AMD Instinct[™] MI300 Series Cluster Reference Architecture Guide

Publication Number: 63916 v1.1 Date: March 2025

Contents

Chapter 1: Abstract	6
Key Terms	6
Chapter 2: Components of an MI300 Series Cluster	
AMD MI300 Series Platform Compute Node	8
Network Fabrics	9
Software Components	
Chapter 3: Design Requirements	11
System Design	
Compute Node	
Frontend, Accelerator and Backend Networks	
Frontend Network	
Accelerator Network	
Backend Network	
Out-of-band Management Network	14
System Management	14
Chapter 4: Cluster Architecture	15
Chapter 5: Topology of Network Fabrics	17
Backend Network Topology	17
Fat Tree Non-blocking Topology	
Rail Topology	
Frontend Network Topology	20
Chapter 6: AMD Software Tools for Cluster Operation and Management	
Cluster Management with RDC and SMI Tools	23
Appendix A: Vendor List for Cluster Networking	24
Appendix B: Acronyms	27

Appendix C: Additional Resources and Legal Notices	29
Revision History	
Notices	
Trademarks	

List of Figures

Figure 2.1:	AMD MI300 Series Platform	8
Figure 3.1:	Frontend, Accelerator and Backend Networks	12
Figure 3.2:	Accelerator Mesh Network with MI300 Series Accelerators	13
Figure 4.1:	Server and Rack Design with MI300 Series Accelerators	15
Figure 5.1:	A 32 Node 2-Tier Fat Tree Topology	18
Figure 5.2:	A 32 Node 2-Tier Rail Topology	19
Figure 5.3:	Layout of a Full 128 Node Cluster with 64 Port Switches	20
Figure 5.4:	Storage Network for a 32 Node Design	21
Figure 6.1:	Software Stack with AMD ROCm, Container, and Infrastructure Blocks	23

List of Tables

Table 1.1:	Key Terms	7
Table 2.1:	Compute Node Reference Design Specifications	.9
Table 2.2:	Network Hardware Components	. 9
Table 2.3:	Software Components	0
Table 4.1:	Component Count with 64 x 400G Switch	6
Table 4.2:	Component Count with 128 x 400G Switch	6
Table 5.1:	Fat Tree 2-Tier with Switch Radix = 64 (non-blocking 32 downlink, 32 uplink)1	8
Table 5.2:	Rail Topology with 64 Port Switch (32 downink, 32 uplink)	9
Table 5.3:	Maximum Counts Based on Radix and Switch Tiers2	20
Table A.1:	NICs in Backend and Frontend Network2	24
Table A.2:	Switches in Backend Network2	24
Table A.3:	Switches in Frontend Network2	25
Table A.4:	Switches in Storage Network2	25
Table A.5:	Switches in OOB Network2	26
Table A.6:	Storage Systems	26
Table A.7:	Validated Designs2	26
Table B.1:	Acronyms	27

Chapter 1: Abstract

Artificial Intelligence (AI) and Machine Learning (ML) models continue to advance in capability and scale at an increasingly rapid rate. This advancement increases performance and efficiency requirements on every element of AI/ML infrastructure, including networking infrastructure. As AI/ML model scale has increased, the workload must be distributed across Graphics Processing Units (GPUs) operating in parallel at massive scale. Performance is increasingly dependent on the network that enables data movement between these GPUs.

AI/ML model training and inference operations require the movement and processing of massive volumes of data. The GPU-GPU communication network must support a wide range of requirements such as latency-sensitive inference operations and iterative, high-throughput, parallel mathematical training operations. The highest throughput, lowest latency GPU-GPU data movement occurs within a node's *accelerator network* that connects a group of GPUs.

Additional GPU-GPU data movement occurs across a *backend network* that connects multiples of these nodes into a large-scale network cluster. AI/ML model deployments require a wide range of network scaling. Therefore, the design of the accelerator network and the backend network is crucial as it scales in size from small clusters of inferencing nodes to much larger-scale training backend networks supporting thousands of nodes and beyond. The efficiency and performance of GPU-GPU communication fabrics is therefore of critical importance.

The *frontend network* in existing data centers supports a wide range of functions including AI/ML data ingestion, storage as well as management functions. Traditionally, the front-end network is connected directly to CPUs in the nodes.

