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This user guide describes how to configure and set up OpenShift and Kubeflow on nodes powered by 4th Gen AMD EPYC 
processors. It focuses on deploying LLama2 models and performance benchmarking multi-user requests, specifically 
targeting evaluating LLMs such as llama-2-7b-chat-hf and its variant models. It includes detailed, step-by-step 
instructions for establishing an OpenShift multi-node cluster environment, installing Kubeflow, deploying LLama2, and 
conducting performance benchmarking. This user guide also also addresses the deployment process on both a single 
Docker container and OpenShift, along with specifying the minimum hardware and software configurations necessary 
for this setup.

1.1 About Large Language Models
Large Language Models (LLMs) are revolutionizing the world and reshaping how we interact with technology. Models 
powered by advanced artificial intelligence, such as GPT-3 and Llama2, enable breakthroughs in natural language 
processing by comprehending and generating human-like text. LLMs are accelerating innovation in diverse applications 
from crafting creative content to enhancing customer support. Their ability to understand context, generate coherent 
responses, and adapt to various tasks has opened new frontiers in automation, education, and research. LLMs are 
driving transformative change by promising a future where communication and problem-solving reach unprecedented 
levels of efficiency and sophistication.

LLMs offer incredible potential for automating tasks, enhancing customer experiences, and driving research, but their 
reliance on expensive GPUs often creates a barrier to entry, This User Guide presents a groundbreaking solution that 
makes cutting-edge AI accessible to any organization, regardless of budget or infrastructure limitations. This solution 
deploys and serves Llama2 on systems powered by 4th Gen AMD EPYC™ processors, allowing you to unlock the benefits 
of LLMs on your existing infrastructure. This solution offers the following benefits: 

• Eliminating the need for expensive GPUs enhances access to AI technology.

• AMD EPYC 9004 Series Processors optimize Llama2 performance for fast text generation, natural language 
processing, and content creation.

• Easily deploy Llama2 effortlessly on the popular Red Hat® OpenShift® Container Platform (OCP) for seamless 
scalability, flexibility, and efficient resource management.

• Measure performance using detailed performance benchmarks.

Some of the ways you can use this solution include:

• Automating tasks to streamline workflows, boost efficiency, and empower your workforce by automating repetitive 
tasks, such as data analysis and report generation.

• Enhancing customer service by delivering personalized experiences through intelligent chatbots, sentiment analysis, 
and AI-powered recommendations.

• Driving research efforts with LLM-powered automated data analysis, document summarization, and hypothesis 
generation.

Chapter
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• Enhancing competitiveness by leveraging AI-driven opportunities for innovation across text and language-driven 
domains.

1.2 Technology Overview
AMD EPYC processors deliver strong AI workload performance. OCP provides a scalable foundation for deploying AI 
models. Kubeflow simplifies deploying and managing machine learning pipelines, while Kserve and TGI optimize model 
serving for fast predictions. The Llama2 LLM brings advanced natural language processing capabilities, and the 
OpenShift web console allows centralized management and monitoring of the entire AI infrastructure.

1.2.1 AMD EPYC Processors
4th Gen AMD EPYC processors continue to redefine the standards for modern data centers. 4th Gen AMD EPYC 
processors are built on the innovative x86 architecture and “Zen 4” core. 4th Gen AMD EPYC processors deliver efficient, 
optimized performance by combining high frequencies, the largest-available L3 cache, 128 lanes of PCIe® 5 I/O (1P), and 
synchronized fabric and memory clock speeds, plus support for up to 6 TB of DDR5-4800 memory. Built-in security 
features, such as Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV-SNP), collectively known 
as AMD Infinity Guard, help protect data while it is in use. (AMD Infinity Guard features vary by EPYC™ Processor 
generations. Infinity Guard security features must be enabled by server OEMs and/or Cloud Service Providers to operate. 
Check with your OEM or provider to confirm support of these features. Learn more about Infinity Guard at https://
www.amd.com/en/technologies/infinity-guard. GD-183)

Some specific general purpose AMD EPYC processor models include:

• AMD EPYC 9654: 4th Gen processor with 96 cores and 192 threads for the most demanding applications.

• AMD EPYC 7763: This 3rd Gen processor balances performance and power efficiency with 64 cores and 128 threads.

• AMD EPYC 7702: This 2nd Gen processor is an affordable option with 64 cores and 128 threads.

Other AMD EPYC models offer from 16-128 cores to cater to specific needs and budgets.

1.3 Use Cases
This section briefly explores some compelling AI use cases specifically designed for internal and external applications 
within your company. Artificial intelligence (AI) is rapidly transforming business landscapes, offering exciting 
opportunities to enhance efficiency, improve customer experience, and drive innovation. The synergy between AMD 
EPYC processors and OpenShift AI presents a compelling opportunity for businesses to unlock the transformative power 
of artificial intelligence. The combination of exceptional performance, optimized scalability, and robust platform support 
empowers you to tackle diverse AI workloads efficiently and cost-effectively. Combining AMD EPYC processors and 
OpenShift AI provides a solid foundation for your AI journey and keeps you ahead of the curve as technology continues 
evolving.

1.3.1 Boost Employee Experience
• Streamlined onboarding: Imagine an AI assistant driving a smooth and efficient onboarding experience by guiding 

new hires through company policies, answering questions, and providing personalized knowledge access.

• Instant support: Picture employees saving time and reducing reliance on support teams by easily resolving common 
IT issues through intuitive AI-powered troubleshooting.

• Seamless knowledge transfer: Envision a system that fostering collaboration and self-service for immediate 
answers by seamlessly connecting employees to relevant internal knowledge bases.

https://www.amd.com/en/technologies/infinity-guard
https://www.amd.com/en/technologies/infinity-guard
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1.3.2 Transform Customer Interactions
• 24/7 customer care: Imagine an AI system ensuring consistent support around the clock by acting as your first line 

of defense by handling basic inquiries and freeing up human agents for complex issues.

• Intelligent lead nurturing: Picture an AI assistant freeing up sales reps for high-value interactions and closing deals 
by pre-qualifying leads, scheduling appointments, and nurturing potential customers.

• Empowering self-service: Envision customers readily accessing product information, resolving simple issues, and 
finding answers independently via an AI-powered support system.

1.3.3 Enhance Internal Collaboration
• Effortless meeting management: Imagine an AI assistant boosting team alignment and follow-through by 

automatically summarizing meetings, generating action items, and distributing those action items.

• Enhanced project management: Picture an AI system facilitating seamless communication and collaboration across 
teams by keeping track of tasks, deadlines, and resources.

• Sparking innovation: Envision an AI assistant unlocking your team's creative potential by fueling brainstorming 
sessions with insightful suggestions, capturing ideas, and documenting outcomes.

1.3.4 Red Hat OCP
Red Hat OCP simplifies deploying and managing containerized apps on Kubernetes by offering the following key 
features:

• Streamlined app deployment that allows you to package, deploy, and scale apps across clouds and edge.

• Automated workflows provide CI/CD integration for speedy releases.

• Built-in security and compliance features to defend your data.

• Run multiple projects within one platform using multiple tenants. 

Figure 1-1: Red Hat OCP AI architecture
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1.3.5 Kubeflow
Kubeflow is an open-source platform that seamlessly integrates with Kubernetes to simplify deploying and managing 
machine learning (ML) workflows. Kubeflow allows you to:

• Mix and match modular components for notebooks, data processing, and model serving.

• Rapidly deploy models on your existing Kubernetes setup with no infrastructure hurdles.

• Seamlessly scale to handle large datasets and complex algorithms.

• Obtain consistent training and deployment across environments.

• Optimize costs. 

Figure 1-2: Kubeflow Architecture
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1.3.6 KServe
KServe connects machine learning models to the real world by simplifying deploying and serving trained models on 
Kubernetes. Key KServe features include:

• Auto scaling that adjusts the number of model replicas to meet fluctuating demands.

• Service mesh with CPU/GPU/TPU support, model mesh support, and support for multiple deep learning model 
frameworks.

• Standardized, framework-agnostic way to serve LLMs. 

Figure 1-3: KServe architecture

1.3.7 Knative
Knative is an open-source platforme that extends Kubernetes functionality to enable building, deploying, and managing 
serverless and event-driven applications. It eliminates server management by automating resource provisioning, scaling, 
and application lifecycles. Knative's portability allows running workloads across various platforms with Kubernetes, 
while its focus on developer experience simplifies development through tools and abstractions. The platform consists of 
three core components:

• Build automates building container images.

• Serving manages deployment, scaling, and routing.

• Eventing facilitates event-driven communication within applications. 
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1.3.8 Istio
Istio is an open-source service mesh platform that provides capabilities for managing and securing microservices-based 
applications. It features traffic management, load balancing, service-to-service authentication and authorization, 
telemetry, and observability. Istio deploys a sidecar proxy alongside each service instance in the mesh, allowing it to 
intercept and control all inbound and outbound traffic to the service. This enables advanced traffic management 
features like traffic routing, fault injection, and circuit breaking. Istio helps in making microservices communication 
more reliable, secure, and observable by providing a unified control plane for managing service-to-service 
communication within a distributed application architecture. 

1.3.9 Text Generation Inference
Text Generation Inference (TGI) is a toolkit that deploys and serves pre-trained LLMs for high-performance text 
generation. It supports popular open-source LLMs, including Llama, Falcon and more and can be applied to diverse use 
cases, such as:

• Automatic content generation, such as summaries, news articles, or marketing copy at scale.

• Create personalized adaptive or interactive text-based experiences like chatbots or simulations.

• Enhance creativity by exploring new ideas and writing styles with AI-assisted brainstorming.

Some key TGI features include:

• Tensor parallelism for faster inference on multi-GPU systems.

• Token streaming using Server-Sent Events (SSE).

• Continuous batching of incoming requests for increased total throughput.

• Optimized transformers code for inference using Flash Attention* and Paged Attention* on the most popular 
architectures.

• Quantization with bitsandbytes* and GPT-Q*.

• Safetensors* weight loading.

• Watermarking with A Watermark for Large Language Models*.

• Logits warper (temperature scaling, top-p, top-k, repetition penalty (see transformers.LogitsProcessor*).

