (SoC) consists of up to 8 CCDs and a central IOD for 97xx models

2.12 NUMA Topology
AMD EPYC 9004 Series Processors use a Non-Uniform Memory Access (NUMA) architecture where different latencies
may exist depending on the proximity of a processor core to memory and I/O controllers. Using resources within the
same NUMA node provides uniform good performance, while using resources in differing nodes increases latencies.

2.12.1 NUMA Settings
A user can adjust the system NUMA Nodes Per Socket (NPS) BIOS setting to optimize this NUMA topology for their
specific operating environment and workload. For example, setting NPS=4 as shown in “Memory and I/O” on page 8
divides the processor into quadrants, where each quadrant has 3 CCDs, 3 UMCs, and 1 I/O Hub. The closest processor-
memory I/O distance is between the cores, memory, and I/O peripherals within the same quadrant. The furthest
distance is between a core and memory controller or IO hub in cross- diagonal quadrants (or the other processor in a 2P
configuration). The locality of cores, memory, and IO hub/devices in a NUMA-based system is an important factor when
tuning for performance.

UMC6

I/O DIE

NPS = 4

DIMM

DIMM

UMC7
DIMM

DIMM

UMC8
DIMM

DIMM

UMC0

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

e
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

DIMM

DIMM

UMC1
DIMM

DIMM

UMC2
DIMM

DIMM

UMC11
DIMM

DIMM

UMC10
DIMM

DIMM

UMC9
DIMM

DIMM

UMC5
DIMM

DIMM

UMC4
DIMM

DIMM

UMC3
DIMM

DIMM

I/O HUB2

PCIe Gen5

Slots

I/O HUB0

PCIe Gen5

Slots

I/O HUB1

PCIe Gen5

Slots

I/O HUB3

PCIe Gen5

Slots

GMI Link GMI Link GMI Link GMI Link

GMI Link GMI Link GMI Link GMI Link

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

CCD0

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

e
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
a

re
d

L3

 C
ac

h
e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
ar

ed

L3
 C

a
ch

e
Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen41
6

M
B

 S
h

a
re

d

L3
 C

ac
h

e

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen4

Zen416
M

B
 S

h
ar

ed

L3
 C

a
ch

e

Zen4

Zen4

Zen4

Zen4

CCD4 CCD3 CCD7

CCD1 CCD5 CCD2 CCD6

1158020 – 1.4

Chapter 2: AMD EPYC™ 9004 Series Processors

The NPS setting also controls the interleave pattern of the memory channels within the NUMA Node. Each memory
channel within a given NUMA node is interleaved. The number of channels interleaved decreases as the NPS setting gets
more granular. For example:

• A setting of NPS=4 partitions the processor into four NUMA nodes per socket with each logical quadrant configured
as its own NUMA domain. Memory is interleaved across the memory channels associated with each quadrant. PCIe
devices will be local to one of the four processor NUMA domains, depending on the IOD quadrant that has the
corresponding PCIe root complex for that device.

• A setting of NPS=2 configures each processor into two NUMA domains that groups half of the cores and half of the
memory channels into one NUMA domain, and the remaining cores and memory channels into a second NUMA
domain. Memory is interleaved across the six memory channels in each NUMA domain. PCIe devices will be local to
one of the two NUMA nodes depending on the half that has the PCIe root complex for that device.

• A setting of NPS=1 indicates a single NUMA node per socket. This setting configures all memory channels on the
processor into a single NUMA node. All processor cores, all attached memory, and all PCIe devices connected to the
SoC are in that one NUMA node. Memory is interleaved across all memory channels on the processor into a single
address space.

• A setting of NPS=0 indicates a single NUMA domain of the entire system (across both sockets in a two-socket
configuration). This setting configures all memory channels on the system into a single NUMA node. Memory is
interleaved across all memory channels on the system into a single address space. All processor cores across all
sockets, all attached memory, and all PCIe devices connected to either processor are in that single NUMA domain.

You may also be able to further improve the performance of certain environments by using the LLC (L3 Cache) as NUMA
BIOS setting to associate workloads to compute cores that all share a single LLC. Enabling this setting equates each
shared L3 or CCX to a separate NUMA node, as a unique L3 cache per CCD. A single AMD EPYC 9004 Series Processor with
12 CCDs can have up to 12 NUMA nodes when this setting is enabled.

Thus, a single EPYC 9004 Series Processor may support a variety of NUMA configurations ranging from one to twelve
NUMA nodes per socket.

Note: If software needs to understand NUMA topology or core enumeration, it is imperative to use documented Operating
System (OS) APIs, well-defined interfaces, and commands. Do not rely on past assumptions about settings such as
APICID or CCX ordering.

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

12 58020 – 1.4

2.13 Dual-Socket Configurations
AMD EPYC 9004 Series Processors support single- or dual-socket system configurations. Processors with a ‘P’ suffix in
their name are optimized for single-socket configurations (see the “Processor Identification” chapter) only. Dual-socket
configurations require both processors to be identical. You cannot use two different processor Ordering Part Numbers
(OPNs) in a single dual-socket system.

Figure 2-9: Two EPYC 9004 Processors connect through 4 xGMI links (NPS1)

In dual-socket systems, two identical EPYC 9004 series SoCs are connected via their corresponding External Global
Memory Interconnect [xGMI] links. This creates a high bandwidth, low latency interconnect between the two processors.
System manufacturers can elect to use either 3 or 4 of these Infinity Fabric links depending upon I/O and bandwidth
system design objectives.

The Infinity Fabric links utilize the same physical connections as the PCIe lanes on the system. Each link uses up to 16
PCIe lanes. A typical dual socket system will reconfigure 64 PCIe lanes (4 links) from each socket for Infinity Fabric
connections. This leaves each socket with 64 remaining PCIe lanes, meaning that the system has a total of 128 PCIe
lanes. In some cases, a system designer may want to expose more PCIe lanes for the system by reducing the number of
Infinity Fabric G-Links from 4 to 3. In these cases, the designer may allocate up to 160 lanes for PCIe (80 per socket) by
utilizing only 48 lanes per socket for Infinity Fabric links instead of 64.

A dual-socket system has a total of 24 memory channels, or 12 per socket. Different OPNs can be configured to support a
variety of NUMA domains.

I/O
 D

IE

NUMA 1 NUMA 22 NUMA Domains

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

CC
D

CC
D

CC
D

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
CM

U
CM

U
CM

I/O
 D

IE

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

U
C

M

xGMI Links

58020 – 1.4 13

AMD AOCC is the performance compiler optimized for each AMD EPYC processor generation. AOCC consists of a C/C++
compiler (clang) and a Fortran compiler (flang). The current available AOCC is version 4.0, which is optimized and
targeted for the Zen 4 architecture, including latest AVX512 ISA support. You can download AOCC from https://
www.amd.com/en/developer/aocc.html.

The open-source GCC platform compiler is also supported. The “Zen 4” architecture introduces AVX512 ISA, which is
supported by GCC 12.1.0 and above. GCC version 12.3.0 will have full support for AMD EPYC 9004 Series Processors. GCC
13.1 is currently released, and it fully supports AMD EPYC 9004 Series processors.

3.1 AMD Optimizing CPU Compiler (AOCC)
The AOCC compiler system is a high-performance, production quality code generation tool that offers various options to
developers building and optimizing C, C++ and Fortran applications targeting 32-bit and 64-bit Linux® platforms. It
offers a high level of advanced optimizations, multi-threading, and processor support that includes global optimization,
vectorization, inter-procedural analyses, loop transformations, and code generation. AOCC 4.1 is based on the LLVM
16.0.3 release (The LLVM Compiler Infrastructure*, May 3, 2023). It is tuned for AMD Family 17h processors and includes
the following features:

• Machine-dependent optimizations for better performance on AMD EPYC 9004 Series Processors.

• Enhanced high-level optimizations for AMD EPYC 9004 Series processors.

• Improved flang as the default Fortran front end with added F2008 features and improvements.

• OpenMP 4.5 and OpenMP 5.0 standards for C/C++ programming.

• OpenMP 4.5 standard for Fortran programming.

• LLVM linker (lld) as the default linker.

• Optimized libraries including tuned for AMD AOCL-LibM (AMD Math Library) 4.1.

• Default Optimization level of -O2, and -fPIC and -fPIE options made default.

• Bit reproducibility support improved for C/C++ and Fortran.

• New AOCC Optimization Report (AOR) tool to display optimization details.

• Tested on RHEL 8.6 and 9.0, CentOS 8, SLES 15 SP3, and Ubuntu 22.04 LTS.