This reference architecture document outlines the components required to build a backend network cluster of *MI300 Series GPUs*, which uses primarily Ethernet-based network interface cards (NICs) and switches that scale to meet the increasing scaling requirements of AI models. AMD MI300 Series products support a wide range of networking technologies and topologies beyond Ethernet via standard PCIe-based NICs. AMD is committed to the development and enhancement of open standards-based networks like the Ultra Ethernet Consortium (UEC), and the Ultra Accelerator Link Consortium (UALink). AMD works with partners to support an open ecosystem of multiple networking solutions including AMD networking products. This reference architecture document describes a wide range of networking topologies including fat tree and rail-based topologies.

Key Terms

The following table defines the key terms used in this document.

Table 1.1: Key Terms

Terminology	Description
AMDMI300 Series	 AMD Instinct[™] MI300X Platform AMD Instinct[™] MI325X Platform
Backend Network	Network forming the cluster with GPU NICs, also referred to as the scale-out network, backend scale- out network, and backside scale-out network. The NICs in this network are referred to as backend NICs.
Accelerator Network	Network connecting GPUs within a node in a mesh with Infinity Fabric™ links, also referred to as the scale- up network, backend scale-up network, and backside scale-up network. NICs are not used in the MI300 Series.
Frontend Network	Network with a different set of NICs (from the backend network), also referred to as the frontside network. Depending on the server design, this network can also support storage and in-band management operations. The NICs in this network are referred to as frontend NICs.

Chapter 2: Components of an MI300 Series Cluster

A cluster consists of several components:

- AMD MI300 Series Platform compute nodes,
- Network fabrics that are composed of at least three networks with NICs, switches and cables, and
- Software libraries, system and management components.

AMD MI300 Series Platform Compute Node

The AMD MI300 Series platform comprises eight OCP Accelerator Module (OAM) form-factor MI300 Series GPUs in a Universal Baseboard (UBB) 2.0 design. The following figure shows the air-cooled platform.

Figure 2.1: AMD MI300 Series Platform

A compute node consists of the AMD MI300 Series Platform together with CPUs, memory, and NIC devices. Specifications of the AMD MI300 Series reference compute node are given in the following table. Compute nodes with AMD MI300 Series platforms are available from select vendors (see <u>Vendor List for Cluster Networking</u>).

Component	Specification
CPU	2 x 4th-gen AMD EPYC Processors
GPU	8 x AMD Instinct™ MI300 Series Accelerators with AMD Universal Base Board (UBB 2.0)
Memory	Configurable; typical designs use 6 TB (24 x 256 GB DRAM) DDR5
Drives	NVMe SSDs; typical designs use 8-16 2.5-inch drives, 1-2 OS drives, high performance scratch drives
Networking	8 x PCIe 5.0 high-performance networking cards, 400 Gb Ethernet
Accelerator Interconnect	Incorporating the AMD Infinity Architecture platform with 128 GB/s bidirectional Infinity Fabric [™] bandwidth between each GPU for a peak aggregate bandwidth of 896 GB/s
Cooling	Air cooling or liquid cooling

Table 2.1: Compute	Node Reference	Design Specifications
Tuble Line Compare	noue nererence	Besign opeenieutions

Network Fabrics

Network fabrics are composed of at least three networks with NICs, switches and cables, as detailed in the following table. Several such components are listed in <u>Vendor List for Cluster Networking</u>.

Hardware Component	Description			
Backend scale-out Network	Fat-tree, or rail-optimized cluster topology with RDMA optimized Ethernet NICs and switches			
Accelerator Network	Infinity Fabric™ mesh interconnecting 8 GPUs in the Compute Node			
Storage Network (Frontend network)	Storage network topology connected through frontend NICs			

Table 2.2: Network Hardware Components (continued)

Hardware Component	Description		
In-band management network (Frontend network)	Management network connected through frontend NICs. Also provides services accessible by users.		
Out-of-band management network	Separate network with its own NICs connecting BMC		

Software Components

An MI300 Series Cluster requires the following software components.