• Stop sequences.

• Log probabilities.

• Custom prompt generation.

• Fine-tuning support.

TGI uses a three-step process:

1. You input text prompts, keywords, or specific instructions to the LLM.

2. The LLM uses its learned knowledge to predict the next word or text sequence based on your input (inference).

3. The inference tool gathers the generated text and presents it to you in a readable format.

https://github.com/HazyResearch/flash-attention
https://github.com/vllm-project/vllm
https://pypi.org/project/bitsandbytes/
https://arxiv.org/abs/2210.17323
https://github.com/huggingface/safetensors
https://arxiv.org/abs/2301.10226
https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor
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1.3.10 Single Model Serving Platform
OCP offers a comprehensive solution for deploying LLMs via a Single Model Serving Platform (SMSP) based on the 
KServe component. This platform streamlines deploying, monitoring, scaling, and maintaining LLMs. This SMSP 
consists of the following components: 

• KServe: Kubernetes Custom Resource Definition (CRD) that orchestrates model serving for all types of models. It 
includes model-serving runtimes that implement loading given types of model servers. KServe handles the 
deployment object, storage access, and network setup.

• Red Hat OpenShift Serverless: Cloud-native development model that allows server-less model deployments. 
OpenShift Serverless is based on the open-source Knative project.

• Red Hat OpenShift Service Mesh: Service mesh networking layer that manages traffic flows and enforces access 
policies. OpenShift Service Mesh is based on the open-source Istio project.

The SMSP can be deployed in several ways:

• Automated Installation

• Manual Installation

• Installing KServe Dependencies

1.3.11 TGIS Inference Server with Caikit
The Text Generation Inference Server (TGIS) with Caikit offers an efficient solution for deploying LLMs and conducting 
text generation tasks via a user-friendly interface that allows configuring and deploying LLMs with no need for extensive 
technical knowledge or manual setup. Caikit is an AI toolkit that uses developer-friendly APIs to manage models. It 
provides a consistent format for creating and using AI models against a wide variety of data domains and tasks. It acts 
as a wrapper that oversees the TGIS process, furnishes endpoints for inference, and incorporates modules tailored for 
diverse model types. The Caikit-nlp extension specializes in managing Natural Language Processing (NLP) models. 

1.3.12 Llama2 LLM
A LLM is a deep learning algorithm that performs a variety of NLP tasks. LLMs use transformer models that use self-
attention mechanism to process sequential data and analyze relationships between different elements in the sequence 
without relying on recurrent networks. LLMs are trained using huge datasets. 

Llama2 is one such open-source, publicly available LLM. It is an advanced AI platform that combines cutting-edge 
algorithms, extensive data sets, and powerful computational capabilities to deliver exceptional results. Its versatile 
machine learning models excel in domains from NLP to image recognition. Llama2 prioritizes privacy and security to 
protect confidential user data. Llama2 also fosters collaboration by seamlessly integrating with other AI frameworks.

For enterprises, Llama2 can enhance customer service by providing intelligent chatbots capable of understanding and 
responding to user inquiries. It can automate data analysis, allowing businesses to extract valuable insights, optimize 
processes, and make informed decisions. Llama2's NLP capabilities can facilitate sentiment analysis, brand monitoring, 
and social media listening, thereby helping enterprises understand customer sentiment and market trends. Llama2 
enables personalization and recommendation systems to enhance customer experiences and drive sales.

Llama2 is available in the following editions based on the number of included parameters:

• Llama2 7B combines a substantial 7 billion-parameter model with advanced algorithms that enable generating 
coherent, high-quality text across different tasks. It strikes a balance between efficiency and performance, making it 
a versatile choice for a range of applications.
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• Llama2 13B uses a 13 billion-parameter model that excels in producing nuanced and contextually rich text that is 
suited for complex content generation and language-related tasks.

• Llama2 70B uses a 70 billion-parameter model that pushes the boundaries of text generation to deliver exceptional 
fluency, coherence, and domain expertise. It is ideal for data-intensive projects or those requiring the utmost 
precision and scale. 

1.3.13 OpenShift Web Console
The OpenShift Web Console is a web-based user interface that allows you to manage applications, resources, and 
projects within your OCP environment. This user-friendly control panel simplifies tasks. such as:

• Deploying apps: Easily upload code, configure deployments, and launch your applications. Streamline tasks and 
actions using integrated automation capabilities.

• Monitoring health: Quickly track resource usage, application health, and identify potential issues. Use clear visuals 
to track key metrics and gain insights into your OCP environment.

• Managing resources: Allocate resources to projects, scale deployments, and ensure efficient utilization. Manage 
multiple projects and teams within one centralized location.

• Controlling access: Assign roles and permissions to users and teams to enforce security and governance.

• Extending and customizing functionality: Use plugins and extensions based on your specific needs. 

Figure 1-4: OpenShift web console
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2.1 Node Roles
The solution described in this User Guide requires the following node types:

• Client: Client nodes acts as the interface between the user and the OpenShift cluster and can be used to access, get 
information, perform operations, and deploy applications and services on an OpenShift cluster. 

• Load Balancer: Load balancers distribute load/requests coming in to the OpenShift Cluster from the Client across 
the available Worker nodes. 

• Control Plane: Nodes that provide instructions to the worker nodes for the functions they need to perform and run 
services required to control an OpenShift cluster.

• Workers: Nodes that run workloads or containerized applications. 

Figure 2-1: OpenShift cluster topology
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2.2 Hardware Prerequisites
An OpenShift multi-node cluster must meet the hardware requirements shown in Table 2-1. 

2.3 Hardware/Software Configurations
The sample Red Hat OpenShift Container Platform and Kubeflow serving Llama2 model using TGI inference Server 
deployment described in this User Guide use the following hardware and software configurations: 

Minimum OpenShift Requirements
Control Plane Nodes

# of Nodes 3 (for multi-node clusters)
CPU Cores 4
RAM 16 GB
Storage 100 GB

Worker Nodes
CPU Cores 2
RAM 8 GB
Storage 100 GB

Networking
See Installing OpenShift Container Platform with the Assisted Installer*.

Table 2-1: Minimum OpenShift requirements

Hardware Configuration
CPUs 2 x AMD EPYC 9654
CPU cores | threads 96 | 192 per processor
RAM 256 GB
Storage 16 GB NVMe
Networking 2 x 100 Gbps

8 GB
Storage 100 GB

Table 2-2: Sample hardware configuration

Software Version
Red Hat OpenShift Container Platform 4.12
Kubeflow 1.8
Docker 1.6
Llama2-chat-hf 7B, 13B, and 70B
PyTorch 1.1.3

Table 2-3: Sample software configuration

https://access.redhat.com/documentation/en-us/assisted_installer_for_openshift_container_platform/2023/html/assisted_installer_for_openshift_container_platform/preparing-to-install-with-ai
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This chapter contains detailed instructions for creating a multi-node OpenShift cluster using the Assisted Installer for 
OpenShift Container Platform utility available from Red Hat.

3.1 Deploying an OpenShift Cluster Using the Assisted Installer
These instructions are based on OpenShift 4.12.0.

1. Login to the Red Hat Hybrid Cloud Console. 

Figure 3-1: OpenShift Cloud Console login screen

Chapter

3 Installation
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The Get started with Hybrid Cloud Console capabilities screen appears. 

Figure 3-2: Get started with Hybrid Cloud Console capabilities screen

2. In the Red Hat OpenShift tile, click Scale your applications.

The Overview screen appears. 

Figure 3-3: Overview screen.

3. In the left-hand menu, click Clusters.

The Clusters screen appears. 

Figure 3-4: Clusters screen
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4. Click Create Cluster.

The Select an OpenShift cluster type to create screen appears. 

Figure 3-5: Select an OpenShift cluster type to create screen.

5.  Select Datacenter.

The Assisted Installer screen appears. 

Figure 3-6: Assisted Installer screen



RedHat® OpenShift® AI In-a-Box Solutions

14 58669 – 1.0

6. Click Create cluster.

The Install OpenShift with the Assisted Installer screen appears. 

Figure 3-7: Install OpenShift with the Assisted Installer screen

7. Provide the following information:

- Cluster name: Specify a name for your cluster.

- Base domain: Provide a base domain (e.g., example.com). All DNS records will be named <cluster-
name>.example.com. You cannot change the base domain after cluster installation.

- OpenShift version: Select the OpenShift version to use (e.g., 4.12.0).
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8. Click Next.

The Operators screen appears. 

Figure 3-8: Operators screen

9. If desired, you can install any operators that your cluster may require. You can also install operators after creating 
the cluster. This step is optional.

10. Click Next.

The Host Discovery screen appears. You must add at least three control plane hosts. Hosts are added by booting into 
a Discovery ISO that can be generated using the Assisted Installer. This ISO runs Red Hat Enterprise Linux Core OS 
(RHCOS). 

Figure 3-9: Host Discovery screen
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11. Click the Add hosts button.

The Add hosts screen appears. 

Figure 3-10: Add hosts screen (right)

12. Provide the following information:

- Provisioning typer: Select Minimal 
image file - Download an ISO that 
fetches content on host. This option 
provision hosts using virtual media to 
download a smaller image that will 
fetch the data needed to boot. The 
nodes must have virtual media 
capability. AMD recommends this for 
both x86_64 and arm64 processor 
architectures.

- SSH public key: Add a SSH public key to 
enable connecting to these node as the 
root user. Being able to login to the 
cluster nodes can provide you with 
debugging information during 
installation.

13. Click Generate Discovery ISO.

14. Use the Discovery ISO file or URL as virtual media, then boot into RHCOS from every host that is part of your cluster. 

Each node will appear in the Red Hat Assisted Installer Console as it boots into the RHCOS. It may take 1-2 minutes 
for the console to discover a host post-boot.

15. Wait until all nodes appear in the Assisted Installer Console and show a Status of Ready. 

Figure 3-11: Host inventory
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16. For each host:

- Click the host MAC address.

- Enter a name for the host.

- Use the Role pull-down menu to assign a role to the selected node (Control Plane Node or Worker Node).

- Use the following Networking settings:

> Networking management type: Select Cluster-managed Networking.

