
Advanced Micro Devices

Smart Data Cache Injection

(SDCI) White Paper

Publication # 58725 Revision: 1.00

Issue Date: February 2025

[AMD Public Use]

© 2024–2025 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 Table of Contents 3

Table of Contents

Chapter 1 Introduction .. 7

Chapter 2 SDCI Overview... 8

2.1 What Is SDCI? ... 8

2.2 SDCI Enablement .. 9

Chapter 3 Value Proposition ... 10

3.1 SDCI Performance with iPerf .. 10

3.2 SDCI Performance Observations ... 11

3.2.1 Turin 96C Zen5 .. 11

3.2.2 Turin 160C Zen5c .. 11

3.3 Monitoring Memory Bandwidth with AMD uProf .. 12

Chapter 4 Summary Conclusion... 14

Appendix A System Configuration .. 15

 System Configuration .. 15

A.1.1 BIOS Settings... 15

A.1.2 CPU and Other Information ... 16

A.1.3 Ethernet Adapter Information .. 16

A.1.4 iPerf Version .. 16

A.1.5 OS and Kernel Version .. 16

A.1.6 Kernel Boot .. 16

A.1.7 Linux System Configuration .. 17

A.1.8 Broadcom NIC Configuration .. 17

A.1.9 Testing iPerf ... 17

A.1.10 System Profiling... 17

 Test Configuration ... 18

 Testing with iPerf – Single Queue ... 19

 Testing with iPerf – Two (or More) Queues .. 19

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 List of Figures 4

List of Figures

Figure 1. Cache Insertion .. 8

Figure 2. iPerf Throughput and Memory Bandwidth with Turin 96C Zen5 10

Figure 3. iPerf Throughput and Memory Bandwidth with Turin 160C Zen5c 11

Figure 4. Turin Zen5 Memory Bandwidth with SDCI Off ... 12

Figure 5. Turin Zen5 Memory Bandwidth with SDCI On .. 13

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 List of Tables 5

List of Tables

Table 1. CPU and Other Information ... 16

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 Revision History 6

Revision History

Date Revision Description

February 2025 1.00 Initial public release

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 7

Introduction

Chapter 1 Introduction

The importance of high-input/output (I/O) throughput with low latency has grown with the advent

of high-bandwidth I/O devices such as storage and networking. The result is an evolution toward

chiplet-based scale-out architectures that increase CPU core counts, cache capacity, and DRAM

bandwidth.

The steady increase in I/O link speed has dramatically reduced the time needed to process I/O

packets. Fetching data from farther system memory (DRAM) can be extremely expensive; thus,

for faster application processing, there is a need to optimize packet processing by minimizing

memory access latency and DRAM bandwidth. One strategy for reducing DRAM bandwidth is to

preload inbound I/O data in processor cache, eliminating the need to fetch that data from DRAM.

Reduced DRAM bandwidth also translates to lower usage of DRAM power, which then can be

used to power up cores for faster processing. To reduce DRAM bandwidth, incoming I/O data

need to be located near cores that process them. CPU cache can be a very efficient alternative to

DRAM by significantly reducing processing latencies on CPU cores.

Examples of usage cases where cache injection flow can boost performance:

1. High-speed networking data processing: In networking usage cases, data are transferred

from network to host buffers. Then a descriptor or flag update is written to indicate data

are ready to be consumed. An interrupt is fired to the processor to indicate data are ready

for consumption, or the core polls a memory location for indication of a hardware

semaphore update. In both usage cases, descriptor and flag data are very useful to have in

processor cache so software can examine and move data with minimal delay. In addition to

descriptors and flags, packet header data also benefit from faster processing as packet

decoding and routing decisions are made faster.

2. Latency-constrained real-time feedback systems: In these systems, feedback within a

particular latency constraint is critical to finishing work on time and allowing the next

cycle to start. Data are usually sent to the host via preferred Quality of Service (QoS)

routes to bypass noncritical data. Putting these data into processor L2 cache facilitates

quick data processing without incurring the overhead of fetching data from memory.

3. Financial services applications: In financial service scenarios, processing information

quickly – sometimes by order of nanoseconds – can make the difference between

successful order execution and a failed bid. Placing an order delivered via I/O in processor

cache and then allowing the processor to execute that order without having to fetch data

from memory saves critical time in the processing loop, enabling more transactions to be

completed successfully. When cache injection is available, the system should inject only

key information to minimize cache pollution.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 8

SDCI Overview

Chapter 2 SDCI Overview

2.1 What Is SDCI?

Because cache is a critical asset, the data it contains need to be of high utility. Host hardware and

processing cores lack the necessary information to determine which data should be cached. Smart

Data Cache Injection (SDCI) allows preloading of data in processor caches by steering applicable

I/O data directly to a core’s L2 cache. This is done using a standards-based approach that allow

endpoints to decide what traffic to inject into cache.