Table 2.3: Software Components

Software Component	Description			
Data Center Management Software (RDC, SMI)	ROCm Data Center Tools and System Management Interface Libraries (see <u>Cluster Management with RDC</u> <u>and SMI Tools</u>)			
System Management	Software and user interface for system management of nodes			

Chapter 3: Design Requirements

AI/ML deployments have a wide range of cluster network scale requirements. The optimal system design should consider the node design, target NIC cards, switch capabilities, and target workloads to deliver required efficiency and performance.

This reference architecture provides a starting point with common usage models for AI/ML or High Performance Computing (HPC) workloads.

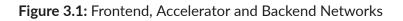
System Design

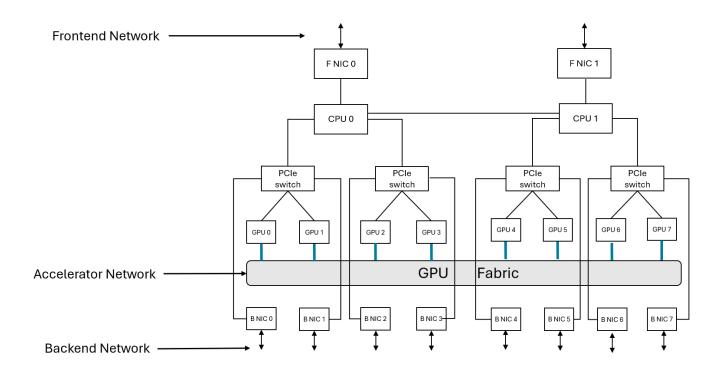
The following hardware system design components are recommended:

- Scalable cluster architecture based on a scalable unit of 32 compute nodes
- Datacenter racks may have 1, 4, 8 or 16 compute nodes. The specific number of nodes is influenced by rack power and cooling requirements.
- Supported Networking adapters (NICs) and switches from AMD and partners supporting up to 400 Gb/s
- Storage Networking components to support storage servers and storage network

The following software system design components are recommended:

- Cluster management software from AMD and partners
- System management software from AMD and partners


Compute Node


The compute node consists of eight MI300 Series GPUs interconnected by 4th gen AMD Infinity Fabric[™] Links. A typical compute node also includes dual-socket CPUs, memory, and NICs connected via two PCIe 5.0 switches.

Performance-optimized designs have a specific mapping of MI300 Series GPU to frontend NICs and backend NICs as illustrated in <u>Figure 3.1</u>. Each CPU has one directly connected frontend NIC, so there are a total of two frontend NICs per compute node. Each MI300 Series GPU has one backend NIC that is connected through the PCIe switch, so there are a total of eight backend NICs per compute node.

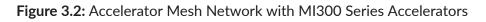
Frontend, Accelerator and Backend Networks

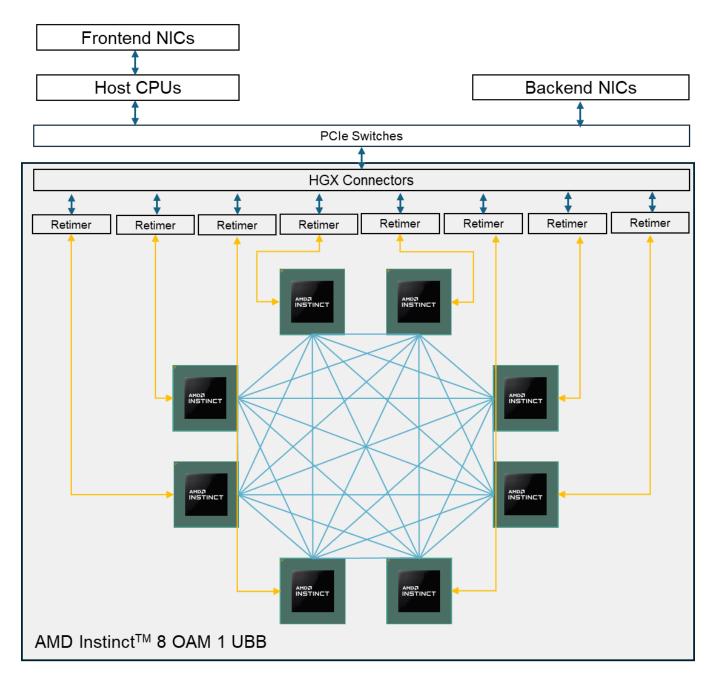
Cluster network fabric is composed of at least three networks, as illustrated in the following figure and discussed in the following subsections.