AOCC compiler binaries depend on Linux® systems having glibc version 2.17 or later.

This chapter includes useful compiler options you can pass to clang and flang.

Chapter

3 Compilers

https://llvm.org/
https://www.amd.com/en/developer/aocc.html
https://www.amd.com/en/developer/aocc.html

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

14 58020 – 1.4

3.1.1 AOCC Clang/Clang++
Clang is a C, C++, and Objective-C compiler that encompasses preprocessing, parsing, optimization, code generation,
assembly, and linking. Clang supports the -march=znver4 flag to enable best code generation and tuning for 4th Gen
AMD EPYC Series processors.

3.1.2 AOCC FLang
Flang is the Fortran front-end designed for LVVM integration and suitable for interoperability with Clang/LLVM. It
supports all clang compiler options plus a few flang-specific options. AMD extends the GitHub version of flang
available from https://github.com/flang-compiler/flang*, which in turn is based on the NVIDIA/PGI commercial Fortran
compiler.

3.1.3 Clang and Flang Options
Tables 3-1 and 3-2 list AOCC clang and flang compiler options, respectively.

Architecture

Generate instructions that run on 4th Gen AMD EPYC Series
CPUs.

-march=znver4

Generate instructions that run on 3rd Gen AMD EPYC Series
CPUs.

-march=znver4

Generate instructions for the local machine -march=native

Optimization Levels

Disable all optimizations -O0

Minimal level speed and code optimization -O1/ -O

Moderate level optimization -O2

Aggressive optimization -O3

Maximize performance -Ofast

Enable link time optimizations -flto

Enable loop optimizations -funroll-loops
-enable-licm-vrp
-enable-partial-unswitch
-fuse-tile-inner-loop
-unroll-threshold

Enable advanced loop optimizations -unroll-aggressive

Enable function level optimizations -fitodcalls
-function-specialize
-finline-aggressive
-inline-recursion=[1..4] (use with flto)
-do-block-reordering={none, normal,
aggressive}

Enable advanced vectorization -enable-strided-vectorization
-enable-epilog-vectorization

Enable memory layer optimizations -fremap-arrays (use with flto)

Profile guided optimizations -fprofile-instr-generate (1st invoc.)
-fprofile-instr-use (2nd invocation)

OpenMP® -fopening

Table 3-1: AOCC Clang compiler options

https://github.com/flang-compiler/flang

1558020 – 1.4

Chapter 3: Compilers

3.2 GCC Compiler
GCC version 12.3.0 will have full support for the “Zen 4” architecture. GCC 13.1 is currently released, and it fully supports
the “Zen 4” architecture. Please see “Introduction” on page 1 for information about features coming in future versions.

For enabling memory stores, memory bandwidth workloads -fnt-store

Enable removal of all unused array computation -reduce-array-computations=3

Other Options

Enable faster, less precise math operations (part of Ofast) -ffast-math
-freciprocal-math

OpenMP threads and affinity (N number of cores) export OMP_NUM_THREADS=N
export GOMP_CPU_AFFINITY=”0-{N-1}”

Enabling vector library -fveclib=AMDLIBM

Link to AMD library -L/libm-install-dir/lin -lalm

For Fortran workloads

Compile free form Fortran -ffree-form

Architecture

Generate instructions that run on 4th Gen AMD EPYC Series
CPUs

-march=znver4

Generate instructions that run on 3rd Gen AMD EPYC Series
CPUs

-march=znver4

Generate instructions for the local machine -march=native

Generate AVX512 foundation instructions (GCC 12.1.0 and
above) and its subsets

-mavx512f along with combination of
AVX512 subsets such as -
mavx512vpopcntdq, -mavx512vp2intersect,
-mavx512vnni, -mavx512vl, -mavx512vbmi2,
-mavx512vbmi, -mavx512pf, -mavx512ifma,
-mavx512er, -mavx512dq, -mavx512cd, -
mavx512bw, -mavx512bitalg, -mavx512bf16,
-mavx5124vnniw, -mavx5124fmaps

Optimization Levels

Disable all optimizations -O0

Minimal level speed and code optimization -O1/ -O

Moderate level optimization -O2

Aggressive optimization -O3

Maximize performance -Ofast

Additional Optimizations

Enable link time optimizations -flto

Enable unrolling -funroll-all-loops

Table 3-2: GCC compiler options

Table 3-1: AOCC Clang compiler options

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

16 58020 – 1.4

Generate memory preload instructions -fprefetch-loop-arrays --param
prefetch-latency=300

Profile-guided optimization -fprofile-generate (1st invocation)
-fprofile-use (2nd invocation)

OpenMP -fopenmp

Other Options

Enable generation of code that follows IEEE arithmetic -mieee-fp

Enable faster, less precise math operations (part of Ofast) -ffast-math

Compile free form Fortran -ffree-form

OpenMP threads and affinity (N number of cores) export OMP_NUM_THREADS=N
export GOMP_CPU_AFFINITY=”0-{N-1}”

Link to AMD library -L/libm-install-dir/lin -lalm

Table 3-2: GCC compiler options (Continued)

58020 – 1.4 17

The AMD Optimizing CPU Libraries (AMD CPU math library suite, called AOCL) are a suite of math libraries that offers
optimized mathematical and scientific operations such as linear algebra with sparse and dense operations, Fast Fourier
Transform, random number generator, and cryptography.

AOCL Version 4.1 is the current version at the time of publishing this Tuning Guide. Visit https://www.amd.com/en/
developer/aocl.html for more details on the AOCL libraries, tar balls of FrameBuilder libraries, and instructions on how to
build AOCL libraries from source.

4.1 AMD Optimizing CPU Libraries (AOCL)
AMD Optimizing CPU Libraries (AOCL) are a set of numerical libraries tuned specifically for the AMD EPYC processor
family. They include a simple interface that takes advantage of the latest hardware innovations.

AOCL consists of the following libraries:

• BLIS (BLAS Library): Portable open-source software framework for performing high-performance Basic Linear
Algebra Subprograms (BLAS) functionality.

• libFLAME (LAPACK): Portable library for dense matrix computations that provides the functionality present in the
Linear Algebra Package (LAPACK).

• AMD-FFTW (Fastest Fourier Transform in the West): Comprehensive collection of fast C routines for computing the
Discrete Fourier Transform (DFT) and various special cases.

• LibM (AMD Core Math Library): Software library containing a collection of basic math functions optimized for x86-
64 processor based machines.

• ScaLAPACK: Library of high-performance linear algebra routines for parallel distributed memory machines. It
depends on external libraries including BLAS and LAPACK for linear algebra computations.

• AMD Random Number Generator (RNG): Pseudo random number generator library.

• AMD Secure RNG: library that provides APIs to access the cryptographically secure random numbers generated by
the AMD hardware random number generator.

• AOCL-Sparse: Library containing the basic linear algebra subroutines for sparse matrices and vectors optimized for
AMD “Zen”-based processors, including EPYC, Ryzen™, and Threadripper™ PRO.

• AOCL-Cryptography: AMD Zen architecture optimized implementation of cryptographic functions (AES Encryption/
Decryption, SHA2 Digest).

Chapter

4
High Performance Math
Libraries

https://www.amd.com/en/developer/aocl.html
https://www.amd.com/en/developer/aocl.html

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

18 58020 – 1.4

• AOCL-LibMem: AMD Zen architecture optimized implementation of memory/string functions.

• AOCL enabled MUMPS library: MUMPS (MUltifrontal Massively Parallel Solver*) is an open-source package for
solving systems of linear equations of the form Ax = b.

• AOCL Codec: Supports lz4, zlib/deflate, lzma, zstd, bzip2, snappy, and lz4hc.

• AOCL Compression: AOCL-Compression is a software framework of lossless data compression and decompression
methods tuned and optimized for AMD “Zen”-based CPUs.

If you have any issues concerning AOCL, then please either contact your local AMD Field Application Engineer or send an
email to toolchainsupport@amd.com.

4.1.1 BLIS
BLIS is a portable open-source software framework for instantiating high-performance Basic Linear Algebra
Subprograms (BLAS), such as dense linear algebra libraries. The framework isolates essential kernels of computation to
enable optimizations of most of its commonly used and computationally intensive operations. Select kernels have been
optimized for the AMD EPYC processor family. You may download the source code from https://github.com/amd/blis*.
AMD offers the optimized version of BLIS that supports C, FORTRAN, and C++ template interfaces.

