
Advanced Micro Devices

AOCC User Guide

Publication # 57222 Revision # 4.0
Issue Date November 2022

Advanced Micro Devices

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

LLVM™ is a trademark of LLVM Foundation.

Microsoft, Windows, Windows Vista, Windows Server, Visual Studio, and DirectX are registered trademarks of Microsoft
Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Contents 3

AOCC User Guide57222 Rev. 4.0 November 2022

Contents

Revision History .6

Chapter 1 Introduction .7

Chapter 2 Programming Language Support .8

2.1 C, C++, AND FORTRAN Programming Languages .8

2.2 Compatibility/Conformance to Standards .9

2.2.1 Support for Annex F (IEEE-754/IEC 559) of C99/C1110

2.2.2 IEEE-754 Support .10

Chapter 3 Working with AOCC .11

3.1 Installing On Linux .11

3.1.1 Prerequisites .11

3.1.2 Installation .11

3.1.3 SPACK Support .12

3.1.4 Upgrading AMD LibM (ALM) .13

3.1.5 Supported Operating Systems (OS) .13

3.1.6 Known Issues and Limitations .13

3.2 Invoking AOCC .13

3.2.1 AOCC Optimizer .13

3.2.2 Using the Compiler .14

3.2.3 Libraries .14

Chapter 4 Using Pragma Directives .16

4.1 Flang .16

4.1.1 NOINLINE .16

4.1.2 FORCEINLINE .16

4.1.3 UNROLL .17

4.1.4 NOUNROLL .18

4.1.5 PREFETCH .18

4.1.6 Vectorization Pragmas .18

4.1.7 FREEFORM/NOFREEFORM .19

Chapter 5 Command-line Options .20

4 Contents

57222 Rev. 4.0 November 2022AOCC User Guide

5.1 Clang and Flang Options .20

5.1.1 Target Selection .20

5.1.2 Driver .20

5.2 Flang Options .21

5.3 Code Generation and Optimization Options .22

5.4 Deprecated Options .31

Chapter 6 Debuggability .32

6.1 OpenMP Debugging Support (OMPD) .32

6.2 OMPD Commands .32

6.3 OMPD Subcommands .33

Chapter 7 Diagnostics .34

7.1 AOCC Optimization Report (AOR) .34

Chapter 8 Support .35

Chapter 9 References .36

List of Tables 5

AOCC User Guide57222 Rev. 4.0 November 2022

List of Tables

Table 1. Prerequisites .11

Table 2. OMPD Commands .32

Table 3. OMPD Subcommands. .33

6 Revision History

57222 Rev. 4.0 November 2022AOCC User Guide

Revision History

Date Revision Description

November 2022 4.0 • Added Chapter 7.
• Included release specific updates and reorganized content.

December 2021 3.2 • Updated Chapter 5 with Flang sanitization command.
• Updated the Chapter 4 with (NO)FREEFORM pragma related information.

July 2021 3.1 Incremental updates and some major/general edits.
March 2021 3.0 Initial version.

Chapter 1 Introduction 7

AOCC User Guide57222 Rev. 4.0 November 2022

Chapter 1 Introduction

The AMD Optimizing C/C++ and Fortran Compiler (AOCC) is highly optimized for x86 targets,
especially for AMD “Zen”-based processors. This guide describes how to use AOCC.

AOCC 4.0 is based on the LLVMTM 14.0.6 compiler infrastructure (llvm.org, 24 June 2022) and
includes bug fixes and support for other new features. For more information, refer to AOCC 4.0
release notes.

8 Programming Language Support Chapter 2

57222 Rev. 4.0 November 2022AOCC User Guide

Chapter 2 Programming Language Support

AOCC is a high-performance x86 CPU compiler for C, C++, and Fortran programming languages. It
supports target-dependent (x86 targets especially AMD processors) and target-independent
optimizations.

AOCC leverages LLVM Clang for the compiler and driver for C and C++ programs. Flang is the
compiler and driver for Fortran programs. Clang supports 32 and 64-bit targets while Flang supports
only 64-bit targets.

2.1 C, C++, AND FORTRAN Programming Languages

AOCC Clang and AOCC Flang support the preprocessing, parsing, optimization, code generation,
assembly, and linking. Using these drivers, overall execution of other tools, such as the compiler,
assembler, and linker can be controlled depending on which high-level mode setting is passed. While
Clang and Flang are highly integrated, it is important to understand the stages of compilation. These
stages are executed in the following sequence:

1. Driver

Clang is not just a C and C++ front-end that compiles the program to LLVM intermediate
representation (IR). Clang is also the driver that ensures use of the required LLVM optimization
passes and targets code generation to generating the binaries.

Similar to Clang, Flang is the Fortran front-end compiler and consists of the following two
components:

– flang1: Invoked by the front-end driver responsible for transforming the Fortran programs into
tokens. The parser transforms these tokens into Abstract Syntax Tree (AST). The AST is then
transformed into canonical form that is used to generate the ILM code.

– flang2: Uses the ILM code from flang1 and transforms it into ILI that is then optimized by the
internal optimizer. The optimized ILI is then transformed into LLVM IR. Then, the front-end
driver transfers this LLVM IR to LLVM optimizer for optimization and target code generation.

For simplicity, you can use these Clang and Flang as an end-to-end driver. However, for advanced
compilation, you can manually execute each compilation phase.

2. Preprocessing

This stage handles the tokenization of the input source file, macro expansion, #include expansion,
and handling of the other preprocessor directives. The output of this stage is typically called a .i
(for C), .ii (for C++), or .i (for Fortran) file.

3. Parsing and Semantic Analysis

This stage parses the input file, translating the preprocessor tokens into a parse tree. When in the
form of a parse tree, it applies semantic analysis to the compute types for expressions and to
determine whether the code is well-formed. This stage is responsible for generating most of the

Chapter 2 Programming Language Support 9

AOCC User Guide57222 Rev. 4.0 November 2022

compiler warnings and parse errors. The output of this stage from Clang is an Abstract Syntax
Tree (AST). Using Flang, Flang1 will be invoked to transform the program tokens into AST, then
into canonical form- that is used to generate ILM code.

4. LLVM IR Code Generation

In Clang, this stage translates an AST into a Low-level Intermediate Code (LLVM IR)

Using Flang, Flang2 takes up the ILM code generated by Flang1 and transforms it into ILI, which
is then optimized by the internal optimizer and then transformed into LLVM IR.

