
Advanced Micro Devices

AOCL User Guide

Publication # 57404 Revision # 4.0
Issue Date November 2022

Advanced Micro Devices

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, Windows Server, Visual Studio,and DirectX are registered trademarks of Microsoft
Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Contents 3

AOCL User Guide57404 Rev. 4.0 November 2022

Contents

Revision History .10

Chapter 1 Introduction .11

Chapter 2 Supported OS and Compilers .13

2.1 Operating Systems .13

2.2 Compilers .13

2.3 Library .13

2.4 Message Passing Interface (MPI) .13

2.5 Programming Language .13

2.6 Build Utilities .14

Chapter 3 Installing AOCL .15

3.1 Building from Source .15

3.2 Installing AOCL Binary Packages .15

3.2.1 Using Master Package .15

3.2.2 Using Library Package .16

3.2.3 Using Debian and RPM Packages .16

3.2.4 Using Windows Packages .19

Chapter 4 AOCL-BLIS .20

4.1 Installation on Linux .20

4.1.1 Build AOCL-BLIS from Source .20

4.1.2 Using Pre-built Binaries .22

4.2 Application Development Using AOCL-BLIS .22

4.2.1 API Compatibility Layers (Calling AOCL-BLIS) .22

4.2.2 API Compatibility - Advance Options .24

4.2.3 Linking Application with AOCL-BLIS .24

4.2.4 Example Application - AOCL-BLIS Usage in FORTRAN25

4.2.5 AOCL-BLIS Usage in C .27

4.3 Migrating/Porting .31

4.4 Using AOCL-BLIS Library Features .32

4.4.1 Dynamic Dispatch .32

4 Contents

57404 Rev. 4.0 July 2022AOCL User Guide

4.4.2 BLIS - Running the Test Suite .34

4.4.3 Testing/Benchmarking .35

4.4.4 BLIS APIs .37

4.5 Debugging and Troubleshooting .37

4.5.1 Debugging Build Using GDB .37

4.5.2 Viewing Logs .38

4.5.3 Checking AOCL-BLIS Operation Progress .42

4.6 Build AOCL-BLIS from Source on Windows .44

4.6.1 Building AOCL-BLIS using GUI .45

4.6.2 Building AOCL-BLIS using Command-line Arguments48

4.6.3 Building and Running the Test Suite .49

Chapter 5 AOCL-libFLAME .50

5.1 Installing on Linux .50

5.1.1 Building AOCL-libFLAME from Source .50

5.1.2 Using Pre-built Libraries .52

5.2 Usage .52

5.2.1 Use by Applications .52

5.3 Building AOCL-libFLAME from Source on Windows .53

5.3.1 Building AOCL-libFLAME Using GUI .53

5.3.2 Building AOCL-libFLAME using Command-line Arguments 55

5.3.3 Building and Running Test Suite .56

5.4 Checking AOCL-libFLAME Operation Progress .56

Chapter 6 AOCL-FFTW .59

6.1 Installing .59

6.1.1 Building AOCL-FFTW from Source on Linux .59

6.1.2 Building AOCL-FFTW from Source on Windows .61

6.1.3 Using Pre-built Libraries .65

6.2 Usage .65

6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW65

6.2.2 Sample Programs for MPI FFTW .66

6.2.3 Additional Options .66

Contents 5

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 7 AOCL-LibM .67

7.1 Installation on Linux .70

7.2 Compiling AOCL-LibM .70

7.3 Usage .71

7.4 Building AOCL-LibM on Windows .72

Chapter 8 AOCL-ScaLAPACK .74

8.1 Installation .74

8.1.1 Building AOCL-ScaLAPACK from Source .74

8.1.2 Using Pre-built Libraries .77

8.2 Usage .77

8.3 Building AOCL-ScaLAPACK from Source on Windows .77

8.3.1 Building AOCL-ScaLAPACK Using GUI .78

8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments 80

8.4 Checking AOCL-ScaLAPACK Operation Progress .81

Chapter 9 AOCL-RNG .83

9.1 Installation .83

9.2 Using AOCL-RNG Library on Linux .83

9.3 Using AOCL-RNG Library on Windows .84

Chapter 10 AOCL-SecureRNG .85

10.1 Installation .85

10.2 Usage .85

10.3 Using AOCL-SecureRNG Library on Windows .86

Chapter 11 AOCL-Sparse .88

11.1 Installation .90

11.1.1 Building AOCL-Sparse from Source on Linux .90

11.1.2 Simple Test .93

11.1.3 Using Pre-built Libraries .93

11.2 Usage on Linux .93

11.2.1 Use by Applications .94

11.3 Build AOCL-Sparse from Source on Windows .96

11.3.1 Building AOCL-Sparse Using GUI .96

6 Contents

57404 Rev. 4.0 July 2022AOCL User Guide

11.3.2 Building AOCL-Sparse using Command-line Arguments97

Chapter 12 AOCL-LibMem .99

12.1 Building AOCL-LibMem for Linux .99

12.2 Running an Application .100

12.3 Running an Application with Tunables .100

12.3.1 Default State .101

12.3.2 Tuned State .101

Chapter 13 AOCL-Cryptography .104

13.1 Requirements .104

13.2 Using AOCL-Cryptography in a Sample Application .104

13.2.1 Compiling and Running AOCL-Cryptography Examples 105

13.2.2 Running OpenSSL Benchmarks Using AOCL-Cryptography Library 105

Chapter 14 AOCL-Compression .106

14.1 Installation .106

14.2 Running AOCL-Compression Test Bench on Linux .106

14.3 Running AOCL-Compression Test Bench on Windows .108

14.4 API Reference .108

14.4.1 Unified Standardized API Set .108

14.4.2 Interface Data Structures .108

14.4.3 Native APIs .109

14.4.4 Example Test Program .112

14.5 Optional Optimization Options .113

Chapter 15 Linking- AOCL to Applications .114

15.1 High-performance LINPACK Benchmark (HPL) .114

15.1.1 Configuring HPL.dat .114

15.1.2 Running the Benchmark .114

15.2 MUMPS Sparse Solver Library .115

15.2.1 Enabling AOCL with MUMPS .116

Chapter 16 AOCL Tuning Guidelines .121

16.1 AOCL-BLIS Thread Control .121

16.1.1 AOCL-BLIS Initialization .121

Contents 7

AOCL User Guide57404 Rev. 4.0 November 2022

16.1.2 Runtime .122

16.2 AOCL Dynamic .124

16.2.1 Limitations .125

16.3 AOCL-BLIS DGEMM Multi-thread Tuning .125

16.3.1 Library Usage Scenarios .125

16.3.2 Architecture Specific Tuning .127

16.4 AOCL-BLIS DGEMM Block-size Tuning .128

16.5 Performance Suggestions for Skinny Matrices .129

16.6 AOCL-libFLAME Multi-threading .130

16.7 AOCL-FFTW Tuning Guidelines .130

Chapter 17 Support .132

Chapter 18 References .133

Appendix .134

Check AMD Server Processor Architecture .134
On Linux .134
On Windows .134

Application Notes .135
AOCL-FFTW. .135

8 List of Tables

57404 Rev. 4.0 November 2022AOCL User Guide

List of Tables

Table 1. BLIS API Compatibility Layers .23

Table 2. AOCL-BLIS API Compatibility - Advance Options .24

Table 3. AOCL-BLIS Application - Link Options .24

Table 4. Porting to AOCL-BLIS. .32

Table 5. BLIS APIs .37

Table 6. Callback Parameters .43

Table 7. CMake Config Options .46

Table 8. AOCL-libFLAME Config Options .53

Table 9. AOCL-libFLAME Progress Feature Callback Function Parameters57

Table 10. AOCL-FFTW Config Options .62

Table 11. Compiler and Type of Library .75

Table 12. AOCL-ScaLAPACK CMake Parameter List .78

Table 13. AOCL-ScaLAPACK Progress Feature Callback Function Parameters81

Table 14. Compiler and Library Type. .91

Table 15. AOCL-Sparse - CMake Build Options .92

Table 16. Application Implementations .101

Table 17. Sample Threshold Settings .103

Table 18. Sample Scenarios - 1. .122

Table 19. Sample Scenarios - 2. .123

Table 20. AOCL Dynamic .125

List of Figures 9

AOCL User Guide57404 Rev. 4.0 November 2022

List of Figures

Figure 1. Sample Run of Function Call Tracing .40

Figure 2. Sample Run with Debug Logs Enabled .41

Figure 3. Debug Logs Showing Input Values of GEMM .42

Figure 4. Microsoft Visual Studio Prerequisites .44

Figure 5. CMake Source and Build Folders .45

Figure 6. Set Generator and Compiler .46

Figure 7. CMake Configure and Generate Project Settings .48

Figure 8. AOCL-libFLAME CMake Configurations. .55

Figure 9. AOCL-FFTW CMake Config Options .64

Figure 10. AOCL-ScaLAPACK CMake Options .79

Figure 11. AOCL-ScaLAPACK CMake Config Options .79

Figure 12. AOCL-Sparse CMake Config Options .97

10 Revision History

57404 Rev. 4.0 November 2022AOCL User Guide

Revision History

Date Revision Description

November 2022 4.0 • Added sections 9.3, 10.3, 16.1.2.1, and 16.6
• Updated section 4.4.1.3
• Added Chapter 14
• Removed the chapter AOCL-Spack recipes

July 2022 3.2 • Added chapters 12 and 13, sections 5.4, 8.4, and 16.1
• Added Multi-thread support information in chapter 11

December 2021 3.1 Initial version.

Chapter 1 Introduction 11

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 1 Introduction

AMD Optimizing CPU Libraries (AOCL) are a set of numerical libraries optimized for AMD “Zen”-
based processors, including EPYCTM, RyzenTM ThreadripperTM, and RyzenTM. This document
provides instructions on installing and using all the AMD optimized libraries.

AOCL is comprised of the following libraries:

• AOCL-BLIS (BLAS Library) is a portable software framework for performing high-
performance Basic Linear Algebra Subprograms (BLAS) functionality.

• AOCL-libFLAME (LAPACK) is a portable library for dense matrix computations that provides
the functionality present in the Linear Algebra Package (LAPACK).

• AOCL-FFTW (Fastest Fourier Transform in the West) is a comprehensive collection of fast C
routines for computing the Discrete Fourier Transform (DFT) and various special cases.

• AOCL-LibM (AMD Core Math Library) is a software library containing a collection of basic
math functions optimized for x86-64 processor based machines.

• AOCL-ScaLAPACK is a library of high-performance linear algebra routines for parallel
distributed memory machines. It depends on external libraries including BLAS and LAPACK for
linear algebra computations.

• AOCL-RNG (AMD Random Number Generator) is a pseudo-random number generator
library.

• AOCL-SecureRNG is a library that provides APIs to access the cryptographically secure random
numbers generated by the AMD hardware random number generator.

• AOCL-Sparse is a library containing the basic linear algebra subroutines for sparse matrices and
vectors optimized for AMD “Zen”-based processors, including EPYCTM, RyzenTM
ThreadripperTM PRO, and RyzenTM.

• AOCL-LibMem is AMD’s optimized implementation of memory/string functions.

• AOCL-Cryptography is AMD’s optimized implementation of cryptographic functions (AES
Encryption/Decryption and SHA2 Digest).

• AOCL-Compression is a software framework of various lossless data compression and
decompression methods tuned and optimized for AMD “Zen”-based CPUs.

All the above libraries are open-source except AOCL-RNG, AOCL-Cryptography, and AOCL-
Compression.

Additionally, AMD provides Spack (https://spack.io/) recipes for installing AOCL-BLIS, AOCL-
libFLAME, AOCL-ScaLAPACK, AOCL-LibM, AOCL-FFTW, and AOCL-Sparse libraries.

For more information on the AOCL release and installers, refer the AMD Developer Central (https://
developer.amd.com/amd-aocl/).

https://spack.io/
https://developer.amd.com/amd-aocl/

12 Introduction Chapter 1

57404 Rev. 4.0 November 2022AOCL User Guide

For any issues or queries on the libraries, send an email to toolchainsupport@amd.com.

To determine the underlying architecture of your AMD system, refer to Check AMD Server
Processor Architecture.

Chapter 2 Supported OS and Compilers 13

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 2 Supported OS and Compilers

This section lists the supported operating systems, compilers, and prerequisites for AOCL 4.0. It has
been validated on the following:

Note: For the supported compiler versions and prerequisites of a specific library, refer to the
corresponding sections.

2.1 Operating Systems

• Ubuntu® 20.04 LTS and 21.04

• CentOS 7 and 8

• Red Hat® Enterprise Linux® (RHEL) 8.2, 8.3.1, and 8.6

• SUSE Linux Enterprise Server (SLES) 15 SP3

• Windows Server 2019 and 2022

• Windows® 10

• Windows 11 Pro

2.2 Compilers

• GCC 9.1.0, 9.2.1, and 11.2

• AOCC 3.1, 3.2, and 4.0

• LLVMTM 13 and 14

2.3 Library

Glibc 2.17 and 2.31

2.4 Message Passing Interface (MPI)

Open MPI 4.1.4

2.5 Programming Language

• Python versions 2.7,2.8, 3.4, and 3.6

• Perl 5.14 and 5.34

14 Supported OS and Compilers Chapter 2

57404 Rev. 4.0 November 2022AOCL User Guide

2.6 Build Utilities

• GNU Make 4.2

• CMake 3.19.6 and 3.23.3

• Microsoft Visual Studio 2019 (build 16.8.7)/2022 (build 17.3.2)

Chapter 3 Installing AOCL 15

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 3 Installing AOCL

3.1 Building from Source

You can download the following open-source libraries of AOCL from GitHub and build from source:

• AOCL-BLIS (https://github.com/amd/blis)

• AOCL-libFLAME (https://github.com/amd/libflame)

• AOCL-FFTW (https://github.com/amd/amd-fftw)

• AOCL-LibM (https://github.com/amd/aocl-libm-ose)

• AOCL-ScaLAPACK (https://github.com/amd/aocl-scalapack)

• AOCL-Sparse (https://github.com/amd/aocl-sparse)

The details on installing from source for each library is explained in the later sections. For more
information on Spack-based installation of AOCL libraries, refer to AMD Developer Central (https://
developer.amd.com/spack/amd-optimized-cpu-libraries/).