Frontend Network

The frontend network is the traditional datacenter network comprised of switches and network adapters (or NICs) which support storage and management functions.

Storage network (part of the frontend network):


- As language models grow, it is important to consider fault tolerance for hardware failures and software errors. Creating and storing checkpoints are essential for recovery and reducing JCT (job completion time). The storage fabric connects compute and storage servers.
- Independent of the backend network. RoCE is a prerequisite (RDMA over Converged Ethernet).
- If a separate network is designed, a different plane is ideal for storage needs.


In-band management network (part of frontend network):

- The in-band management fabric is used for node provisioning, data movements, SLURM, Kubernetes, and downloading from package repos such as pypi, docker repo, gcr.io, etc.
- Ethernet based, is used for provisioning of nodes and services that need to be accessed by users.
- If a separate network is designed by vendors, a 100 Gbps network is desirable.

Accelerator Network

The accelerator network is a high bandwidth, low latency network that connects a group of GPUs and supports load/store transactions between the GPUs, as shown in the following figure. In MI300 Series based designs, this network is Infinity Fabric[™] interconnecting 8 GPUs in a mesh topology within a compute node.

Backend Network

The backend network connects a bigger set of GPUs (that are beyond the set available within the accelerator or scale-up network). Each compute node has eight NICs with a 1:1 GPU:NIC ratio, utilizing a PCIe switch between the GPUs and NICs. RDMA communication using RoCE protocol, congestion management and the support for UEC defined transport layer improvements are essential in this network. Communication between GPUs in this network is enhanced by NICs supporting acceleration of collective operations.

This network is designed to be highly scalable:

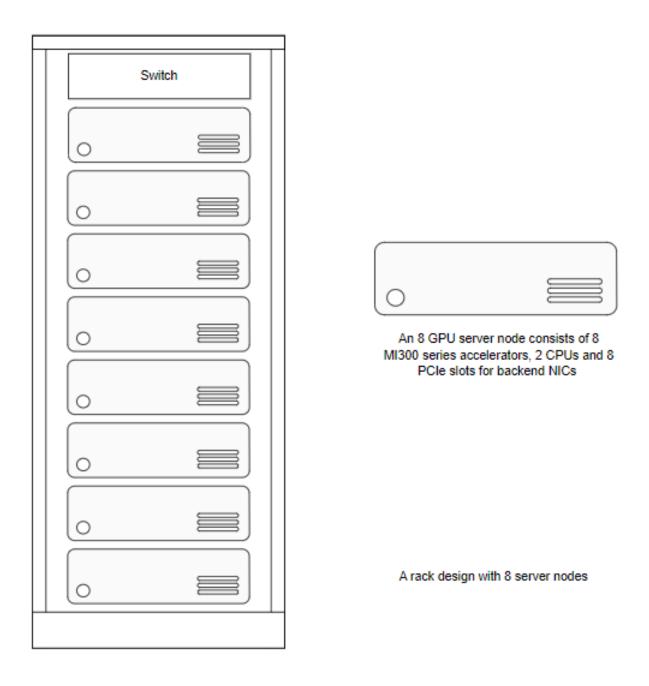
- The backend network topology can be either a fat tree or rail optimized.
- Ethernet switches form the 2- (leaf-spine) or 3-tier (leaf-spine-core) switching fabric.

NICs and switches:

- NICs connect compute nodes to the backend network through a set of switches in a well-defined topology.
- The number of required switches depends on the number of nodes in the cluster, the switch radix, and the cluster performance requirements.
- NICs and leaf (ToR) switches reside with the compute nodes in a rack.

Out-of-band Management Network

The out-of-band management fabric is a separate, slow-speed (usually 1-10 Gbps) network that connects to the management ports of all nodes, storage servers, racks and switches in the whole cluster. Within a node, it connects to the Baseboard Management Controller (BMC), which is used to change BIOS settings, monitor and set the node health such as fan speed, voltage levels, temperatures, etc. Users can interact with the BMC through IPMI or Redfish API, or through the BMC web portal.


System Management

For management and maintenance of a server, system vendors provide management software and interfaces that perform real-time health monitoring and management on each server, including firmware updates.