5. AOCC Optimizer

This phase is responsible for optimizing the generated LLVM IR and handling the target-specific
code generation. The output of this stage is typically called a .s or an assembly file.

6. Machine Code Generation

This phase performs the target specific code generation from the optimized LLVM IR. The output
of this stage is typically called a .s or assembly file. Clang and Flang also support the use of an
integrated assembler from which the code generator produces object files directly. This avoids the
overhead of generating the .s file and then calling the target assembler.

7. Assembler

This stage runs the target assembler to translate the output of the compiler into a target object file.
The output of this stage is typically called a .o or object file.

8. Linker

This stage runs the target linker to merge multiple object files into an executable or dynamic
library. The output of this stage is typically called an a.out, .dylib, or .so file.

2.2 Compatibility/Conformance to Standards

AOCC supports the following language and debugging standards:

• C: C99, C11, and C17 standards

• C++: C++ 98, C++ 03, C++ 11, C++ 17, and C++ 20 standard1

• Fortran: F77, F90, F95, F2003, and F2008 standards2

• OMP 4.5 and OMP 5.0 standards for C/C++ programming3

• OMP 4.5 standards for Fortran programming

• DWARF 5 standards for C, C++, and Fortran debuggability

1. Refer https://clang.llvm.org/cxx_status.html#cxx20 for C++ 20 conformance.
2. AOCC does not support F2008 coarrays.
3. Refer https://releases.llvm.org/13.0.0/tools/clang/docs/OpenMPSupport.html#openmp-implementation-

details for OpenMP 5.0 conformance.

https://clang.llvm.org/cxx_status.html#cxx20 for C++ 20
https://releases.llvm.org/13.0.0/tools/clang/docs/OpenMPSupport.html#openmp-implementation-details

10 Programming Language Support Chapter 2

57222 Rev. 4.0 November 2022AOCC User Guide

2.2.1 Support for Annex F (IEEE-754/IEC 559) of C99/C11

Clang compiler does not support IEC 559 math functionality. Clang does not control and honor the
definition of __STDC_IEC_559__ macro. Under specific options, such as -Ofast and -ffast-math,
Clang will enable a range of optimizations that provide faster mathematical operations that may not
conform to the IEEE-754 specifications. The macro __STDC_IEC_559__ value may be defined but
ignored when these faster optimizations are enabled.

2.2.2 IEEE-754 Support

The Flang compiler does not conform to IEEE-754 specifications when -Ofast or -ffast-math options
are specified. The compiler will enable a range of optimizations that provide faster mathematical
operations under -Ofast and -ffast-math mode of compilation.

Note: AOCC Flang extends the GitHub version (https://github.com/flang-compiler/flang.git) with
enhancements and stability.

https://github.com/flang-compiler/flang.git

Chapter 3 Working with AOCC 11

AOCC User Guide57222 Rev. 4.0 November 2022

Chapter 3 Working with AOCC

3.1 Installing On Linux

3.1.1 Prerequisites

The following software packages must be installed prior to the AOCC installation:

Notes:
1. For a better performance, it is recommended to use the latest versions of Glibc and Binutils.

2. AOCC compiler binaries are suitable only for the Linux® systems having Glibc version 2.17
or later.

3.1.2 Installation

Note: This installation does not require root or sudo permission.

To install aocc-compiler-<ver>.tar, execute the following commands:

1. cd <compdir>

2. tar -xvf aocc-compiler-<ver>.tar

3. cd aocc-compiler-<ver>

4. bash install.sh

It will install the compiler and display the AOCC setup instructions.

5. source <compdir>/setenv_AOCC.sh

This will setup the shell environment for using AOCC C, C++, and Fortran compiler where the
command is executed.

Table 1. Prerequisites
Package Name Version(s) Notes

libstdc++ 6 or later GNU Standard C++ Library V3
libncurses-dev 5.9 or later Provides libtinfo, which is a low level terminfo library
zlib 1.2.7 or later Compression library
Libxml2 2 or later Parses the XML documents
libquadmath 4.8 or later GCC Quad-Precision Math Library
python 3.x Python library

12 Working with AOCC Chapter 3

57222 Rev. 4.0 November 2022AOCC User Guide

You must ensure the following:

• Run the bash command <compdir>/aocc-compiler-<ver>/AOCC-prerequisites-check.sh to check if
you have all the prerequisites and your shell environment is configured correctly.

– If there are failing checks, correct them (repeat any of the above steps that you may have missed)
and run prerequisites_check.sh again.

– Repeat until AOCC-prerequisites-check.sh displays Check:PASSED.
Note: You could proceed if the packages mentioned in the warnings during the failing checks

are not required for your run.

• The compiler is installed and your environment is configured to the current release of AOCC. At
any point, you can execute the command source <compdir>/setenv_AOCC.sh to set the environment
variables for the installed compiler.

3.1.3 SPACK Support

Notes:
1. SPACK support is available starting from AOCC 2.2.

2. In the following steps, <Version Number> in aocc@<Version Number> implies the AOCC
version. For example, if you are installing AOCC 4.0.0, you must use aocc@4.0.0.

Installing AOCC in SPACK

Complete the following steps to installing AOCC compiler in SPACK:

1. Install AOCC:

2. Add AOCC to the SPACK compiler list:

3. List all the available compilers:

Uninstalling AOCC Compiler from SPACK

1. Uninstall AOCC:

2. Remove the compiler from the compiler.yaml file:

For more details on AOCC in SPACK, refer AMD Developer Central (https://developer.amd.com/
spack/amd-optimized-c-cpp-compiler/).

$ spack install -v aocc@<Version Number> +license-agreed

$ spack cd -i aocc@<Version Number>
$ spack compiler add $PWD
$ spack cd -i aocc@<Version Number>
$ spack compiler add $PWD

$ spack compilers

$ spack uninstall aocc@<Version Number>

$ spack compiler remove aocc@<Version Number>

https://developer.amd.com/spack/amd-optimized-c-cpp-compiler/
https://developer.amd.com/spack/amd-optimized-c-cpp-compiler/

Chapter 3 Working with AOCC 13

AOCC User Guide57222 Rev. 4.0 November 2022

3.1.4 Upgrading AMD LibM (ALM)

This is required only when you are upgrading AMD LibM from the AMD portal (https://
developer.amd.com/amd-aocl/).