4.1.2 libFLAME
AOCL-libFLAME is a high performant implementation of Linear Algebra PACKage (LAPACK). LAPACK provides routines
for solving systems of linear equations, least-squares problems, eigenvalue problems, singular value problems, and the
associated matrix factorizations. It is extensible, easy to use, and available under an open-source license. libFLAME is a
C-only implementation. Applications relying on standard Netlib LAPACK interfaces can utilize libFLAME with virtually no
changes to their source code. You may download the source code from https://github.com/amd/libflame*.

4.1.3 FFTW
The AMD-optimized version of Fast Fourier Transform Algorithm (FFTW) is an open-source implementation of FFTW
that offers a comprehensive collection of fast C routines for computing the Discrete Fourier Transform (DFT) and various
special cases thereof that are optimized for AMD EPYC and other AMD “Zen”-based processors. It can compute
transforms of real and complex valued arrays of arbitrary size and dimension. You can download the latest stable release
from https://github.com/amd/amd-fftw*.

4.1.4 LibM
AMD LibM is a software library containing a collection of basic math functions optimized for x86-64 processor-based
machines. It provides many routines from the list of standard C99 math functions. Applications can link into the AMD
LibM library and invoke math functions instead of using the compiler’s default math functions for better accuracy and
performance.

4.1.5 ScaLAPACK
ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed memory machines. It depends
on external libraries including BLAS and LAPACK for Linear Algebra computations. AMD’s optimized version of
ScaLAPACK enables using the BLIS and libFLAME libraries that offer optimized dense matrix functions and solvers for
the AMD EPYC family of CPUs. You can install ScaLAPACK from either source or pre-built binaries. You can clone the
ScaLAPACK for AMD source from https://github.com/amd/scalapack*. You can access a pre-built AMD optimized
ScaLAPACK from the AOCL master installer tar file.

http://mumps.enseeiht.fr/
malto:toolchainsupport@amd.com
https://github.com/amd/blis
https://github.com/amd/libflame
https://github.com/amd/amd-fftw
https://github.com/amd/scalapack

1958020 – 1.4

Chapter 4: High Performance Math Libraries

4.1.6 AMD Random Number Generator
The AMD Random Number Generator (RNG) library is a pseudo-random number generator library that provides a
comprehensive set of statistical distribution functions and various uniform distribution generators (base generators)
including Wichmann-Hill and Mersenne Twister. The library contains six base generators and twenty-three distribution
generators. In addition, you can supply a custom-built generator as the base generator for all the distribution generators.

4.1.7 AMD Secure RNG
The AMD Secure RNG is a library that provides the APIs to access the cryptographically secure random numbers
generated by the AMD hardware based RNG. These are high-quality, robust random numbers designed for the
cryptographic applications. The library makes use of RDRAND and RDSEED x86 instructions exposed by the AMD
hardware. The applications can just link to the library and invoke a single or a stream of random numbers. The random
numbers can be of 16-bit, 32-bit, 64-bit, or arbitrary size bytes.

4.1.8 AOCL-Sparse
AOCL-Sparse is a library containing basic linear algebra subroutines for the sparse matrices and vectors optimized for
AMD EPYCTM and other AMD “Zen”-based processors. It is designed to be used with C and C++.

4.1.9 AOCL- Cryptography
This is a new cryptography library with AMD “Zen” support and optimizations for standard encryption algorithms,
including:

• AES-CBC, CFB, GCM, and OFB modes

• Support for 128/192/256-bit keys

• SHA-2 hashing functions (224, 256, 384, and 512)

• Hardware acceleration is supported only on Intel Advanced Encryption Standard New Instructions (AES-NI) enabled
platforms

• Libcrypto API support for OpenSSL

4.1.10 AOCL- LibMem
AOCL-LibMem contains AMD Zen architecture-optimized functions for memory and string functions such as memcpy,
mempcpy, memmove, memset, and memcmp.

4.1.11 AOCL-Compression
AOCL-Compression library supports LZ4, ZLIB/DEFLATE, LZMA, ZSTD, BZIP2, Snappy, and LZ4HC based compression
and decompression methods.

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

20 58020 – 1.4

4.2 AOCL Tuning Guidelines
This section provides general AOCL tuning guidelines. Please see the AOCL User Guide for more detailed information.

4.2.1 AOCL Dynamic
The AOCL Dynamic feature enables AOCL BLIS to dynamically change the number of threads. This feature is enabled by
default; however, it can be enabled or disabled the configuration time by executing the following commands,
respectively:

--enable-aocl-dynamic
--disable-aocl-dynamic

You can also specify the preferred number of threads using the environment variables BLIS_NUM_THREADS or
OMP_NUM_THREADS. If you specify both variables, then BLIS_NUM_THREADS takes precedence. Table 4-1 summarizes
how the number of threads is determined based on the status of AOCL Dynamic and the user configuration using the
variable BLIS_NUM_THREADS:

4.2.2 BLIS DGEMM Multi-thread Tuning
You can use a BLIS library on multiple platforms and applications. Multi-threading adds more configuration options at
runtime by controlling the number of threads and CPU affinity settings that can be tuned to get the best performance
for your requirements. Execute one of the following commands to obtain the best DGEMM multi-thread performance on
4th Gen AMD EPYC processors:

• Thread size up to 16 (< 16):
OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT>./test_gemm_blis.x

• Thread size above 16 (>= 16):
OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x

AOCL Dynamic BLIS_NUM_THREADS Number of threads used by BLIS

Disabled Not set Number of cores.
Disabled Set BLIS_NUM_THREADS

Enabled* Not set Number of threads determined by AOCL Dynamic
Enabled* Set Either the minimum of BLIS_NUM_THREADS or the

number of threads determined by AOCL.
*AOCL Dynamic currently only supports the DGEMM, DGEMMT, DTRSM, and DSYRK APIs. For the other APIs, the
threads selection will be the same as when AOCL Dynamic is disabled.

Table 4-1: AOCL Dynamic

https://developer.amd.com/wp-content/resources/57404_AOCL_UG_Rev_3.1.pdf

2158020 – 1.4

Chapter 4: High Performance Math Libraries

4.2.3 Performance Suggestions for Skinny Matrices
BLIS provides a selective packing for GEMM when one or two dimensions of a matrix is exceedingly small. This feature is
only available when sup handling is enabled by default. For optimal performance:

C = beta*C + alpha*A*B
Dimension (Dim) of A – m x k Dim(B) – k x n Dim(c) – m x n
Assume row-major.
IF Dim(A) >> Dim(B)
$BLIS_PACK_A=1 ./test_gemm_blis.x – will give a better performance.
IF Dim(A) << Dim(B)
$BLIS_PACK_B=1 ./test_gemm_blis.x – will give a better performance.

4.2.4 AMD-Optimized FFTW
This subsection provides general tuning guidelines to optimize the performance out of AMD-optimized FFTW. lease see
the AOCL User Guide for more detailed information.

• Use the configure option --enable-amd-opt to build the targeted library. This option enables all the
improvements and optimizations meant for AMD EPYC CPUs. This is the mandatory master optimization switch
that must be set for enabling any other optional configure options such as:

- --enable-amd-mpifft

- --enable-amd-mpi-vader-limit

- --enable-amd-trans

- --enable-amd-fast-planner

- --enable-amd-top-n-planner

- --enable-amd-app-opt

• Use the -opatient planner FFTW flag for best performance. For example:

$./bench -opatient -s icf65536

Where:

- -s is for a speed/performance run.

- i is for in-place.

- c is for complex datatype.

- f is for forward transform.

• When configured with --enable-openmp and running a multi-threaded test, set the OpenMP variables as follows:

- OMP_PROC_BIND=TRUE

- OMP_PLACES=cores

https://developer.amd.com/wp-content/resources/57404_AOCL_UG_Rev_3.1.pdf

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

22 58020 – 1.4

After setting the variables, run the test bench executable binary using numactl as follows:

numactl --interleave=0,1,2,3 ./bench -opatient -onthreads=64 -s icf65536

Where:

numactl --interleave=0,1,2,3 sets the memory interleave policy on nodes 0, 1, 2, and 3.

When running a MPI FFTW test, set the appropriate MPI mapping, binding, and rank options. For example, to run 64 MPI
rank FFTW on a 64-core AMD EPYCTM processor:
mpirun --map-by core --rank-by core --bind-to core -np 64 ./mpi-bench -opatient -s icf65536

4.2.5 AOCL-libFLAME Multi-Threading
AOCL-libFLAME in AOCL Versions 4.0 and later supports multi-threading using OpenMP in selected APIs. This feature is
enabled by default when AOCL-libFLAME is compiled with --enable-amd-flags or --enable-amd-aocc-flags.
However, you can disable multi-threading by setting --enablemultithreading=no.