3.2 Installing AOCL Binary Packages

The section describes the procedure to install AOCL binaries on Linux and Windows.

3.2.1 Using Master Package

Complete the following steps to install the AOCL library suite:

1. Download the AOCL tar packages from the Download (https://developer.amd.com/amd-aocl/
#download) section to the target machine.

2. Use the command tar -xvf <aocl-linux-<compiler>-4.0.tar.gz> to untar the package.

The installer file install.sh is available in aocl-linux-<compiler>-4.0.

3. Run ./install.sh to install the AOCL package (all libraries) to the default INSTALL_PATH: /home/
<username>/amd/aocl/4.0.

Use install.sh to print the usage of the script, afew supported options are:

-h — Print the help.

-t — Custom target directory to install libraries.

-l — Library to be installed.

-i — Select LP64/ILP64 libraries to be set as default.

https://github.com/amd/blis

https://github.com/amd/libflame
https://github.com/amd/amd-fftw
https://github.com/amd/aocl-libm-ose
https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-sparse
https://developer.amd.com/amd-aocl/#download
https://developer.amd.com/spack/amd-optimized-cpu-libraries/
https://developer.amd.com/spack/amd-optimized-cpu-libraries/

16 Installing AOCL Chapter 3

57404 Rev. 4.0 November 2022AOCL User Guide

4. To install the AOCL package in a custom location, use the installer with the option: -t
<CUSTOM_PATH>. For example, ./install.sh -t /home/<username>.

5. You can use the master installer to install the individual library out of the master package. The
library names used are blis, libflame, libm, scalapack, rng, secrng, fftw, compression, crypto, and
sparse. You can do one of the following:

• To install a specific library, use the option: -l <Library name>. For example, ./install.sh -l
blis.

• Install the individual library in a path of your choice. For example, ./install.sh -t /home/amd
-l libm.

Note: For the AOCC package, AOCL-Cryptography is not supported.

6. AOCL libraries support the following two integer types:

• LP64 libraries and header files are installed in /INSTALL_PATH/lib_LP64 and /
INSTALL_PATH/include_LP64 respectively.

• ILP64 libraries and header files are installed in /INSTALL_PATH/lib_ILP64 and /
INSTALL_PATH/include_ILP64 respectively.

By default, LP64 libraries and header files are available in /INSTALL_PATH/lib and /
INSTALL_PATH/include respectively.

Suffix ./install.sh with -i <lp64/ilp64> to:

• Set the LP64 libraries as the default libraries, use the installer with the option: -i lp64. For
example, ./install.sh -t /home/amd -l blis -i lp64.

This installs only AOCL-BLIS library in the path /home/amd and sets LP64 AOCL-BLIS
libraries as the default.

• Set ILP64 libraries as the default use the installer with the option: -i ilp64. For example, ./
install.sh -i ilp64.

This installs all AOCL libraries in the default path and sets ILP64 libraries as the default.

3.2.2 Using Library Package

Refer to the AOCL home page (https://developer.amd.com/amd-aocl/) to download the individual
library binaries from the respective pages.

For example, AOCL-BLIS and AOCL-libFLAME tar packages are available in the BLAS library
page (https://developer.amd.com/amd-aocl/blas-library/).

3.2.3 Using Debian and RPM Packages

The Debian and RPM packages of AOCL are available in the Download section (https://
developer.amd.com/amd-aocl/#download).

https://developer.amd.com/amd-aocl/blas-library/

https://developer.amd.com/amd-aocl/blas-library/

https://developer.amd.com/amd-aocl/#download
https://developer.amd.com/amd-aocl/

Chapter 3 Installing AOCL 17

AOCL User Guide57404 Rev. 4.0 November 2022

The package name used in the following installation procedure is based on the ‘gcc’ build. For the
AOCC build, you can replace ‘gcc’ with ‘aocc’.

Installing Debian Package

Complete the following steps to install the AOCL Debian package:

1. Download the AOCL 4.0 Debian package to the target machine.

2. Check the installation path before installing.

3. Install the package.

Note: You must have the sudo privileges to perform this action.

4. Display the installed package information along with the package version and a short description.

5. List the contents of the package.

6. AOCL libraries support the following two integer types:

• LP64 libraries and header files are installed in /INSTALL_PATH/lib_LP64 and /
INSTALL_PATH/include_LP64 respectively.

• ILP64 libraries and header files are installed in /INSTALL_PATH/lib_ILP64 and /
INSTALL_PATH/include_ILP64 respectively.

By default, LP64 libraries and header files are available in /INSTALL_PATH/lib and /
INSTALL_PATH/include respectively.

Where,

• INSTALL_PATH: /opt/AMD/aocl/aocl-linux-<compiler>-4.0/

• Compiler: aocc or gcc

For example, INSTALL_PATH for aocc compiler is /opt/AMD/aocl/aocl-linux-aocc-4.0/.

7. To change the default library path to ILP64 / LP64, use the script as follows:

Uninstalling Debian package

Execute one of the following commands to uninstall the AOCL Debian package:

Installing RPM Package

$ dpkg -c aocl-linux-gcc-4.0_1_amd64.deb

$ sudo dpkg -i aocl-linux-gcc-4.0_1_amd64.deb
Or
$ sudo apt install ./aocl-linux-gcc-4.0_1_amd64.deb

$ dpkg -s aocl-linux-gcc-4.0

$dpkg -L aocl-linux-gcc-4.0

cd /opt/AMD/aocl/aocl-linux-<compiler>-4.0/
sudo bash setenv_aocl.sh <ilp64 / lp64>

$ sudo dpkg -r aocl-linux-gcc-4.0
or
$ sudo apt remove aocl-linux-gcc-4.0

18 Installing AOCL Chapter 3

57404 Rev. 4.0 November 2022AOCL User Guide

Complete the following steps to install the AOCL RPM package:

1. Download the AOCL 4.0RPM package to the target machine.

2. Install the package.

Note: You must have the sudo privileges to perform this action.

3. Display the installed package information along with the package version and a short description.

4. List the contents of the package.

5. AOCL libraries supportthe following two integer types:

• LP64 libraries and header files are installed in /INSTALL_PATH/lib_LP64 and /
INSTALL_PATH/include_LP64 respectively.

• ILP64 libraries and header files are installed in /INSTALL_PATH/lib_ILP64 and /
INSTALL_PATH/include_ILP64 respectively.

By default, LP64 libraries and header files are available in /INSTALL_PATH/lib and /
INSTALL_PATH/include respectively.

Where,

• INSTALL_PATH: /opt/AMD/aocl/aocl-linux-<compiler>-4.0/

• Compiler: aocc or gcc

For example, INSTALL_PATH for aocc compiler is /opt/AMD/aocl/aocl-linux-aocc-4.0/.

6. To change the default library path to ILP64 / LP64, use the script as follows:

Uninstalling RPM package

Execute the following command to uninstall the AOCL RPM package:

$ sudo rpm -ivh aocl-linux-gcc-4.0-1.x86_64.rpm

$ rpm -qi aocl-linux-gcc-4.0-1.x86_64

$ rpm -ql aocl-linux-gcc-4.0-1

cd /opt/AMD/aocl/aocl-linux-<compiler>-4.0/
sudo bash setenv_aocl.sh <ilp64 / lp64>

$ rpm -e aocl-linux-gcc-4.0-1

Chapter 3 Installing AOCL 19

AOCL User Guide57404 Rev. 4.0 November 2022

3.2.4 Using Windows Packages

Installing a Windows Package

Complete the following steps to install the AOCL Windows package:

1. Download the AOCL Windows installer from the Download (https://developer.amd.com/amd-
aocl/#download) section.

2. Double-click the executable.

The installation wizard is displayed.

3. Click the Next button.

4. Accept the License Agreement and click the Next button.

5. Select the libraries to be installed and the destination folder.

6. Click the Install button to begin the installation.

7. Click the Finish button to complete the installation.

Uninstalling a Windows Package

Complete the following steps to uninstall the AOCL Windows binaries:

1. Double-click the AOCL Windows installer.

2. Click the Remove button.

Alternatively, you can also use the Add or remove programs option in Windows.

3. Click the Finish button to complete the uninstallation.

https://developer.amd.com/amd-aocl/#download

20 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 4 AOCL-BLIS

AOCL-BLIS is a high-performant implementation of the Basic Linear Algebra Subprograms
(BLAS). The BLAS was designed to provide the essential ke4rnels of matrix and vector computation
and are the most commonly used and computationally intensive operations in dense numerical linear
algebra. Select kernels have been optimized for the AMD “Zen”-based processors, for example,
AMD EPYCTM, AMD RyzenTM, AMD RyzenTM ThreadripperTM processors by AMD and others.

AMD offers the optimized version of BLIS (AOCL-BLIS) that supports C, FORTRAN, and C++
template interfaces for the BLAS functionalities.

4.1 Installation on Linux

You can install AOCL-BLIS from source or pre-built libraries.

4.1.1 Build AOCL-BLIS from Source

GitHub URL: https://github.com/amd/blis

You can use the following ways to build AOCL-BLIS using the configure/make method:

• auto — This configuration generates a binary optimized for the build machine’s AMD “Zen” core
architecture. This is useful when you build the library on the target system. Starting from the
AOCL-BLIS 2.1 release, the auto configuration option enables selecting the appropriate build
configuration based on the target CPU architecture. For example, for a build machine using the 1st
Gen AMD EPYCTM (code name "Naples") processor, the zen configuration will be auto-selected.
For a build machine using the 2nd Gen AMD EPYCTM processor (code name "Rome"), the zen2
configuration will be auto-selected. From BLIS 3.0 forward, zen3 will be auto-selected for the 3rd
Gen AMD EPYCTM processor (code name "Milan"). From BLIS 4.0 forward, zen4 will be auto-
selected for the 4th Gen AMD EPYCTM processor (code name "Genoa").

• zen — This configuration generates a binary compatible with AMD “Zen” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• zen2 — This configuration generates binary compatible with AMD “Zen2” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• zen3 — This configuration generates binary compatible with AMD “Zen3” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• zen4 — This configuration generates binary compatible with AMD “Zen4” architecture and is
optimized for it. The architecture of the build machine is not relevant.

• amdzen — The library built using this configuration generates a binary compatible with and
optimized for AMD “Zen”, AMD “Zen2”, AMD “Zen3”,and AMD “Zen4” architectures. The

https://github.com/amd/blis

Chapter 4 AOCL-BLIS 21

AOCL User Guide57404 Rev. 4.0 November 2022

architecture of the build machine is not relevant. The architecture of the target machine is checked
during the runtime, based on which, the relevant optimizations are picked up automatically.

This feature is also called Dynamic Dispatch. For more information, refer “Dynamic Dispatch”
on page 32.

Depending on the target system and the build environment, you must enable/disable the appropriate
configure options. The following sub-sections provide instructions for compiling AOCL-BLIS. For a
complete list of the options and their descriptions, use the command ./configure --help.

4.1.1.1 Single-thread AOCL-BLIS

Complete the following steps to install a single-thread AOCL-BLIS:

1. Clone the AOCL-BLIS git repository(https://github.com/amd/blis.git).

2. Configure the library as required:

3. To build the library, use the command “$ make”.

4. To install the library on build machine, use the command “$ make install”.

4.1.1.2 Multi-thread AOCL-BLIS

Complete the following steps to install a multi-thread AOCL-BLIS:

1. Clone the AOCL-BLIS git repository(https://github.com/amd/blis.git).

2. Configure the library as required:

3. To build the library, use the command “$ make”.

4. To install the library on build machine, use the command “$ make install”.

4.1.1.3 Verifying AOCL-BLIS Installation

The AOCL-BLIS source directory contains the test cases which demonstrate the usage of BLIS APIs.

GCC (Default)

$./configure --enable-cblas --prefix=<your-install-dir> auto

AOCC
$./configure --enable-cblas --prefix=<your-install-dir> --complex-return=intel CC=clang
CXX=clang++ auto

GCC (Default)

$./configure --enable-cblas --enable-threading=[Mode] --prefix=<your-install-dir> auto

AOCC
$./configure --enable-cblas --enable-threading=[Mode] --prefix=<your-install-dir> --complex-
return=intel CC=clang CXX=clang++ auto

[Mode] values can be openmp and no. "no" will disable multi-threading.

https://github.com/amd/blis.git
https://github.com/amd/blis.git

22 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

To execute the tests, navigate to the AOCL-BLIS source directory and run the following command:

Execute the AOCL-BLIS C++ Template API tests as follows:

4.1.2 Using Pre-built Binaries

AOCL-BLIS library binaries for Linux are available at the following URLs:

https://github.com/amd/blis/releases

https://developer.amd.com/amd-aocl/blas-library/

Also, the AOCL-BLIS binary can be installed from the AOCL master installer tar file (https://
developer.amd.com/amd-aocl/).

The master installer includes the following:

• Single threaded and multi-threaded AOCL-BLIS binaries.

• Binaries built with amdzen config with LP64 and ILP64 integer support.

• Multi-threaded AOCL-BLIS binary (libblis-mt) built with OpenMP threading mode.

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master
Package” on page 15.

4.2 Application Development Using AOCL-BLIS

This section explains the different types of APIs provided by AOCL-BLIS. It describes how to call
them and link with the library.

4.2.1 API Compatibility Layers (Calling AOCL-BLIS)

AOCL-BLIS supports various API compatibility layers. The following sub-sections explain these
layers with source code examples.