Complete the following steps to perform an upgrade:

1. Extract the latest AMD LibM package.

2. Overwrite aocc-compiler-<ver>/lib/libalm.so and aocc-compiler-<ver>/lib/libalm.a with the
latest versions of libalm.so and libalm.a respectively.

3. Similarly, overwrite aocc-compiler-<ver>/include/amdlibm.h and amdlibm_vec.h with the latest
versions of amdlibm.h and amdlibm_vec.h respectively.

3.1.5 Supported Operating Systems (OS)

The following OS are supported in this release:

• RHEL 8.6 and 9.0

• SLES 15 SP3

• Ubuntu 22.04 LTS

• CentOS 8

• Other Linux flavors/versions with glibc 2.17 or higher

3.1.6 Known Issues and Limitations

This release has the following known issues and limitations:

• AOCC binaries can run optimally only on Linux systems having glibc version 2.17 or later.

• Currently, Flang supports only 64-bit targets.

3.2 Invoking AOCC

To set the required environment before invoking compiler driver:

3.2.1 AOCC Optimizer

AOCC includes many optimizations for independent and dependent targets. Specific optimizations
are made default when you use an optimization level O3 and above. You can read more about these in
the command line option section. Some optimizations need a whole program analysis and are enabled
under Link Time Optimization (LTO) using -flto. The AOCC preferred linker is LLD. Refer the
section LLD Linker for using LLD in the complier driver.

$ source <compdir>/setenv_AOCC.sh

14 Working with AOCC Chapter 3

57222 Rev. 4.0 November 2022AOCC User Guide

3.2.2 Using the Compiler

3.2.2.1 Clang and Clang++

To build and run a C or C++ program, execute the following commands:

3.2.2.2 Flang

To build and run Fortran programs, execute the following commands:

3.2.2.3 LLD Linker

To use an LLD linker, execute the following commands:

3.2.3 Libraries

Some applications may perform better using the AMD Optimizing CPU Libraries (AOCL). AOCC
will work seamlessly with these libraries. It is recommended that you evaluate these libraries while
building your application with AOCC. For more information on AMD Optimizing CPU Libraries
(AOCL), refer AMD Developer Central (https://developer.amd.com/amd-aocl/).

3.2.3.1 Configuring Library Path

Execute the following commands to configure the library path:

• For 64-bit Library:

• For 32-bit Library:

• For other AMD optimizing CPU libraries

$ clang [command line flags] xyz.c -o xyz.out
$./xyz.out

$ clang++ [command line flags] xyz.cpp -o xyz.out
$./xyz.out

$ flang [command line flags] xyz.f90 -o xyz.out
$./xyz.out

$ clang [command line flags] -fuse-ld=lld xyz.c abc.c -o xyz.out [here -fuse-ld=lld is optional
as this option is default]
$./xyz.out

export LD_LIBRARY_PATH=<compdir>/aocc-compiler-<ver>/lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=<compdir>/aocc-compiler-<ver>/lib32:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=<Path to AMD optimizing CPU Libraries>:$LD_LIBRARY_PATH

https://developer.amd.com/amd-aocl/

Chapter 3 Working with AOCC 15

AOCC User Guide57222 Rev. 4.0 November 2022

3.2.3.2 Linking AMD Library

AMDLIBM

Execute the following command to link AMDLIBM with the linker:

Execute the following command to link other AMD optimizing CPU libraries with linker:

AMD Vector Library

Execute one of the following commands to link the vector library calls from AOCC:

AMD FASTMATHLibrary

-fsclrlib=AMDLIBM with -Ofast enables the use of the fastmath functions from amdlibm. Linking
may fail with undefined symbols if the correct library is not used for linking.

Execute the following command to link AMDLIBMFAST with the linker:

amdalloc

amdalloc is AMD's memory allocator based on jemalloc. Two versions of amdalloc, namely amdalloc
and amdalloc-ext are available in the AOCC binary package. amdalloc-ext is tuned for workloads that
use smaller allocation sizes.

Execute the following command to link amdalloc with the linker:

$ clang [command line flags] xyz.c -L<compdir>/aocc-compiler-<ver>/lib -lamdlibm -lm -o xyz.out

$ clang [command line flags] xyz.c -L<Path to AMD optimizing CPU Libraries> -l<library name> -o
xyz.out

$ clang [command line flags] xyz.c -lamdlibm -fveclib=AMDLIBM -lm -o xyz.out
$ clang [command line flags] xyz.c -lamdlibm -mllvm -vector-library=AMDLIBM -lm -o xyz.out

$clang -Ofast [other command line flags] xyz.c -lamdlibm -fsclrlib=AMDLIBM -lamdlibmfast -lm -
o xyz.out

$ clang [command line flags] xyz.c -L<Path to AMD optimizing CPU Libraries> -lamdalloc -o
xyz.out

16 Using Pragma Directives Chapter 4

57222 Rev. 4.0 November 2022AOCC User Guide

Chapter 4 Using Pragma Directives

4.1 Flang

Following are the pragma directives specific only to Flang:

4.1.1 NOINLINE

This directive instructs the compiler not to inline the specified routine.

!DIR$ NOINLINE
To use this directive, compiler optimization level should be in -O0 to -O3. The NOINLINE directive
overrides the compiler options -finline-functions and -fno-inline-functions.

Example:

4.1.2 FORCEINLINE

This directive instructs compiler to always inline the specified routine

!DIR$ FORCEINLINE
To use this directive, compiler optimization level should be in -O0 to -O3. The FORCEINLINE
directive overrides the compiler options -finline-functions and -fno-inline-functions.

!DIR$ NOINLINE
SUBROUTINE func_noinline
 INTEGER :: i
 do i = 0, 5
 WRITE(*, *) "Hello World"
 end do
END SUBROUTINE func_noinline

PROGRAM test_inline
 IMPLICIT NONE
 call func_noinline
END PROGRAM test_inline

Chapter 4 Using Pragma Directives 17

AOCC User Guide57222 Rev. 4.0 November 2022

Example:

4.1.3 UNROLL

This directive instructs the compiler about the number of times the loop should be unrolled.

!DIR$ UNROLL [(n)]

• n – optional parameter, integer constant ranges from 1 - 512

• When n equals 0, compiler will decide if unrolling should happen or not

To use this directive, compiler optimization level should be -O1 or above.

If n is specified, the optimizer unrolls the loop by n times.