The selected LAPACK interface APIs that support multi-threading automatically choose optimal number of threads.
However, you can explicitly set the number of threads through the environment variable or OpenMP runtime APIs. In
such a scenario, the number of threads is selected as follows:s:

• User-specified threads > AOCL-libFLAME computed optimal threads: AOCL-libFLAME computed optimal threads.

• User specified threads < AOCL-libFLAME computed optimal threads: User specified threads.

58020 – 1.4 23

AMD µProf is a performance analysis tool for applications running on the Linux® and Windows® operating systems. It
allows developers to better understand the runtime performance of their application and to identify ways to improve its
performance. Users can download it for free from https://www.amd.com/en/developer/uprof.html. uProf version 4.0 is
the latest available and includes full support for the AMD “Zen 4” architecture.

5.1 AMD µProf – Profiling Tool
AMD µProf offers the following functions:

• Performance Analysis: The CPU profile identifies application runtime performance bottlenecks.

• System Analysis: The Performance Counter Monitor utility monitors system performance metrics such as IPC and
memory bandwidth.

• Roofline Analysis: AMDuProfPcm provides basic roofline modeling that relates the application performance to
memory traffic and floating point computational peaks. This is a visual performance model offering insights on
improving the parallel software for floating point operations. It helps to characterize an application and to identify
whether a benchmark is memory or compute bound.

• Power Profiling: System-wide power profiles monitor system thermal and power characteristics.

• Energy Analysis: Power Application Analysis identifies energy hotspots in the application (Windows only).

You can use AMD µProf to:

• Analyze the performance of either one or more process(es) or the entire system.

• Track down performance bottlenecks (hotspots) in the source code.

• Identify ways to optimize the source code for better performance and power efficiency.

• Examine the behavior of kernel, driver, and system modules.

• Analyze thread concurrency.

• Observe frequency, thermal and power characteristics (power profiling).

• Observe system metrics like IPC, Core effective frequency, memory bandwidth, etc.

• Monitor the frequency, thermal, and energy metrics of various system components.

Processed profile data is stored in databases that you can use to generate reports later. Profile reports are available in
comma-separated-value (CSV) format for use with spreadsheets.

Chapter

5
Application Performance
Analysis & Optimization

https://www.amd.com/en/developer/uprof.html

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

24 58020 – 1.4

µProf 4.0 was released on November 10th, 2022 with the following new features:

• CPU Profiling GUI: Timeline for CPU Profile events, profile duration filter in timeline, bottom-up view of callstack
samples, thread level callgraph support, and thread level flamegraph support.

• Holistic Analysis View: Analyze CPU, GPU, and OS together in a holistic GUI on Linux platforms. The holistic analysis
view allows you to analyze OS scheduling events, System calls, POSIXthread sync APIs, GPU activities, and MPI API
event tracing.

• OS Tracing: Linux OS events that include thread state analysis, kernel block I/O analysis, pagefault analysis, and
memtrace (memory alloc/dealloc) analysis.

• MPI Tracing: Linux HPC analysis that traces MPI applications based on MPICH and derivatives.

• GPU Tracing: Linux GPU trace analysis for AMD Instinct™ MI100 and MI200 accelerators.

• GPU Profiling: GPU kernel dispatch analysis on Linux for AMD Instinct MI100 and MI200 accelerators.

• AMDuProfSys: A new system analysis tool that captures system information that can help debug issues.

5.1.1 Performance Monitoring Tool (AMDuProfPcm)
The AMDuProfPcm system analysis utility helps monitor basic performance monitoring metrics. This utility periodically
collects the CPU Core, L3, and DF performance events count values and reports various metrics. On Linux systems,
AMDuProfPcm uses the msr driver and requires either root privileges or read/write permissions for /dev/cpu/*/msr
devices. This example collects IPC and all cache levels metrics for all the cores and aggregate at system/package/CCD for
a STREAM benchmark:

$./AMDuProfPcm -m ipc,l1,l2,l3 –a –A system,package,ccd -C -o /tmp/pcm-ipc-sys.csv --
<stream…>

2558020 – 1.4

Chapter 5: Application Performance Analysis & Optimization

Figure 5-1 shows the result of one such an analysis.

Figure 5-1: Sample AMDuProfPcm analysis results

5.1.2 AMDuProfSys
AMDuProfSys is a python-based system analysis tool for AMD EPYC processors to collect Ccore, Ll3, DFdf and umcUMC
metrics in Windows and Linux OS. On Linux, the tool uses the perf tool to collect the performance counters. It also uses
its own driver mode to collect the profile data, with --use-amd-driver option,

In Linux, by default, this tool is based on the underlaying Linux perf utility provided by the Linux kernel, msr module,
and basic hardware access primitives provided by the kernel. However, you can choose to use AMDuProfDriver to collect
data using the --use-amd-driver option. The following example commands collects core, l3, and df metrics and
report the profile data in .csv format.

./AMDuProfSys.py collect --config core,l3,df -a -d 5 -o /tmp/swp-perf

./AMDuProfSys.py report –f xls –i /tmp/swp-perf/swp-perf.ses

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

26 58020 – 1.4

Here is a sample report:

Figure 5-2: Sample AMDuProfSys report

5.1.3 Application Analysis
AMD µProf profiler uses a statistical sampling-based approach to collect profile data for application analysis using any of
the following approaches:

• Timer Based Profiling (TBP) to identify the hotspots in the profiled applications.

• Event Based Profiling (EBP) sampling based on Core PMC events to identify microarchitecture-related performance
issues in the profiled applications.

• Instruction based Sampling (IBS) for precise instruction-based sampling.

Numerous microarchitecture-specific events are available for monitoring. The tool groups related and interesting events
to monitor into a Predefined Sampling Configuration (PSC). PSCs are a convenient way to select a useful set of sampling
events for profile analysis. Execute the following command to get the list of supported PSCs that can be used with the
collect command --config option by executing the following Linux command:

$ AMDuProfCLI info --list collect-configs

The following procedure describes an overall performance assessment of the STMV workload (http://www.ks.uiuc.edu/
Research/namd/utilities/stmv.tar.gz*) run with the NAMD code (http://www.ks.uiuc.edu/Research/namd*). This type
of analysis is specified using the assess PSC and represents an EBP profile type analysis. To assess the workload:

1. Build the single process version of the NAMD application with debug information using the -g compiler flag, because
debug info is needed to correlate the samples to functions and source lines. This example uses the AOCC 3.0
compiler and AOCL 3.0 library.

http://www.ks.uiuc.edu/Research/namd/utilities/stmv.tar.gz
http://www.ks.uiuc.edu/Research/namd/utilities/stmv.tar.gz
http://www.ks.uiuc.edu/Research/namd

2758020 – 1.4

Chapter 5: Application Performance Analysis & Optimization

2. Collect phase: Run the application on 16 cores pinned to the first NUMA node with a taskset and collect profile data
by specifying the profile configuration via —config assess:

$ AMDuProfCLI collect --config assess -o /tmp/namd-assess taskset -c 0-15 <full path>/namd2
+p 16 <full path to stmv.namd>

The collect command launches the application and generates a raw data file (.caperf on Linux). You an specify
the name of the raw data file using the -o flag.

3. Translate phase: Invoke the translate command to generate the report from the raw profile file:

./AMDuProfCLI translate -i /tmp/AMDuProf-classic-EBP_Feb-25-2022_21-13-55/

4. Use the AMDuProf binary to launch the AMDuProf GUI, which provides a visual interface for profiling and analyzing
the performance data.

5. Select HOME>Import Session to open the Import Profile Session window, and then enter the full path to the .db file in
the Profile Data File field.

Note: If you run the profile on one system and then import the corresponding raw profile data to another system, then you
may need to specify the path to binary and source files.

6. Click the ANALYZE button on the top menu to open the Function HotSpots window. Double-clicking any entry on
the Functions table in the Metrics window will load the source tab for that function in the SOURCES.

Figure 5-3: The Function HotSpots window

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

28 58020 – 1.4

The following information is available for each source tab:

• The source lines of the selected function are listed, and the corresponding metrics are populated in various columns
against each source line.

• The assembly instruction of the corresponding highlighted source line. The tree also shows the offset for each
assembly instruction along with metrics.

• A heatmap overview of hotspots at the source level.