The standard BLAS/CBLAS layers allows portability between various libraries.

AOCL-BLIS has its own APIs (called BLIS APIs) that provide more flexibility and control to
achieve the best performance.

$ make check

$ make checkcpp

https://github.com/amd/blis/releases
https://developer.amd.com/amd-aocl/blas-library/
https://developer.amd.com/amd-aocl/
https://developer.amd.com/amd-aocl/

Chapter 4 AOCL-BLIS 23

AOCL User Guide57404 Rev. 4.0 November 2022

The following table lists all the supported layers:
Table 1. BLIS API Compatibility Layers

API
Compatibility

Layer

Header
Files

Configuration
Option Usages

BLAS (Fortran) Not
applicable

--enable-blas Use this option when calling BLIS from Fortran
applications.

API Name Format: DGEMM
BLAS (C) blis.h --enable-blas Use this option when calling BLIS from C application

using BLAS type parameters.

API Name Format: dgemm_
CBLAS cblas.h --enable-cblas

(Implies --
enable-blas)

Use this option when calling BLIS from C application
using CBLAS type parameters.

API Name Format: cblas_dgemm
BLIS - C
Non Standard

blis.h Default This is AOCL-BLIS library specific (non-standard)
interface, it provides most flexibility in calling
AOCL-BLIS for best performance. However, these
applications will not be portable to other BLAS/
CBLAS compatible libraries.

API Name Format: bli_gemm
API Name Format: blis_gemm_ex

BLIS – CPP
Non Standard

blis.hh Default This is AOCL-BLIS library specific (non-standard)
C++ interface. This interface follows same parameter
order as CBLAS. However, these applications will
not be portable to other BLAS/CBLAS compatible
libraries.

API Name Format: blis::gemm

24 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

4.2.2 API Compatibility - Advance Options

The API compatibility can be further extended to meet additional requirements for input sizes
(ILP64) and different ways in which complex numbers are handled. The following table explains
such options:

4.2.3 Linking Application with AOCL-BLIS

The AOCL-BLIS library can be linked statically or dynamically with the user application. It has a
separate binary for single-threaded and multi-threaded implementation.

The basic build command is as following:

The following table explains different options depending on a particular build configuration:

Table 2. AOCL-BLIS API Compatibility - Advance Options

Feature Configuration
Option Usages

ILP64
Support

--blas-int-size=SIZE This option can be used to specify the integer types used in external
BLAS/CBLAS interfaces.

Accepted Values:
ILP64 - SIZE = 64
LP64 - SIZE = 32 (Default)

Complex
Number
return
handling

--complex-
return=gnu|intel

The complex numbers can be returned through registers or the hidden
parameter.
Based on the way application is calling the API, the library must be
configured to match the return value receptions.
gnu = return complex values through registers
intel = return complex values through hidden parameter.
For more information and example, refer “Returning Complex
Numbers” on page 31.

gcc test_blis.c -I<path-to-BLIS-header> <link-options> -o test_blis.x

Table 3. AOCL-BLIS Application - Link Options
Application Type Linking Type Link Options

Single-threaded Static <path-to-BLIS-library>/libblis.a -lm -lpthread

Single-threaded Dynamic -L<path-to-BLIS-library> -lblis -lm -lpthread

Multi-threaded Static <path-to-BLIS-library>/libblis-mt.a -lm -fopenmp

Multi-threaded Dynamic -L<path-to-BLIS-library> -lblis-mt -lm -fopenmp

Chapter 4 AOCL-BLIS 25

AOCL User Guide57404 Rev. 4.0 November 2022

4.2.3.1 Example - Dynamic Linking and Execution

AOCL-BLIS can be built as a shared library. By default, the library is built as both static and shared
libraries. Complete the following steps to build a shared lib version of AOCL-BLIS and link it with
the user application:

1. During configuration, enable the support for the shared lib using the following command:

2. Link the application with the generated shared library using the following command:

3. Ensure that the shared library is available in the library load path. Run the application using the
following command (for this demo we will use the BLAS_DGEMM_usage.c):

4.2.4 Example Application - AOCL-BLIS Usage in FORTRAN

AOCL-BLIS can be used with the FORTRAN applications through the standard BLAS API.

./configure --disable-static --enable-shared zen

gcc CBLAS_DGEMM_usage.c -I path/to/include/blis/ -L path/to/libblis.so -lblis -lm -lpthread -o
CBLAS_DGEMM_usage.x

$ export LD_LIBRARY_PATH=”path/to/libblis.so”

$./BLAS_DGEMM_usage.x
a =
1.000000 2.000000
3.000000 4.000000
b =
5.000000 6.000000
7.000000 8.000000
c =
19.000000 22.000000
43.000000 50.000000

26 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

For example, the following FORTRAN code does a double precision general matrix-matrix
multiplication. It calls the 'DGEMM' BLAS API function to accomplish this. A sample command to
compile and link it with the AOCL-BLIS library is shown in the following code:
! File: BLAS_DGEMM_usage.f
! Example code to demonstrate BLAS DGEMM usage

program dgemm_usage

implicit none

EXTERNAL DGEMM

DOUBLE PRECISION, ALLOCATABLE :: a(:,:)
DOUBLE PRECISION, ALLOCATABLE :: b(:,:)
DOUBLE PRECISION, ALLOCATABLE :: c(:,:)
INTEGER I, J, M, N, K, lda, ldb, ldc
DOUBLE PRECISION alpha, beta

M=2
N=M
K=M
lda=M
ldb=K
ldc=M
alpha=1.0
beta=0.0

ALLOCATE(a(lda,K), b(ldb,N), c(ldc,N))

a=RESHAPE((/ 1.0, 3.0, &
 2.0, 4.0 /), &
 (/lda,K/))
b=RESHAPE((/ 5.0, 7.0, &
 6.0, 8.0 /), &
 (/ldb,N/))

WRITE(*,*) ("a =")
DO I = LBOUND(a,1), UBOUND(a,1)
 WRITE(*,*) (a(I,J), J=LBOUND(a,2), UBOUND(a,2))
END DO
WRITE(*,*) ("b =")
DO I = LBOUND(b,1), UBOUND(b,1)
 WRITE(*,*) (b(I,J), J=LBOUND(b,2), UBOUND(b,2))
END DO

CALL DGEMM('N','N',M,N,K,alpha,a,lda,b,ldb,beta,c,ldc)

WRITE(*,*) ("c =")
DO I = LBOUND(c,1), UBOUND(c,1)
 WRITE(*,*) (c(I,J), J=LBOUND(c,2), UBOUND(c,2))
END DO

end program dgemm_usage

Chapter 4 AOCL-BLIS 27

AOCL User Guide57404 Rev. 4.0 November 2022

A sample compilation command with gfortran compiler for the code above:

4.2.5 AOCL-BLIS Usage in C

There are multiple ways to use BLIS with an application written in C. While you can always use the
native BLIS API, AOCL-BLIS also includes BLAS and CBLAS interfaces.

4.2.5.1 Example Application - Using BLIS with BLAS API in C

Following is the C version of the FORTRAN code in section 4.2.4. It uses the standard BLAS API.

The following process takes place during the execution of the code:

1. The matrices are transposed to account for the row-major storage of C and the column-major
convention of BLAS (inherited from FORTRAN).

2. The function arguments are passed by address again to be in line with FORTRAN conventions.

3. There is a trailing underscore in the function name ('dgemm_') as BLIS' BLAS APIs require
FORTRAN compilers to add a trailing underscore.

gfortran -ffree-form BLAS_DGEMM_usage.f path/to/libblis.a

28 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

4. "blis.h" is included as a header. A sample command to compile it and link with the BLIS library is
also shown in the following code:
// File: BLAS_DGEMM_usage.c
// Example code to demonstrate BLAS DGEMM usage

#include<stdio.h>
#include "blis.h"

#define DIM 2

int main() {

double a[DIM * DIM] = { 1.0, 3.0, 2.0, 4.0 };
double b[DIM * DIM] = { 5.0, 7.0, 6.0, 8.0 };
double c[DIM * DIM];
int I, J, M, N, K, lda, ldb, ldc;
double alpha, beta;

M = DIM;
N = M;
K = M;
lda = M;
ldb = K;
ldc = M;
alpha = 1.0;
beta = 0.0;

printf("a = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < K; J ++) {
printf("%f\t", a[J * K + I]);
}
printf("\n");
}
printf("b = \n");
for (I = 0; I < K; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", b[J * N + I]);
}
printf("\n");
}

dgemm_("N","N",&M,&N,&K,&alpha,a,&lda,b,&ldb,&beta,c,&ldc);

printf("c = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", c[J * N + I]);
}
printf("\n");
}

return 0;
}

Chapter 4 AOCL-BLIS 29

AOCL User Guide57404 Rev. 4.0 November 2022

A sample compilation command with a gcc compiler for the code above:

4.2.5.2 Example Application - Using AOCL-BLIS with CBLAS API

This section contains an example application written in C code using the CBLAS API for DGEMM.

The following process takes place during the execution of the code:

1. The CBLAS Layout option is used to choose row-major layout which is consistent with C.

2. The function arguments are passed by value.

gcc BLAS_DGEMM_usage.c -Ipath/to/include/blis/ -lpthread -lm path/to/libblis.a

30 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

3. "cblas.h" is included as a header. A sample command to compile it and link with the AOCL-BLIS
library is also shown in the following code:
// File: CBLAS_DGEMM_usage.c
// Example code to demonstrate CBLAS DGEMM usage
#include<stdio.h>
#include "cblas.h"

#define DIM 2

int main() {
double a[DIM * DIM] = { 1.0, 2.0, 3.0, 4.0 };
double b[DIM * DIM] = { 5.0, 6.0, 7.0, 8.0 };
double c[DIM * DIM];
int I, J, M, N, K, lda, ldb, ldc;
double alpha, beta;

M = DIM;
N = M;
K = M;
lda = M;
ldb = K;
ldc = M;
alpha = 1.0;
beta = 0.0;

printf("a = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < K; J ++) {
printf("%f\t", a[I * K + J]);
}
printf("\n");
}
printf("b = \n");
for (I = 0; I < K; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", b[I * N + J]);
}
printf("\n");
}

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, alpha, a, lda, b, ldb, beta,
c, ldc);

printf("c = \n");
for (I = 0; I < M; I ++) {
for (J = 0; J < N; J ++) {
printf("%f\t", c[I * N + J]);
}
printf("\n");
}

return 0;
}

Chapter 4 AOCL-BLIS 31

AOCL User Guide57404 Rev. 4.0 November 2022

Note: To get the CBLAS API with AOCL-BLIS, you must provide the flag '--enable-cblas' to the
'configure' command while building the AOCL-BLIS library.

A sample compilation command with a gcc compiler for the code above is as follows:

4.2.5.3 Returning Complex Numbers

The GNU Fortran compiler (gfortran),AOCC (Flang), and Intel Fortran compiler (ifort) have different
requirements for returning complex numbers from the C functions as follows:

• GNU (gfortran)/AOCC (Flang) compiler returns complex numbers using registers. Thus, the
complex numbers are returned as the return value of the function itself.

• Intel® (ifort) compiler returns complex numbers using hidden first argument. The caller must pass
the pointer to the return value as the first parameter.

gfortran Example:

• Configure Option:

• API Call:

ifort example:

• Configure Option:

• API Call:

This feature is currently enabled only for cdotx and zdotx APIs.

4.3 Migrating/Porting

The application written for MKL, OpenBLAS or any other library using standard BLAS or CBLAS
interfaces can be ported to AOCL-BLIS with minimal or no changes.

Complete the following steps to port from BLAS or CBLAS to AOCL-BLIS:

1. Update the source code to include the correct header files.

2. Update the build script or makefile to use correct compile or link option.

gcc CBLAS_DGEMM_usage.c -Ipath/to/include/blis/ -lpthread -lm path/to/libblis.a

-–complex-return=gnu

ret_value = cdotc_(&n, x, &incx, y, &incy);

-–complex-return=intel

cdotc_(&ret_value, &n, x, &incx, y, &incy);

32 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

The following table lists the compiler and linker options to use while porting to AOCL-BLIS:

4.4 Using AOCL-BLIS Library Features

4.4.1 Dynamic Dispatch

Starting from AOCL 3.1, AOCL-BLIS supports Dynamic Dispatch feature. It enables you to use the
same binary on different architectures.

4.4.1.1 Purpose

Before Dynamic Dispatch, the user had to build different binaries for each CPU architecture, that is,
AMD “Zen”, AMD “Zen2”, and AMD “Zen3” architectures. Furthermore, when building the
application, users had to ensure that they used the correct AMD “Zen”-based library as needed for the
platform. This becomes challenging when using BLIS on a cluster having nodes of different
architectures.

Dynamic Dispatch addresses this issue by building a single binary compatiblewith all the AMD
“Zen” architectures. At the runtime, the Dynamic Dispatch feature enables optimizations specific to
the detected AMD “Zen” architecture.

4.4.1.2 On non-AMD “Zen” Architectures

The Dynamic Dispatch feature supports AMD “Zen”, AMD “Zen2”, AND “Zen3”,and AMD “Zen4”
architectures in a single binary. However, it also includes the support for standard x86 architecture.
The generic architecture uses a pure C implementation of the APIs and does not use any architecture-
specific features.

The specific compiler flags used for building the library with generic configuration are:

Note: As no architecture specific optimization and vectorized kernels are enabled, performance with
the generic architecture may be significantly lower than the architecture-specific
implementation.