If n is not specified or out of range, the optimizer unrolls the loop based on profitability.

Example:

!DIR$ FORCEINLINE
SUBROUTINE func_forceinline
 INTEGER :: i
 do i = 0, 5
 WRITE(*, *) "Hello World"
 end do
END SUBROUTINE func_forceinline

PROGRAM test_inline
 IMPLICIT NONE
 call func_forceinline
END PROGRAM test_inline

Example 1:
subroutine func1(a, b)
 integer :: m = 10
 integer :: i, a(m), b(m)

 !dir$ unroll
 do i = 1, m
 b(i) = a(i) + 1
 end do
end subroutine func1

Example 2:
subroutine func2(m, a, b)
 integer :: i, m, a(m), b(m)

 !dir$ unroll(4)
 do i = 1, m
 b(i) = a(i) + 1
 end do
end subroutine func2

18 Using Pragma Directives Chapter 4

57222 Rev. 4.0 November 2022AOCC User Guide

4.1.4 NOUNROLL

This directive disables unroll of the loop before which it has been used and is the opposite of
UNROLL.

!DIR$ NOUNROLL

Example:

4.1.5 PREFETCH

This directive is used to insert a hint in the code generator to prefetch instruction for memory
references, wherever supported. This allows a better performance in the characteristics of the code.
For more information, refer LLVM documentation (https://llvm.org/docs/LangRef.html#llvm-
prefetch-intrinsic).

!$MEM PREFETCH

Constraints: To enable this directive, compiler optimization level should be in -O0 to -O3.

Example:

4.1.6 Vectorization Pragmas

The compiler directives to control the loop vectorizations are:

• !DIR$ VECTOR

• !DIR$ NOVECTOR

• !DIR$ VECTOR ALWAYS

For these pragmas to be applicable, the optimization levels should be in -O1 to -O3.

subroutine func1(a, b)
 integer :: m = 10
 integer :: i, a(m), b(m)

 !dir$ nounroll
 do i = 1, m
 b(i) = a(i) + 1
 end do
end subroutine func1

subroutine prefetch_dir(a1, a2)
 integer :: a1(4096)
 integer :: a2(4096)

 do i = 128, (4096 - 128)
 !$mem prefetch a1, a2(i + 256)
 a1(i) = a2(i - 127) + a2(i + 127)
 end do
end subroutine prefetch_dir

https://llvm.org/docs/LangRef.html#llvm-prefetch-intrinsic
https://llvm.org/docs/LangRef.html#llvm-prefetch-intrinsic

Chapter 4 Using Pragma Directives 19

AOCC User Guide57222 Rev. 4.0 November 2022

-Menable-vectorize-pragmas introduced in AOCC 3.1 (to control the vectorization pragmas) is
deprecated in AOCC 3.2.

4.1.7 FREEFORM/NOFREEFORM

FREEFORM makes the compiler compile the source in free-form format, while NOFREEFORM
directs to compile in a fixed-form format. They are applied to the rest of the file in which they are
mentioned, but the directive is reverted if the compiler finds the opposite directive in the same file.

Example:
!DIR$ FREEFORM
! This is free-form
temp = a; a = b; b = temp ! Swap a and b
write(6,*) 'Swapped a and b values are =', &
 a,b ! Print a and b
!DIR$ NOFREEFORM
C---This-is-fixed-form

20 Command-line Options Chapter 5

57222 Rev. 4.0 November 2022AOCC User Guide

Chapter 5 Command-line Options

5.1 Clang and Flang Options

5.1.1 Target Selection

Following is the list of all the target selection options:

• -march=<cpu>

Enables Clang/Flang to generate code for a specific processor of a family. For example, if you
specify -march=znver1, the compiler can generate instructions that are valid on AMD 17h and later
processors.

• -march=znver1

Use this architecture option for enabling the best code generation and tuning for AMD “Zen”-
based x86 architecture. All the x86 AMD “Zen” ISA and associated intrinsic are supported.

• -march=znver2

Use this architecture option for enabling the best code generation and tuning for AMD “Zen2”-
based x86 architecture. All x86 AMD “Zen2” ISA and associated intrinsic are supported.

• -march=znver3

Use this architecture option for enabling best code generation and tuning for AMD “Zen3”-based
x86 architecture. All x86 AMD “Zen3” ISA and associated intrinsic are supported.

• -march=znver4

Use this architecture option for enabling best code generation and tuning for AMD “Zen4”-based
x86 architecture. All x86 AMD “Zen4” ISA and associated intrinsic are supported.

5.1.2 Driver

• -mllvm <options>

Need to provide -mllvm, so that, the option can pass through the compiler front end and is applied
on the optimizer where this optimization is implemented.

For example, -mllvm -enable-strided-vectorization

• -fuse-ld=lld

To invoke lld linker from compiler driver as it is the preferred linker.

Note: For more information on the Clang options, refer Clang Documentation (https://
releases.llvm.org/14.0.0/tools/clang/docs/ClangCommandLineReference.html).

https://releases.llvm.org/14.0.0/tools/clang/docs/ClangCommandLineReference.html

Chapter 5 Command-line Options 21

AOCC User Guide57222 Rev. 4.0 November 2022

5.2 Flang Options

For a list of compiler options, use the following commands:

The Flang compiler supports all the Clang compiler options (http://clang.llvm.org/docs/
CommandGuide/clang.html) and the following Flang-specific compiler options:
• -Kieee

It is enabled by default from AOCC 2.2.0.

It instructs the compiler to conform to the IEEE-754 specifications. The compiler will perform
floating-point operations in strict conformance with the IEEE 754 standard. Some optimizations
are disabled when this option is specified.

• -no-flang-libs

Do not link against Flang libraries.
• -mp

Enable OpenMP and link with OpenMP library libomp.
• -nomp

Do not link with OpenMP library libomp.
• -Mbackslash

Treat backslash character like a c-style escape character.
• -Mnobackslash

Treat backslash like any other character.
• -Mbyteswapio

Swap byte-order for unformatted input/output.
• -Mfixed

Assume fixed-format source.
• -Mextend

Allow source lines up to 132 characters.
• -Mfreeform

Assume free-format source.
• -Mpreprocess

Run preprocessor for Fortran files.
• -Mstandard

Check standard conformance.
• -Msave

Assume all variables have SAVE attribute.