Figure 5-4: SOURCES source and assembly window

You can also collect callstack samples for C, C++, and Java applications with all the CPU profile types. These samples
populate the Flame Graph window, which visually represents sampled callstack traces to help you quickly identify the
hottest code execution paths. You can visualize the callstack by running an analysis with an additional -g flag:

$ AMDuProfCLI collect --config assess -g -o /tmp/namd-assess taskset -c 0-15 <full path>/
namd2 +p 16 <full path to stmv.namd>

2958020 – 1.4

Chapter 5: Application Performance Analysis & Optimization

Clicking ANALYZE>Flame Graph opens this window. The X axis shows the callstack profile, and the Y axis shows the
stack depth. Each cell represents a stack frame. If a frame were present more often in the callstack samples, then the
cell will be wider.

Figure 5-5: The Flame Graph window

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

30 58020 – 1.4

5.1.4 HPC Analysis
To enable OpenMP profiling and analyze tracing data:

1. Select the profile target and profile type.

2. Click the Advanced Options button to turn on the Enable OpenMP Tracing option in the Enable OpenMP Tracing
pane.

3. Wait for the profile to complete.

4. Navigate to the HPC page to analyze the OpenMP tracing data. Figure 5-5 shows the Regions Detailed Analysis page
with the thread activity in a parallel region.

Figure 5-6: OpenMP Parallal Regions Detailed Analysis page with thread activity

5.1.5 MPI Analysis
AMD µProf includes the following MPI-specific profiling options:

• --mpi to specify MPI application profiling.

• -o <output dir> specifies the path where profiles will be saved. Each MPI process creates a corresponding raw
profile file.

If you launch an MPI application on multiple nodes, then AMDuProfCLI will profile all MPI rank processes running on all
nodes, and you can analyze data for processes run on one, many, or all nodes. Here is a sample MPI analysis that sends a
trivial message around in a ring (https://github.com/open-mpi/ompi/blob/master/examples/ring_c.c*). To profile the
MPI application on 4 ranks on a single node and analyze the data:

1. Collect the profile data:

$ mpirun -np 4 AMDuProfCLI collect --config tbp --mpi -o /tmp/uprof-mpi-ring-c ./ring-c

https://github.com/open-mpi/ompi/blob/master/examples/ring_c.c

3158020 – 1.4

Chapter 5: Application Performance Analysis & Optimization

2. Process the profile data using the translate command to generate the profile DB. For example, to generate a
report for all the MPI processes that ran on the host in which the MPI launcher was launched, use the new
--input-dir option:

$ AMDuProfCLI translate -i /tmp/uprof-mpi-ring-c

3. Import the profile DB to the GUI. After importing, profile data for all profiled ranks will be available for analysis.

Figure 5-7: Imported MPI process data

5.1.6 MPI Trace Analysis
You can use MPI trace analysis to analyze, compute, and pass load imbalance messages among the ranks of a MPI
application running on a cluster. It supports MPICH and derivative implementations. The supported thread models are:

• FUNNLED

• SERIALIZED

The profile reports are generated for Point-to-Point and Collective API activity summary. The support Matrix is:

• MPI Spec versions: MPI-3.0

• Implementations: OpenMPI, MPICH, and derivatives

• Languages: C, C++, and Fortran

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

32 58020 – 1.4

The AMDuProf CLI supports the following 2 modes for MPI tracing:

• LWT: Light-weight tracing is useful for quick analysis of an application. The report gets generated in CSV format on-
the-fly during collection stage.

• FULL: Full tracing is useful for in-depth analysis. This mode requires post-processing for report generation in CSV
format. This mode traces more APIs than LWT tracing and is helpful for in-depth analysis of MPI application activity.
The report file for the full tracing includes multiple tables to represent various details:

- Communicator summary

- Rank summary

- P2P API summary

- Communication matrix

- Collective API summary

AMD uProf supports tracing Open MPI, MPICH, and the derivatives:

• --trace mpi=mpich for MPICH and derivatives (default option)

• --trace mpi=openmpi for Open MPI

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation used for compiling
the MPI application.

The list of supported MPI APIs includes:

MPI_Pcontrol, MPI_Mrecv, MPI_Reduce, MPI_Iallreduce, MPI_Cancel, MPI_Imrecv, MPI_Allreduce, MPI_Ialltoall,
MPI_Probe, MPI_Send, MPI_Alltoall, MPI_Ialltoallv, MPI_Iprobe, MPI_Bsend, MPI_Alltoallv, MPI_Ialltoallw, MPI_Mprobe,
MPI_Ssend, MPI_Alltoallw, MPI_Ineighbor_Alltoall, MPI_Improbe, MPI_Rsend, MPI_Neighbor_Alltoal l,
MPI_Ineighbor_Alltoallw, MPI_Start, MPI_Bsend_init, MPI_Neighbor_Alltoal lw, MPI_Ineighbor_Alltoallv, MPI_Startall,
MPI_Ssend_init, MPI_Neighbor_Alltoal lv, MPI_Ibarrier, MPI_Test, MPI_Rsend_init, MPI_Bcast, MPI_Ibcast, MPI_Testall,
MPI_Send_init, MPI_Scan, MPI_Comm_create, MPI_Testany, MPI_Ibsend, MPI_Reduce_Scatter, MPI_Comm_dup,
MPI_Testsome, MPI_Issend, MPI_Ireduce_Scatter, MPI_Comm_dup_with_info, MPI_Wait MPI_Irsend, MPI_Iscan
MPI_Comm_split, MPI_Waitall, MPI_Isend, MPI_Iscatter, MPI_Comm_split_type, MPI_Waitany, MPI_Scatter,
MPI_Iscatterv, MPI_Intercomm_create, MPI_Waitsome, MPI_Scatterv, MPI_Igather, MPI_Intercomm_merge,
MPI_Barrier, MPI_Gather, MPI_Igatherv, MPI_Cart_create, MPI_Recv, MPI_Gatherv, MPI_Iallgather, MPI_Cart_sub,
MPI_Irecv, MPI_Allgather, MPI_Iallgatherv, MPI_Graph_create, MPI_Sendrecv, MPI_Allgatherv, MPI_INeighbor_Allgat her,
MPI_Dist_graph_create, MPI_Sendrecv_repl ace, MPI_Neighbor_Allgat her, MPI_Ineighbor_Allgat herv,
MPI_Dist_graph_create_adjacent, MPI_Recv_Init, MPI_Neighbor_Allgat herv, MPI_Ireduce

5.1.7 Roofline Analysis
AMDuProfPcm provides basic roofline modeling that relates the application performance to memory traffic and floating-
point computational peaks. This is a visual performance model offering insights on improving the parallel software for
floating point operations. This helps characterize an application and identify whether a benchmark is memory or
compute bound. The HPC community commonly uses this to characterize both applications/kernels and modern
architectures, such as CPUs and GPUs

The Roofline model combines arithmetic intensity, memory performance, and floating-point performance into a two-
dimensional graph using bound and bottleneck analysis.

3358020 – 1.4

Chapter 5: Application Performance Analysis & Optimization

The tool monitors the memory traffic and floating-point operations when the profiled application is running. It also
computes the Arithmetic Intensity, that is, the “operations per byte of DRAM traffic [FLOPS/BYTE].” The roofline graph
is represented on a log-log scale, where the Y-axis is attainable floating-point performance, and the X-axis is
arithmetical intensity. Horizontal lines show peak floating-point (FP) performance for a given architecture. On a log-log
scale, the system’s peak memory performance is the straight line with unit slope, where intercept is given by the
logarithm of maximal value of the memory bandwidth. The peak memory performance and the peak FP performance
intersect at the point of computational performance and peak memory bandwidth. Note that these limits are created
once per system under consideration.

For a given application, the roofline tool calculates both arithmetic intensity and throughput and plots corresponding
dot on the graph. Depending on the relative position of the dot with respect to diagonal and horizontal lines, one can
judge whether the application is memory bound, i.e., below the peak memory performance line, or compute-bound, i.e.,
below the peak FP performance.

An inflection point where the diagonal and horizontal lines are intersect offers an insight into the overall system
performance. The x-coordinate of the inflection point is the minimum arithmetic intensity required to achieve maximum
performance. If the inflection point is far to the right, then only applications with very high arithmetic intensity can
achieve the maximum performance of that system. On contrary If it is far to the left, then almost any workload can
potentially hit the maximum performance.

To generate the roofline chart of an application:

1. Collect the profile data using AMDuProfPcm:
$ AMDuProfPcm roofline -X -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe

On AMD “Zen4” 9xx4 Series processors, if the Linux kernel doesn't support accessing Data Fabric (DF) counters, then
use the following command with root privilege:
$ AMDuProfPcm roofline -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe

2. Execute the following command to generate the roofline chart:
$ AMDuProfModelling.py -i /tmp/myapp-roofline.csv -o /tmp/ --memspeed 4800 -a myapp

The roofline chart is saved in the file /tmp/AMDuProf_roofline-2023-01-23-19h24m46s.