Table 4. Porting to AOCL-BLIS

MKL OpenBLAS
AOCL-BLIS

Single-threaded Multi-threaded

Header File mkl.h cblas.h blis.h/cblas.h blis.h/cblas.h

Link Options

-lmkl_intel_lp64
-lmkl_core
-lmkl_blacs_intelmpi_ilp64
-lmkl_intel_thread

-lopenblas -lm -lblis -
lpthread

-lm -fopenmp
-lblis-mt

-O2 -funsafe-math-optimizations -ffp-contract=fast -Wall -Wno-unused-function -Wfatal-errors

Chapter 4 AOCL-BLIS 33

AOCL User Guide57404 Rev. 4.0 November 2022

4.4.1.3 Using Dynamic Dispatch

Building AOCL-BLIS

Dynamic Dispatch must be enabled while building the AOCL-BLIS library. This is done by building
the library for amdzen configuration as explained in “Build AOCL-BLIS from Source” on page 20.

Code Path

Dynamic Dispatch can print debugging information on the selected code path. This is enabled by
setting the environment variable BLIS_ARCH_DEBUG=1.

Architecture Selection at Runtime

For most use cases, Dynamic Dispatch will detect the underlying architecture and enable appropriate
code paths and optimizations.

However, AOCL-BLIS can be forced to use a specific architecture by setting the environment
variable BLIS_ARCH_TYPE as follows:

Where, value = {zen4, zen3, zen2, zen, generic}

You must note the following:

• The code path names are not case sensitive.

• The enumeration number for a given code path may change from release to release as new code
paths are added. It has changed in AOCL-BLIS 4.0 from the previous release (3.2).

• Specifying a particular code path will completely override the automatic selection and thus, the
following scenarios are possible:

– A code path unavailable in the AOCL-BLIS build is being used. This will result in an error
message from the AOCL-BLIS library which will then abort.

– A code path executes instructions unavailable on the processor being used, for example, trying
to run the AMD “Zen4” code path (which may use AVX512 instructions) on a AMD “Zen3”
or older system. If this happens, the program may stop with an "illegal instruction" error. This
may be routine and problem size dependent.

In some circumstances, setting BLIS_ARCH_TYPE incorrectly may cause errors. If you are building
AOCL-BLIS from source, there are two options to mitigate this issue. One is to change the
environment variable used from BLIS_ARCH_TYPE to another name:

Alternatively, the mechanism to allow manual selection of code path can be disabled:

In this case, Dynamic Dispatch will still occur among the included code paths. However, only by
automatic selection based on the code architecture.

BLIS_ARCH_TYPE=value <AOCL-BLIS linked application>

./configure --enable-cblas --prefix=<your-install-dir> -rename-blis-arch-type=<your-name-for-
arch-type> amdzen

./configure --enable-cblas --prefix=<your-install-dir> --disable-blis-arch-type amdzen

34 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

4.4.2 BLIS - Running the Test Suite

The AOCL-BLIS source directory contains a test suite to verify the functionality of AOCL-BLIS and
BLAS APIs. The test suite invokes the APIs with different inputs and verifies that the results are
within the expected tolerance limits.

For more information, refer https://github.com/amd/blis/blob/master/docs/Testsuite.md.

4.4.2.1 Multi-thread Test Suite Performance

Starting from AOCL-BLIS 3.1, the dynamic selection of number of threads is supported. If the
number of threads are not specified, AOCL-BLIS uses the maximum number of threads equal to the
number of cores available on the system. A higher number of threads result in better performance for
medium to large size matrices found in practical use cases.

However, the higher number of threads results in poor performance for very small sizes used by the
test and check features. Hence, you must specify the number of threads while running the test/test
suite.

The recommended number of threads to run the test suite is 1 or 2.

Running Test Suite

Execute the following command to invoke the test suite:
$ BLIS_NUM_THREADS=2 make test

https://github.com/amd/blis/blob/master/docs/Testsuite.md

Chapter 4 AOCL-BLIS 35

AOCL User Guide57404 Rev. 4.0 November 2022

The sample output from the execution of the command is as follows:

4.4.3 Testing/Benchmarking

The AOCL-BLIS source has an API specific test driver and this section explains how to use it for a
specific set of matrix sizes.

The source file for this driver is test/test_gemm.c and the executable is test/test_gemm_blis.x.

Complete the following steps to execute the GEMM tests on specific inputs:

Enabling File Inputs

By default, file input/output is disabled (instead it uses start, end, and step sizes). To enable the file
inputs, complete the following steps:

1. Open the file test/test_gemm.c.

2. Uncomment the following two macros at the start of the file:

a. #define FILE_IN_OUT
b. #define MATRIX_INITIALISATION

Building Test Driver

Execute the following commands to build the test driver:

$:~/blis$ BLIS_NUM_THREADS=2 make test
Compiling obj/zen3/testsuite/test_addm.o
Compiling obj/zen3/testsuite/test_addv.o
.
<<< More compilation output >>>
.
Compiling obj/zen3/testsuite/test_xpbym.o
Compiling obj/zen3/testsuite/test_xpbyv.o
Linking test_libblis-mt.x against 'lib/zen3/libblis-mt.a -lm -lpthread -fopenmp -lrt'
Running test_libblis-mt.x with output redirected to 'output.testsuite'
check-blistest.sh: All BLIS tests passed!
Compiling obj/zen3/blastest/cblat1.o
Compiling obj/zen3/blastest/abs.o
.
<<< More compilation output >>>
.
Compiling obj/zen3/blastest/wsfe.o
Compiling obj/zen3/blastest/wsle.o
Archiving obj/zen3/blastest/libf2c.a
Linking cblat1.x against 'libf2c.a lib/zen3/libblis-mt.a -lm -lpthread -fopenmp -lrt'
Running cblat1.x > 'out.cblat1'
.
<<< More compilation output >>>
.
Linking zblat3.x against 'libf2c.a lib/zen3/libblis-mt.a -lm -lpthread -fopenmp -lrt'
Running zblat3.x < './blastest/input/zblat3.in' (output to 'out.zblat3')
check-blastest.sh: All BLAS tests passed!

$ cd tests
$ make blis

36 AOCL-BLIS Chapter 4

57404 Rev. 4.0 November 2022AOCL User Guide

Creating an Input File

The input file accepts matrix sizes and strides in the following format. Each dimension is separated by
a space and each entry is separated by a new line.

For example, m k n cs_a cs_b cs_c. Where:

• Matrix A is of size m x k

• Matrix B is of size k x n

• Matrix C is of size m x n

This test application (test_gemm.c) assumes column-major storage of matrices.

The valid values of CS_A, CS_B, and CS_C for a GEMM operation C = beta*C + alpha* A * B, are
as follows:

• CS_A >= m

• CS_B >= k

• CS_C >= m

Running the Tests

Execute the following commands to run the tests:

An execution sample (with the test driver) for GEMM is as follows:

$ cd tests
$./test_gemm_blis.x <input file name> <output file name>

$ cat inputs.txt
200 100 100 200 200 200
10 4 1 100 100 100
4000 4000 400 4000 4000 4000
$./test_gemm_blis.x inputs.txt outputs.txt
~~~~~~~~~~_BLAS  m       k       n       cs_a    cs_b    cs_c    gflops
data_gemm_blis   200      100     100     200     200     200    27.211
data_gemm_blis    10        4       1     100     100     100     0.027
data_gemm_blis  4000     4000     400    4000    4000    4000    45.279
$ cat outputs.txt
m        k       n       cs_a    cs_b    cs_c    gflops
   200    100     100     200     200     200    27.211 
    10      4       1     100     100     100     0.027 
  4000   4000     400    4000    4000    4000    45.279 



Chapter 4 AOCL-BLIS 37

 

AOCL User Guide57404 Rev. 4.0 November 2022

4.4.4 BLIS APIs

This section explains some of the BLIS APIs used to get the AOCL-BLIS library configuration 
information and for configuring optimization tuning parameters.

4.5 Debugging and Troubleshooting

4.5.1 Debugging Build Using GDB

The AOCL-BLIS library can be debugged on Linux using GDB. To enable the debugging support, 
build the library with the --enable-debug flag. Use following commands to configure and build the 
debug version of AOCL-BLIS:

Use the following commands to link the application with the binary and build application with debug 
support:

Table 5. BLIS APIs
API Usages

bli_info_get_version_str  Returns the version string in 
the form of “AOCL-BLIS 
4.0.0 Build yyyyddmm”.

bli_info_get_enable_openmp
bli_info_get_enable_pthreads
bli_info_get_enable_threading

Returns true if OpenMP/
pthreads are enabled and false 
otherwise.

bli_thread_get_num_threads1 Returns the default number of 
threads used for the 
subsequent BLAS calls.

bli_thread_set_num_threads( dim_t 
n_threads )1

 Sets the number of threads for 
the subsequent BLAS calls.

bli_thread_set_ways(
dim_t jc, 
dim_t pc, 
dim_t ic, 
dim_t jr, 
dim_t ir )1

Sets the number of threads for 
different levels of 
parallelization as per 
GotoBLAS five loops 
architecture.

Notes:
1. Refer https://github.com/amd/blis/blob/master/docs/Multithreading.md#specifying-multithreading

$ cd blis_src 
$ ./configure --enable-cblas --enable-debug auto
$ make -j

$ cd blis_src 
$ gcc -g -O0 -lpthread -lm -I<path-to-BLIS-header> <path-to-BLIS-library>/libblis.a test_gemm.c 
-o test_gemm_blis.x

https://github.com/amd/blis/blob/master/docs/Multithreading.md#specifying-multithreading


38 AOCL-BLIS Chapter 4

 

57404 Rev. 4.0 November 2022AOCL User Guide

You can debug the application using gdb. A sample output of the gdb session is as follows:

4.5.2 Viewing Logs

The AOCL-BLIS library provides Debug and Trace features:

• Trace Log identifies the code path taken in terms of the function call chain. It prints the 
information on the functions invoked and their order. 

• Debug Log prints the other debugging information, such as values of input parameters, content, 
and data structures. 

The key features of this functionality are as follows:

• Can be enabled/disabled at compile time. 

$ gdb ./test_gemm_blis.x
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-12.el8
..
..
..
Reading symbols from ./test_gemm_blis.x...done.
(gdb) break bli_gemm_small
Breakpoint 1 at 0x677543: file kernels/zen/3/bli_gemm_small.c, line 110.
(gdb) run
Starting program: /home/dipal/work/blis_dtl/test/test_gemm_blis.x
Using host libthread_db library "/lib64/libthread_db.so.1".
BLIS Library version is : AOCL BLIS 3.1

Breakpoint 1, bli_gemm_small (alpha=0x7fffffffcf40, a=0x2471b30, b=0x7fffffffd1c0, 
beta=0x2465400 <BLIS_ZERO>,
    c=0x4fe66e <bli_obj_equals+300>, cntx=0x7fffffffb320, cntl=0x0) at kernels/zen/3/
bli_gemm_small.c:110
110     {
(gdb) bt
#0  bli_gemm_small (alpha=0x7fffffffcf40, a=0x2471b30, b=0x7fffffffd1c0, beta=0x2465400 
<BLIS_ZERO>,
    c=0x4fe66e <bli_obj_equals+300>, cntx=0x7fffffffb320, cntl=0x0) at kernels/zen/3/
bli_gemm_small.c:110
#1  0x00000000007caab6 in bli_gemm_front (alpha=0x7fffffffd1c0, a=0x7fffffffd120, 
b=0x7fffffffd080,
    beta=0x7fffffffcfe0, c=0x7fffffffcf40, cntx=0x2471b30, rntm=0x7fffffffce50, cntl=0x0)
    at frame/3/gemm/bli_gemm_front.c:83
#2  0x00000000005baf42 in bli_gemmnat (alpha=0x7fffffffd1c0, a=0x7fffffffd120, 
b=0x7fffffffd080,
    beta=0x7fffffffcfe0, c=0x7fffffffcf40, cntx=0x2471b30, rntm=0x7fffffffce50)
    at frame/ind/oapi/bli_l3_nat_oapi.c:83
#3  0x00000000005474a2 in dgemm_ (transa=0x7fffffffd363 "N\320\a", transb=0x7fffffffd362 
"NN\320\a",
    m=0x7fffffffd36c, n=0x7fffffffd364, k=0x7fffffffd368, alpha=0x24733c0, a=0x7ffff53e2040, 
lda=0x7fffffffd378,
    b=0x7ffff355d040, ldb=0x7fffffffd374, beta=0x2473340, c=0x7ffff16d8040, ldc=0x7fffffffd370)
    at frame/compat/bla_gemm.c:559
#4  0x0000000000413a1c in main (argc=1, argv=0x7fffffffd988) at test_gemm.c:321
(gdb)



Chapter 4 AOCL-BLIS 39

 

AOCL User Guide57404 Rev. 4.0 November 2022

• When these features are disabled at compile time, they do not require any runtime resources and 
that does not affect the performance.

• Compile time option is available to control the depth of trace/log levels. 

• All the traces are thread safe.

• Performance data, such as execution time and gflops achieved, are also printed for xGEMM APIs.

4.5.2.1 Function Call Tracing

The function call tracing is implemented using hard instrumentation of the AOCL-BLIS code. Here, 
the functions are grouped as per their position in the call stack. You can configure the level up to 
which the traces must be generated.

Complete the following steps to enable and view the traces:

1. Enable the trace support as follows:

a. Modify the source code to enable tracing.

b. Change the following macro from 0 to 1:

2. Configure the trace depth level.

a. Modify the source code to specify the trace depth level.

b. Change the following macro as required. Beginning with Level 5 should be a good 
compromise in terms of details and resource requirement. The higher the level, the deeper is 
the call stack. A lower level reduces the depth of the call stack used for a trace generation.

3. Build the library as explained in “Build AOCL-BLIS from Source” on page 20.

Open file <blis folder>/aocl_dtl/aocldtlcf.h

#define AOCL_DTL_TRACE_ENABLE       0

Open file <blis folder>/aocl_dtl/aocldtlcf.h

#define AOCL_DTL_TRACE_LEVEL  AOCL_DTL_LEVEL_TRACE_5



40 AOCL-BLIS Chapter 4

 

57404 Rev. 4.0 November 2022AOCL User Guide

4. Run the application to generate the trace data.

The trace output file for each thread is generated in the current folder. 

The following figure shows a sample running the call tracing function using the test_gemm 
application:

Figure 1. Sample Run of Function Call Tracing

The trace data for each thread is saved in the file with appropriate naming conventions. The .txt 
extension is used to signify the readable file:

P<process id>_T<thread id>_aocldtl_trace.txt

5. View the trace data.

The output of the call trace is in a readable format, you can open the file in any of the text editors. 
The first column shows the level in call stack for the given function.

4.5.2.2 Debug Logging

The debug logging works very similar to the function call tracing and uses the same infrastructure. 
However, it can be enabled independent of the trace feature to avoid cluttering of the overall 
debugging information. This feature is primarily used to print the input values of the BLIS APIs. 
Additionally, it can also be used to print any arbitrary debugging data (buffers, matrices, arrays, or 
text).

Complete the following steps to enable and view the debug logs:

1. Enable the debug log support as follows:

a. Modify the source code to enable debug logging.
Open file <blis folder>/aocl_dtl/aocldtlcf.h

 



Chapter 4 AOCL-BLIS 41

 

AOCL User Guide57404 Rev. 4.0 November 2022

b. Change the following macro from 0 to 1:

2. Configure the trace depth level.

a. Modify the source code to specify the debug log depth level.

b. Change the following macro as required. Beginning with Level 5 should be a good 
compromise in terms of details and resource requirement. The higher the level (maximum is 
10), the deeper is the call stack. A lower level reduces the depth of the call stack used for a 
trace generation.

3. Build the library as explained in “Build AOCL-BLIS from Source” on page 20.

4. Run the application to generate the trace data.

The trace output files for each thread is generated in the current folder. 

The following figure shows a sample running of BLIS with the debug logs enabled using the 
test_gemm application:

Figure 2. Sample Run with Debug Logs Enabled

The debug logs for each thread are saved in the file with appropriate naming conventions. The .txt 
extension is used to signify the readable file:

P<process id>_T<thread id>_aocldtl_log.txt

#define AOCL_DTL_LOG_ENABLE       0

Open file <blis folder>/aocl_dtl/aocldtlcf.h

#define AOCL_DTL_TRACE_LEVEL  AOCL_DTL_LEVEL_TRACE_5

 



42 AOCL-BLIS Chapter 4

 

57404 Rev. 4.0 November 2022AOCL User Guide

5. View the debug logs.

The output of the debug logs is in a readable format, you can open the file in any of the text 
editors. The following figure shows the sample output for one of the threads of test_gemm 
application:

Figure 3. Debug Logs Showing Input Values of GEMM

4.5.2.3 Usages and Limitations

The debug and trace logs have the following usages and limitations:

• When tracing is enabled, there could be a significant drop in the performance.

• Only a function that has the trace feature in the code can be traced. To get the trace information 
for any other function, the source code must be updated to add the trace/log macros in them.

• The call trace and debug logging is a resource-dependent process and can generate a large size of 
data. Based on the hardware configuration (the disk space, number of cores and threads) required 
for the execution, logging may result in a sluggish or non-responsive system.

4.5.3 Checking AOCL-BLIS Operation Progress

The AOCL libraries may be used to perform lengthy computations (for example, matrix 
multiplications and solver involving large matrices). These operations/computations may go on for 
hours. 

AOCL Progress feature provides mechanism for the application to check the computation  progress. 
The AOCL libraries (AOCL-BLIS and AOCL-libFLAME) periodically updates the application with 
progress made through a callback function.

Usage

The application must define the callback function in a specific format and register it with the AOCL 
library.

Callback Definition

The callback function prototype must be as defined as given follows:

However, you can modify the function name as per your preference.

int AOCL_BLIS_progress(
const char* const api,
const int lapi,
const dim_t progress,
const dim_t current_thread,
const dim_t total_threads
)

 



Chapter 4 AOCL-BLIS 43

 

AOCL User Guide57404 Rev. 4.0 November 2022

The following table explains different parameters passed to the callback function:

Callback Registration

The callback function must be registered with the library for reporting the progress. Each library has 
its own callback registration function. The registration can be done by calling:

AOCL_BLIS_set_progress(AOCL_progress);  // for AOCL-BLIS

Example

The library only invokes the callback function at appropriate intervals, it is up to the user to consume 
this information appropriately. The following example shows how to use it for printing the progress to 
a standard output:

Register the callback with:

AOCL_BLIS_set_progress(AOCL_progress);  // for AOCL-BLIS

The result is displayed in following format (output truncated):

Table 6. Callback Parameters
Parameter Purpose

api Name of the API running currently
lapi Length of the API name string (*api)
progress Linear progress made in current thread presently
current_thread Current thread ID
total_threads Total number of threads used to performance the operation

int AOCL_BLIS_progress(
const char* const api,
const int lapi,
const dim_t progress,
const dim_t current_thread,
const dim_t total_threads
)
{
  printf("\n%s, total thread = %lld, processed %lld element by thread %lld.",
         api, total_threads, progress, current_thread); 
     return 0;
}

BLIS_NUM_THREADS=5 ./test_gemm_blis.x
dgemm, total thread = 5, processed 11796480 element by thread 4.
dgemm, total thread = 5, processed 17694720 element by thread 0.
dgemm, total thread = 5, processed 5898240 element by thread 2.
dgemm, total thread = 5, processed 20643840 element by thread 0.
dgemm, total thread = 5, processed 14745600 element by thread 3.
dgemm, total thread = 5, processed 14745600 element by thread 4.



44 AOCL-BLIS Chapter 4

 

57404 Rev. 4.0 November 2022AOCL User Guide

Limitations

• The feature only shows if the operation is progressing or not, it doesn't provide an estimate/
percentage compilation status.

• A separate callback must be registered for AOCL-BLIS, AOCL-libFLAME, and AOCL-
ScaLAPACK.

4.6 Build AOCL-BLIS from Source on Windows

GitHub URL: https://github.com/amd/blis 

AOCL-BLIS uses CMake along with Microsoft Visual Studio for building binaries from the sources 
on Windows. The following sections explain the GUI and command-line schemes of building the 
binaries and test suite.

Prerequisites

• Windows 10/11 or Windows Server 2019/2022

• LLVM 13/14 for AMD “Zen3” and AMD “Zen4” support (or LLVM 11 for AMD “Zen2” 
support)

• LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this 
plugin enables linking Visual Studio with the installed LLVM toolchain)

• CMake 3.0 through 3.23.3

• Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.3.2)

• Microsoft Visual Studio tools (as shown in Figure 4):

– Python development
– Desktop development with C++: C++ Clang-Cl for v142 build tool (x64/x86)

Figure 4. Microsoft Visual Studio Prerequisites

https://github.com/amd/blis


Chapter 4 AOCL-BLIS 45

 

AOCL User Guide57404 Rev. 4.0 November 2022

4.6.1 Building AOCL-BLIS using GUI

4.6.1.1 Preparing Project with CMake GUI

Complete the following steps in the CMake GUI:

1. Set the source (folder containing AOCL-BLIS source code) and build (folder in which the project 
files will be generated, for example, out) folder paths as shown in the following figure: 

Figure 5. CMake Source and Build Folders

It is not recommended to use the folder named build since build is usedby Linux build system.

2. Click on the Configure button to prepare the project options.

 



46 AOCL-BLIS Chapter 4

 

57404 Rev. 4.0 November 2022AOCL User Guide

3. Set the generator to Visual Studio 16 2019 or Visual Studio 17 2022 and the compiler to 
ClangCl or LLVM as shown in the following figure:

Figure 6. Set Generator and Compiler

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 7. CMake Config Options
Feature CMake Parameter

AMD CPU architecture AOCL_BLIS_FAMILY:STRING=zen/zen2/zen3
Enable verbose mode ENABLE_VERBOSE=ON