Chapter 4: Cluster Architecture

A cluster consists of a group of racks, each of which consists of a group of servers. These servers are placed in a rack with backend switches for the backend network. In MI300 Series systems these racks are designed with qualified vendors (see <u>Vendor List for Cluster Networking</u>). The rack layouts are scalable and adjustable to meet the data center requirements. The following figure is a reference rack layout consisting of either 4, 8 or 16 GPU server nodes, each with 8 MI300 Series GPUs.

Figure 4.1: Server and Rack Design with MI300 Series Accelerators

Node	GPU		Switch Count			Cable Count			
Count	Count	Leaf	Spine	Core	Total switches	Nodes- Leafs	Leafs- Spines	Spines- Cores	Total
128	1024	32	16	-	48	1024	1024	-	2048
256	2048	64	32	-	96	2048	2048	_	4096
512	4096	128	128	64	320	4096	4096	4096	12288
1024	8192	256	256	128	640	8192	8192	8192	24576
2048	16384	512	512	256	1280	16384	16384	16384	49152

Table 4.1: Component Count with 64 x 400G Switch

Table 4.2: Component Count with 128 x 400G Switch

Node GPU			Switch Count			Cable Count			
Count	Count	Leaf	Spine	Core	Total switches	Nodes- Leafs	Leafs- Spines	Spines- Cores	Total
128	1024	16	8	-	24	1024	1024	-	2048
256	2048	32	16	-	48	2048	2048	-	4096
512	4096	64	32	-	96	4096	4096	-	8192
1024	8192	128	64	-	192	8192	8192	_	16384
2048	16384	256	256	128	640	16384	16384	16384	49152

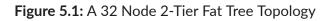
Chapter 5: Topology of Network Fabrics

A network fabric in a cluster design consists of the following fabrics:

- Compute fabric (backend network),
- Storage fabric (frontend network),
- In-band management fabric (frontend network), and
- Out-of-band management fabric.

Backend Network Topology

There are two topologies that will be discussed for the backend network: fat tree, and rail.

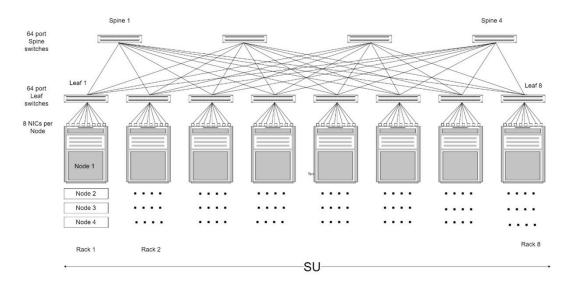

Consider the following when designing a network topology:

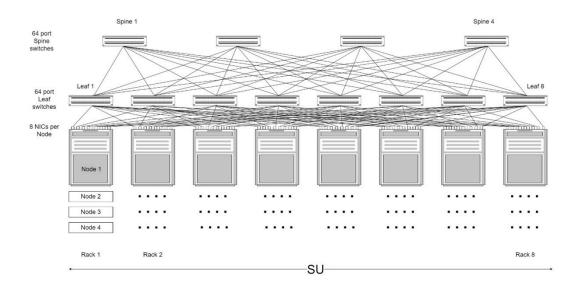
- Blocking factor: A switch has downlink and uplink ports; the blocking factor is defined as "downlink_port:uplink_port". For a 64-port switch using 32 uplink and 32 downlink ports, the blocking factor is 1:1. (A 1:1 blocking factor is defined as a non-blocking configuration).
- Undersubscription: A switch can have fewer downlink ports than uplink ports, for example a 64-port switch can have 24 downlink ports and 28 uplink ports, with 12 ports unused. This is referred to as 16% undersubscription. The safe approach is to have undersubscription (especially at higher switch tiers), but the cost effective approach is 1:1 which utilizes all switch ports.

Fat Tree Non-blocking Topology

A 2-tier fat-tree consists of 2 layers of leaf-spine switches (T1, T2), with the T1 (leaf) switches connected to the NICs in the backend network. All NICs of a node are connected to the same T1 switch. A third tier adds a T3 layer of switches.

The fat tree topology is a familiar scalable design; some networks may require undersubscription to mitigate ECMP hash collisions (with a blocking design). The following diagram and table illustrate a 2-tier Fat Tree non-blocking topology.