> Stack type: Select IPv4.

- Use the following Advanced Networking Settings:

> Networking type: Select Software-Defined Networking (SDN).

> Check the Automatically assign Cluster API IP and Ingress IP check box. 

Figure 3-12: All nodes ready 

Figure 3-13: Assigned node roles

17. Select Install Cluster.
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18. During installation, obtain the following 
from the Installation progress screen: 

Figure 3-14: Obtaining cluster information (right)

- Cluster login credentials.

- Kubeconfig file. Download and save this 
file; you will need it on a client machine 
in order to connect the OpenShift CLI 
Client to the installed cluster. 

19. Wait for the cluster to finish installing.

One or more host(s) may encounter an issue 
where the host Status reads Pending User 
Action. If this happens, you can check the 
message and download the installation logs 
to understand what caused the problem 
and take the necessary action for the 
installation to resume. 

Figure 3-15: Troubleshooting (right)

20. Add the cluster web console URL DNS in order to access the console.

- For a Linux host, this will be in /etc/hosts; execute the command nano /etc/hosts to open this file for 
editing, then paste the host URLs with their associated IP addresses, and then save your changes.

- For a Windows host, open Notepad or another text editor as the Administrator, then add the URL to 
C:\Windows\System32\drivers\etc\hosts.

Your OpenShift setup is complete. You can now build and deploy applications on the installed cluster.

3.2 Installing Red Hat OpenShift AI
Red Hat OpenShift AI enables deploying LLMs using a single model serving platform based on the KServe component. 
This platform provides a robust and efficient hosting platform that streamlines the deployment, monitoring, scaling, 
and maintenance of LLMs. The single model serving platform consists of the following components: 

• KServe: Kubernetes CRD that orchestrates model serving for all types of models. It includes model-serving runtimes 
that implement the loading of given types of model servers. KServe handles the life cycle of the deployment object, 
storage access, and networking setup.

• Red Hat OpenShift Serverless: Cloud-native development model that allows for serverless model deployments and 
is based on the open-source Knative* project.

• The Red Hat OpenShift Service Mesh: Networking layer that manages traffic flows and enforces access policies. It is 
based on the open-source Istio* project. 

https://knative.dev/docs/
https://istio.io/
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You may choose either an automatic or manual installation, as follows:

• Automated: If neither the ServiceMeshControlPlane nor KNativeServing resource is not already created on the 
OpenShift cluster, then configure the Red Hat OpenShift Data Science Operator to install KServe and its 
dependencies. See Configuring automated installation of KServe*.

• Manual: If either the ServiceMeshControlPlane or KNativeServing resource is already created on the OpenShift 
cluster, then Red Hat OpenShift Data Science Operator cannot be configured to install KServe and its dependencies 
and you must proceed with manual installation.

3.3 Installing KServe Dependencies
You must create Red Hat OpenShift Service Mesh and Knative Serving instances and then configure secure gateways for 
Knative Serving before installing KServe. 

3.3.1 Step 1: Create an OpenShift Service Mesh Instance – Istio
The following prerequisites must be met in order create a Red Hat OpenShift Service Mesh instance:

• You must have cluster administrator privileges for the OpenShift Container Platform cluster.

• The cluster must have a node with 4 CPUs and 16 GB memory. 

• You must have already downloaded and installed OpenShift Command Line Interface (CLI). See Installing the 
OpenShift CLI*.

• You must have installed the Red Hat OpenShift Service Mesh Operator* and dependent Operators.

To create an OpenShift Service Mesh instance - Istio:

1. Open a terminal window, then execute the following command to login to your OpenShift cluster CLI as a cluster 
administrator: 

$ oc login <openshift_cluster_url> -u <admin_username> -p <password> 

2. Create the required namespace for Red Hat OpenShift Service Mesh. 

$ oc create ns istio-system 

The output appears as follows: 

namespace/istio-system created 

3. Define a ServiceMeshControlPlane object in a YAML file named smcp.yaml with the following contents: 

apiVersion: maistra.io/v2 
kind: ServiceMeshControlPlane 
metadata: 
  name: minimal 
  namespace: istio-system 
spec: 
  tracing: 
    type: None 

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.5/html/working_on_data_science_projects/serving-large-language-models_serving-large-language-models#configuring-automated-installation-of-kserve_serving-large-language-models
https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.14/service_mesh/v2x/installing-ossm.html#ossm-install-ossm-operator_installing-ossm
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  addons: 
    grafana: 
      enabled: false 
    kiali: 
      name: kiali 
      enabled: false 
    prometheus: 
      enabled: false 
    jaeger: 
      name: jaeger 
  security: 
    dataPlane: 
      mtls: true 
    identity: 
      type: ThirdParty 
  techPreview: 
    meshConfig: 
      defaultConfig: 
        terminationDrainDuration: 35s 
  gateways: 
    ingress: 
      service: 
        metadata: 
          labels: 
            knative: ingressgateway 
  proxy: 
    networking: 
      trafficControl: 
        inbound: 
          excludedPorts: 
            - 8444 
            - 8022 

4. Create the service mesh control plane.

$ oc apply -f smcp.yaml 

5. In the OpenShift CLI, execute the following command to list all running pods in the istio-system project. This is 
the project where the OpenShift Service Mesh is installed: 

 $ oc get pods -n istio-system 

6. Confirm that there are running pods for the service mesh control plane, ingress gateway, and egress gateway. These 
pods have the following naming patterns: 

NAME                                     READY     STATUS     RESTARTS     AGE 
istio-egressgateway-7c46668687-fzsqj       1/1    Running            0     22h 
istio-ingressgateway-77f94d8f85-fhsp9      1/1    Running            0     22h 
istiod-data-science-smcp-cc8cfd9b8-2rkg4   1/1    Running            0     22h
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3.3.2 Step 2: Create a Knative Serving Instance
The following prerequisites must be met in order to install Knative Serving and then create an instance. 

• You have cluster administrator privileges for the OpenShift Container Platform cluster. 

• The cluster has a node with 4 CPUs and 16 GB memory. 

• You have downloaded and installed the OpenShift CLI. See Installing the OpenShift CLI*. 

• You have created a Red Hat OpenShift Service Mesh instance. 

• You have installed the Red Hat OpenShift Serverless Operator. 

To create a Knative Serving Instance: 

1. Open a terminal window, then execute the following command to login to your OpenShift cluster CLI as a cluster 
administrator: 

$ oc login <openshift_cluster_url> -u <admin_username> -p <password> 

2. Verify that the required project (that is, namespace) for Knative Serving already exists. 

$ oc get ns knative-serving 

The output appears as follows: 

NAME                   STATUS     AGE 
knative-serving        Active   4d20h 

3. Create the knative-serving project if it does not already exist:

$ oc create ns knative-serving 

The output appears as follows: 

namespace/knative-serving created 

4. Define a ServiceMeshMember object in a YAML file called default-smm.yaml with the following contents: 

apiVersion: maistra.io/v1 
kind: ServiceMeshMember 
metadata: 
  name: default 
  namespace: knative-serving 
spec: 
  controlPlaneRef: 
    namespace: istio-system 
    name: minimal 

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
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5. Create the ServiceMeshMember object in the istio-system namespace. 

$ oc apply -f default-smm.yaml 

The output appears as follows: 

servicemeshmember.maistra.io/default created 
6. Define a KnativeServing object in a YAML file called knativeserving-istio.yaml with the following contents: 

apiVersion: operator.knative.dev/v1beta1 
kind: KnativeServing 
metadata: 
  name: knative-serving 
  namespace: knative-serving 
  annotations: 
    serverless.openshift.io/default-enable-http2: "true" 
spec: 
  deployments: 
    - annotations: 
        sidecar.istio.io/inject: "true" -----(1) 
        sidecar.istio.io/rewriteAppHTTPProbers: "true ----(2) 
      name: activator 
    - annotations: 
        sidecar.istio.io/inject: "true" 
        sidecar.istio.io/rewriteAppHTTPProbers: "true" 
      name: autoscaler 
  ingress: 
    istio: 
      enabled: true 
  config: 
    features: 
      kubernetes.podspec-affinity: enabled 
      kubernetes.podspec-nodeselector: enabled 
      kubernetes.podspec-tolerations: enabled 

The preceding file defines a Custom Resource (CR) for a KnativeServing object. The CR also adds the following 
actions to each of the activator and autoscaler pods: 

-  Injects an Isitio sidecar to the pod. This makes the pod part of the service mesh. 

- Enables the Istio sidecar to rewrite the HTTP liveness and readiness probes for the pod. 

7. Create the KnativeServing object in the specified knative-serving namespace. 

$ oc apply -f knativeserving-istio.yaml 

The output appears as follows: 

knativeserving.operator.knative.dev/knative-serving created 

8. Review the default ServiceMeshMemberRoll object in the istio-system namespace. 

$ oc describe smmr default -n istio-system 
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9. In the description of the ServiceMeshMemberRoll object, locate the Status.Members field and confirm that it 
includes the knative-serving namespace.

10. Verify creation of the Knative Serving instance by executing the following command in the OpenShift CLI to list all 
running pods in the knative-serving project. This is the project in which you created the Knative Serving 
instance.