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

34 58020 – 1.4

The following plot hows a roofline for the MotorBike-42Mcells OpenFOAM workload run on a 2P AMD EPYC 9456 system.
It shows peak FP values for both single (SP) double precision (DP).

Figure 5-8: Sample roofline plot

The bandwidth and throughput values labeled “DRAM BW 921.60 GB/sec” are computed using the DIMM memory speed
as reported by the sudo dmidecode –type 17 or lshw commands. AMDuProf has an option to provide STREAM and
DGEMM scores to the AMDuProdModelling.py script, which are used to plot the achievable roof. Running the STREAM
and HPL on a node, one can input the scores to the roofline tool using the —stream and –hpl command line options. For
a 2P AMD EPYC 9654 system, it gives 774 GB/sec for STREAM and 11.69 FLOP/B for STREAM+HPL values shown on the
plot.

The gray dot on the plot shows the overall performance of OpenFOAM MotorBike-42Mcells workloads. The value is
directly below the bandwidth roofline and shows that the OpenFOAM is memory-bound in this case.

3558020 – 1.4

Chapter 5: Application Performance Analysis & Optimization

5.1.8 Power Profiling
AMD uProf provides various counters for monitoring power and thermal characteristics. These counters are collected
from various resources like RAPL, SMU, and MSRs. The following counter categories are supported for 3rd Gen AMD
EPYC processors:

• Power: Average power for the sampling period, reported in watts. Viable for core and package.

• Frequency: Core Effective Frequency for the sampling period, reported in MHz.

• P-State: CPU Core P-State at the time when sampling was performed.

• Temperature: Average package temperature for the sampling period, reported in Celsius.

Use the AMDuProfCLI timechart command to collect system metrics and write them into either a text file or comma-
separated-value (CSV) file.

5.1.8.1 Profiling Effective Frequency

To collect power profile counter values:

1. Get the list of supported counter categories by running the AMDuProfCLI timechart command with the --list
option.

2. Collect and the report the required counters using the AMDuProfCLI timechart command by specifying the
interesting counters using the -e or --event option.

For example, to collect frequency counter values from core 0 running a STREAM workload:

AMDuProfCLI timechart --event core=0,frequency -o ./eff_freq_core0 <STREAM binary>

The resulting eff_freq_core0.csv file has different sections from which you can obtain frequency counter
timestamps, such as via the sed command.

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

36 58020 – 1.4

5.1.8.2 Live System-Wide Power Profile

This profile type performs the power analysis and plots the metrics in a live timeline graph and/or saves them to a
database. This profile is available through the GUI. To configure and start the profile:

1. In the PROFILE page, select the appropriate profile target by clicking the Next button.

2. In the Select Profile Type fragment, select System-wide Power Profile (Live), and then enable the desired counters
from the list.

3. Click the Start Profile button to start collecting profile data. This profile type reports profile data as line graphs in
the TIMECHART page for further analysis.

Figure 5-9: Thermal characteristic - Timeline

58020 – 1.4 37

6.1 CPU Profiling
(User Guide § 6.4, 6.5, 6.6)

Profile applications to analyze performance bottlenecks. In-depth analysis at all levels of application: process, thread,
module, function, source line, instruction. Supports call-stack sampling, IMIX reporting. On FreeBSD, only EBP profiling
supported.

Profile Types:

• TBP: Software timer-based sampling

• EBP: CPU event-based sampling

• IBS: CPU IBS MSR based sampling

• Custom: Choose events from TBP, EBP, IBS to create specialized custom type.

• Profile Scopes: Per-process, System-wide

• OS: Windows, Linux, FreeBSD

• Languages: C, C++, Fortran, Java, .NET, Assembly

• CLI option syntax:
collect --config <type>
collect -e <event-specifier>
report [--view-config <type>]

• List of supported Predefined Configs (See “Appendix D: AMDuProf Predefined Configs” on page 44):
$ AMDuProfCLI info --list collect-configs

• List of supported Predefined Events:
$ AMDuProfCLI info --list predefined-events

• List of supported PMU (EBP) Events:
$ AMDuProfCLI info --list pmu-events

• List of supported View Configs:
$ AMDuProfCLI info --list view-configs

• Collect command example:
$ AMDuProfCLI collect --config assess -o /tmp/cpuprof-assess ./classic-app

Chapter

6 uProf Quick Reference Guide

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

38 58020 – 1.4

• Report command example:
$ AMDuProfCLI report -i /tmp/cpuprof-assess/AMDuProf-classic-TBP_Dec-09-2021_12-19-27

6.2 MPI Profiling (Linux only)
(User Guide § 8.2)

 Profile MPI applications using HW perf-counters to analyze the hotspots. This is same as performing CPU profiling on a
cluster.

• Supported MPI Spec: MPI-3.0 or later

• Languages: C, C++, Fortran

• Implementations: MPICH and derivatives (Ex. Intel MPI), Open MPI

Example 1:

$ mpirun -np 4 ./AMDuProfCLI collect --config tbp --mpi -o /tmp/myapp-perf ./myapp.exe

$ AMDuProfCLI report -i /tmp/myapp-perf/AMDuProf-myapp_MPI --host all

Example 2:

$ mpirun -np 32 --host $HOSTNAME1:16,$HOSTNAME2:16 AMDuProfCLI collect --config assess --
mpi -o /tmp/multihost ./myapp.exe

$ AMDuProfCLI report -i /tmp/multihost/AMduProf_myapp-assess_MPI --host all --detail

6.3 Power Profiling
(User Guide § 6.7)

Profile the system for power, thermal, and frequency characteristics. Report generated on-the-fly by the collect
command.

• OS: Windows, Linux

• CLI option syntax:
timechart -e <counter-specifier>

• Supported Counter Categories:
$ AMDuProfCLI timechart --list

• Collect command example:
$ AMDuProfCLI timechart -e frequency -t 500 -d 10 -o /tmp/PowerOutput/

3958020 – 1.4

Chapter 6: uProf Quick Reference Guide

6.4 MPI Tracing (Linux only)
(User Guide § 8.12)

Trace MPI applications to analyze compute and message passing load imbalance among the ranks on a cluster. Supports
MPICH and derivative implementations. Supports FUNNLED and SERIALIZED thread models. Generate report for point-
to-point and collective API activity summary.

• Supported MPI Spec: MPI-3.0 or later

• Languages: C, C++, Fortran

• Implementations: MPICH and derivatives (such as ParaStation MPI, Intel MPI), Open MPI.

• Modes: (Default mode is FULL)

- LWT: Light-weight tracing for quick analysis, report generated on-the-fly during collection stage.

- FULL: Complete tracing for in-depth analysis, requires report generation for analysis.

• CLI option syntax:
collect --trace mpi=mpich,lwt #LWT of MPICH
collect --trace mpi=mpich,full #FULL of MPICH
collect --trace mpi=openmpi,lwt #LWT of OpenMPI
collect --trace mpi=openmpi,full #FULL of OpenMPI
collect --trace mpi #FULL of MPICH

• Collect command example:
$ mpirun -np 4 ./AMDuProfCLI collect --trace mpi=mpich,full -o /home/myhome/ ./
my_mpi_app

• Report command example:
$ AMDuProfCLI report -i /home/myhome/AMDuProf-classic-HPC_Dec-09-2021_12-19-27

6.5 OpenMP Tracing (Linux only)
(User Guide § 8.1)

Trace OpenMP applications to analyze load imbalance among the threads in a parallel region.

• Supported OpenMP Spec: v5.0 or later

• Compiler: LLVM 8.0 or later, AOCC 2.1 or later, ICC 19.1 or later

• Languages: C, C++, Fortran

• OS: Ubuntu 18.04 or later, RHEL/CentOS 8.x

• CLI option syntax:
collect --trace openmp --config tbp

• Collect command example:
$ AMDuProfCLI collect --trace openmp --config tbp -o /home/myhome/ ~/classic-app

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

40 58020 – 1.4

• Report command example:
$ AMDuProfCLI report -i /home/myhome/AMDuProf-classic-TBP_Dec-09-2021_12-19-27

6.6 HPC Hybrid Tracing
Trace the hybrid programs (OpenMP + MPI) using uProf to analyze the load imbalance. Trace OpenMP as well as MPI at
the same time.