$flang -help
$flang --help-hidden

http://clang.llvm.org/docs/CommandGuide/clang.html

22 Command-line Options Chapter 5

57222 Rev. 4.0 November 2022AOCC User Guide

• -module

Path to module file (-I also works).
• -Mallocatable=95

Select Fortran 95 semantics for assignments to allocatable objects (default).
• -Mallocatable=03

Select Fortran 03 semantics for assignments to allocatable objects.
• -static-flang-libs

Link using static Flang libraries.
• -M[no]daz

Treat denormalized numbers as zero.
• -M[no]flushz

Set SSE to flush-to-zero mode.
• -Mcache_align

Align large objects on cache-line boundaries.
• -M[no]fprelaxed

This option is ignored.
• -fdefault-integer-8

Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.
• -fdefault-real-8

Treat REAL as REAL*8.
• -i8

Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.
• -r8

Treat REAL as REAL*8.
• -fno-fortran-main

Do not link in Fortran main.
• -Mrecursive

Allocate local variables on the stack; thus, allowing recursion. SAVEd, data-initialized, or
namelist members are always allocated statically, regardless of the setting of this switch.

5.3 Code Generation and Optimization Options

Both Clang and Flang rely on AOCC optimizer and code generator stages to transform the LLVM IR
and generate the best code for the target x86 platform.

Chapter 5 Command-line Options 23

AOCC User Guide57222 Rev. 4.0 November 2022

Following is the list of optimization options categorized by type:

Optimization Level Options

• -O0 (default)

No optimization: this level compiles the fastest and generates the most debuggable code.

• -O1

Between the levels -O0 and -O2.

• -O2

Enables most optimizations.

• -O3

Enables all optimizations, which take longer to perform or may generate larger code (in an
attempt to make the program run faster).

The -O3 level in AOCC has more optimizations than the base LLVM version. These
optimizations include improved handling of indirect calls and advanced vectorization.

• -Ofast

Enables all the optimizations from -O3 along with other aggressive optimizations that may violate
strict compliance with language standards.

The -Ofast level in AOCC has more optimizations than the base LLVM version. These
optimizations include partial unswitching, improvements to inlining, and unrolling.

• -Os

Similar to the level -O2, but with extra optimizations to reduce the code size.

• -Oz

Similar to the level -Os (and thus, -O2), but reduces the code size further.

• -O

Equivalent to the level -O1.

• -O4 and higher

Equivalent to the level -O3.

• -zopt

Enables the subset of scalar, vector, and loop transformations including improved variants of loop
invariant code motion, SLP and loop vectorizations, loop-fusion, loop-interchange, loop-
unswitch, loop tiling, and loop distribution

24 Command-line Options Chapter 5

57222 Rev. 4.0 November 2022AOCC User Guide

Vector Optimization Options
• -enable-strided-vectorization

Enables strided memory vectorization as an enhancement to the interleaved vectorization
framework present in LLVM. It enables the effective use of gather/scatter instruction patterns.
This option must be used along with the interleave vectorization option.

Usage: -mllvm -enable-strided-vectorization

• -global-vectorize-slp={true,false}

Vectorizes the straight-line code inside a basic block with data reordering vector operations. This
option is set to false by default.

Usage: -mllvm -global-vectorize-slp={true,false}

• -region-vectorize

Enables vectorization on certain loops with complex control flow which the normal vectorizer
cannot handle.

Usage: -Wl,-mllvm -Wl,-region-vectorize

• -enable-loop-vectorization-with-conditions

Enables efficient vectorization of loops with conditions by conditionally executing the vector
instructions as opposed to flattening the loop body and vectorizing. The vectorized code uses
vector versions of compare instructions to guard the instructions in the loop body and uses
masked instructions to guard against unsafe memory operations. By default, this option is enabled
under O3.

Usage: -mllvm -enable-loop-vectorization-with-conditions

• -legalize-vector-library-calls

Splits up the unsupported higher vector factor version of vector library calls into supported vector
factor version of vector library calls for enabling vectorization. By default, this option is enabled
under O3.

Usage: -mllvm -legalize-vector-library-calls

• -vectorize-non-contiguous-memory-aggressively

Enables vectorization involving non-contiguous memory locations by generating multiple loads/
stores and inserts. By default, this option is enabled under O3.

Usage: -mllvm -vectorize-non-contiguous-memory-aggressively

• -fvector-transform

Enables the subset of vector transformations including improved variants of SLP and loop
vectorization. It is enabled under -zopt.

Usage: -fvector-transform

Chapter 5 Command-line Options 25

AOCC User Guide57222 Rev. 4.0 November 2022

• -fepilog-vectorization-of-inductions

Enables epilog vectorization of loops that require vectorization of loop induction variables.

Usage: -fepilog-vectorization-of-inductions

Loop Optimization Options
• -enable-partial-unswitch

Enables partial loop un-switching, which is an enhancement to the existing loop unswitching
optimization in LLVM. Partial loop un-switching hoists a condition inside a loop from a path for
which the execution condition remains invariant, whereas the original loop un-switching works
for a condition that is completely loop invariant. The condition inside the loop gets hoisted out
from the invariant path and original loop is retained for the path where condition is variant.

Usage: -mllvm -enable-partial-unswitch

• -aggressive-loop-unswitch

Enables aggressive loop unswitching heuristic (including -mllvm -enable-partial-unswitch) based
on the usage of the branch conditional values. Loop unswitching leads to code-bloat. Code-bloat
can be minimized if the hoisted condition is executed more often. This heuristic prioritizes the
conditions based on the number of times they are used within the loop. The heuristic can be
controlled with the option -unswitch-identical-branches-min-count=<n>.

Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in
at least <n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. The
default value is 3.

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-min-count=<n>

Where, n is a positive integer and lower value of <n> facilitates more unswitching.

• -lv-function-specialization

Generates specialized function versions when the loops inside function are vectorizable and the
arguments are not aliased with each other.

Usage: -mllvm -lv-function-specialization

• -loop-splitting

Enables splitting of loops into multiple loops to eliminate the branches, which compare the loop
induction with an invariant or constant expression. By default, this option is enabled under -O3.
To disable this optimization, use -loop-splitting=false.

Usage: -mllvm -loop-splitting

• -enable-ipo-loop-split

Enables splitting of loops into multiple loops to eliminate the branches, which compares the loop
induction with a constant expression. This constant expression can be derived through inter-

26 Command-line Options Chapter 5

57222 Rev. 4.0 November 2022AOCC User Guide

procedural analysis. By default, this option is enabled under -O3 . To disable this optimization,
use -enable-ipo-loop-split=false.