$ oc get pods -n knative-serving 

Confirm that there are numerous running pods in the knative-serving project, including activator, 
autoscaler, controller, and domainmapping pods, as well as pods for the Knative Istio controller, which 
controls the integration of OpenShift Serverless and OpenShift Service Mesh. The output should appear as follows:

NAME                                    READY     STATUS     RESTARTS     AGE 
activator-7586f6f744-nvdlb                2/2    Running            0     22h
activator-7586f6f744-sd77w                2/2    Running            0     22h
autoscaler-764fdf5d45-pv298               2/2    Running            0     22h
autoscaler-764fdf5d45-x7dc6               2/2    Running            0     22h
autoscaler-hpa-7c7c4cd96d-2lkzg           1/1    Running            0     22h
autoscaler-hpa-7c7c4cd96d-gks9j           1/1    Running            0     22h
controller-5fdfc9567c-6cj9d               1/1    Running            0     22h
controller-5fdfc9567c-bf5x7               1/1    Running            0     22h
domain-mapping-56cc85968-2hjvp            1/1    Running            0     22h
domain-mapping-56cc85968-lg6mw            1/1    Running            0     22h
domainmapping-webhook-769b88695c-gp2hk    1/1    Running            0     22h
domainmapping-webhook-769b88695c-npn8g    1/1    Running            0     22h
net-istio-controller-7dfc6f668c-jb4xk     1/1    Running            0     22h
net-istio-controller-7dfc6f668c-jxs5p     1/1    Running            0     22h
net-istio-webhook-66d8f75d6f-bgd5r        1/1    Running            0     22h
net-istio-webhook-66d8f75d6f-hld75        1/1    Running            0     22h
webhook-7d49878bc4-8jxbr                  1/1    Running            0     22h
webhook-7d49878bc4-s4xx4                  1/1    Running            0     22h

3.3.3 Step 3: Create Secure Gateways for Knative Serving
You must create Secure gateways for Knative Serving instance in order to defend traffic between the Knative Serving 
instance and the service mesh. This procedure has the following prerequisites:

• You must have cluster administrator privileges for you OpenShift Container Platform cluster. 

• You must have downloaded and installed the OpenShift CLI. See Installing the OpenShift CLI*. 

• You must have created a Red Hat OpenShift Service Mesh instance. 

• You must have created a Knative Serving instance. 

• If you intend to generate a wildcard certificate and key, then you must download and install OpenSSL. 

To create a secure gateway:

1. Open a terminal window, then execute the following command to login to your OpenShift cluster CLI as a cluster 
administrator: 

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>  

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
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2. Set environment variables to define base directories for generating a wildcard certificate and key for the gateways. 

$ export BASE_DIR=/tmp/kserve 
$ export BASE_CERT_DIR=${BASE_DIR}/certs 

3. Set an environment variable to define the common name used by the OpenShift cluster ingress controller . 

$ export COMMON_NAME=$(oc get ingresses.config.openshift.io cluster -o 
jsonpath='{.spec.domain}' | awk -F'.' '{print $(NF-1)"."$NF}') 

4. Set an environment variable to define the domain name used by the OpenShift cluster ingress controller. 

$ export DOMAIN_NAME=$(oc get ingresses.config.openshift.io cluster -o 
jsonpath='{.spec.domain}') 

5. Create the required base directories for the certificate generation, based on the environment variables that were 
previously set. 

$ mkdir ${BASE_DIR} 
$ mkdir ${BASE_CERT_DIR} 

6. Create the OpenSSL configuration for generating a wildcard certificate. 

zcat <<EOF> ${BASE_DIR}/openssl-san.config 
[ req ] 
distinguished_name = req 
[ san ] 
subjectAltName = DNS:*.${DOMAIN_NAME} 
EOF 

7. Generate a root certificate. 

$ openssl req -x509 -sha256 -nodes -days 3650 -newkey rsa:2048 \ 
-subj "/O=Example Inc./CN=${COMMON_NAME}" \ 
-keyout $BASE_DIR/root.key \ 
-out $BASE_DIR/root.crt 

8. Generate a wildcard certificate signed by the root certificate. 

$ openssl req -x509 -newkey rsa:2048 \ 
-sha256 -days 3560 -nodes \ 
-subj "/CN=${COMMON_NAME}/O=Example Inc." \ 
-extensions san -config ${BASE_DIR}/openssl-san.config \ 
-CA $BASE_DIR/root.crt \ 
-CAkey $BASE_DIR/root.key \ 
-keyout $BASE_DIR/wildcard.key  \ 
-out $BASE_DIR/wildcard.crt 
 
$ openssl x509 -in ${BASE_DIR}/wildcard.crt -text 
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9. Verify the wildcard certificate. 

$ openssl verify -CAfile ${BASE_DIR}/root.crt 
 
{BASE_DIR}/wildcard.crt 

10. Export the wildcard key and certificate that were created by the script to new environment variables. 

$ export TARGET_CUSTOM_CERT=${BASE_CERT_DIR}/wildcard.crt 
$ export TARGET_CUSTOM_KEY=${BASE_CERT_DIR}/wildcard.key 

11. If desired, you may choose to export the wildcard key and certificate to new environment variables by executing the 
following commands: 

$ export TARGET_CUSTOM_CERT=<path_to_certificate> 
$ export TARGET_CUSTOM_KEY=<path_to_key> 

12. You must specify the domain name used by the OpenShift cluster ingress controller in the certificate that was 
provided. Execute the following command to check this value: 

$ oc get ingresses.config.openshift.io cluster -o jsonpath='{.spec.domain}' 

13. Create a TLS secret in the istio-system namespace using the environment variables that were set for the wildcard 
certificate and key. 

$ oc create secret tls wildcard-certs --cert=${TARGET_CUSTOM_CERT} --
key=${TARGET_CUSTOM_KEY} -n istio-system 

14. Create a gateways.yaml YAML file with the following contents: 

apiVersion: v1 
kind: Service -----(1) 
metadata: 
  labels: 
    experimental.istio.io/disable-gateway-port-translation: "true" 
  name: knative-local-gateway 
  namespace: istio-system 
spec: 
  ports: 
    - name: http2 
      port: 80 
      protocol: TCP 
      targetPort: 8081 
  selector: 
    knative: ingressgateway 
  type: ClusterIP 
--- 
apiVersion: networking.istio.io/v1beta1 
kind: Gateway 
metadata: 
  name: knative-ingress-gateway -------(2) 
  namespace: knative-serving 
spec: 
  selector: 
    knative: ingressgateway 
  servers: 
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    - hosts: 
        - '*' 
      port: 
        name: https 
        number: 443 
        protocol: HTTPS 
      tls: 
        credentialName: wildcard-certs 
        mode: SIMPLE 
--- 
apiVersion: networking.istio.io/v1beta1 
kind: Gateway 
metadata: 
name: knative-local-gateway -------(3) 
namespace: knative-serving 
spec: 
selector: 
   knative: ingressgateway 
servers: 
   - port: 
       number: 8081 
       name: https 
       protocol: HTTPS 
     tls: 
       mode: ISTIO_MUTUAL 
     hosts: 
       - "*" 

This YAML file:

- Defines a service in the istio-system namespace for the Knative local gateway. 

- Defines an ingress gateway in the knative-serving namespace. The gateway uses the TLS secret you created 
earlier in this procedure. The ingress gateway handles external traffic to Knative. 

- Defines a local gateway for Knative in the knative-serving namespace. 

15.  Apply the gateways.yaml file to create the defined resources. 

$ oc apply -f gateways.yaml 

The output appears as follows: 

service/knative-local-gateway created 
gateway.networking.istio.io/knative-ingress-gateway created 
gateway.networking.istio.io/knative-local-gateway created 
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16. Review the gateways that were created, being sure to verify that the local and ingress gateways were created in the 
knative-serving namespace.

$ oc get gateway --all-namespaces 

The output appears as follows: 

NAMESPACE         NAME                                    AGE 
knative-serving   knative-ingress-gateway                 69s 
knative-serving   knative-local-gateway                    2m 

3.3.4 Step 4: Install KServe
You must install the Red Hat OpenShift Data Science Operator in order to complete manual KServe installation. You can 
configure the Operator to install KServe. This requires meeting the following prerequisites:

• You must have cluster administrator privileges for OpenShift Container Platform cluster.

• The cluster must have a node with 4 CPUs and 16 GB memory.

• You must have downloaded and installed the OpenShift CLI. See Installing the OpenShift CLI*.

• You must have created a Red Hat OpenShift Service Mesh instance, a Knative Serving instance, and secure gateways 
for Knative Serving. 

• You must have installed the Red Hat OpenShift Data Science Operator and created a DataScienceCluster object.

To install KServe:

1. Login to the OpenShift web console as a cluster administrator.

2. In the web console, select Operators>Installed Operators, and then click Red Hat OpenShift Data Science Operator.

3. Configure the OpenShift Service Mesh component as follows:

a. Access the DSC Initialization tab.

b. Select the default-dsci object.

c. Access the YAML tab.

d. In the spec section, add and configure the serviceMesh component as shown: 

spec: 
serviceMesh: 
   managementState: Unmanaged 

4. Click Save.

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
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5. Configure the KServe and OpenShift Serverless components as follows: 

a. In the web console, select Operators>Installed Operators, and then select Red Hat OpenShift Data Science 
Operator. 

b. Access the Data Science Cluster tab. 

c. Select the default-dsc DSC object. 

d. Select the YAML tab. 

e. In the spec.components section, configure the kserve component as shown:

spec: 
components: 
   kserve: 
     managementState: Managed 

6. Within the kserve component, add and configure the serving component as shown: 

spec: 
components: 
   kserve: 
     managementState: Managed 
     serving: 
       managementState: Unmanaged 

7. Click Save. 
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4.1 Obtaining a Llama2 Model
To get a LLama2 model: 

1. Create a Hugging Face* account.

2. Request access to gated models.

3. At Hugging Face, navigate to meta/LLama2, then request access to LLama2 models.

4. Once approval is granted, create a Hugging Face access token*. You will use this token to download models and 
deployments. 

4.2 CPU Optimization When Running Llama2 Model as a Single 
Docker Container
You can optimize processor performance by pinning vCPUs to the Docker container that runs the TGI Inference server. 
CPU pinning (or processor affinity) attaches specified cores with core_ids to the specific processor (which is a container 
in this example). This also reduces latency by avoiding cross-socket communication.

The cpuset-cpus argument sets the CPU pinning for a container. For example:

$ docker run --cpus 48 --cpuset-cpus “0-47” --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token 
-p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id 
$model

The output will appear as follows: 

Figure 4-1: Container CPU pinning

Chapter
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https://huggingface.co/
https://huggingface.co/settings/tokens
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4.3 Deploying a Llama2-7B Model with TGI on a Single Docker 
Container
TGI can serve a LLM as a Docker container. Here is a simple Llama-2-7b model deployment example:

1. Set the following required parameters: 

model=meta-llama/Llama-2-7b-chat-hf 
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights 
every 
token=<your cli READ token> 

2. Execute the following command to deploy a TGI inference for Llama-2-7b-chat-hf:

$ docker run –cpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v 
$volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model 

This example deploys and serves the LLM at port 8080. The sample LLM endpoint is therefore
http//:localhost:8080/generate_stream.
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You may optionally enable multiple optimizations to boost OpenShift throughput while lower latency, such as:

• CPU Manager Policy: See “Enabling the CPU-Manager Policy” on page 31.