• Collect command example:
$ mpirun -np 4 ./AMDuProfCLI collect --mpi --trace mpi=mpich,full --trace openmp --
config tbp -o /home/myhome/ ./my_hybrid_app

• Report command example:
$ AMDuProfCLI report -i /home/myhome/AMDuProf-my-hybrid-app_MPI --host all

6.7 OS Tracing (Linux only)
(User Guide § 8.6, 8.7, 8.8)

Monitors the operating system during the application runtime. Supported on Linux kernel 4.7 or later. Needs root access.
Depends on BCC installation.

• Prerequisites: See “Appendix A: Installing BCC and eBPF” on page 43.

• Supported Events: schedule, diskio, syscall, pagefault, memtrace, pthread

• CLI option syntax:
collect --trace os[=schedule,diskio,syscall,pagefault,memtrace,pthread]

• Collect command example:
$ AMDuProfCLI collect --trace os -o /home/myhome/ ~/classic-app

• Report command example:
$ AMDuProfCLI report -i /home/myhome/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-27

6.8 AMDuProfPcm (System Analysis)
(User Guide § 3)

Monitor the basic performance metrics. It periodically collects the CPU Core, L3, and DF perf-counters and reports various
metrics.

• OS: Windows, Linux, FreeBSD

• Going root-less (on Linux): Use the pre-release option -X to monitor the metrics without having a dependency on
the msr module and root access.

• Prerequisites (on Linux): Uses the msr driver to collect the data. See “Appendix B: AMDuProf Linux Prerequisites”
on page 43.

• Prerequisites (on FreeBSD): Uses the cpuctl module and requires either root privileges or read write permissions
for
/dev/cpuctl* devices.

4158020 – 1.4

Chapter 6: uProf Quick Reference Guide

• CLI option syntax:
AMDuProfPcm -m <METRIC> -o <FILE-PATH>

• Supported core PMC events:
AMDuProfPcm -l

• Help & list of supported metrics:
AMDuProfPcm -h

• Collect command example:
$ AMDuProfPcm -m ipc,l2,l3 -c core=0 -d 60 -o /tmp/pcmdata.csv
$ AMDuProfPcm -m memory -c core=0 -o /tmp/pcmdata.csv -- ./myapp.exe

6.9 AMDuProfSys (System Analysis)
(User Guide § 4)

Python-based system analysis tool. Collects data from CPU Core, L3, DF, and UMC perf-counters. This tool is useful for
collecting the hardware events and evaluate the simple counter values or complex recipe using collected raw events. On
Linux, use the --use-amd-driver option to collect data using AMDuProf driver instead of Linux PERF.

• OS: Linux, Windows (only Core PMC)

• Prerequisites (on Linux): Uses the Linux perf subsystem, msr module, and basic hardware access primitives. See
“Appendix C: AMDuProfSys Linux Prerequisites” on page 43.

• Prerequisites (on Windows): Uses the uProf driver to collect the Core PMC event counters. The AMDuProf supplied
driver must be installed; the Windows installer takes care of the driver installation.

• CLI option syntax:
AMDuProfSys.py collect --config <CONFIG>
AMDuProfSys.py report -i <SESSION-DIR>

• Help command:
$ AMDuProfSys.py -h

• Collect command example:
$ AMDuProfSys.py collect --config core -C 0 -o output taskset -c 0 <application>

• Report command example:
$ AMDuProfSys.py report -i output_core.ses

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

42 58020 – 1.4

6.10 Pre-release Features of AMDuProfPcm on Linux

6.10.1 Roofline Model Analysis
(User Guide § 3.5.2)

Roofline model relates the application performance to memory bandwidth and floating-point computational peaks. This
model offers insights on improving the parallel software for floating point operations. This helps to characterize whether
an application is memory or compute bound.

To generate the roofline chart:

1. Collect the data for roofline modeling
$ AMDuProfPcm roofline -X -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe

2. Generate the roofline chart in PDF format
$ AMDuProfModelling.py -i /tmp/myapp-roofline.csv -o /tmp/ --memspeed 3200 -a myapp

6.10.2 Pipeline Utilization (Top-Down Analysis)
(User Guide § 3.5.3)

Supported only on Zen4 CPUs. This feature provides top-down metrics to analyze the bottlenecks in the CPU pipeline.
Use the option -m topdown to monitor and report the level-1 and level-2 top-down metrics.

Examples:

• Run the following command to collect the top-down metrics:
$ sudo AMDuProfPCm -m topdown -c core=0 -A system -o /tmp/myapp-td.csv -- /usr/bin/
taskset -c 0 myapp.exe

• Otherwise, use the pre-release option -X that does not require root access:
$ AMDuProfPCm -X -m topdown -A system -o /tmp/myapp-td.csv -- /usr/bin/taskset -c 0
myapp.exe

6.11 Help Commands
Looking for more options? Use the following commands from the terminal to explore more.

• All commands help: $ AMDuProfCLI -h

• Collect command help: $ AMDuProfCLI collect -h

• Report command help: $ AMDuProfCLI report -h

• Timechart command help: $ AMDuProfCLI timechart -h

• Info command help: $ AMDuProfCLI info -h

4358020 – 1.4

Chapter 6: uProf Quick Reference Guide

6.12 Appendices

6.12.1 Appendix A: Installing BCC and eBPF
(User Guide § 1.3.2)

Follow the steps listed at https://github.com/iovisor/bcc/blob/master/INSTALL.md* to install the BCC.

After installing BCC, execute the following commands to validate the BCC installation:

$ cd AMDuProf_Linux_x64_4.0.x/bin/
$ sudo ./AMDuProfVerifyBpfInstallation.sh

If you install uProf using RPM/DEB installer, then the installer will run the script and provide the info about BCC
installation and BPF support on the host.

6.12.2 Appendix B: AMDuProf Linux Prerequisites
(User Guide § 3.1.1.1)

Root permission is required for the following steps.

1. Using the msr driver requires root privileges or read write permissions for /dev/cpu/*/msr devices.

2. The NMI watchdog must be disabled.
$ sudo echo 0 > /proc/sys/kernel/nmi_watchdog

3. Set /proc/sys/kernel/perf_event_paranoid to -1.

4. Load the msr driver.
$ modprobe msr

6.12.3 Appendix C: AMDuProfSys Linux Prerequisites
(User Guide § 4.1)

Root permission the required for the following steps.

1. If you download a tar ball, then you will need to manually install the driver:
$ sudo ./AMDPowerProfilerDriver.sh install

2. If perf is not installed already, then you can install it by executing the following command (on Ubuntu):
$ sudo apt-get install linux-tools-common linux-tools-generic linux-tools-`uname -r`

3. AMDuProfSys uses the msr driver for UMC counter access and requires either root privileges or read/write
permissions for /dev/cpu/*/msr devices.

4. The tool requires Python 3.x. The following Python modules need to be installed:

- tqdm: Execute pip3 install tqdm.

- xlsxwriter: Execute pip3 install XlsxWriter.

- yaml: Execute either apt-get install python-yaml or pip3 install pyyaml.

https://github.com/iovisor/bcc/blob/master/INSTALL.md

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

44 58020 – 1.4

- yamlordereddictloader: Execute pip3 install yamlordereddictloader.

6.12.4 Appendix D: AMDuProf Predefined Configs
(User Guide § 2.2)

The Predefined Configuration provides a convenient way to select a useful set of sampling events for profile analysis.
The following table lists all such configurations:

Config Type Description

tbp TBP (Time Based Profiling) Identify where the programs are consuming time.
assess EBP (Assess Performance) Provides an overall assessment of the performance.

assess_ext EBP (Assess Performance Extended) Provides an overall assessment of the performance
with additional metrics.

data_access EBP (Investigate Data Access) Find data access operations with poor L1 data cache locality
and poor DTLB behavior.

inst_access EBP (Investigate Instruction Access) Find instruction fetches with poor L1 instruction
cache locality and poor ITLB behavior.

branch EBP (Investigate Branching) Find poorly predicted branches and near returns.
cpi EBP (Investigate CPI) Analyze the CPI and IPC metrics of the running application or the

entire system.
ibs IBS (Instruction Based Sampling) Collect the precise sample data

using IBS Fetch and IBS Op.

memory IBS (Cache Analysis) Identify the false cache-line sharing issues.
energy Energy (Energy Analysis) Identify where the program is consuming more energy.

58020 – 1.4 45

7.1 AMD Resources
• AMD EPYC Solution Briefs and White papers (includes 7001, 7002, 7003, and 9004 series documents)

• AMD EPYC Tuning Guides (includes 7001, 7002, 7003, and 9004 series documents)

• Reference for all developers on AMD platforms. Includes access to additional tuning guides, developer guides,
manuals, ISA documents, and specs.