Cache residency of critical code is key to overall application performance. Unlike alternative

cache injection solutions, SDCI enables endpoints to control which data are injected into caches

and thus reduces cache pollution and enhances system performance.

To optimally manage data written into CPU cache, SDCI uses an open-industry standard, PCI

Express’ TLP Processing Hints (TPH) feature. SDCI allows inbound I/O Direct Memory Access

(DMA) writes to be steered directly into L2 cache. Data are not written to DRAM until they age

out of cache.

Figure 1. Cache Insertion

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 9

SDCI Overview

Both host and endpoints must support the TPH feature; TLP Hints (TH) in the TLP header

identifies data that are candidates for cache insertion. In a typical implementation, the host driver

and endpoint firmware collaborate on device settings to direct I/O packets to the correct cache

locations.

2.2 SDCI Enablement

AMD EPYC™ 9005 series processors, codenamed “Turin,” enable hardware support for SDCI

and the PCIe TPH specification. The AMD Turin platform initialization package provides BIOS

and firmware to support SDCI in the operating system’s PCIe subsystem.

Endpoint vendors need to implement hardware support for the PCIe TPH specification as well as

software/firmware to enable the TPH hardware. Vendors/OEMs can influence what data are

inserted into cache with their software implementations.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 10

Value Proposition

Chapter 3 Value Proposition

SDCI will benefit most applications where CPU cores read and write inbound I/O data. This can

include both control and data plane aspects of a use case.

Networking applications are an obvious beneficiary. These applications process inbound packet

headers and packets on the CPU. Other examples include storage, CPU artificial intelligence (AI)

inferencing, high-performance computing (HPC), or engineering applications where a CPU-based

workload performs read/write transactions on inbound I/O write data and is sensitive to latency or

DRAM bandwidth.

Based on industry standards, SDCI enables endpoint devices to efficiently redirect only important

data packets to CPU cache.

3.1 SDCI Performance with iPerf

SDCI’s effectiveness can be seen in data collected using iPerf, a popular cross-platform tool that

can measure Transmission Control Protocol (TCP) network performance. iPerf reports the

maximum achievable throughput between two network endpoints.

Results were collected with and without SDCI to observe net gains. System configuration details

are included in Appendix A.

Figure 2. iPerf Throughput and Memory Bandwidth with Turin 96C Zen5

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 11

Value Proposition

Figure 3. iPerf Throughput and Memory Bandwidth with Turin 160C Zen5c

3.2 SDCI Performance Observations

3.2.1 Turin 96C Zen5

iPerf performance saturates NIC throughput limits and remains unchanged whether SDCI is

enabled or disabled. At the same performance level, a significant reduction in total memory

bandwidth is observed with SDCI enabled. With iPerf performance around 70 Gb/s using a single

queue, enabling SDCI results in a 55 percent reduction in total memory bandwidth.

Scaling to two queues, iPerf performance is around 94 Gb/s and enabling SDCI results in a 22

percent reduction in total memory bandwidth. Memory bandwidth reduction is lower with two

queues because the additional bandwidth and overhead in processing Rx buffers for two queues

increases overall cache utilization and results in more evictions before the CPU can consume the

in-cache copy. The evicted data need to be read back when the CPU finally requests them.

3.2.2 Turin 160C Zen5c

With iPerf performance around 43 Gb/s using a single queue, enabling SDCI results in a 79

percent reduction in total memory bandwidth. Scaling to two queues, iPerf performance is around

78 Gb/s and enabling SDCI results in an 80 percent reduction in total memory bandwidth. The

eviction rate is observed to be much lower in this case, and the data continue to be available in

cache for the CPU to consume as soon as it is ready. This has a direct impact on overall memory

bandwidth savings compared with the earlier test.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 12

Value Proposition

3.3 Monitoring Memory Bandwidth with AMD uProf

Memory bandwidth used by an application can be monitored using AMDuProfSys, which is

included as part of the AMD uProf toolkit. The tool can be downloaded from

https://www.amd.com/en/developer/uprof.html. The current Linux version is 5.0-1479. Download

and install the package of your choice. The description below assumes that tar.bz2 is installed.

Once AMD uProf is installed, the AMDuProfSys program is available from

AMDuProf_Linux_x64_5.0.1479/bin.