• Topology Manager: See “Setting the Topology Manager Policy” on page 34.

• Feature gate: Useful for tech previews. This method is beyond the scope of this User Guide.

5.1 Enabling the CPU-Manager Policy
CPU Manager manages groups of CPUs and constrains workloads to specific CPUs. CPU manager policies control how 
CPU resources are allocated to containers within pods and offer a way to fine-tune performance and isolate resources for 
a specific workload.

The static policy allocates CPU resources across different types of pods as follows: 

• Guaranteed pods receive the highest priority for CPU resources. They specify an integer number of CPU requests and 
have exclusive access to those CPUs for the entire duration of their existence. This ensures consistent performance 
for critical workloads. 

• Best-Effort pods receive CPU resources only when no Guaranteed or Burstable pods are using them. They have no 
guaranteed CPU allocation and experience variable performance depending on available resources. Use them for 
non-critical workloads that can tolerate fluctuations. 

• Burstable pods fall between Guaranteed and Best-Effort pods. They request a specific amount of CPU and have a 
burst limit defining additional CPU they can use for short periods. Burstable pods that exceed their base request 
compete with Best-Effort pods for the remaining resources, which may impact their performance. 

The CPU manager periodically writes resource updates through the CRI in order to reconcile in-memory CPU assignments 
with cgroupfs. The Kubelet --cpu-manager-reconcile-period configuration value sets the reconcile frequency. 

To enable this policy: 

1. If desired, you may label a node.

$ oc label node perf-node.example.com cpumanager=true 

2. Edit the MachineConfigpool of the nodes where the CPU Manager should be enabled.

$ oc edit machineconfigpool worker 

Chapter
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3. Add a label to the worker machine configuration pool: 

metadata: 
  creationTimestamp: 2020-xx-xxx 
  generation: 3 
  labels: 
    custom-kubelet: cpumanager-enabled 

4. Create KubeletConfig, cpumanager-kubeletconfig.yaml with the following contents:

apiVersion: machineconfiguration.openshift.io/v1 
kind: KubeletConfig 
metadata: 
  name: cpumanager-enabled 
spec: 
  machineConfigPoolSelector: 
    matchLabels: 
      custom-kubelet: cpumanager-enabled 
  kubeletConfig: 
     cpuManagerPolicy: static  ------(1) 
     cpuManagerReconcilePeriod: 5s -------(2) 

In this YAML file:

- cpuManagerPolicy specifies the CPU Manager policy to use, such as static.

- cpuManagerReconcilePeriod sets the reconciliation frequency. The default is 5s. This value is optional.

5. Create a dynamic kubelet config:

$ oc create -f cpumanager-kubeletconfig.yaml 

This adds the CPU Manager feature to the kubelet config. If needed, the Machine Config Operator (MCO) reboots the 
node. A reboot is not needed to enable CPU Manager. 

6. Check for the merged kubelet config: 

$ oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep 
ownerReference –A7 

The output appears as follows:

     "ownerReferences": [ 
            { 
                "apiVersion": "machineconfiguration.openshift.io/v1", 
                "kind": "KubeletConfig", 
                "name": "cpumanager-enabled", 
                "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878" 
            } 
        ] 
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7. Check the worker for the updated kubelet.conf: 

$ oc debug node/<node-name> 
$ sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager 

The output appears as follows: 

cpuManagerPolicy: static         
cpuManagerReconcilePeriod: 5s 

8. Create a pod and deploy it on the OpenShift cluster using guaranteed resources after enabling the cpuManager 
policy.

9. Describe the pod by executing the following command for verification.

$ oc describe pod <pod-name> 

The output appears as follows: 

Name:               cpumanager-6cqz7 
Namespace:          default 
Priority:           0 
PriorityClassName:  <none> 
Node:  perf-node.example.com/xxx.xx.xx.xxx 
... 
Limits: 
      cpu:     1 
      memory:  1G 
    Requests: 
      cpu:        1 
      memory:     1G 
... 
QoS Class:       Guaranteed 
Node-Selectors:  cpumanager=true 

10. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process: 

$ systemd-cgls 

The output appears as follows: 

├─init.scope 
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17 
└─kubepods.slice 
  ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice 
  │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope 
  │ └─32706 /pause 
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11. Place pods of Quality of Service (QoS) tier Guaranteed within the kubepods.slice. Place pods of other QoS tiers in 
child cgroups of kubepods: 

$ cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope 
$ for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done 

The output appears as follows: 

cpuset.cpus 1 
tasks 32706 

12. Check the allowed CPU list for the task: 

$ grep ^Cpus_allowed_list /proc/32706/status 

The output appears as follows: 

$ Cpus_allowed_list: 1 

5.2 Setting the Topology Manager Policy
The Topology Manager is a crucial Kubelet component that provides an interface for components (known as Hint 
Providers) to send and receive topology information. It ensures that resource allocation decisions consider the underlying 
hardware topology, such as NUMA nodes. For example, it collects hints from the CPU Manager, Device Manager, and 
other Hint Providers to align pod resources (e.g., CPU, SR-IOV VFs, and other device resources) for QoS tiers on the same 
Non-Uniform Memory Access (NUMA) node. Topology Manager is useful for workloads that use hardware accelerators to 
support latency-critical execution and high-throughput parallel computation. The following prerequisites must be met:

 • Ensure that the CPU Manager is enabled (cpumanager-enabled).

• Set the CPU Manager policy to static.

To set the Topology Manager police: 

1.  Configure the Topology Manager policy in the cpumanager-enabled CR.

apiVersion: machineconfiguration.openshift.io/v1 
kind: KubeletConfig 
metadata: 
  name: cpumanager-enabled 
spec: 
  machineConfigPoolSelector: 
    matchLabels: 
      custom-kubelet: cpumanager-enabled 
  kubeletConfig: 
     cpuManagerPolicy: static  
     cpuManagerReconcilePeriod: 5s 
     topologyManagerPolicy: single-numa-node -----(1) 
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2. Specify the selected Topology Manager policy (single-numa-node in this example). Acceptable values are: 
default, best-effort, restricted, or single-numa-node.

3. Check if the Topology Manager policy is applied:

$ oc get nodes 

4. After getting all the nodes, get inside any worker node:

$ oc debug node/aifinal-worker3 

5. Print the kubelet.conf file and ensure the changes are applied:

$ cat /etc/kubernetes/kubelet.conf

The output will appear as follows: 

Figure 5-1: kublet.conf file with changes applied
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Red Hat OpenShift AI includes a model-serving stack that is based on the Compositional AI Toolkit (Caikit), Text 
Generation Inference Service (TGIS), and KServe components for serving Large Language Models. The stack helps to 
deploy, monitor, scale, and maintain LLMs.

6.1 User Interface Deployment
Deploying Llama2 via the user interface requires meeting the following prerequisites:

• You must haver cluster administrator privileges for the OCP cluster. 

• The cluster has a node with 4 CPUs and 16 GB memory. 

• You have downloaded and installed the OpenShift CLI. See Installing the OpenShift CLI*. 

• You have installed the Red Hat OpenShift Service Mesh Operator* and dependent Operators. 

6.2 Deploying Llama2 on Red Hat OpenShift AI

6.2.1 Step 1: Setup MinIO
Setup MinIO (access the dashboard) and create a bucket, Keep the following details: access_key, secret_key, 
api_endpoint, and bucket_name).

1. Execute the following commands to download and install the latest stable MinIO DEB: 

$ wgethttps://dl.min.io/server/minio/release/linuxamd64/archive/
minio_20240118225128.0.0_amd64.deb -O minio.deb  
  
$ sudodpkg -iminio.deb 

2. Execute the following command from the system terminal or shell to start a local MinIO instance using the ~/minio 
folder. You can replace this path with another folder path on the local machine: 

$ mkdir ~/minio 
$ minio server ~/minio --console-address :9001

The output appears as follows:

API: http://192.0.2.10:9000  http:..127.0.01.:9000
RootUser: minioadmin

Chapter
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RootPass: minioadmin

Console: http://192.0.2.10:9001  http:..127.0.01.:9001
RootUser: minioadmin
RootPass: minioadmin

Command-line: https://min.io/docs/minio/linux/reference/minio-mc
   $ mc alias set myminio http://192.0.2.10:9000 minioadmin minioadmin

Documentation: https://min.io/docs/minio/linux/index.html

WARNING: Detected default credentials 'minioadmin:minioadmin', w

3. Connect the browser to the MinIO server. 

- Open a web browser and navigate to http://127.0.0.1:9001 to access the MinIO Console.

- Login to the Console with the root username and password displayed in the output. The default is 
minioadmin:minioadmin. 

6.2.2 Step 2: Convert the Model
Converting the desired model into caikit format and upload the model into the bucket created in MinIO.

1. Create a virtual environment with Python 3.9 and install caikit-nlp: 

$ python3.9 -m venvvenv
$ Source ./venv/bin/activate   
$ pip install caikit-nlp 

2. If the model has not already been downloaded, then setting the environment variable ALLOW_DOWNLOADS=1 will 
allow direct downloads of models from the Hugging Face Hub: 

$ export ALLOW_DOWNLOADS=1 

3. Execute the following python snippet. 

import caikit_nlp 
model_name="MODELNAME" # modify as required 
converted_model_path=f"{model_name}-caikit" 
caikit_nlp.text_generation.TextGeneration.bootstrap(model_name).save(converted_model_path) 
print(f"Model saved to {converted_model_path}") 

Note: If the model was already downloaded locally, then you may simply change model_name to point to the path to the 
model. 
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6.2.3 Step 3: Upload the Model
Execute the following python script to upload the model into Model Bucket:

• Set the MinIO access key, secret key, endpoint, and bucket name. 