Shared library BUILD_SHARED_LIBS=ON
Static library BUILD_SHARED_LIBS=OFF

ENABLE_AOCL_DYNAMIC=OFF
Debug/Release build type CMAKE_BUILD_TYPE=Debug/Release
Dynamic Dispatcher AOCL_BLIS_FAMILY:STRING=amdzen
Enable single threading ENABLE_MULTITHREADING=OFF

ENABLE_AOCL_DYNAMIC=OFF
Enable multi-threading with OpenMP 
and AOCL dynamic enabled

ENABLE_MULTITHREADING=ON
ENABLE_OPENMP=ON
ENABLE_AOCL_DYNAMIC=ON

Enable multi-threading with OpenMP 
and AOCL dynamic disabled

ENABLE_MULTITHREADING=ON
ENABLE_OPENMP=ON
ENABLE_AOCL_DYNAMIC=OFF

Enable BLAS/CBLAS support ENABLE_BLAS=ON
ENABLE_CBLAS=ON

 



Chapter 4 AOCL-BLIS 47

 

AOCL User Guide57404 Rev. 4.0 November 2022

Enable 32-bit BLIS/BLAS integer size BLIS_ENABLE_ILP64=OFF
ENABLE_INT_TYPE_SIZE=OFF

Enable 64-bit BLIS/BLAS integer size BLIS_ENABLE_ILP64=ON
ENABLE_INT_TYPE_SIZE=ON

Flags that are enabled by default ENABLE_JRIR_SLAB
ENABLE_PBA_POOLS
ENABLE_SBA_POOLS
ENABLE_MIXED_DT
ENABLE_MIXED_DT_EXTRA_MEM
ENABLE_SUP_HANDLING
ENABLE_PRAGMA_OMP_SIMD

Flags that are disabled by default ENABLE_JRIR_RR
ENABLE_MEM_TRACING
ENABLE_MEMKIND
ENABLE_SANDBOX

Use APIs without trailing underscore ENABLE_NO_UNDERSCORE_API
Enable uppercase APIs ENABLE_UPPERCASE_API
Absolute path to the OpenMP library, 
including the library name

OpenMP_libomp_LIBRARY

Disable forced code path selection 
using the environment variable 
BLIS_ARCH_TYPE

DISABLE_BLIS_ARCH_TYPE

Table 7. CMake Config Options
Feature CMake Parameter



48 AOCL-BLIS Chapter 4

 

57404 Rev. 4.0 November 2022AOCL User Guide

5. To generate the Microsoft Visual Studio project in the out folder, click on the Generate button as 
shown in the following figure:

Figure 7. CMake Configure and Generate Project Settings

4.6.1.2 Building the Project in Visual Studio GUI

Complete the following steps in the Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on 
page 45.

2. To generate AOCL-BLIS binaries, build the AOCL-LibBlis-Win project. 

The library files will generate in the bin folder based on the project settings.

For example, blis/bin/Release/AOCL-LibBlis-Win.dll or AOCL-LibBlis-Win.lib

4.6.2 Building AOCL-BLIS using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as well. 
The corresponding steps are described in the following sections.

4.6.2.1 Configuring the Project in Command Prompt

In the AOCL-BLIS project folder, create a folder out. Open the command prompt in this directory 
and run the following command to configure the project:
cmake -S .. -B . -G "Visual Studio 16 2019" -DCMAKE_BUILD_TYPE=Release 
-DAOCL_BLIS_FAMILY:STRING=amdzen -DBUILD_SHARED_LIBS=ON -DENABLE_MULTITHREADING=ON 
-DENABLE_OPENMP=ON -DENABLE_COMPLEX_RETURN_INTEL=ON -DOpenMP_libomp_LIBRARY="C:\Program 
Files\LLVM\lib\libomp.lib" 
-DENABLE_AOCL_DYNAMIC=ON -TClangCL



Chapter 4 AOCL-BLIS 49

 

AOCL User Guide57404 Rev. 4.0 November 2022

You can refer Table 7 and update the parameter options in the command according to the project 
requirements.

4.6.2.2 Building the Project in Command Prompt

Open command prompt in the blis\out directory. Invoke CMake with the build command with release 
or debug option. For example: 

The library files would be generated in the Release or Debug folder based on the project settings.

4.6.3 Building and Running the Test Suite

The Microsoft Visual Studio projects for individual tests and the test suite are generated as a part the 
CMake generate step. You can build the test projects from Microsoft Visual Studio GUI or command 
prompt as described in the previous sections.

4.6.3.1 Running Individual Tests

Copy the relevant input files for the tests from blis\bench to the blis\bin\release folder. Run the tests 
from the command prompt as follows:

4.6.3.2 Running the Test Suite

Copy the input files input.global.general and input.global.operations for the tests from blis\test to the 
release folder. The tests can be run from command prompt as follows:

4.6.3.3 Running Multi-thread Tests

Complete the following steps to run the multi-thread tests:

1. Copy the relevant input files for the tests from blis\testsuite or blis\bench to the blis\bin\release 
folder.

2. Copy libomp.lib and libomp.dll respectively from the Microsoft Visual Studio folders 
\VC\Tools\Llvm\lib and \VC\Tools\Llvm\bin to the blis\bin\release folder.

3. Set the threading environment variables in the same command prompt session as the test runs.

For example:

cmake --build . --config Release

Release> TestGemm.exe inputgemm.txt output.txt

Release> test_libblis.exe

Release> set BLIS_NUM_THREADS=x  (x could be no of threads)
Release> set OMP_PROC_BIND=spread
Release> TestGemm.exe inputgemm.txt output.txt



50 AOCL-libFLAME Chapter 5

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 5 AOCL-libFLAME

AOCL-libFLAME is a high performant implementation of Linear Algebra PACKage (LAPACK). 
LAPACK provides routines for solving systems of linear equations, least-squares problems, 
eigenvalue problems, singular value problems, and the associated matrix factorizations. It is 
extensible, easy to use, and available under an open-source license. libFLAME is a C-only 
implementation. Applications relying on standard Netlib LAPACK interfaces can utilize libFLAME 
with virtually no changes to their source code.

From AOCL 4.0, AMD optimized version of libFLAME(AOCL-libFLAME) is compatible with 
LAPACK 3.10.1 specification. In combination with the AOCL-BLIS library, which includes 
optimizations for the AMD “Zen”-based processors, libFLAME enables running high performing 
LAPACK functionalities on AMD platforms. AOCL-libFLAME supports C, FORTRAN, and C++ 
template interfaces (for a subset of APIs) for the LAPACK APIs.

5.1 Installing on Linux

AOCL-libFLAME can be installed from source or pre-built binaries.

5.1.1 Building AOCL-libFLAME from Source

GitHub URL: https://github.com/amd/libflame

Note: Building AOCL-libFLAME does not require linking to AOCL-BLIS or any other BLAS library. 
The applications which use AOCL-libFLAME must link to AOCL-BLIS (or other BLAS 
libraries) for the BLAS functionalities.

Prerequisites

The following prerequisites must be met for installing AOCL-libFLAME:

• Target CPU ISA supporting AVX2 and FMA

• Python versions 2.7, 2.8, 3.4, and 3.6 

• GNU Make 4.2

• GCC and Gfortran (versions 9.x through 11.2)

Build Steps

Complete the following steps to build AOCL-libFLAME from source:

1. Clone the Git repository (https://github.com/amd/libflame.git). 

https://github.com/amd/libflame
https://github.com/amd/libflame.git


Chapter 5 AOCL-libFLAME 51

 

AOCL User Guide57404 Rev. 4.0 November 2022

2. Run the configure script. An example below shows therecommended options to be used when 
compiling on AMD “Zen”-based processors.

– With GCC (default)

– With AOCC

By default, the configuration options --enable-amd-flags and --enable-amd-aocc-flags 
enable multi-threading using OpenMP for the selected APIs in AOCL-libFLAME. To disable 
multi-threading, use the configure option --enable-multithreading=no.

Example:

To support binary portability across different architectures, the default compiler flags are set to -
mavx2 -mfma. As mentioned in the Prerequisites section, AOCL-libFLAME requires target CPU 
to have a minimum AVX2 and FMA ISA support. 

For enabling further optimizations beyond AVX2 and FMA, you can use the configure option --
enable-optimizations to set the desired optimization flags that will override the default flags. 

For example, on a AMD “Zen4”-based processor, you can set 'znver4' flag for improved 
performance:

Ensure that the compiler you use supports 'znver4' flag.

Using 32-bit Integer (LP64)

$ ./configure --enable-amd-flags --prefix=<your-install-dir>

Using 64-bit Integer (ILP64)

$ ./configure --enable-amd-flags –enable-ilp64 --prefix=<your-install-dir>

$ export CC=clang
$ export CXX=clang++
$ export FC=flang
$ export FLIBS="-lflang"

Using 32-bit Integer (LP64)

$ ./configure --enable-amd-aocc-flags --prefix=<your-install-dir>

Using 64-bit Integer (ILP64)

$ ./configure --enable-amd-aocc-flags –enable-ilp64 --prefix=<your-install-dir>

$ ./configure --enable-amd-flags --enable-multithreading=no

or

$ ./configure --enable-amd-aocc-flags --enable-multithreading=no

$ ./configure --enable-amd-flags --enable-optimizations="-march=znver4 -O3"
or
$ ./configure --enable-amd-flags --enable-optimizations="-march=native -O3"



52 AOCL-libFLAME Chapter 5

 

57404 Rev. 4.0 November 2022AOCL User Guide

3. Make and install using the following commands:

By default, without the configure option prefix, the library will be installed in $HOME/flame.

5.1.2 Using Pre-built Libraries

You can find the AOCL-libFLAME library binaries for Linux at the following URLs:

• https://github.com/amd/libflame/releases 

• https://developer.amd.com/amd-aocl/blas-library/#libflame 

Also, the AOCL-libFLAME binary can be installed from the AOCL master installer tar file available 
at the following URL:

https://developer.amd.com/amd-aocl/

The tar file includes pre-built binaries of the other AMD libraries as explained in "Using Master 
Package" on page 15.

5.2 Usage

The AOCL-libFLAME source directory contains test cases which demonstrate the usage of 
libFLAME APIs.

From AOCL 3.2, a separate test suite is included for the LAPACK interface. Currently, it has test 
cases for a few AOCL-libFLAME APIs. More test cases will be added in future releases. The test 
suite validates the APIs and displays performance reports. The configuration files for input supports 
testing for a range of input sizes and different parameter values. For more information on this test 
suite, refer the README file in the directory test/main.

5.2.1 Use by Applications

To use AOCL-libFLAME in your application, link with AOCL-libFLAME and AOCL-BLIS library 
while building the application.

5.2.1.1 Examples

• With a static library

• With a dynamic library

$ make -j
$ make install

gcc test_libflame.c <path-to-libFLAME-library>/libflame.a  <path-to-BLIS-library>/libblis.a -o 
test_libflame.x

gcc test_libflame.c <path-to-libFLAME-library>/libflame.so  <path-to-BLIS-library>/libblis.so -
o test_libflame.x

https://github.com/amd/libflame/releases 
https://developer.amd.com/amd-aocl/blas-library/#libflame
https://developer.amd.com/amd-aocl/


Chapter 5 AOCL-libFLAME 53

 

AOCL User Guide57404 Rev. 4.0 November 2022

5.3 Building AOCL-libFLAME from Source on Windows

libFLAME (https://github.com/amd/libflame) uses CMake along with Microsoft Visual Studio for 
building binaries from the source on Windows. The following sections explain the GUI and 
command-line schemes of building the binaries and test suite.

Prerequisites

Refer to the Prerequisites sub-section in "Build AOCL-BLIS from Source on Windows" on page 44.

5.3.1 Building AOCL-libFLAME Using GUI

5.3.1.1 Preparing Project with CMake GUI

Complete the following steps in the CMake GUI:

1. Set the source (folder containing libFLAME source code) and build (folder in which the project 
files will be generated, for example, out) folder paths. It is not recommended to use the folder 
named build as a folder with that name exists at the top of libFLAME source tree.

2. Click on the Configure button to prepare the project options.

3. Set the generator to Visual Studio 16 2019 and the compiler to ClangCl or LLVM.

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 8. AOCL-libFLAME Config Options
Feature CMake Parameter(s)

Shared library BUILD_SHARED_LIBS=ON
Static library BUILD_SHARED_LIBS=OFF
Flags enabled by default BUILD_SHARED_LIBS

ENABLE_WINDOWS_BUILD
ENABLE_AMD_FLAGS
ENABLE_BLAS_EXT_GEMMT
ENABLE_MULTITHREADING
ENABLE_WRAPPER
ENABLE_BLIS1_USE_OF_FLA_MALLOC
ENABLE_BUILTIN_LAPACK2FLAME
ENABLE_EXT_LAPACK_INTERFACE
ENABLE_INTERNAL_ERROR_CHECKING
ENABLE_NON_CRITICAL_CODE
ENABLE_PORTABLE_TIMER
INCLUDE_LAPACKE

https://github.com/amd/libflame


54 AOCL-libFLAME Chapter 5

 

57404 Rev. 4.0 November 2022AOCL User Guide

5. Provide the path to the AOCL-BLIS library. It will be used at the linking stage while building the 
test suite.

Enable uppercase APIs ENABLE_UPPERCASE=ON
Enable AMD optimized path ENABLE_AMD_OPT=ON
32-bit integer size ENABLE_ILP64=OFF
64-bit integer size ENABLE_ILP64=ON
AOCL-BLIS library path name CMAKE_EXT_BLIS_LIBRARY_DEPENDENCY_PATH=<pat

h to AOCL-BLIS library>
AOCL-BLIS library name EXT_BLIS_LIBNAME=AOCL-BLIS library name
Enable invoking ‘void’ return based 
interface for BLAS functions DOTC 
and DOTU

ENABLE_F2C_DOTC=ON

Enable ‘void’ return type for 
libFLAME functions such as cladiv/
zladiv

ENABLE_VOID_RETURN_COMPLEX_FUNCTION=ON

Enables multithreading ENABLE_MULTITHREADING=ON
Enable AMD FLAGS, 
internallyenables:
• ENABLE_BLAS_EXT_GEMMT
• ENABLE_AMD_OPT
• ENABLE_BUILTIN_LAPACK2FLA

ME
• ENABLE_EXT_LAPACK_INTERF

ACE
• ENABLE_F2C_DOTC
• ENABLE_VOID_RETURN_COMP

LEX_FUNCTION
• ENABLE_MULTITHREADING

ENABLE_AMD_FLAGS=ON

Table 8. AOCL-libFLAME Config Options
Feature CMake Parameter(s)



Chapter 5 AOCL-libFLAME 55

 

AOCL User Guide57404 Rev. 4.0 November 2022

6. To generate the Microsoft Visual Studio project in the out folder, click on the Generate button as 
shown in the following figure:

Figure 8. AOCL-libFLAME CMake Configurations

5.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in the Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in "Preparing Project with CMake GUI" on 
page 53.

2. To generate libFLAME binaries, build the AOCL-LibFLAME-Win project. 

The library files will generate in the bin folder based on the project settings.

For example, libflame/bin/Release/AOCL-LibFLAME-Win-dll.dll or AOCL-LibFLAME-Win-
dll.lib

5.3.2 Building AOCL-libFLAME using Command-line Arguments

The project configuration and build procedures can also be triggered from the command prompt. The 
corresponding steps are described in the following sections.

 



56 AOCL-libFLAME Chapter 5

 

57404 Rev. 4.0 November 2022AOCL User Guide

5.3.2.1 Configuring the Project in Command Prompt

In the libFLAME project folder, create a folder out. Open the command prompt in this directory and 
run the following command to configure the project:

You can refer to Table 8 and update the parameter options according to the project requirements.

5.3.2.2 Building the Project in Command Prompt

Open a command prompt in the libflame\out directory. Invoke CMake with the build command with 
release or debug option. For example: 

The library files would be generated in the Release or Debug folder based on the project settings.

5.3.3 Building and Running Test Suite

The Microsoft Visual Studio project for the test suite is generated as a part the CMake generate step. 
You can build the test projects from the Microsoft Visual Studio GUI or the command prompt as 
described in the previous sections.

5.4 Checking AOCL-libFLAME Operation Progress

AOCL libraries perform tasks that can be computationally expensive. The AOCL Progress feature 