Table 5.1: Fat Tree 2-Tier with Switch Radix = 64 (non-blocking 32 downlink, 32 uplink)

GPUs, NICs (1:1)	Nodes	Leaf Switches	Spine Switches
32	4	1	0
64	8	2	1
128	16	4	2
256	32	8	4
512	64	16	8
1024	128	32	16
2048	256	64	32

Rail Topology

A 2-tier rail consists of 2 layers of leaf-spine switches (T1, T2), with the T1 (leaf) switches connected to the NICs in the backend network. Each NIC of a node is connected to one port of each T1 leaf switch. A 3rd tier adds a T3 layer of switches.

Rail topology benefits by containing traffic to rails, thereby minimizing probability of congestion. The communication libraries are dependent (aware) of the rail connections and the scale-up fabric. The following diagram and table illustrate a 2-tier rail topology.

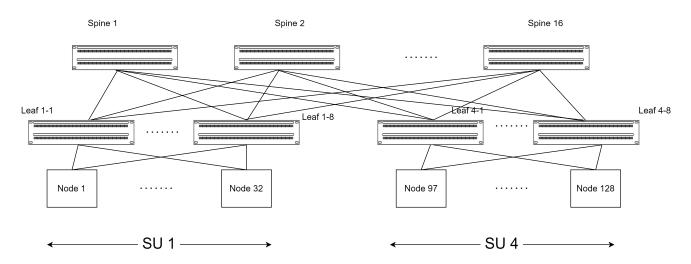


Figure 5.2: A 32 Node 2-Tier Rail Topology

GPUs, NICs (1:1)	Nodes	Leaf Switches	Spine Switches
256	32	8	4
512	64	16	8
768	96	24	12
1024	128	32	16
2048	256	64	32

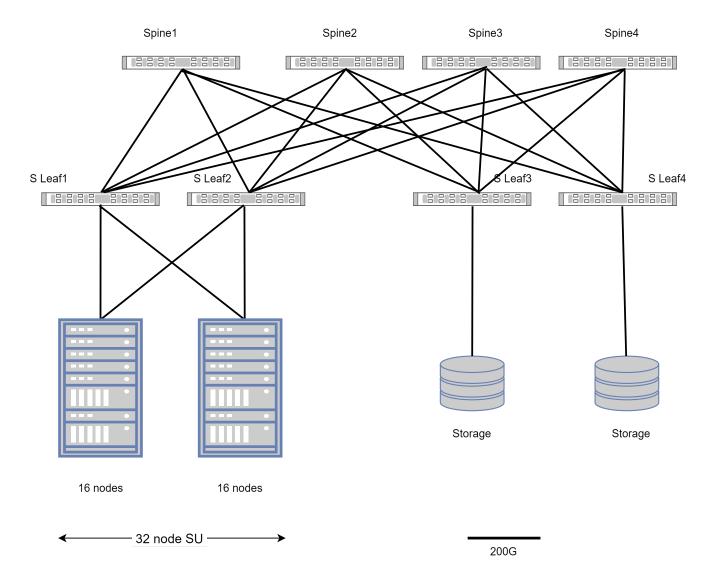
The following figure is of a full 128 node cluster (where the nodes are in rail layout). Within a rail, a node is one hop from the other node. The layout can also be a fat tree where all the links from a rack terminate in a leaf switch, with similar number of leafs and switches for the same number of scalable units.

Figure 5.3: Layout of a Full 128 Node Cluster with 64 Port Switches

To build larger clusters, refer to the following table. The maximum numbers of nodes are dependent on switches and topology.

Parameter Count	2 Tier Rail/Fat Tree (64 port, 400G)	3 Tier Rail/ Fat Tree (64 port, 400G)	2 Tier Rail/Fat Tree (128 port, 400G)	3 Tier Rail/Fat Tree (128 port, 400G)
Switch Radix	64	64	128	128
NICs per Node	8	8	8	8
Max Leaf Switches	64	2048	128	8192
Max Spine Switches	32	2048	64	8192
Max Core Switches		1024		4096
Max NICs	2048	65536	8192	524288
Max GPUs	2048	65536	8192	524288
Max Nodes	256	8192	1024	65536

Table 5.3: Maximum	Counts Based	on Radix and	Switch Tiers


Frontend Network Topology

The frontend network composed of Ethernet NICs in 1:1 NIC:CPU organizations carries the storage and in-band communications, if a separate fabric is not provided. The in-band management network connects the cluster management services.