A special driver is needed for the tool to work. This can be installed using the following

commands:

• $ cd AMDuProf_Linux_x64_5.0.1479/bin

• $ sudo ./AMDPowerProfilerDriver.sh install

To measure memory bandwidth when running iPerf on the Turin server, invoke AMDuProfSys as

follows:

./AMDuProfSys --config <CONFIG> -o <OUTPUT_DIR> <options> <WORKLOAD>
<workload-specific-args>

For example:

./AMDuProfSys --config umc -o /tmp/test taskset -c 0 iperf -s -p 9000

Start the iPerf client from the remote system. Once the test is complete, kill the AMDuProfSys

command invocation (the iPerf server does not terminate by itself) to stop iPerf and prepare the

report. The report will be available as a .csv file within the OUTPUT_DIR.

Memory bandwidth can be monitored by observing the “UMC est read BW” and “UMC est write

BW” fields in the report.

For example, see excerpts in Figure 4 and Figure 5 from reports collected from iPerf test runs on a

Turin Zen5 server with 12 channels of DDR5 and both SDCI Off and SDCI On:

Figure 4. Turin Zen5 Memory Bandwidth with SDCI Off

[AMD Public Use]

https://www.amd.com/en/developer/uprof.html

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 13

Value Proposition

Figure 5. Turin Zen5 Memory Bandwidth with SDCI On

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 14

Summary Conclusion

Chapter 4 Summary Conclusion

High-speed I/O device performance is highly sensitive to access latency, making it crucial to keep

data close to CPU cores. With the advent of scale-out chiplet technologies, the number of cores

has increased, leading to nonlinear DRAM memory access latency. To address the complexities of

scale-out architectures, better I/O management is needed.

SDCI aims to enhance system and application performance by lowering latency and reducing

DRAM bandwidth required for applications. Without SDCI, inbound I/O writes data must be

written to DRAM and then read before use by the CPU cores. Injecting data directly into cache

allows it to be read there, significantly reducing memory bandwidth usage and latency for some

applications. SDCI hardware and BIOS firmware support is enabled by default on AMD Turin

products for easy endpoint integrations. By reducing overall DRAM bandwidth, system-level

tradeoffs can be made, such as reducing costs by not using DRAM channels or increasing

performance by lowering power usage, increasing DRAM bandwidth, and/or reducing latency.

AMD’s solution uses PCIe standards to enable PCIe endpoints, drives, and applications to

collaboratively decide which data to cache. This optimizes cache usage, minimizes cache

pollution, and ensures cache is used effectively. AMD is following a step-wise roadmap that will

continue to optimize SDCI and broaden applicable use cases.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 15

System Configuration

Appendix A System Configuration

 System Configuration

A.1.1 BIOS Settings

• DF Common options → Memory Addressing: NPS 1
• DF Common options → ACPI → ACPI SRAT L3 Cache as NUMA Domain:

Disable
• NBIO Common options → SMU Common Options → Determinism

Control: Manual
• NBIO Common options → SMU Common Options → Determinism

Enable: Performance
• NBIO Common options → SMU Common Options → APB Disable

(APBDIS): 1
• NBIO Common options → SMU Common Options → DFPstate: 0
• NBIO Common options → SMU Common Options → Power Profile

Selection: High Performance Mode
• NBIO Common options → SMU Common Options → DF C-States:

Disabled
• NBIO Common options → PCIe ARI Support: Enable
• NBIO Common options → PCIe Ten bit tag support: Enable
• CPU Common options → Local APIC Mode: X2APIC
• CPU Common options → Core Performance Boost: Enabled

To enable SDCI settings:

• DF Common options → SDCI: Enabled

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 16

System Configuration

A.1.2 CPU and Other Information

Tests were run on the following platforms:

Table 1. CPU and Other Information

Processor DDR5 Frequency (MT/s) TDP (W)

Turin Zen5 96 Cores 6000 400

Turin Zen5c 160 Cores 4800 400

A.1.3 Ethernet Adapter Information

The Ethernet adapters used in the tests were 2 × 100G model P2100G Broadcom NICs. Please

contact Broadcom support for a firmware version with TPH support enabled.

Broadcom firmware settings: The firmware should be set up for steering-tag support for PCIe

memory writes for Rx buffers and completion queue writes. It is recommended to have PCIe

relaxed ordering turned on in the firmware. Optionally, turn off firmware support for RDMA and

DCBX.

A.1.4 iPerf Version

$ iperf --version

iperf version 2.1.5 (3 December 2021) pthreads

A.1.5 OS and Kernel Version

AMD has upstreamed support for TPH enablement in the Linux kernel. The 6.13 Linux kernel

release in January 2025 includes this support. The tests for the performance numbers reported here

were run earlier on an Ubuntu 22.04.2 LTS system with a 6.10+ custom kernel that had identical

kernel patches for TPH support.

A.1.6 Kernel Boot

No special kernel boot parameters were used. It is recommended to have

“processor.max_cstate=0” enabled in the boot-command line.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 17

System Configuration

A.1.7 Linux System Configuration

iPerf performance tests typically also tune some kernel parameters like net.core.rmem_max and

net.core.wmem_max, among others, for best performance. However, those were not applied to

leave the system configuration closer to defaults.