Usage: -mllvm -enable-ipo-loop-split
• -enable-loop-fusion

This option enables the classical loop fusion transformation where the bodies of multiple loop
nests are fused into one loop nest. The transformation checks various legality criteria involving
the bounds of the loop nests involved, the control flow nesting of the loop nests and so on. The
transformation is off by default and may be enabled by the user by using this option. Loop fusion
enables reuse of memory access operations across the loop nests and is also beneficial for cache
performance. As part of the profitability check for this transformation it uses code size thresholds
which control the size of the fused loop body created.

Usage: -mllvm -enable-loop-fusion
• -enable-loopinterchange

This option enables the classical loop interchange or loop permutation transformation on a loop
nest. It reorders the loops in a multi-dimensional loop nest, checking for various legality criteria
in the process. The transformation is off by default and may be enabled by using this option. Loop
interchange tries to find a reordering of the loops in a multi-dimensional loop nest such that the
number of loop invariant expressions that may be hoisted out from an inner loop to a loop at a
higher level may be maximized.

Usage: -mllvm -enable-loopinterchange

• -fuse-tile-inner-loop

Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to
false by default.

Usage: -mllvm -fuse-tile-inner-loop

• -enable-loop-distribute-adv

Enables advanced loop distribution which improves loop vectorization by separating out the
portions of the loop affecting vectorization. This flag is disabled by default.

Usage: -mllvm -enable-loop-distribute-adv

• -floop-transform

Enables the subset of loop transformations including improved variants of loop-fusion, loop-
interchange, loop blocking, and distribution. It is enabled under -zopt.

Usage: -floop-transform

• -faggressive-loop-transform

Enables the subset of loop transformations including improved variants of loop unswitching,
loop-tiling, and loop versioning licm. It is enabled under -zopt.

Usage: -faggressive-loop-transform

Chapter 5 Command-line Options 27

AOCC User Guide57222 Rev. 4.0 November 2022

• -fstrip-mining

Enables loop strip mining optimization. This optimization breaks a large loop into smaller
segments or strips to improve temporal and spatial locality. This option should be invoked with -
flto.

Usage: -flto -fstrip-mining

• -ldist-scalar-expand

Enables loop distribution with scalar expansion for better vectorization and it can be invoked as -
Wl,-mllvm -Wl,-ldist-scalar-expand.

Usage: -Wl,-mllvm -Wl,-ldist-scalar-expand

Math Options

-convert-pow-exp-to-int={true,false}

Converts the call to floating point exponent version of pow to its integer exponent version if the
floating-point exponent can be converted to integer. This option is set to true by default.

Usage: -mllvm -convert-pow-exp-to-int={true, false}

Inline Optimization Options
• -finline-aggressive

Enables improved inlining capability through better heuristics. This optimization is more
effective when using with -flto as the whole program analysis is required to perform this
optimization, which can be invoked as -flto -finline-aggressive.

Usage: -finline-aggressive

• -inline-recursion=[1,2,3,4]

Enables inlining for recursive functions based on heuristics with level 4 being most aggressive.
The default level will be 2. Higher levels may lead to code-bloat due to expansion of recursive
functions at call sites.

– For level 1-2: Enables inlining for recursive functions using heuristics with inline depth 1. Level
2 uses more aggressive heuristics.

– For level 3: Enables inlining for all recursive functions with inline depth 1.
– For level 4: Enables inlining for all recursive function with inline depth 10.
This is more effective with -flto as the whole program analysis is required to perform this
optimization.

Usage: -flto -finline-recursion=[1,2,3,4]

Memory Layout Optimization Options

• -fstruct-layout={1,2,3,4,5,6,7,8,9}

Analyzes the whole program to determine if the structures in the code can be peeled,if dead or
redundant fields can be deleted, and if the pointer or integer fields in the structure can be

28 Command-line Options Chapter 5

57222 Rev. 4.0 November 2022AOCC User Guide

compressed. If feasible, this optimization transforms the code to enable these improvements. This
transformation is likely to improve cache utilization and memory bandwidth. It is expected to
improve the scalability of programs executed on multiple cores.

This is effective only under -flto as the whole program analysis is required to perform this
optimization. You can choose different levels of aggressiveness with which this optimization can
be applied to your application; with 1 being the least aggressive and 7 being the most aggressive
level.

– -fstruct-layout=0 disables structure peeling (default).
– -fstruct-layout=1 enables structure peeling.
– -fstruct-layout=2 enables structure peeling and selectively compresses self-referential pointers

in these structures to 32-bit pointers, wherever safe.
– -fstruct-layout=3 enables structure peeling and selectively compresses self-referential pointers

in these structures to 16-bit pointers, wherever safe.
– -fstruct-layout=4 enables structure peeling, pointer compression as in level 2 and further enables

compression of structure fields that are of 64-bit to 32-bit integer type. This is performed under
a strict safety check.

– -fstruct-layout=5 enables structure peeling, pointer compression as in level 3 and further enables
compression of structure fields that are of 64-bit to 32-bit integer type. This is performed under
a strict safety check.

– -fstruct-layout=6 enables structure peeling, pointer compression as in level 2 and further enables
compression of structure fields that are of 64-bit to 32-bit integer type. This is performed under
a strict safety check.

– -fstruct-layout=7 enables structure peeling, pointer compression as in level 3 and further enables
compression of structure fields that are of 64-bit to 16-bit integer type.

– -fstruct-layout=8 enables structure peeling, pointer compression, 64-bit integer type
compression as in level 6 and creates optimal ordering of peeled structure fields that could
improve runtime performance.

– -fstruct-layout=9 enables structure peeling, pointer compression, 64-bit integer type
compression as in level 7 and creates optimal ordering of peeled structure fields that could
improve runtime performance.

Usage: -flto -fstruct-layout={1,2,3,4,5,6,7,8,9}

Notes:
1. -fstruct-layout=4 and -fstruct-layout=5 are derived from -fstruct-layout=2 and -fstruct-

layout=3 respectively, with the added feature of safe compression of 64-bit to 32-bit integer
fields in structures. Going from -fstruct-layout=4 to -fstruct-layout=5 may result in higher
performance if the pointer values are such that the pointers can be compressed to 16-bits.