• Set the local folder path and minio_object_prefix.

import os 
import boto3 
from botocore.exceptions import NoCredentialsError 
# Set your MinIO credentials and endpoint# 
minio_access_key = "minioadmin" 
minio_secret_key = "minioadmin" 
minio_endpoint = "http://10.216.173.149:9000"  # Update with your MinIO server's endpoint 
minio_bucket_name = "data" 
# Set the local folder path and object prefix (the prefix under which the folder contents 
will be stored in MinIO)# 
local_folder_path = "/mnt/models/meta-llama/Llama-2-13b-chat-hf-caikit" 
minio_object_prefix = "Llama-2-13b-chat-hf-caikit"   
# Update with your desired object prefix 
 
def upload_folder_to_minio(local_path, bucket_name, object_prefix, access_key, secret_key, 
endpoint_url): 
    # Create an S3 client 
    s3 = boto3.client("s3", aws_access_key_id=access_key, 
aws_secret_access_key=secret_key, endpoint_url=endpoint_url) 
 
    for root, dirs, files in os.walk(local_path): 
        for filename in files: 
local_file_path = os.path.join(root, filename) 
relative_path = os.path.relpath(local_file_path, local_path) 
minio_object_key = os.path.join(object_prefix, relative_path) 
 
            try: 
                # Upload each file 
                s3.upload_file(local_file_path, bucket_name, minio_object_key) 
print(f"File '{local_file_path}' uploaded successfully to '{bucket_name}/
{minio_object_key}'") 
            except NoCredentialsError: 
print("Credentials not available or incorrect.") 
 
 
# Upload the folder to MinIO 
upload_folder_to_minio(local_folder_path, minio_bucket_name, minio_object_prefix, 
minio_access_key, minio_secret_key, minio_endpoint) 

6.2.4 Serve the Model
1. In the left menu, select Data Science Projects.

2. Click the project name where you want to deploy a model. 

3. Execute one of the following action in the in the Models and Model Servers sections: 

- If you are using a single model serving platform tile, then click Deploy model on the tile. 

- Otherwise, click the Deploy model button. 

The Deploy model dialog opens. 



RedHat® OpenShift® AI In-a-Box Solutions

40 58669 – 1.0

4. Configure the following model deployment properties: 

- Model name: Enter a unique name for the model being deployed. 

- Serving runtime: Select Caikit TGIS ServingRuntime for KServe. 

- Model framework: Select caikit.

- Number of model replicas to deploy: Specify a value. 

- Model server size: Select a value. 

5. Specify the model location by performing either of the following procedures:

To use an existing data connection 

a. Select Existing data connection. 

b. In the Name list, select a previously-defined data connection. 

c. In the Folder path field, enter the folder path that contains the model in the specified data source. 

To use a new data connection 

a. Name: Enter a unique name for the data connection. 

b. Access key: Enter the access key ID for the S3-compatible object storage provider. 

c. Secret key: Enter the secret access key for the specified S3-compatible object storage account. 

d. Endpoint: Enter the endpoint of the S3-compatible object storage bucket. 

e. Region: Enter the default region of the S3-compatible object storage account. 

f. Bucket: Enter the name of the S3-compatible object storage bucket. 

g. Folder path: Enter the folder path in the S3-compatible object storage that contains the data file. 

h. Click Deploy. 

You can now access the LLM endpoint from the dashboard. The sample endpoint is https://llama2-7b-48-
predictor-new-llama2.apps.ai-final.amd.com:443/api/v1/task/server-streaming-text-
generation. 

$ https://<deploymentname><namespace><domainname>:443/api/v1/task/server-streaming-text-
generation. 
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6.3 TGI Inference Server Deployment Without Auto-Scaling 
(YAML Based Deployment)
Deploying Llama2-7b on an OpenShift cluster is done using a Deployment YAML file using the Text-Generation Image, 
and then adding the required configurations. Apply the file to the cluster, then expose the service is for the deployment, 
and then create the route. The endpoint is then used to send the request using the curl command.

6.3.1 Rebuilding the TGI Docker Image for Deploying Llama2 7B Model on OCP
Use port 8080 instead of the default OpenShift cluster binding port (80) that is exposed for TGI Inference server. 

1. Clone the TGI github repository*.

2. Change the default port number in the TGI dockerfile to 8080.

3. Build the Docker Image.

$ docker build -t <my_image>:latest . 

4. Tag the Image:

$ docker tag my_image:latest my_registry/my_image:latest 

5. Push the image to the repository:

$ docker push my_registry/my_image:latest 

6.3.2 Deployment

1. Create a YAML file called deploymentgi.yaml. 

- Add the TGI model Serving Image name to the YAML file. 

- Provide the model-id and HUGGINGFACE_TOKEN variables. 

- Add all required configurations.

##deploymentgi.yaml## 
 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: tgi-inference-deployment 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: tgi-inference 
  template: 
    metadata: 
      labels: 
        app: tgi-inference 
    spec: 
      containers: 

https://github.com/huggingface/text-generation-inference.git
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        - name: tgi-inference-container 
          image: akhil2507/tgi_images:v1 
          ports: 
            - containerPort: 8080 
          args: 
            - "--model-id" 
            - "meta-llama/Llama-2-7b-chat-hf"  # Replace with your actual model ID 
            - "--dtype" 
            - "bfloat16" 
          env: 
            - name: HUGGING_FACE_HUB_TOKEN 
              value: <HUGGING FACE TOKEN>  
# Replace with your actual Hugging Face token 
          resources: 
            requests: 
              memory: "48Gi"  # Adjust as needed 
              cpu: 48     # Adjust as needed 
            limits: 
              memory: "48Gi"   # Adjust as needed 
              cpu: 48    # Adjust as needed 
          volumeMounts:                    # Add this section 
            - name: data-volume 
              mountPath: /data 
      volumes:                            # Add this section 
        - name: data-volume 
          emptyDir: {} 

2. Apply deploymentgi.yaml.

$ oc apply -f deploymentgi.yaml 

6.3.2.1 Expose Service

Retrieving the endpoint requires exposing the service and creating routes. To expose the service:

1. Retrieve the deployment name. 

$ oc get deployments 

2. Execute the following command with the deployment name to expose the service:

$ oc expose deployment <deployment-name> 

6.3.2.2 Create Routes

Create routes after exposing the service.

1. Access the OpenShift platform user interface, then navigate to the Administration dashboard.

2. In the left-hand menu, select Networking > Routes > Create routes.

3. Select Configure via form view.

4. Add the name for the route related to the deployment.

5. Select the Service and Target port.
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6. Click Create. 

6.3.3 LLM API Endpoint 
You can now access the endpoint in the dashboard in the location column corresponding to the route name and can also 
send requests to the endpoint. The sample endpoint is http://amd-testing-tgi-llama2-amd-demo.apps.ai-
final.amd.com/generate_stream. 

$ http://<routename><namespace><domainname>/generate_stream 

6.4 TGI Inference Server Deployment with Auto-Scaling (YAML 
Based Deployment)
Deploy the inference service by creating a YAML file and injecting the Istio sidecars. Taking advantage of all of Istio 
features requires the pods in the mesh to run an Istio sidecar proxy. Istio sidecars are injected to the Inference YAML in 
the annotations section, which in turn adds the proxy configuration. 

##inferencetgi.yaml## 
 
apiVersion: serving.kserve.io/v1beta1 
kind: InferenceService 
metadata: 
  name: tgi-inference-service-web 
  annotations: 
    openshift.io/display-name: Llama-2-7b-chat-hf-bf16 
    serving.knative.openshift.io/enablePassthrough: 'true' 
    sidecar.istio.io/inject: 'true' 
    sidecar.istio.io/rewriteAppHTTPProbers: 'true' 
spec: 
  predictor: 
    containers: 
      - name: predictor-container 
        image: akhil2507/tgi_images:v1 
        env: 
          - name: "HUGGING_FACE_HUB_TOKEN" 
            value: <HUGGINGFACE TOKEN> 
          - name: 'RUST_BACKTRACE' 
            value: '1' 
        args: 
          - "--model-id" 
          - "meta-llama/Llama-2-7b-chat-hf" 
        ports: 
          - containerPort: 8080 
        resources: 
          requests: 
            memory: "48Gi" 
            cpu: "48000m" 
          limits: 
            memory: "48Gi" 
            cpu: "48000m" 
        volumeMounts:   
          - name: data-volume 
            mountPath: /data 
    volumes:           
      - name: data-volume 
        emptyDir: {} 

The YAML file (Inferencetgi.yaml) file can then be applied using the below command:
$ oc apply -f inferencetgi.yaml  

http://amd-testing-tgi-llama2-amd-demo.apps.ai-final.amd.com/generate_stream
http://amd-testing-tgi-llama2-amd-demo.apps.ai-final.amd.com/generate_stream
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Once the pods are running, navigate to Serverless > Serving. You can access the endpoint in the Services column and 
send requests to it. The sample endpoint is following https://tgi-inference-service-web-predictor-test-llama.apps.ai-
final.amd.com/.

$ https: //<inferenceservice name><namespace><domain-name> 

$ curl <endpoint> /generate \ 
    -X POST \ 
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ 
    -H 'Content-Type: application/json' 

6.5 Send Queries Using Curl/Request Python Scripts
You can send requests via curl commands once the deployment service and routes are created.

$ curl <endpoint> \ 
    -X POST \ 
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ 
    -H 'Content-Type: application/json' 

You can also run queries using the Request.py file. 

#Request.py# 
 
import requests 
  
url = “<endpoint>” 
 
headers = { 
    "Content-Type": "application/json", 
} 
  
data = { 
    "model_id": "llama2-7b-chat-hf", 
    "inputs": "what is deep learning?" 
} 
  
for i in range(100):  # Send 100 requests 
    try: 
        response = requests.post(url, headers=headers, json=data, verify=False) 
        response.raise_for_status()  # Raise an exception for non-200 status codes 
 
        print(response.json())  # Print the response data (assuming JSON) 
    except requests.exceptions.RequestException as err: 
        print("Request failed:", err) 

https://tgi-inference-service-web-predictor-test-llama.apps.ai-final.amd.com/
https://tgi-inference-service-web-predictor-test-llama.apps.ai-final.amd.com/
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6.6 Verifying Replicas Serving Model Pinned to a Single Socket
Execute the following commands to scale out replicas for the any deployments:

1. To get the deployment name:

$ oc get deployments  

2. To scale the replicas:

$ oc scale --replicas=4 deployment/<deployment-name>  

Figure 6-1 shows four replicas. 