As datasets for AI workloads continue to expand in size, it is becoming increasingly critical that GPUs are not constrained by the I/O network and storage systems. The storage fabric provides the path between

GPU memory and the storage systems. Storage systems can be connected by the frontend network, but benefit by a separate plane of storage network.

A separate optimized storage network as shown above provides benefits such as:

- Deep learning models accesses large datasets for training, a dedicated network provides frequent and iterative access to the data from the GPUs over the storage network.
- As datasets grow in size the capex and opex expenditures are kept separate from the compute needs.

Chapter 6: AMD Software Tools for Cluster Operation and Management

The AMD open-source ROCm software platform, containers for AI/ML and Data Center Infrastructure empowers the accelerated computing community to innovate on top of a robust, flexible stack designed for scalability. These components work in concert to extract the full potential of heterogeneous architectures. The platform's open-source philosophy gives developers complete visibility while enabling customization and co-development. Users can optimize the ROCm software platform runtimes, programming models and utilities based on their workloads and scale requirements.

The AMD software components, shown below, consists of a collection of drivers, development tools, and APIs that enable GPU programming from low-level kernels to end-user applications. The ROCm Data Center tools (RDC), and AMD SMI (System Management Interface) are essential building blocks in cluster management and datacenter operation.

Figure 6.1: Software Stack with AMD ROCm, Container, and Infrastructure Blocks

AI Models and Algorithms Pytorch TensorFlow ONNX	AI Ecosystem optimized for AMD
Workflow Orchestration and Job scheduling	Lamini, SLURM, Kubernetes
Cluster Management	Container Applications Redhat Openshift
Data Center Management	AMD ROCm ROCm-SMI ROCm Data Center Tool
Hardware	AMD MI300 series GPU

Cluster Management with RDC and SMI Tools

ROCm Data Center (RDC) enables GPU cluster administration with the capability of monitoring, validating and configuring policies. It enables full diagnostic and stress testing at cluster level. Administrators can use device monitoring, job statistics and error collection for a group of GPUs in a cluster and provides APIs for 3rd party integration. Full documentation and API reference are available at ROCm Data Center Tool documentation.

AMD System Managaement Interface (SMI) is a C library on linux providing user space interface to monitor and control AMD devices. The SMI libraries are available on <u>AMD SMI Github Repository</u>.

Appendix A: Vendor List for Cluster Networking

AMD InstinctTM Accelerator powered servers are available from our partners. A <u>complete catalog</u> of qualified servers are available from <u>AMD Instinct Solutions</u>.

Vendor	Link
AMD	Pensando™ Giglio DPU 200G
AMD	Pensando™ Pollara 400
AMD	Pensando [™] DSC3-400
Broadcom	Thor 2 400G
Broadcom	<u>Thor 200G</u>
NVIDIA	ConnectX®-7 400G

Table A.2: Switches in Backend Network

Vendor	Link
Arista	7060X6PE 51.2T Tomahawk 5
Arista	7060DX5-64S 25.6T Tomahawk 4
Arista	7800R4 Jericho 3 28.8T
Arista	 Distributed Etherlink Switch 7720R4-128PE (Ramon 102.T) 7700R4C-38PE (Jericho 3-Al 14.4T)
Cisco	<u>G200 51.2T</u>
Dell	Z9864F-ON 51.2T Tomahawk 5
Dell	Z9664F-ON 25.6T Tomahawk 4
Dell	Z9432F-ON Trident4-X11
Juniper	QFX5240-64OD 51.2T Tomahawk 5
Juniper	QFX5230-64CD 25.6T Tomahawk 4
Juniper	PTX10008/10016 28.8T Express5
Nokia	7220 IXR-H4 Tomahawk 4
Nokia	7250 X1b/X3b Jericho 2C+

Table A.2: Switches in Backend Network (continued)