2. -fstruct-layout=6 and -fstruct-layout=7 are derived from -fstruct-layout=2 and -fstruct-
layout=3 respectively, with the added feature of compression of 64-bit to 32-bit integer fields
in structures. These are similar to -fstruct-layout=4 and -fstruct-layout=5, but here, the

Chapter 5 Command-line Options 29

AOCC User Guide57222 Rev. 4.0 November 2022

integer fields of the structures are always compressed from 64-bits to 32-bits, without any
safety guarantee.

• -fremap-arrays

Transforms the data layout of a single dimensional array to provide better cache locality. This
optimization is effective only under -flto as the whole program analysis is required to perform
this optimization, which can be invoked as -flto -fremap-arrays.

Usage: -flto -fremap-arrays
• -reduce-array-computations={1,2,3}

Performs array dataflow analysis and optimizes the unused array computations.

– -reduce-array-computations=1: Eliminates the computations on unused array elements.
– -reduce-array-computations=2: Eliminates the computations on zero valued array elements.
– -reduce-array-computations=3: Eliminates the computations on unused and zero valued array

elements (combination of 1 and 2).
This optimization is effective with -flto as the whole program analysis is required to perform this
optimization, which can be invoked as -flto -reduce-array-computations={1,2,3}.

Usage: -flto -mllvm -reduce-array-computations={1,2,3}

Instruction Level Optimization Options

• -enable-X86-prefetching

Enables the generation of x86 prefetch instruction for the memory references inside a loop/ inside
an inner most loop of a loop nest to prefetch the second dimension of multidimensional array/
memory references in the inner most of a loop nest.

Usage: -mllvm -enable-X86-prefetching

• -suppress-fmas

Identifies the reduction patterns on FMA and suppresses the FMA generation as it is not
profitable on the reduction patterns.

Usage: -mllvm -suppress-fmas
• -fnt-store

Generates a non-temporal store instruction for array accesses in a loop with a large trip count.

Usage: -fnt-store
• -fnt-store=aggressive

Generates non-temporal store instruction for array accesses in a loop, whose iteration count
cannot be determined at compile time. In this case, compiler assumes the iteration count is huge.

Usage: -fnt-store=aggressive

30 Command-line Options Chapter 5

57222 Rev. 4.0 November 2022AOCC User Guide

• -enable-redundant-movs

Removes any redundant mov operations including redundant loads from memory and stores to
memory. This can be invoked using -Wl,-plugin-opt=-enable-redundant-movs.

Usage: -Wl,-plugin-opt=-enable-redundant-movs

• -merge-constant

Attempts to promote frequently occurring constants to registers. The aim is to reduce the size of
the instruction encoding for instructions using constants and obtain a performance improvement.

Usage: -mllvm -merge-constant

• -optimize-strided-mem-cost

Optimizes the cost model for strided access to memory.

Usage: -mllvm -optimize-strided-mem-cost

• -fenable-aggressive-gather

This option enables generation of gather instructions for the cases where it is profitable.

Usage: -fenable-aggressive-gather

Scalar Optimization Options

• -enable-licm-vrp

Enables estimation of the virtual register pressure before performing loop invariant code motion.
This estimation is used to control the number of loop invariants that will be hoisted during the
loop invariant code motion.

Usage: -mllvm -enable-licm-vrp

• -do-block-reorder={none,simple,aggressive}

Reorders the control predicates in increasing order of complexity from outer predicate to inner.
This option is set to simple by default. The simple mode reorders simple expressions while the
aggressive mode reorders the predicates involving function calls despite the presence of code
dealing with exceptions.

This optimization also includes safety analysis which checks if it is safe to reorder the basic
blocks. However, when this optimization takes effect, the safety analysis ignores exceptions
specifically within the call chain involved in the context of the blocks being reordered. This
would be acceptable for most input programs, but if your program strictly needs to support
throwing of exceptions at all points in the program, it is advisable to avoid using this option.

Usage: -mllvm -do-block-reorder={none, simple, aggressive}

• -fscalar-transform

Enables a subset of scalar transformations including improved variants of various code movement
optimizations such as hoisting and invariant code motion. It is enabled under -zopt.

Usage: -fscalar-transform

Chapter 5 Command-line Options 31

AOCC User Guide57222 Rev. 4.0 November 2022

Miscellaneous Options
• -fitodcalls

Promotes indirect to direct calls by placing conditional calls. Application or benchmarks that have
small and deterministic set of target functions for function pointers that are passed as call
parameters benefit from this optimization. Indirect-to-direct call promotion transforms the code to
use all possible determined targets under runtime checks and falls back to the original code for all
the other cases. Runtime checks are introduced by the compiler for each of these possible function
pointer targets followed by direct calls to the targets.

This is a link time optimization, which is invoked as -flto -fitodcalls.

Usage: -flto -fitodcalls
• -fitodcallsbyclone

Performs value specialization for functions with function pointers passed as an argument. It does
this specialization by generating a clone of the function. The cloning of the function happens in
the call chain as needed to allow conversion of indirect function call to direct call. This
complements -fitodcalls optimization and is also a link time optimization, which is invoked as
-flto -fitodcallsbyclone.

Usage: -flto -fitodcallsbyclone

• -function-specialize

Optimizes the functions with compile time constant formal arguments. This option is enabled by
default under -O3.

Usage: -mllvm -function-specialize
• -favoid-fpe-causing-opt

Restricts a few optimizations that leads to floating point exceptions.

Usage: -favoid-fpe-causing-opt

Diagnostics Option(s)
• -fsanitize

Runs the sanitizers for diagnostics.

Usage: -fsanitize={address,thread,memory,safe-stack}

5.4 Deprecated Options

The following options have been deprecated:

• -vectorize-memory-aggressively (from AOCC 2.2.0)

• -Menable-vectorize-pragmas=<value> (from AOCC 3.2.0)

32 Debuggability Chapter 6

57222 Rev. 4.0 November 2022AOCC User Guide

Chapter 6 Debuggability

6.1 OpenMP Debugging Support (OMPD)

Note: This is available in AOCC 2.3 or later.

The AOCC installation includes OMPD for debugging C/C++ OpenMP programs through a gdb
plugin with limited functionality.

Note: Debugging the code that runs on an offloading device is not supported.

Complete the following steps to use OMPD for debugging C/C++ OpenMP programs through a gdb
plugin:

Note: For using the OMPD plugin, Python 3.5 or later is required.