Figure 6-1: Four replicas

You can verify CPU pinning across the nodes. 

Figure 6-2: Socket pinning at Worker 2 
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Figure 6-3: Socket pinning at Worker 1
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7.1 Llama2 13B TGI Inference Server Deployment without Auto-
Scaling (YAML Based Deployment)

7.1.1 Rebuilding the TGI Docker Image for Deploying Llama2 7B on and OpenShift 
Cluster
Use port 8080 instead of the default OpenShift cluster binding port (80) that is exposed for TGI Inference server. 

1. Clone the TGI github repository*.

2. Change the default port number in the TGI dockerfile to 8080.

3. Build the Docker Image.

$ docker build -t <my_image>:latest . 

4. Tag the Image:

$ docker tag my_image:latest my_registry/my_image:latest 

5. Push the image to the repository:

$ docker push my_registry/my_image:latest 

7.1.2 Deployment
1. Create a YAML file called deploymentgi.yaml. 

- Add the TGI model Serving Image name to the YAML file. 

- Provide the model-id and HUGGINGFACE_TOKEN variables. 

- Add all required configurations.

##deploymentgi-13b.yaml## 
 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: tgi-inference-deployment-13b
spec:

Chapter
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  replicas: 1
  selector:
    matchLabels:
      app: tgi-inference
  template:
    metadata:
      labels:
        app: tgi-inference
    spec:
      containers:
        - name: tgi-llama2-13b-deployment-container
          image: akhil2507/tgi_images:v1
          ports:
            - containerPort: 8080
          args:
            - "--model-id"
            - "meta-llama/Llama-2-13b-chat-hf"
            - "--dtype"
            - "bfloat16"
          env:
           - name: HUGGING_FACE_HUB_TOKEN
            value: <HUGGING FACE TOKEN>
          resources:
            requests:
              memory: "96Gi"  # Adjust as needed
              cpu: 96     # Adjust as needed
            limits:
              memory: "96Gi"   # Adjust as needed
              cpu: 96    # Adjust as needed
          volumeMounts:                    # Add this section
            - name: data-volume
              mountPath: /data
      volumes:                            # Add this section
        - name: data-volume
          persistentVolumeClaim: 
            claimName: llama2-13b-claim

2. Apply deploymentgi.yaml.

$ oc apply -f deploymentgi.yaml 

7.1.2.1 Expose Service 

Retrieving the endpoint requires exposing the service and creating routes. To expose the service:

1. Retrieve the deployment name. 

$ oc get deployments 

2. Execute the following command with the deployment name to expose the service:

$ oc expose deployment <deployment-name> 

7.1.2.2 Create Routes 

Create routes after exposing the service.

1. Access the OpenShift platform user interface, then navigate to the Administration dashboard.
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2. In the left-hand menu, select Networking > Routes > Create routes.

3. Select Configure via form view.

4. Add the name for the route related to the deployment.

5. Select the Service and Target port.

6. Click Create. 

7.1.3 LLM API Endpoint 
You can now access the endpoint in the dashboard in the location column corresponding to the route name and can also 
send requests to the endpoint. The sample endpoint is http://tgi-inference-13b-deployment-llama2-13b.apps.ai-in-a-
box.amd.com/generate_stream. 

$ http://<routename><namespace><domainname>/generate_stream 

7.1.4 Send Queries Using Curl/Request Python Scripts
You can send requests via curl commands once the deployment service and routes are created.

$ curl <endpoint> \ 
    -X POST \ 
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ 
    -H 'Content-Type: application/json' 

You can also run queries using the Request.py file. 

#Request.py# 
 
import requests 
  
url = “<endpoint>” 
 
headers = { 
    "Content-Type": "application/json", 
} 
  
data = { 
    "model_id": "llama2-13b-chat-hf", 
    "inputs": "what is deep learning?" 
} 
  
for i in range(100):  # Send 100 requests 
    try: 
        response = requests.post(url, headers=headers, json=data, verify=False) 
        response.raise_for_status()  # Raise an exception for non-200 status codes 
 
        print(response.json())  # Print the response data (assuming JSON) 
    except requests.exceptions.RequestException as err: 
        print("Request failed:", err) 

http://tgi-inference-13b-deployment-llama2-13b.apps.ai-in-a-box.amd.com/generate_stream
http://tgi-inference-13b-deployment-llama2-13b.apps.ai-in-a-box.amd.com/generate_stream
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7.2 Llama2 70B TGI Inference Server Deployment with Auto-Scal-
ing (YAML Based Deployment)
Follow the process described in “Llama2 13B TGI Inference Server Deployment without Auto-Scaling (YAML Based 
Deployment)” on page 47, using the following deploymentgi.yaml:

##deploymentgi-70b.yaml## 
 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: tgi-inference-deployment-70b
spec:
  replicas: 1
  selector:
    matchLabels:
      app: tgi-inference
  template:
    metadata:
      labels:
        app: tgi-inference
    spec:
      containers:
        - name: tgi-llama2-70b-deployment-container
          image: akhil2507/tgi_images:v1
          ports:
            - containerPort: 8080
          args:
            - "--model-id"
            - "meta-llama/Llama-2-70b-chat-hf"
            - "--dtype"
            - "bfloat16"
          env:
           - name: HUGGING_FACE_HUB_TOKEN
            value: <HUGGING FACE TOKEN>
          resources:
            requests:
              memory: "512Gi" # Adjust as needed
              cpu: 192    # Adjust as needed
            limits:
              memory: "512Gi"   # Adjust as needed
              cpu: 192    # Adjust as needed
          volumeMounts:                    # Add this section
            - name: data-volume
              mountPath: /data
      volumes:                            # Add this section
        - name: data-volume
          persistentVolumeClaim: 
            claimName: llama2-70b-claim
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7.2.1 Send Queries Using Curl/Request Python Scripts
You can send requests via curl commands once the deployment service and routes are created.

$ curl <endpoint> \ 
    -X POST \ 
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ 
    -H 'Content-Type: application/json' 

You can also run queries using the Request.py file.

#Request.py# 
 
import requests 
  
url = “<endpoint>” 
 
headers = { 
    "Content-Type": "application/json", 
} 
  
data = { 
    "model_id": "llama2-13b-chat-hf", 
    "inputs": "what is deep learning?" 
} 
  
for i in range(100):  # Send 100 requests 
    try: 
        response = requests.post(url, headers=headers, json=data, verify=False) 
        response.raise_for_status()  # Raise an exception for non-200 status codes 
 
        print(response.json())  # Print the response data (assuming JSON) 
    except requests.exceptions.RequestException as err: 
        print("Request failed:", err)
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The latency, throughput, and scaling testing described in this user guide uses EchoSwift*.

8.1 Explaining Benchmarking
The objective of the LLM-Inference-Bench tools measures the latency of each request in milliseconds per token, Time 
Taken for the First Token (TTFT), and Throughput measured in the number of tokens per second of request sent to a 
served LLM. These metrics are captured using varying input tokens (query length), output tokens (response length), and 
simulated parallel users. 

Figure 8-1: EchoSwift architecture

You can use this LLM inference benchmark to:

• Measure performance: Evaluate model latency, throughput, and resource (CPU-Core/Memory) utilization under 
varying workloads and configurations.

• Identify bottlenecks: Analyze performance metrics to pinpoint potential bottlenecks in different deployment 
scenarios impacting model efficiency and scalability.

• Optimize deployment: Utilize benchmarking data to fine-tune model deployment for improved resource utilization 
and cost-effectiveness. 

• Validate scalability: Assess the model’s ability to handle increasing workloads and maintain performance with a 
growing number of concurrent requests. 
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Metrics captured: 

• Number of input tokens

• Number of output tokens 

• Throughput (tokens/second)

• End-to-end latency (ms)

• Token latency (ms/tokens) 

• TTFT for streaming 

• CPU and memory utilization while running the load test. 

Figure 8-2: Latency, throughput, and TTFT calculations

 Performance metrics calculations: 

• Throughput: Measures the average number of tokens that can be generated per second:
Throughput (tokens/Second) = (Output Token Length) / Total Time (s)

• Token latency: Measures the average time it takes to generate one token:
Latency (ms/token) = Total Time (s) * 1000 / Output Token Length

• TTFT: Indicates the responsiveness of the model. Time from start of request to generation of first token. 

Total time required
for the response

Input query

TTFT: Time To First Token

Latency/token: Time taken for all tokens 
excluding the first

Throughput: Tokens/second (total 
tokens/total time)

First token response

...

Final token response

Time To First Token 
(TTFT)
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8.2 Locust
Locust is an open-source tool that simulates multiuser requests on systems under test. It is built in python and excels at 
user behavior simulation. It is both flexible and easy of use, and its distributed testing capabilities allow simulating 
thousands of concurrent users. These features enable comprehensive system performance evaluation under realistic 
scenarios. The following prerequisites must be met in order to run the benchmark:  

8.2.1 Single Docker Container Deployment
The benchmark script takes the required variables and starts sending requests to the previously-deployed model 
endpoint. Locust creates virtual users and simulates production-level load testing. The benchmark will run against the 
above generation endpoint, which can be any inference server endpoint, such as a TGI endpoint hosting a model (http:/
/localhost:8080/generate_stream). 

Define the configurations inside the locust.sh shell script before starting the load test. Here are some sample 
configurations:

• # of parallel users [1, 3, 10]. 

• Varying input tokens [32, 64, 128]

• Varying output tokens [32, 64, 128] 

$   ./llm_inference_benchmark.sh<output_dir <generation_endpoint>

Item Configuration/Version
# of cores 16
RAM 20 GB
datasets 2.13.1
locust 2.18.4
streamlit 1.29.0
docker 5.0.3
kserve 0.10.0
torch 1.13.0
transformers 4.31.0
huggingface_hub 0.20.0

Table 8-1: Locust hardware and software requirements
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Deploying LLMs for real-time inference tasks often requires efficient resource management to handle varying workloads. 
This chapter discusses linear scaling of CPU-only LLM serving on Llama2 7B utilizing an infrastructure built on Red Hat 
OpenShift. The primary objective is to showcase how the CPU resources allocated to Llama2 7B serving pods scale 
linearly with increasing inference requests. 