Vendor	Link
Nokia	7250 IXR-6e/10e/18e Jericho 2C+/Jericho 3

Table A.3: Switches in Frontend Network

Vendor	Link
Arista	7060X6-32PE 25.6T Tomahawk 5
Arista	7060DX5-64S 25.6T Tomahawk 4
Arista	7280R3A (up to 21.6T) Jericho 2C+
Cisco	<u>G200 51.2T</u>
Dell	Z9864F-ON 51.2T Tomahawk 5
Dell	Z9664F-ON 25.6T Tomahawk 4
Dell	Z9432F-ON Trident4-X11
Juniper	QFX5130-32CD 25.6T Trident4
Juniper	QFX5220-32CD 12.8T Tomahawk 3
Nokia	7220 IXR-H4 Tomahawk 4
Nokia	7220 IXR-D5 Trident4

Table A.4: Switches in Storage Network

Vendor	Link
Arista	7050DX4-32S Trident4
Arista	7280R3A-72 (up to 21.6T) Jericho 2C+
Dell	S5232F-ON Trident3-X7
Juniper	QFX5230-64CD 25.6T Tomahawk 4
Juniper	QFX5220-32CD Tomahawk 3
Juniper	QFX5130-65CD Trident4
Nokia	7220 IXR-D5 Trident4
Nokia	7220 IXR-H4 Tomahawk 4
Nokia	7250 IXR-6e/10e/18e Jericho 2C+/Jericho 3

Table A.5: Switches in OOB Network

Vendor	Link
Arista	7010TX-48C Trident3
Dell	S3248T-ON Trident3-X3
Juniper	QFX5120 Trident3
Juniper	EX4400 Trident3
Nokia	7220 IXR-D2L/D3L Trident3
Nokia	7215 IXS-A1 Mrvl AC5X

Storage systems offer a high performance for data handling in AI workloads. Efficient storage systems allow GPUs to access data with low latency and prevent GPU stalls waiting for data completion. The following vendors offer storage systems in a cluster:

Table A.6: Storage Systems

Vendor	Link
AMD-Supermicro	WEKAIO Reference Storage
Dell	Powerscale
HPE	HPE Greenlake
IBM	IBM Storage Scale System

Table A.7: Validated Designs

Vendor	Link
Dell	Dell Validated Design
Juniper	Juniper Validated Design

Note: This table will be updated as additional validated designs are made available.

Appendix B: Acronyms

The acronyms used in this document are expanded in the following table.

Table B.1: Acronyms

Acronym	Definition	
AI	Artificial Intelligence	
API	Application Programming Interface	
BIOS	Basic Input/Output System	
BMC	Baseboard Management Controller	
CNP	Congestion Notification Packet	
CPU	Central Processing Unit	
DDR	Double Data Rate	
DNS	Domain Name System	
DRAM	Dynamic Random Access Memory	
ECMP	Equal Cost MultiPath	
GPU	Graphics Processing Unit	
HPC	High Performance Computing	
IP	Internet Protocol	
IPMI	Intelligent Platform Management Interface	
NIC	Network Interface Card	
NVMe	Non Volatile Memory Express	
OAM	OCP Accelerator Module	
OCP	Open Compute Project	
OOBM	Out Of Band Management Network	
OS	Operating System	
PCI	Peripheral Component Interconnect	
PCle	PCI Express	
RDC	ROCm Data Center	
RDMA	Remote Direct Memory Access	
RoCE	RDMA over Converged Ethernet	

Table B.1: Acronyms (continued)

Acronym	Definition
SMI	System Management Interface
SSD	Solid State Drive
ToR	Top of Rack
UALink	Ultra Accelerator Link Consortium
UBB	Universal Baseboard
UEC	Ultra Ethernet Consortium

Appendix C: Additional Resources and Legal Notices

Revision History

The following table shows the revision history for this document.

Revision Summary	
November 2024 Version 1.00	
Initial release.	
March 2025 Version 1.1	
 <u>Cluster Architecture</u>: Updated component counts in <u>Table 4.1</u> and <u>Table 4.2</u>. <u>Topology of Network Fabrics</u>: Updated <u>Table 5.2</u> with 2-tier rail. <u>Vendor List for Cluster Networking</u>: Updated vendor list and added <u>Table A.7</u>. 	
Minor non-technical edits throughout to comply with AMD standards.	

Notices

© Copyright 2025 Advanced Micro Devices, Inc.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED "AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.