

Publication #	58369	Revision:	0.10
Issue Date:	October 202.	3	

Advanced Micro Devices 🛛 🗖

Versioned Loaded Endorsement Key (VLEK) Certificate Definition

© 2023 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Versioned Loaded Endorsement Key (VLEK) Certificate Definition

Contents

Chapter	1 Introduction	6
1.1	Purpose and Scope	6
1.2	Intended Audience	6
1.3	References	6
1.4	Glossary	6
1.5	Determining the Product Name	7
Chapter	2 VLEK Certificate Trust Chain	9
2.1	Certificate Authorities	9
2.2	Downloading the CA Cortificates and CPI	0
	Downloading the CA Certificates and CKL	9
2.3	ARK and ASVK Certificate Definitions	0
2.3 Chapter	ARK and ASVK Certificate Definitions	9 0 2

List of Tables

Table 1. External References	6
Table 2. Terms and Definitions	6
Table 3. Processor Version Information Definition	8
Table 4. Values for product_name	8
Table 5. VLEK Certificate Chain	9
Table 6. AMD Root Key (ARK) Certificate Format 1	0
Table 7. AMD SEV-VLEK Key (ASVK) Certificate Format 1	0
Table 8. VLEK Certificate Fields 1	2
Table 9. VLEK Certificate Extensions for Milan and Genoa (structVersion = 0)	3

Revision History

Date	Revision	Description
August 2023	0.10	• Initial public release

Chapter 1 Introduction

1.1 Purpose and Scope

This document describes contents of the Versioned Loaded Endorsement Key (VLEK) certificate. VLEK certificates are used within the context of AMD Secure Encrypted Virtualization-Secure Nested Paging (SEV-SNP) technology, the details of which are not described here. For SEV-SNP information, please refer to the specification listed in Table 1. External References.

1.2 Intended Audience

This document is intended for users and developers of virtualized host environments that employ AMD's SEV-SNP technology and need to understand the contents of VLEK certificates and how to retrieve certificate authorities to validate them.

1.3 References

Table 1. External References

Reference	Document
RFC 5280	Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. <i>https://tools.ietf.org/html/rfc5280</i>
SNP ABI	SEV Secure Nested Paging Firmware ABI Specification. <i>https://www.amd.com/system/files/TechDocs/56860.pdf</i>
55766	Secure Encrypted Virtualization API Version 0.24 https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf

1.4 Glossary

Table 2. Terms and Definitions

Term	Definition
ARB	Anti-Rollback. Methods used to prevent installation of older firmware/software that contain exploitable vulnerabilities.
ARK	AMD Root Key. A key used as the Root CA for VLEK certificates. Each product (e.g., Milan) has its own ARK and Root CA certificate.
ASVK	AMD SEV-VLEK Key. A key used as an intermediate CA that signs VLEK certificates. Each product (e.g., Milan) has its own ASVK and ICA certificate.

Term	Definition
CSP	Cloud Service Provider. A company/entity that is using the KDS VLEK interface to request certificates and hash sticks.
CSP_ID	Cloud Service Provider Identifier . A string used to uniquely identify a cloud service provider. The subject field from the client's TLS certificate is used as the CSP_ID.
KDS	Key Distribution System. AMD's system of hardware security modules (HSMs) and supporting hardware/software that manages various cryptographic resources including VLEK certificate generation.
SEV	Secure Encrypted Virtualization. An AMD technology to encrypt the memory of a virtual machine using a unique key.
SNP	Secure Nested Paging. An extension of SEV features that strengthens memory encryption protections using newer hardware-based security.
SPL	Security Patch Level . A monotonically increasing integer used to represent a minimum- security version used in anti-rollback protection. Used interchangeably with SVN.
SVN	Security Version Number. A version number used to prevent rollback attacks.
ТСВ	Trusted Compute Base/Boundary . A "TCB version" refers to a specific combination of versions of firmware entities that are part of the TCB (e.g., bootloader firmware, SNP firmware, CPU microcode, etc.).
VCEK	Versioned Chip Endorsement Key . An Elliptic Curve Digital Signature Algorithm (ECDSA) key unique to each AMD chip running a specific TCB version.
VLEK	Versioned Loaded Endorsement Key . An ECDSA key unique to a specific CSP and TCB version.
VLEK Seed	A 256-bit value unique to each combination of CSP_ID and product, used as the seed to derive a VLEK hash stick.

1.5 Determining the Product Name

The name of the product appears in the ARK, ASVK, and VLEK certificates, as well as the interface URLs. The "product_name" can be determined by executing the CPUID (EAX=1) instruction on the processor and comparing the Family/Model/Stepping (FMS) information. (See Table 3. Processor Version Information Definition and Table 4. Values for product_name.)

Versioned Loaded Endorsement Key (VLEK) Certificate Definition

EAX bits	Definition			
31:28	Reserved			
27:20	Extended Family ID			
19:16	Extended Model ID			
15:14	Reserved			
13:12	Processor Type			
11:8	Family ID			
7:4	Model			
3:0	Stepping			

Table 3. Processor Version Information Definition

Table 4. Values for product_name

Extended Family ID	Family ID	Extended Model ID	product_name
Ah	Fh	Oh	"Milan"
Ah	Fh	1h	"Genoa"

Chapter 2 VLEK Certificate Trust Chain

This section describes data structures that are common to multiple commands.

2.1 Certificate Authorities

The VLEK certificate is rooted through a certificate chain described by Table 5. VLEK Certificate Chain.

 Table 5. VLEK Certificate Chain

Key	Abbr.	Кеу Туре	Description
AMD Root Key	ARK	RSA 4096	Product-specific AMD Root of Trust. Signs the ASVK intermediate CA.
AMD SEV-VLEK Key	ASVK	RSA 4096	Product-specific intermediate CA that signs VLEK certificates.