A.1.8 Broadcom NIC Configuration

• Limit queue count to 1, 2 or 4 queues

• Queue sizes were limited to 511 entries, also tested with 255 entries per queue

• NIC IRQ lines were pinned to CPU cores IRQ 0 on CPU 0, IRQ 1 on CPU 1, and so

on.

A.1.9 Testing iPerf

To test SDCI bandwidth savings, iPerf can be used in one of two modes in relation to the IRQ

pinning:

1. Run iPerf on the same set of CPU SMT threads to which IRQ is pinned.

2. Run iPerf on the sibling CPU SMT thread to the SMT thread to which IRQ is pinned.

A.1.10 System Profiling

The system was profiled to observe the behavior of cache accesses and the corresponding

savings in memory bandwidth using an interval version of AMD’s MultEvent tool. AMD has

since enabled a publicly available version of its AMD uProf profiling tool as a substitute for

MultEvent. Refer to Section 3.3 for more information.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 18

System Configuration

 Test Configuration

• Test is run with fixed queue count. Tested with 1 and 2 queues.

• IRQ for each queue is pinned to separate and distinct CPU cores.

• iPerf server threads run on the same set of cores servicing the IRQs.

• Partner system runs iPerf clients.

• Single queue tests use a single client

• Client count (n) for multiple queue tests (m server NIC queues, where m ≥ 2), is

2*m;

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 19

System Configuration

 Testing with iPerf – Single Queue

Start iPerf server and bind it to the core based on the approach selected in the A.1.9 Testing iPerf

section above. Start the client to send traffic to the iPerf server.

On Server:

$ sudo taskset -c 0 sh -c "iperf -s -p 9000"

On Client:

$ numactl -C 0-15 iperf -c 192.168.1.100 -t 420 -i 1 -P1 -N -p 9000 &

• Confirm that only a single CPU core is busy on the server.

• Confirm that only a single Rx queue in the NIC receives all the packets.

• Check the Ethernet traffic throughput and packet rate (using a tool like vnstat).

• Ensure that iPerf is running only on selected CPU SMT threads.

iPerf performance should be in the 68–70 Gbps range. Run iPerf client multiple times, each time

for 30 seconds or more and make sure the packet rate and iPerf throughput are consistent. There

may be a variation of about 3–5% between runs in the iPerf reported numbers, which is acceptable

for the single-queue test.

 Testing with iPerf – Two (or More) Queues

Start iPerf server and bind it to the core based on the approach selected in the A.1.9 Testing iPerf

section above. Start the client to send traffic to the iPerf server.

On Server:

$ sudo taskset -c 0-1 sh -c "iperf -s -p 9000"

On Client:

$ numactl -C 0-15 iperf -c 192.168.1.100 -t 420 -i 1 -P4 -N -p 9000 &

• Confirm that only two CPU cores are busy on the server.

• Confirm that only two queues are receiving packets. The packet rate on both queues should

be fairly close to each other.

• Check the Ethernet traffic throughput and packet rate (using a tool like vnstat).

• Ensure that iPerf is running only on selected cores.

[AMD Public Use]

58725 Rev. 1.00 February 2025 Smart Data Cache Injection (SDCI) White Paper

 20

System Configuration

iPerf performance should be in 93–94 Gbps range. Run iPerf client multiple times, each time

for 30 seconds or more, and make sure the packet rate and iPerf throughput are consistent.

There may be a variation of about 2–3% between runs in the iPerf reported numbers, which is

acceptable for the two-queue test.

[AMD Public Use]

	Chapter 1 Introduction
	Chapter 2 SDCI Overview
	2.1 What Is SDCI?
	2.2 SDCI Enablement

	Chapter 3 Value Proposition
	3.1 SDCI Performance with iPerf
	3.2 SDCI Performance Observations
	3.2.1 Turin 96C Zen5
	3.2.2 Turin 160C Zen5c

	3.3 Monitoring Memory Bandwidth with AMD uProf

	Chapter 4 Summary Conclusion
	Appendix A System Configuration
	A.1 System Configuration
	A.1.1 BIOS Settings
	A.1.2 CPU and Other Information
	A.1.3 Ethernet Adapter Information
	A.1.4 iPerf Version
	A.1.5 OS and Kernel Version
	A.1.6 Kernel Boot
	A.1.7 Linux System Configuration
	A.1.8 Broadcom NIC Configuration
	A.1.9 Testing iPerf
	A.1.10 System Profiling

	A.2 Test Configuration
	A.3 Testing with iPerf – Single Queue
	A.4 Testing with iPerf – Two (or More) Queues