provides a mechanism, for a selected set of APIs, for the calling application to check how far a 
computation has progressed through a callback function.

Usage

The application must define the aocl_fla_progress or callback function in a specific format and 
register this callback function with the AOCL-libFLAME library.

The callback function prototype must be defined as follows:

However, the function name can be changed as per your preference.

cmake -S .. -B . Example for building ILP64 mode binaries:
cmake -S .. -B . -G "Visual Studio 16 2019" -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=ON -
DEXT_BLIS_LIBNAME="AOCL-LibBlis-Win-MT-dll.lib" -
DCMAKE_EXT_BLIS_LIBRARY_DEPENDENCY_PATH="<path to AOCL-BLIS library>" -DENABLE_ILP64=ON -
DENABLE_AMD_FLAGS=ON -TLLVM -DBUILD_TEST=OFF -DBUILD_NETLIB_TEST=OFF -DENABLE_WRAPPER=ON -
DOpenMP_libomp_LIBRARY="C:\Program
Files\LLVM\lib\libomp.lib"

cmake --build . --config Release

int aocl_fla_progress(
char* api,
integer lenapi,
integer *progress,
integer *current_thread,
integer *total_threads
)



Chapter 5 AOCL-libFLAME 57

 

AOCL User Guide57404 Rev. 4.0 November 2022

The following table explains AOCL-libFLAME Progress feature callback function parameters:

Callback Registration

The callback function must be registered with the library to report the progress. Each library has its 
own callback registration function. The registration is done by calling:

Example:

Table 9. AOCL-libFLAME Progress Feature Callback Function Parameters
Parameter Purpose

api Name of the API running currently
lenapi Length of the API name character buffer
progress Linear progress made in the current thread so far
current_thread Current thread ID
total_threads Total number of threads used to perform the operation

aocl_fla_set_progress(test_progress);   // for AOCL-libFLAME

int aocl_fla_progress(char* api,integer lenapi,integer *progress,integer 
*current_thread,integer *total_threads)
{
  char buf[BUFLEN];
  if( lenapi >= BUFLEN ) lenapi = BUFLEN-1;
  strncpy( buf, api, lenapi );
  buf[lenapi] = '\0';
  printf( "In AOCL FLA  Progress thread  %lld", at API  %s, progress  %lld total threads= 
%lld\n", *current_thread, buf, *progress,*total_threads );
  return 0;

}

or

int test_progress(char* api,integer lenapi,integer *progress,integer *current_thread,integer 
*total_threads)
{
  char buf[BUFLEN];
  if( lenapi >= BUFLEN ) lenapi = BUFLEN-1;
  strncpy( buf, api, lenapi );
  buf[lenapi] = '\0';
  printf( "In AOCL Progress thread  %lld", at API  %s, progress  %lld total threads= %lld\n", 
*current_thread, buf, *progress,*total_threads );
  return 0;

}

Register the callback with:
aocl_fla_set_progress(test_progress);



58 AOCL-libFLAME Chapter 5

 

57404 Rev. 4.0 November 2022AOCL User Guide

Limitations

On Windows, aocl_fla_progress is not supported when using AOCL-libFLAME. Hence, the callback 
function must be registered through aocl_fla_set_progress.



Chapter 6 AOCL-FFTW 59

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 6 AOCL-FFTW

AMD optimized version of Fast Fourier Transform Algorithm (FFTW) is a comprehensive collection 
of fast C routines for computing the Discrete Fourier Transform (DFT) and various special cases 
thereof that are optimized for AMD EPYCTM and other AMD “Zen”-based processors. It is an open-
source implementation of FFTW. It can compute transforms of real and complex valued arrays of 
arbitrary size and dimension.

6.1 Installing

AOCL-FFTW can be installed from the source or pre-built binaries.

6.1.1 Building AOCL-FFTW from Source on Linux

Complete the following steps to build AOCL-FFTW for AMD EPYCTM processor based on the 
architecture generation:

1. Download the latest stable release of AOCL-FFTW (https://github.com/amd/amd-fftw).

2. Depending on the target system and build environment, you must enable/disable the appropriate 
configure options. Set PATH and LD_LIBRARY_PATH to the MPI installation. In the case of 
building for AMD Optimized FFTW library with AOCC compiler, you must compile and setup 
OpenMPI with AOCC compiler.

Complete the following steps to compile it for EPYCTM processors and other AMD “Zen”-based 
processors:

https://github.com/amd/amd-fftw


60 AOCL-FFTW Chapter 6

 

57404 Rev. 4.0 November 2022AOCL User Guide

Note: For a complete list of options and their description, type ./configure --help.

– With GCC (default)

– With AOCC

AMD optimized fast planner is added as an extension to the original planner to improve the 
planning time of various planning modes in general and PATIENT mode in particular. 

The configure user option --enable-amd-fast-planner when given in addition to –enable-amd-opt 
enables this new fast planner.

Double Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-amd-opt --enable-amd-mpifft --prefix=<your-
install-dir>

Single Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-single --enable-amd-opt --enable-amd-mpifft --
prefix=<your-install-dir>

Long double FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-mpi --enable-long-double --
enable-amd-opt --enable-amd-mpifft --prefix=<your-install-dir>

Quad Precision FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-quad-precision --enable-amd-opt 
--prefix=<your-install-dir>

Double Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-amd-opt --enable-amd-mpifft --prefix=<your-
install-dir> CC=clang F77=flang FC=flang 

Single Precision FFTW libraries

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-avx512 --enable-mpi --
enable-openmp --enable-shared --enable-single --enable-amd-opt --enable-amd-mpifft --
prefix=<your-install-dir> CC=clang F77=flang FC=flang

Long double FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-mpi --enable-long-double --
enable-amd-opt --enable-amd-mpifft --prefix=<your-install-dir> CC=clang F77=flang 
FC=flang

Quad FFTW libraries

$ ./configure --enable-shared --enable-openmp --enable-quad-precision --enable-amd-opt 
--prefix=<your-install-dir> CC=clang F77=flang FC=flang



Chapter 6 AOCL-FFTW 61

 

AOCL User Guide57404 Rev. 4.0 November 2022

An optional configure option AMD_ARCH is supported, that can be set to the CPU architecture 
values, such as auto, znver1, znver2, znver3,or znver4 for AMD EPYCTM and other AMD “Zen”-
based processors.

Additional config and build options to enable specific optimizations are covered in the section 
“AOCL-FFTW Tuning Guidelines” on page 130.

A dynamic dispatcher feature has been added to build a single portable optimized library for 
execution on a wide range of x86 CPU architectures. Use the--enable-dynamic-dispatcher 
configure option to enable this feature. Presently, it is supported for the GCC compiler and Linux-
based systems. The configure option --enable-amd-opt is the mandatory master optimization 
switch that must be set for enabling other optional configure options, such as:

– --enable-amd-mpifft 
– --enable-amd-mpi-vader-limit 
– --enable-amd-trans 
– --enable-amd-fast-planner 
– --enable-amd-top-n-planner 
– --enable-amd-app-opt 
– --enable-dynamic-dispatcher

3. Build the library:

4. Install the library in the preferred path:

5. Verify the installed library:

6.1.2 Building AOCL-FFTW from Source on Windows

AOCL-FFTW uses CMake along with Microsoft Visual Studio for building binaries from the sources 
on Windows. This section explains the GUI and command-line schemes for building the binaries and 
test suite.

Prerequisites

The following prerequisites must be met:

• Windows 10/11 and Windows Server 2019/2022

• A suitable MPI library installation along with the appropriate environment variables on the host 
machine

• LLVM 13/14 for AMD “Zen3” support 

• LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this 
plugin enables linking Visual Studio with the installed LLVM tool-chain)

$ make

$ make install

$ make check



62 AOCL-FFTW Chapter 6

 

57404 Rev. 4.0 November 2022AOCL User Guide

• CMake versions 3.0 through  3.23.3

• MPI compiler

• Microsoft Visual Studio 2019 build 16.8.7

• Microsoft Visual Studio tools

– Python development
– Desktop development with C++: C++ Clang-Cl for build tool (x64 or x86)

6.1.2.1 Using CMake GUI to Build

Complete the following steps in the CMake GUI:

1. Set the source (folder containing FFTW source code) and build (folder in which the project files 
will be generated, for example, out) folder paths. 

2. Click on the Configure button to prepare the project options.

3. Set the generator to Visual Studio 16 2019 or Visual Studio 17 2022 and the compiler to 
ClangCl or LLVM.

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 10. AOCL-FFTW Config Options
Feature CMake Parameters

Build type (Release or Debug mode) CMAKE_BUILD_TYPE=Release/Debug
AMD CPU architecture (AMD “Zen”/AMD “Zen2”/
AMD “Zen3”/AMD “Zen4”)

AMD_ARCH: STRING=znver1/znver2/znver3/
znver4

Shared library without multithreading BUILD_SHARED_LIBS=ON
ENABLE_OPENMP=OFF
ENABLE_THREADS=OFF

Shared library with multithreading BUILD_SHARED_LIBS=ON
ENABLE_OPENMP=ON

Static library without multithreading BUILD_SHARED_LIBS=OFF
ENABLE_OPENMP=OFF

Static library with multithreading BUILD_SHARED_LIBS=OFF
ENABLE_OPENMP=ON

Use Threads instead of OpenMP for multithreading ENABLE_THREADS=ON
WITH_COMBINED_THREADS=ON

Use both Threads and OpenMP for multithreading ENABLE_THREADS=ON
ENABLE_OPENMP=ON



Chapter 6 AOCL-FFTW 63

 

AOCL User Guide57404 Rev. 4.0 November 2022

Flags for enhanced instruction set support ENABLE_SSE=ON
ENABLE_SSE2=ON
ENABLE_AVX=ON
ENABLE_AVX2=ON
ENABLE_AVX512=ON

Flags for single and long double ENABLE_FLOAT=ON
ENABLE_LONG_DOUBLE=ON

Build tests directory and generate test applications BUILD_TESTS=ON
Enables MPI lib ENABLE_MPI=ON
Enables AMD optimizations ENABLE_AMD_OPT=ON
Enables AMD MPI FFT optimizations ENABLE_AMD_MPIFFT=ON

ENABLE_AMD_MPI_VADER_LIMIT: ON
Enables AMD optimized transpose ENABLE_AMD_TRANS=ON
Enables AMD optimizations for HPC/Scientific 
applications 

ENABLE_AMD_APP_OPT: ON

Table 10. AOCL-FFTW Config Options
Feature CMake Parameters



64 AOCL-FFTW Chapter 6

 

57404 Rev. 4.0 November 2022AOCL User Guide

Note: ENABLE_QUAD_PRECISION is currently not supported on Windows.

Select the available and recommended options as follows:

Figure 9. AOCL-FFTW CMake Config Options

5. Click the Generate button and then Open Project.

6.1.2.2 Using Command-line Arguments to Build

Complete the following steps to trigger the project configuration and build procedures from the 
command prompt:

1. In the AOCL-FFTW project folder, create a folder out. Open the command prompt in this 
directory and run the following command to configure the project:

2. Refer Table 10 and update the parameter options in the command according to the project 
requirements.

The library files would be generated in the Release or Debug folder based on the project settings.

3. To verify the installed library, copy the test scripts from \win\tests to \out\Release and run python 
fftw_check.py.

cmake .. -DBUILD_TESTS=ON  -D[other options1]  -D[other options2] -T ClangCl -G "Visual Studio 
16 2019" && cmake --build . --config Release

 



Chapter 6 AOCL-FFTW 65

 

AOCL User Guide57404 Rev. 4.0 November 2022

6.1.3 Using Pre-built Libraries

The AOCL-FFTW library binaries for Linux and Windows are available at the following URL:

https://developer.amd.com/amd-aocl/fftw/

The AOCL-FFTW binary for Linux and Windows can also be installed from the AOCL master 
installer (tar packages for Linux and zip packages for Windows) available at the following URL: 

https://developer.amd.com/amd-aocl/

The tar and zip files include pre-built binaries of other AMD libraries as explained in “Using Master 
Package” on page 15.

Note: The pre-built libraries are prepared on a specific platform having dependencies related to OS, 
Compiler (GCC, Clang), MPI, Visual studio, and GLIBC. Your platform must adhere to the 
same versions of these dependencies to use the pre-built libraries. 

6.2 Usage

Sample programs and executable binaries demonstrating the usage of AOCL-FFTW APIs and 
performance benchmarking are available in tests/ and mpi/ directories for Linux and out/Release 
directory for Windows.

6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW

To run single-threaded test, execute the following command:

Where,

• i/o means in-place or out-of-place. Out of place is the default.

• r/c means real or complex transform. Complex is the default.

• f/b means forward or backward transform. Forward is the default.

• <size> is an arbitrary multidimensional sequence of integers separated by the character 'x'.

Check the tuning guidelines for single-threaded test execution in “AOCL-FFTW Tuning Guidelines” 
on page 130.

To run multi-threaded test, execute the following command:

Where, N is number of threads.

Check the tuning guidelines for multi-threaded test execution in the section “AOCL-FFTW Tuning 
Guidelines” on page 130.

$ bench -opatient -s [i|o][r|c][f|b]<size>

$bench -opatient -onthreads=N -s [i|o][r|c][f|b]<size>

https://developer.amd.com/amd-aocl/fftw/
https://developer.amd.com/amd-aocl/


66 AOCL-FFTW Chapter 6

 

57404 Rev. 4.0 November 2022AOCL User Guide

6.2.2 Sample Programs for MPI FFTW

Where, N is the number of processes.

Check the tuning guidelines for MPI test execution in the section “AOCL-FFTW Tuning Guidelines” 
on page 130.

6.2.3 Additional Options

• -owisdom 

On startup, read wisdom from the file wis.dat in the current directory (if it exists).

On completion, write accumulated wisdom to wis.dat (overwriting if file exists).

This bypasses the planner next time onwards and directly executes the read plan from wisdom.

• --verify <problem> 

Verify that AOCL-FFTW is computing correctly. It does not output anything unless there is an 
error.

• -v<n> 

Set verbosity to <n> or 1 if <n> is omitted. -v2 will output the created plans.

Notes:
1. The names of windows FFTW test bench application has .exe extension (bench.exe and mpi-

bench.exe).

2. The folder /win/tests/ includes Windows benchmark scripts for single-threaded, multi-
threaded and MPI FFT execution for standard sizes. A README file is also provided with 
the instructions to run these benchmark scripts.

To display the AOCL version number of AOCL-FFTW library, application must call the following 
FFTW API fftw_aoclversion().

The test bench executables of AOCL-FFTW support the display of AOCL version using the --info-
all option.

$mpirun -np N mpi-bench -opatient -s [i|o][r|c][f|b]<size>



Chapter 7 AOCL-LibM 67

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 7 AOCL-LibM

AOCL-LibM is a software library containing a collection of basic math functions optimized for x86-
64 processor-based machines. It provides many routines from the list of standard C99 math functions. 
It includes scalar and vector variants of the core math functions. AOCL-LibM is a C library you can 