• AMD Processors documentation and guides

• AMD Zen Software Studio

• AMD AOCC: AMD Optimizing CPU Compiler

• AMD AOCL: AMD Optimizing CPU Libraries

• AMD µProf: Performance Analysis Tool

• Community Forum on AMD to discuss technical issues and contact a Server Guru

• Processor Programming Reference (PPR) for AMD Family 19h Models 00h-0Fh Processors, Revision B1 Processors

7.1.1 Other Resources
• Linux virtual memory*

• Linux kernel and CPU governors documentation*

• Spectre and Meltdown*

• AMD Statement on Spectre and Meltdown

Chapter

7 Resources

www.amd.com/epyc-tech-docs
http://developer.amd.com/
https://developer.amd.com/resources/developer-guides-manuals/
https://www.amd.com/en/developer/aocc.html
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/aocl.html
https://community.amd.com/community/server-gurus
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://access.redhat.com/articles/3311301
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://devhub.amd.com/download/processor-programming-reference-ppr-for-amd-family-19h-models-00h-0fh-processors-revision-b1-processors-nda-is-locked-processor-programming-reference-ppr-for-amd-family-19h-models-00h/
www.amd.com/epyc-tuning-guides
https://www.amd.com/en/developer/zen-software-studio.html

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

46 58020 – 1.4

This page intentionally left blank.

58020 – 1.4 47

Figure 8-1 shows the processor naming convention for AMD EPYC 9004 Series Processors and how to use this convention
to identify particular processors models:

Figure 8-1: AMD EPYC SoC naming convention

8.1 CPUID Instruction
Software uses the CPUID instruction (Fn0000_0001_EAX) to identify the processor and will return the following values:

• Family: 19h identifies the “Zen 4” architecture

• Model: Varies with product. For example, EPYC Family 19h, Model 10h corresponds to an “A” part “Zen 4” CPU.

- 91xx-96xx (including “X” OPNs): Family 19h, Model 10-1F

- 97xx: Family 19h, Model A0-AF

• Stepping: May be used to further identify minor design changes

For example, CPUID values for Family, Model, and Stepping (decimal) of 25, 17, 1 correspond to a “B1” part “Zen 4” CPU.

Chapter

8 Processor Identification

EPYC 9554P CPUTM

PRODUCT FAMILY

PRODUCT SERIES
- 9xx4 = Socket SP5

PRODUCT MODEL
Indicates core count within the series

100s Digit

Cores

2 3 4 5 60

24 32 48 64 84-968

PERFORMANCE
10s digit indicates performance within the series
- 9 = Reserved
- 8, 7, 6, 5, 4, 3, 2, 1
 - relative performance w/in core count
 - higher number = higher performance.

GENERATION
4 = 4th Gen 9004

FEATURE MODIFIER
- P = 1P only
- F = Frequency Optimized
- X = Cache Optimized

1

16

7

112-128

High Performance Toolchain: Compilers, Libraries & Profilers Tuning Guide for AMD EPYC™ 9004 Processors

48 58020 – 1.4

8.2 New Software-Visible Features
AMD EPYC 9004 Series Processors introduce several new features that enhance performance, ISA updates, provide
additional security features, and improve system reliability and availability. Some of the new features include:

• 5-level Paging

• AVX-512 instructions on a 256-byte datapath, including BFLOAT16 and VNNI support.

• Fast Short Rep STOSB and Rep CMPSB

Not all operating systems or hypervisors support all features. Please refer to your OS or hypervisor documentation for
specific releases to identify support for these features.

Please also see the latest version of the AMD64 Architecture Programmer’s Manuals or Processor Programming
Reference (PPR) for AMD Family 19h.

8.2.1 AVX-512
AVX-512 is a set of individual instructions supporting 512-bit register-width data (i.e., single instruction, multiple data
[SIMD]) operations. AMD EPYC 9004 Series Processors implement AVX 512 by “double-pumping” 256-bit-wide registers.
AMD’s AVX-512 design uses the same 256-bit data path that exists throughout the Zen4 core and enables the two parts
to execute on sequential clock cycles. This means that running AVX-512 instructions on AMD EPYC 9004 Series will cause
neither drops on effective frequencies nor increased power consumption. On the contrary, many workloads run more
energy-efficiently on AVX-512 than on AVX-256P.

Other AVX-512 support includes:

• Vectorized Neural Network Instruction (VNNI) instructions that are used in deep learning models and accelerate
neural network inferences by providing hardware support for convolution operations.

• Brain Floating Point 16-bit (BFLOAT16) numeric format. This format is used in Machine Learning applications that
require high performance but must also conserve memory and bandwidth. BFLOAT16 support doubles the number of
SIMD operands over 32-bit single precision FP, allowing twice the amount of data to be processed using the same
memory bandwidth. BFLOAT16 values mantissa dynamic range at the expense of one radix point.

https://www.amd.com/en/support/tech-docs?keyword=amd64+architecture+programmer%27s+manual
https://www.amd.com/en/support/tech-docs?keyword=preliminary+processor
https://www.amd.com/en/support/tech-docs?keyword=preliminary+processor

	High Performance Toolchain: Compilers, Libraries & Profilers
	Introduction
	AMD EPYC™ 9004 Series Processors
	2.1 General Specifications
	2.2 Model-Specific Features
	2.3 Operating Systems
	2.4 Processor Layout
	2.5 “Zen 4” Core
	2.6 Core Complex (CCX)
	2.7 Core Complex Dies (CCDs)
	2.8 AMD 3D V-Cache™ Technology
	2.9 I/O Die (Infinity Fabric™)
	2.10 Memory and I/O
	2.11 Visualizing AMD EPYC 9004 Series Processors (Family 19h)
	2.11.1 Models 91xx-96xx (“Genoa”)
	2.11.2 Models 97xx (“Bergamo”)

	2.12 NUMA Topology
	2.12.1 NUMA Settings

	2.13 Dual-Socket Configurations

	Compilers
	3.1 AMD Optimizing CPU Compiler (AOCC)
	3.1.1 AOCC Clang/Clang++
	3.1.2 AOCC FLang
	3.1.3 Clang and Flang Options

	3.2 GCC Compiler

	High Performance Math Libraries
	4.1 AMD Optimizing CPU Libraries (AOCL)
	4.1.1 BLIS
	4.1.2 libFLAME
	4.1.3 FFTW
	4.1.4 LibM
	4.1.5 ScaLAPACK
	4.1.6 AMD Random Number Generator
	4.1.7 AMD Secure RNG
	4.1.8 AOCL-Sparse
	4.1.9 AOCL- Cryptography
	4.1.10 AOCL- LibMem
	4.1.11 AOCL-Compression

	4.2 AOCL Tuning Guidelines
	4.2.1 AOCL Dynamic
	4.2.2 BLIS DGEMM Multi-thread Tuning
	4.2.3 Performance Suggestions for Skinny Matrices
	4.2.4 AMD-Optimized FFTW
	4.2.5 AOCL-libFLAME Multi-Threading

	Application Performance Analysis & Optimization
	5.1 AMD µProf – Profiling Tool
	5.1.1 Performance Monitoring Tool (AMDuProfPcm)
	5.1.2 AMDuProfSys
	5.1.3 Application Analysis
	5.1.4 HPC Analysis
	5.1.5 MPI Analysis
	5.1.6 MPI Trace Analysis
	5.1.7 Roofline Analysis
	5.1.8 Power Profiling
	5.1.8.1 Profiling Effective Frequency
	5.1.8.2 Live System-Wide Power Profile

	uProf Quick Reference Guide
	6.1 CPU Profiling
	6.2 MPI Profiling (Linux only)
	6.3 Power Profiling
	6.4 MPI Tracing (Linux only)
	6.5 OpenMP Tracing (Linux only)
	6.6 HPC Hybrid Tracing
	6.7 OS Tracing (Linux only)
	6.8 AMDuProfPcm (System Analysis)
	6.9 AMDuProfSys (System Analysis)
	6.10 Pre-release Features of AMDuProfPcm on Linux
	6.10.1 Roofline Model Analysis
	6.10.2 Pipeline Utilization (Top-Down Analysis)

	6.11 Help Commands
	6.12 Appendices
	6.12.1 Appendix A: Installing BCC and eBPF
	6.12.2 Appendix B: AMDuProf Linux Prerequisites
	6.12.3 Appendix C: AMDuProfSys Linux Prerequisites
	6.12.4 Appendix D: AMDuProf Predefined Configs

	Resources
	7.1 AMD Resources
	7.1.1 Other Resources

	Processor Identification
	8.1 CPUID Instruction
	8.2 New Software-Visible Features
	8.2.1 AVX-512