For more information on the ARK and ASVK, refer to Chapter 2 of the Secure Encrypted Virtualization API specification.

2.2 Downloading the CA Certificates and CRL

Certificates for the ARK and ASVK also can be found at *https://developer.amd.com/sev* or via the KDS interface described below.

All U	URL s	are	hosted	at	https://	/kd	sintf	amd	.com/
-------	--------------	-----	--------	----	----------	-----	-------	-----	-------

Port	URI	Method	Description
443	/vlek/v1/{product_name*}/cert_chain	GET	Returns the product-specific CA chain. Certificates are sent in PEM format.
443	/vlek/v1/{product_name}/crl	GET	Returns list of revoked certificates as per RFC 5280. CRL is sent in DER format.

* Refer to Section 1.5. Determining the Product Name for product names.

2.3 ARK and ASVK Certificate Definitions

Version	V3		
Serial Number	0xNNNNN		
Issuer	CN = ARK-{product_name} (ex: ARK-Milan)		
	O = Advanced Micro Devices		
	S = CA		
	L = Santa Clara		
	C = US		
	OU = Engineering		
Signature Algorithm	RSASSA-PSS		
Signature Hash	sha384		
Algorithm			
Validity	Valid from: date of issuance		
	Valid to: 25 years after date of issuance		
Subject	CN = ARK-{product_name} (ex: ARK-Milan) OU = Engineering		
	O = Advanced Micro Devices		
	L = Santa Clara		
	S = CA		
	C = US		
Subject Public Key	RSA (4096 bits)		
Info			
CRL Distribution	URL=https://kdsintf.amd.com/vlek/v1/{product_name}/crl		
Point			
Key Usage	Certificate Signing, Off-line CRL Signing, CRL Signing		

Table 6. AMD Root Key (ARK) Certificate Format

Table 7. AMD SEV-VLEK Key (ASVK) Certificate Format

Version	V3	
Serial Number	0xNNNNN	
Issuer	[Subject of ARK certificate]	
Signature Algorithm	RSASSA-PSS	
Signature Hash	sha384	
Algorithm		

Versioned Loaded Endorsement Key (VLEK) Certificate Definition

Validity	Valid from: date of issuance Valid to: 25 years after date of issuance	
Subject	CN = SEV-VLEK $OU = Engineering$ $O = Advanced Micro Devices$ $L = Santa Clara$ $S = CA$ $C = US$	
Subject Public Key Info	RSA (4096 bits)	
CRL Distribution Point	URL=https://kdsintf.amd.com/vlek/v1/{product_name}/crl	
Key Usage	Certificate Signing	

Chapter 3 VLEK Certificate Format

The VLEK certificate is an X.509v3 certificate as defined in RFC 5280. Each certificate is generated at the time of the request; they are not stored within the KDS.

Table 8 describes the fields of the VLEK certificate.

Version	V3	
Serial Number	Zero	
Issuer	[Subject of ASVK certificate]	
Signature Algorithm	RSASSA-PSS	
Signature Hash Algorithm	sha384	
Validity	Not before: one day prior to date of issuance ¹ Not after: seven years after date of issuance	
Subject	CN = SEV-VLEK $OU = Engineering$ $O = Advanced Micro Devices$ $L = Santa Clara$ $ST = CA$ $C = US$	
Subject Public Key Info	ECDSA on curve P-384	
AuthorityKeyIdentifier	The SHA1 of ICA public key	
SubjectKeyIdentifier	SHA1 of VLEK public key	
Extensions	See Section 3.1. Certificate Extensions and TCB Definitions	

Table 8. VLEK Certificate Fields

Note:

1. The notValidBefore date is backdated one day prior to the actual issuance date to avoid false certificate failures due to out-of-sync system clocks between AMD and the customer.

3.1 Certificate Extensions and TCB Definitions

Each VLEK certificate contains custom extensions, some of which describe elements that make up the TCB_VERSION structure definition. (See SNP ABI, section 2.2.) Below are tables showing the extensions for different products and versions of the TCB structure.

Notes:

- 1. The productName extension includes the specific silicon stepping corresponding to the supplied hwID. For example, "Milan-B0," "Genoa-A0," etc.
- 2. Extensions with OIDs prefixed by 1.3.6.1.4.3704.1.3 are elements of the TCB_VERSION structure and are listed in the structure order.
- 3. Extensions named spl_4, spl_5, etc. are just placeholders for unused bytes of the TCB_VERSION structure and always have the value of 0x00. Numbering on these extensions may not align with their actual position within the TCB_VERSION structure.

OID	Name	ASN.1 Type
1.3.6.1.4.1.3704.1.1	structVersion	INTEGER
1.3.6.1.4.1.3704.1.2	productName	IA5STRING
1.3.6.1.4.1.3704.1.3.1	blSPL	INTEGER
1.3.6.1.4.1.3704.1.3.2	teeSPL	INTEGER
1.3.6.1.4.1.3704.1.3.4	spl_4	INTEGER
1.3.6.1.4.1.3704.1.3.5	spl_5	INTEGER
1.3.6.1.4.1.3704.1.3.6	spl_6	INTEGER
1.3.6.1.4.1.3704.1.3.7	spl_7	INTEGER
1.3.6.1.4.1.3704.1.3.3	snpSPL	INTEGER
1.3.6.1.4.1.3704.1.3.8	ucodeSPL	INTEGER
1.3.6.1.4.1.3704.1.5	csp_id	IA5STRING

 Table 9. VLEK Certificate Extensions for Milan and Genoa (structVersion = 0)