Figure 9-1: Deployment options

Figure 9-1 shows an OpenShift deployment using Kind for both the deployment and Inference Service. The Deployment 
path offers a Horizontal Pod AutoScaler to scale container instances and a Service Mesh for managing microservices. The 
Inference Service path provides Auto-Scaling to handle varying workloads, a Service Mesh architecture for managing 
services, and Serverless functions for event-driven computing as an Inference Service. OpenShift Autoscaling allows the 
number of serving replicas to adjust dynamically based on CPU utilization to maintain optimal performance and resource 
utilization. The Routes component routes and load balances incoming requests. These requests are then served through 
an Endpoint. 
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9.1 Llama-7B deployment with HPA
Attain HPA by creating a YAML with Kind deployment, 96 CPU cores, and 48 GB of memory using Horizontal Pod Scaler 
and then applying the following file:

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: tgi-deployment-pvc-llama2 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: tgi-inference 
  template: 
    metadata: 
      labels: 
        app: tgi-inference 
    spec: 
      containers: 
        - name: tgi-deployment-pvc-container 
          image: akhil2507/tgi_images:v1 
          ports: 
            - containerPort: 8080 
          args: 
            - "--model-id" 
            - "meta-llama/Llama-2-7b-chat-hf"  # Replace with your actual model ID 
            - "--dtype" 
            - "bfloat16" 
          env: 
            - name: HUGGING_FACE_HUB_TOKEN 
              value: <HUGGING_FACE_TOKEN> # Replace with your actual Hugging Face token 
          resources: 
            requests: 
              memory: "48Gi"  # Adjust as needed 
              cpu: 96     # Adjust as needed 
            limits: 
              memory: "48Gi"   # Adjust as needed 
              cpu: 96    # Adjust as needed 
          volumeMounts:                    # Add this section 
            - name: data-volume 
              mountPath: /data 
      volumes:                            # Add this section 
        - name: data-volume 
          persistentVolumeClaim: 
            claimName: llama2-pvc-deployment 
--- 
apiVersion: autoscaling/v2 
kind: HorizontalPodAutoscaler 
metadata: 
  name: llama2-hpa 
  namespace: tgi-deployment-hpa 
spec: 
  scaleTargetRef: 
    apiVersion: apps/v1 
    kind: Deployment 
    name: tgi-deployment-pvc-llama2 
  minReplicas: 1 
  maxReplicas: 4 
  metrics: 
    - type: Resource 
      resource: 
        name: cpu 
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        target: 
          averageUtilization: 50 
          type: Utilization 
--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: tgi-deployment-svc 
  namespace: tgi-deployment-hpa 
spec: 
  selector: 
    app: tgi-inference 
  ports: 
    - protocol: TCP 
      port: 8080 
      targetPort: 8080 
--- 
kind: Route 
apiVersion: route.openshift.io/v1 
metadata: 
  name: tgi-deployment-route 
  namespace: tgi-deployment-hpa 
  labels: {} 
spec: 
  to: 
    kind: Service 
    name: tgi-deployment-svc 
  tls: null 
  port: 
    targetPort: 8080 

$ oc apply –f <filename.yaml> 

Figure 9-2: Before automatic scaling 

Figure 9-3: After automatic scaling 
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9.2 Llama2-13B Deployment with HPA
apiVersion: apps/v1
kind: Deployment
metadata:
  name: tgi-inference-pvc-deployment-13b
spec:
  replicas: 1
  selector:
    matchLabels:
      app: tgi-inference
  template:
    metadata:
      labels:
        app: tgi-inference
    spec:
      containers:
        - name: tgi-llama2-13b-deployment-pvc-container
          image: akhil2507/tgi_images:v1
          ports:
            - containerPort: 8080
          args:
            - "--model-id"
            - "meta-llama/Llama-2-13b-chat-hf"  # Replace with your actual model ID
            - "--dtype"
            - "bfloat16"
          env:
            - name: HUGGING_FACE_HUB_TOKEN
              value: <HUGGING FACE> # Replace with your actual Hugging Face token
          resources:
            requests:
              memory: "96Gi"  # Adjust as needed
              cpu: 96     # Adjust as needed
            limits:
              memory: "96Gi"   # Adjust as needed
              cpu: 96    # Adjust as needed
          volumeMounts:                    # Add this section
            - name: data-volume
              mountPath: /data
      volumes:                            # Add this section
        - name: data-volume
          persistentVolumeClaim: 
            claimName: llama2-13b-claim
--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: tgi-inference-pvc-deployment-13b  
  namespace: llama2-13b 
spec: 
  selector: 
    app: tgi-inference 
  ports: 
    - protocol: TCP 
      port: 8080 
      targetPort: 8080 
--- 
kind: Route 
apiVersion: route.openshift.io/v1 
metadata: 
  name: tgi-inference-13b-deployment  
  namespace: llama2-13b 
  labels: {} 
spec: 
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  to: 
    kind: Service 
    name: tgi-deployment-svc 
  tls: null 
  port: 
    targetPort: 8080 

oc apply –f <filename.yaml> 

Figure 9-4: Before automatic scaling 

Figure 9-5: After automatic scaling

9.3 Llama2-70B Deployment with HPA
Add the annotations to the route in order to distribute the traffic across all replicas in a round-robin-fashion:

$ oc annotate route <route—name> haproxy.router.openshift.io/balance=roundrobin 
$ oc annotate route <route—name> haproxy.router.openshift.io/disable_cookies=true
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Proposals for deploying LLMs for inferencing could have the following requirements. You may use these proposed 
requirements as a basis for Requests for Proposals (RFPs) for sales or internal deployment requirements. The deployed 
solution should support:

• 1000 parallel requests with 5+ output tokens per second at normal reading speed.

• Output token size of 256 for large answers.

• Latency under 250 ms.

• Llama2 7B BF16 like model (13.5 GB) or lower 

The following considerations can help you size these requirements: 

• Worker node: 2 x 96-core AMD EPYC 9654 processor, 384 GB memory, 10 Gbps network, 4 x 1 TB SSD storage

• Model replica size: 96 cores, 48 GB memory, with Simultaneous Multi Threating (SMT) enabled (supports 7-8 
replicas per node). 8 replicas configured as shown here can process 30 parallel requests with latency less than 250 
ms for 256 output tokens with near-linear scaling.

• Number of replicas/nodes needed: 1000 parallel requests can be catered by 1000/30 or 34 Replicas, which 
translated to 11 nodes, assuming 20 cores per node for non-replica usage where each node can deploy 3 x 96-core 
replicas.

Chapter

10
Sizing “CPU-Only” LLM 
Inference Serving with an 
AMD EPYC 9004 System



RedHat® OpenShift® AI In-a-Box Solutions

64 58669 – 1.0

This page intentionally left blank.



58669 – 1.0 65

Mqwwsw

11.1 Tech-Preview CPU Optimizations with CPU Manager Policy
CPU Manager Policies has many enhancements, such as tech-preview (do not test this production), which provides 
additional functionality around how cores are used by pods and how replica sets are selected. These are available as 
alpha and beta options with Kubernetes version 1.22 or higher. The following section describes how to set these policies 
in a test environment for evaluation. Please see Control CPU Management Policies on the Node* for details about these 
options.

• full-pcpus-only is a beta that is visible by default in Kubernetes 1.22 or higher.

• distribute-cpus-across-numa is an alpha that is hidden by default in Kubernetes 1.23 or higher.

• align-by-socket is an alpha that is hidden by default in Kubernetes 1.25 or higher.

Note: Tech-Preview features are for testing and evaluating new features. Do not deploy them in production

11.2 Setting Feature-Gate Options (Enabling Alpha/Beta Options)
Feature gates are a set of keys (opaque string values) that you can use to control which features are enabled in the 
cluster. Each feature gate is a set of key=value pairs that describe Kubernetes features. You can enable or disable these 
features using the --feature-gates command line flag on each Kubernetes component. The following prerequisites 
must be met:

• Ensure that the CPU Manager is enabled (cpumanager-enabled).

• Configure the static CPU Manager policy.

Chapter
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To edit feature gates: 

1. Execute the following command to add the required feature gates to enable CPU Manager Policy options:

$ oc edit featuregate cluster 

Figure 11-1: Editing feature gates
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2. Verify that the feature gates are enabled in each node.

$ oc debug node/<node-name> 
$ chroot /host 
$ cat /etc/kubernetes/kubelet.conf 

The output appears as follows: 

Figure 11-2: Sample output

3. Apply the custom kubelet config with CPU Manager policy options: 

$ oc apply -f custom-kubeletconfig.yaml

apiVersion: machineconfiguration.openshift.io/v1 
kind: KubeletConfig 
metadata: 
  name: cpumanager-enabled 
spec: 
  machineConfigPoolSelector: 
    matchLabels: 
      custom-kubelet: cpumanager-enabled 
  kubeletConfig: 
     cpuManagerPolicy: static 
     cpuManagerReconcilePeriod: 5s 
     cpuManagerPolicyOptions: 
       align-by-socket: "true" 
       distribute-cpus-across-numa: "true" 
       full-pcpus-only: "true" 
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4. Verify that the cpuManagerPolicies are applied: 

$ oc debug node/<node-name> 
$ chroot /host 
$ cat /etc/kubernetes/kubelet.conf

The output appears as follows: 

Figure 11-3: CPU Manager policy verification
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5. Verify the CPU Manager policy state:

$ oc debug node/<node-name> 
$ chroot /host 
$ cat /var/lib/kubelet/cpu_manager_state | jq 

The output appears as follows: 

Figure 11-4: Cores allocated across sockets hefore enabling CPU 
Manager policy options

Figure 11-5: Cores allocated from the same NUMA node and  
and same socket after enabling CPU Manager policy (ALPHA) 

options
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