1. Add folders ompd and lib to your LD_LIBRARY_PATH using this command:

2. Set OMP_DEBUG to enabled:

3. Compile the program to be debugged with -g and -fopenmp options as follows for a sample C
source file xyz.c:

Note: The program to be debugged needs to have a dynamic link dependency on 'libomp.so'
under <compdir>/aocc-compiler-<ver>/lib for OpenMP-specific debugging to work
correctly. The user can check this using ldd on the generated binary, that is xyz.out.

4. Debug the binary xyz.out by invoking gdb with the plugin as follows:

Note: The plugin <compdir>/aocc-compiler-<ver>/ompd/__init__.py must be used.

6.2 OMPD Commands

The following table describes the OMPD commands:

$ export LD_LIBRARY_PATH=<compdir>/aocc-compiler-<ver>/ompd:<compdir>/aocc-compiler-<ver>/
lib:$LD_LIBRARY_PATH

$ export OMP_DEBUG=enabled

$ <compdir>/aocc-compiler-<ver>/bin/clang -g -fopenmp xyz.c -o xyz.out

$ gdb -x <compdir>/aocc-compiler-<ver>/ompd/__init__.py ./xyz.out

Table 2. OMPD Commands
Command Description

help ompd It lists the subcommands available for OpenMP specific debugging.

Chapter 6 Debuggability 33

AOCC User Guide57222 Rev. 4.0 November 2022

6.3 OMPD Subcommands

The following table lists the OMPD subcommands that can used inside gdb:

ompd init • It must be run first to load the libompd.so available in the
$LD_LIBRARY_PATH environment variable and to initialize the OMPD
library.

• It starts the program run and the program stops at a temporary breakpoint at the
OpenMP internal location ompd_dll_locations_valid().

• You can continue from the temporary breakpoint for debugging.
• You can place breakpoints at the OpenMP internal locations

ompd_bp_thread_begin and ompd_bp_thread_end to catch the begin and end
events

• ompd_bp_task_begin and ompd_bp_task_end breakpoints can be used to catch
the beginning and ending of the events

• ompd_bp_parallel_begin and ompd_bp_parallel_end can be used to catch the
beginning and ending of the parallel events.

Table 3. OMPD Subcommands
Subcommand Description

ompd init Finds and initializes the OMPD library.
ompd bt Used to turn the filter on or off for the bt output on or off.

You must specify the on continued option to trace the worker threads back to the
master threads.

ompd icvs Displays the values of the Internal Control Variables.
ompd parallel Displays the details of the current and enclosing parallel regions.
ompd step Executes step and skip runtime frames as much as possible.
ompd threads Provides the details of the current threads.

Table 2. OMPD Commands
Command Description

34 Diagnostics Chapter 7

57222 Rev. 4.0 November 2022AOCC User Guide

Chapter 7 Diagnostics

7.1 AOCC Optimization Report (AOR)

The AOR tool generates an optimization report for any C, C++, and Fortran application project
compiled with AOCC. The optimization report can be investigated by the application developer for a
list of optimizations performed/not performed on the compiled application with a hint for the course
of action. Currently, AOR contains the report of messages related to loop-vectorize optimization pass
information and can be generated with the following commands:

• -fgen-aor

For the compile-time AOR generation (CFLAGS, CXXFLAGS, and FCFLAG).

• -fgen-aor -flto -fuse-ld=lld

For the link-time AOR generation (CFLAGS, CXXFLAGS, and FCFLAG).

Example:

The above commands will generate a compile-time report optimization_report.aor and a link-time
report optimization_ld_report.aor respectively in the root folder of the application project.

Prerequisites

AOR requires the following packages to be installed:

• Python 3.8

• Python-YAML

• Python3-pip

• pip3 packages including Pygments and PyYAML

git clone https://github.com/UoB-HPC/TSVC_2
cd TSVC_2/src
clang -O3 -march=znver2 -fgen-aor -flto -fuse-ld=lld *.c -I . -o tsvc -lm

Chapter 8 Support 35

AOCC User Guide57222 Rev. 4.0 November 2022

Chapter 8 Support

For support options, the latest documentation, and downloads refer AMD Developer Central (https://
developer.amd.com/amd-aocc/).

https://developer.amd.com/amd-aocc/
https://developer.amd.com/amd-aocc/

36 References Chapter 9

57222 Rev. 4.0 November 2022AOCC User Guide

Chapter 9 References

The following document has been used as a reference for this document:

LLVM Documentation (https://releases.llvm.org/14.0.0/tools/clang/docs/
ClangCommandLineReference.html)

https://releases.llvm.org/14.0.0/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/14.0.0/tools/clang/docs/ClangCommandLineReference.html

	Contents
	List of Tables
	Revision History
	Chapter 1 Introduction
	Chapter 2 Programming Language Support
	2.1 C, C++, AND FORTRAN Programming Languages
	2.2 Compatibility/Conformance to Standards
	2.2.1 Support for Annex F (IEEE-754/IEC 559) of C99/C11
	2.2.2 IEEE-754 Support

	Chapter 3 Working with AOCC
	3.1 Installing On Linux
	3.1.1 Prerequisites
	3.1.2 Installation
	3.1.3 SPACK Support
	3.1.4 Upgrading AMD LibM (ALM)
	3.1.5 Supported Operating Systems (OS)
	3.1.6 Known Issues and Limitations

	3.2 Invoking AOCC
	3.2.1 AOCC Optimizer
	3.2.2 Using the Compiler
	3.2.3 Libraries

	Chapter 4 Using Pragma Directives
	4.1 Flang
	4.1.1 NOINLINE
	4.1.2 FORCEINLINE
	4.1.3 UNROLL
	4.1.4 NOUNROLL
	4.1.5 PREFETCH
	4.1.6 Vectorization Pragmas
	4.1.7 FREEFORM/NOFREEFORM

	Chapter 5 Command-line Options
	5.1 Clang and Flang Options
	5.1.1 Target Selection
	5.1.2 Driver

	5.2 Flang Options
	5.3 Code Generation and Optimization Options
	5.4 Deprecated Options

	Chapter 6 Debuggability
	6.1 OpenMP Debugging Support (OMPD)
	6.2 OMPD Commands
	6.3 OMPD Subcommands

	Chapter 7 Diagnostics
	7.1 AOCC Optimization Report (AOR)

	Chapter 8 Support
	Chapter 9 References