link to your applications to replace the compiler provided math functions. After linking, the 
applications can invoke math functions instead of compiler math functions for better accuracy and 
performance.

The latest AOCL-LibM includes the alpha version of the vector variants for the core math functions; 
power, exponential, logarithmic, and trigonometric. A few caveats of the vector variants are as 
follows:

• The vector variants are the relaxed versions of the respective math functions with respect to the 
accuracy. 

• The routines take advantage of the AMD64 architecture for the performance. Some of the 
performance is gained by sacrificing error handling or the acceptance of certain arguments.

• Abnormal inputs may produce unpredictable results. It is therefore the responsibility of the caller 
of these routines to ensure that their arguments are suitable. 

• The vector variants are not expected to set the IEEE error codes, it is recommended not to rely on 
error codes for the vector variants.

• The vector routines must be invoked using the C intrinsics or from the x86 assembly. 

The vector variants can be enabled by using AOCC compiler with -ffast-math flag and it is not 
recommended to call these functions manually. As these functions accept arguments in __m128, 
__m128d, __m256, __m256d,__m512 and __m512d types, you must manually pack-unpack to/from 
such a format.

However, the symbols are enabled in library and the signatures use the naming convention as follows:

Where,

• v – vector

• r – real

• a – array

• <type> - ‘s’ for single precision and ‘d’ for double precision

• <vec_size> - 2, 4, 8, or 16 for 2, 4, 8, or 16 element vector respectively

• <func> - function name, such as ‘exp’ and ‘expf’

amd_vr<type><vec_size>_<func>



68 AOCL-LibM Chapter 7

 

57404 Rev. 4.0 November 2022AOCL User Guide

For example, a single precision 4 element version of exp has the signature: 

The list of available vector functions is as follows:

Note: All the functions have an 'amd_' prefix and it is omitted from the list to reduce the length.

• Exponential

– vrs8_expf and vrs8_exp2f
– vrs4_expf, vrs4_exp2f, vrs4_exp10f, and vrs4_expm1f
– vrsa_expf, vrsa_exp2f, vrsa_exp10f, and vrsa_expm1f
– vrd2_exp, vrd2_exp2, vrd2_exp10, vrd2_expm1, vrd4_exp, and vrd4_exp2
– vrda_exp, vrda_exp2, vrda_exp10, and vrda_expm1
– vrs16_expf and vrs16_exp2f
– vrd8_exp and vrd8_exp2

• Logarithmic

– vrs8_logf, vrs8_log2f, and vrs8_log10f 
– vrs4_logf, vrs4_log2f, vrs4_log10f, and vrs4_log1pf
– vrd4_log and vrd4_log2
– vrsa_logf, vrsa_log2f, vrsa_log10f, and vrsa_log1pf
– vrd2_log, vrd2_log2, vrd2_log10, and vrd2_log1p
– vrda_log, vrda_log2, vrda_log10, vrda_log1p
– vrs16_logf, vrs16_log2f, and vrs16_log10f
– vrd8_log and vrd8_log2

• Trigonometric

– vrs4_cosf, vrs8_cosf, vrs4_sinf, and vrs8_sinf
– vrsa_cosf, vrsa_sinf, and vrsa_sincosf
– vrd4_sin, vrd4_cos, and vrd4_tan
– vrd2_cos, vrd2_sin, vrd2_tan, and vrd2_sincos
– vrda_cos, vrda_sin, and vrda_sincos
– vrs16_cosf, vrs16_sinf, and vrs16_tanf
– vrd8_cos, amd_vrd8_sin, and vrd8_tan

• Inverse Trigonometric

– vrs4_acosf, vrs4_asinf, and vrs8_asinf
– vrs4_atanf, vrs8_atanf, vrd2_atan
– vrs16_atanf and vrs16_asinf
– vrd8_atan and vrd8_asin

__m128 amd_vrs4_expf (__m128 x);



Chapter 7 AOCL-LibM 69

 

AOCL User Guide57404 Rev. 4.0 November 2022

• Hyperbolic

– vrs4_coshf and vrs4_tanhf
– vrs8_coshf and vrs8_tanhf

•  Power

– vrs4_powf, vrd2_pow, vrd4_pow, vrs8_powf, and vrsa_powf
– vrs16_powf and vrd8_pow

• Error

vrs8_erff and vrs4_erff

The following scalar functions are present in the library: 

They can be called by a standard C99 function call and naming convention and must be linked with 
AOCL-LibM before standard ‘libm.

For example:

The following functions have vector variants in AOCL-LibM:

• Trigonometric

cosf, cos, sinf, sin, tanf, tan, sincosf, and sincos

• Inverse Trigonometric

acosf, acos, asinf, asin, atanf, atan, atan2f, and atan2

• Hyperbolic

coshf, cosh, sinhf, sinh, tanhf, and tanh 

• Inverse Hyperbolic

acoshf, acosh, asinhf, asinh, atanhf, and atanh 

• Exponential and Logarithmic

– expf, exp, exp2f, exp2, exp10f, exp10, expm1f, and expm1
– logf, log, log10f, log10, log2f, log2, log1pf, and log1p
– logbf, logb, ilogbf, and ilogb
– modff, modf, frexpf, frexp, ldexpf, and ldexp
– scalbnf, scalbn, scalblnf, and scalbln

• Error

erff

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/Amd LibM library
$ clang -Wall -std=c99 myprogram.c -o myprogram –L<Path to AMD LibM Library> -lalm -lm

Or

$ gcc -Wall -std=c99 myprogram.c -o myprogram –L<Path to AMD LibM LIbrary> -lalm -lm



70 AOCL-LibM Chapter 7

 

57404 Rev. 4.0 November 2022AOCL User Guide

• Power and Absolute Value

– powf, pow, fastpow, cbrtf, cbrt, sqrtf, sqrt, hypotf, and hypot
– fabsf and fabs

• Nearest Integer

– ceilf, ceil, floorf, floor, truncf, and trunc
– rintf, rint, roundf, round, nearbyintf, and nearbyint
– lrintf, lrint, llrintf, and llrint
– lroundf, lround, llroundf, and llround

• Remainder

fmodf, fmod, remainderf, and remainder

• Manipulation

– copysignf, copysign, nanf, nan, finitef, and finite
– nextafterf, nextafter, nexttowardf, and nexttoward

• Maximum, Minimum, and Difference

fdimf, fdim, fmaxf, fmax, fminf, and fmin

A fast version of AOCL LibM is released as a part of the package libalmfast.so. This library contains 
faster variants of some of the scalar functions. These function calls are enabled by the compiler based 
on certain flags used. For more information, refer to the AOCC 4.0 user guide.

7.1 Installation on Linux

AOCL-LibM binary for Linux isavailable at the following URL:

https://developer.amd.com/amd-aocl/amd-math-library-libm/

Also, LibM binary can be installed from the AOCC and GCC compiled AOCL master installer tar file 
available on AMD Developer Central (https://developer.amd.com/amd-aocl/#download).

The tar and zip files include pre-built binaries of other AOCL libraries as explained in Using Master 
Package.

7.2 Compiling AOCL-LibM

Minimum software requirements for compilation:

• GCC versions 9.3.0 through v11.2.0

• Glibc versions 2.29 through v2.31

• Clang 12.0.0 (AOCC 3.0) through Clang 14.0.0 (AOCC 4.0)

• Virtualenv with Python 3.6.8

• SCons versions 3.0.5 through 4.2.0

https://developer.amd.com/amd-aocl/amd-math-library-libm/
https://developer.amd.com/amd-aocl/#download
https://developer.amd.com/amd-aocl/#download


Chapter 7 AOCL-LibM 71

 

AOCL User Guide57404 Rev. 4.0 November 2022

Complete the following steps to compile AOCL-LibM:

1. Download source from GitHub (https://github.com/amd/aocl-libm-ose). 

2. Navigate to the LibM folder and checkout to the branch aocl-4.0:

3. Create a virtual environment:

4. Activate the virtual environment:

5. Install SCons: 

6. Compile AOCL-LibM: 

7. The libraries (static and dynamic) will be compiled and generated in the following location: 

aocl-libm-ose/build/aocl-release/src/

7.3 Usage

To use AOCL-LibM in your application, complete the following steps: 

1. Include ‘math.h’ as a standard way to use the C Standard library math functions.

2. Link in the appropriate version of the library in your program.

The Linux libraries may have a dependency on the system math library. When linking AOCL-LibM, 
ensure that it precedes the system math library in the link order that is, -lalm must appear before -lm. 
The explicit linking of the system math library is required when using the GCC/AOCC compiler. 
Such explicit linking is not required with the g++ compiler (for C++).

Example: myprogram.c

cd aocl-libm-ose
git checkout aocl-4.0

virtualenv –p python3 .venv3

source. venv3/bin/activate

pip install scons

scons –j32

Additional parameters: install --prefix=<path to install> ALM_CC=<gcc/clang exe path>

Verbosity options: --verbose=1

Debug mode build: --debug_mode=libs

#include <stdio.h>
#include <math.h>

int main() {
    float f = 3.14f;
    printf ("%f\n", expf(f));
    return 0;
}

https://github.com/amd/aocl-libm-ose


72 AOCL-LibM Chapter 7

 

57404 Rev. 4.0 November 2022AOCL User Guide

To use AMD LibM scalar functions, use the following commands:

For the vector calls, you must depend on compiler flag -ffast-math.

Though not recommended, you can call the functions directly with manual packing and unpacking. 
To invoke the vector functions directly, you must include the header file amdlibm_vec.h. The 
following program shows such an example with both returning and storing the values in an array. For 
simplicity, the size and other checks are omitted from the example. 

For more details on the usage, you can refer to the examples folder in the release package, which 
contains example sources and a makefile.

Example: myprogram.c

You can compile myprogram.c as follows:

7.4 Building AOCL-LibM on Windows

Minimum software requirements for compilation:

• Windows 10/11 or Windows Server 2019/2022

• LLVM compiler V14.0 for AMD “Zen3” or AMD “Zen4” support (or LLVM compiler V11.0 for 
AMD “Zen2” support)

• Microsoft Visual Studio 2019 build 16 or 2022 build 17

• Windows SDK Version 10.0.19041.0

• Virtualenv with python3

• SCons 4.4.0

$ export LD_LIBRARY_PATH=<Path to libalm.so>:$LD_LIBRARY_PATH;
$ cc -Wall -std=c99 myprogram.c -o myprogram –L<Path to libalm.so> -lalm -lm; (cc can be ‘gcc’ 

or ‘clang’).
$  ./myprogram;

##define AMD_LIBM_VEC_EXTERNAL_H
#define AMD_LIBM_VEC_EXPERIMENTAL
#include “amdlibm_vec.h”
__m128 vrs4_expf (__m128 x);

__m128
test_expf_v4s(float *ip, float *out)
{    
    __m128 ip4 = _mm_set_ps(ip1[3], ip1[2], ip1[1], ip1[0]);
    __m128 op4 = vrs4_expf(ip4);
    _mm_store_ps(&out[0], op4);

    return op4;
}

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/AMD LibM
$ clang -Wall -std=c99 -ffastmath myprogram.c -o myprogram –L<path to libalm.so> -lalm -lm



Chapter 7 AOCL-LibM 73

 

AOCL User Guide57404 Rev. 4.0 November 2022

Complete the following steps to compile AOCL-LibM on Windows:

1. Download source from GitHub (https://github.com/amd/aocl-libm-ose). 

2. Navigate to the folder: 

3. Install virtualenv:

4. Initialize the environment for correct architecture using Visual Studio vcvarsall.bat file using 
following command: 

5. Activate virtual environment and install SCons inside:

6. Build the project using clang compiler:

For example: 

The static (libalm-static.lib) and dynamic (libalm.dll and libalm.lib) libraries are compiled and 
generated in the following location:

aocl-libm-ose/build/aocl-release/src/

cd aocl-libm-ose

pip install virtualenv

"C:\Program Files (x86)\Microsoft Visual 
Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat" amd64

virtualenv -p python .venv3
.venv3\Scripts\activate
pip install scons

scons -j32 ALM_CC=<clang-cl executable path> ALM_CXX=<clang-cl executable path>
Verbosity options: --verbose=1
Debug mode build: --debug_mode=all

scons -j32 ALM_CC="C:\PROGRA~1\LLVM\bin\clang-cl.exe" ALM_CXX="C:\PROGRA~1\LLVM\bin\clang-
cl.exe" --verbose=1

https://github.com/amd/aocl-libm-ose


74 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 8 AOCL-ScaLAPACK

AOCL-ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed 
memory machines. It can be used to solve linear systems, least squares problems, eigenvalue 
problems, and singular value problems. AOCL-ScaLAPACK is optimized for AMD “Zen”-based 
processors. It depends on the external libraries BLAS and LAPACK; thus, the use of AOCL-BLIS 
and AOCL-libFLAME is recommended.

8.1 Installation

AOCL-ScaLAPACK can be installed from source or pre-built binaries.

8.1.1 Building AOCL-ScaLAPACK from Source

Note: Starting from AOCL 3.1, the AOCL-ScaLAPACK will be available in the new GitHub 
repository (https://github.com/amd/aocl-scalapack). The older GitHub repository (https://
github.com/amd/scalapack) is deprecated. 

GitHub URL: https://github.com/amd/aocl-scalapack

Prerequisites

Building AOCL-ScaLAPACK library requires linking to the following libraries installed using pre-
built binaries or built from source:

• AOCL-BLIS 

• AOCL-libFLAME 

• An MPI library (validated with OpenMPI library)

Complete the following steps to build AOCL-ScaLAPACK from source:

1. Clone the GitHub repository (https://github.com/amd/aocl-scalapack.git).

2. Execute the command:

3. CMake as follows:

a. Create a new directory. For example, build:

b. Set PATH and LD_LIBRARY_PATH appropriately to the MPI installation.

$ cd scalapack

$ mkdir build
$ cd build

https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-scalapack.git
https://github.com/amd/aocl-scalapack
https://github.com/amd/aocl-scalapack
https://github.com/amd/scalapack


Chapter 8 AOCL-ScaLAPACK 75

 

AOCL User Guide57404 Rev. 4.0 November 2022

c. Run cmake command based on the compiler and the type of library generation required.
Table 11. Compiler and Type of Library

Compiler Library 
Type Threading

Command
[<>] - use if ILP64 binary required

GCC Static Single-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLIS library>/libblis.a" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp  <path to AOCL-BLIS library>/libblis-mt.a" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 

Shared Single-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLIS library>/libblis.so" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp  <path to AOCL-BLIS library>/libblis-mt.so" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 



76 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.0 November 2022AOCL User Guide

You can build AOCL-ScaLAPACK with an external BLACS library on Linux using the following 
configure option:

Example: To build static library with external BLACS library:

You can build AOCL-ScaLAPACK with Intel MPI and ICC compiler tool chain using the following 
configure option.

Example: To build a static library with Intel MPI and ICC compiler:

AOCC Static Single-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLIS library>/libblis.a" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] - 

Multi-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-
fopenmp  <path to AOCL-BLIS library>/libblis-mt.a" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.a" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 

Shared Single-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLIS library>/libblis.so" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 

Multi-thread 
AOCL-BLIS

$ cmake .. -DBUILD_SHARED_LIBS=ON -DBLAS_LIBRARIES="-
fopenmp <path to AOCL-BLIS library>/libblis-mt.so" -
DLAPACK_LIBRARIES="<path to libflame library>/
libflame.so" -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -
DUSE_OPTIMIZED_LAPACK_BLAS=OFF [-D DENABLE_ILP64=ON] 

$ cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-fopenmp <path to AOCL-BLIS library>/
libblis-mt.a" -DLAPACK_LIBRARIES="<path to libflame library>/libflame.a"   -
DBLACS_LIBRARIES=<path to BLACS library>/libBLACS.a  -DCMAKE_C_COMPILER=mpicc -
DCMAKE_Fortran_COMPILER=mpif90 -DUSE_OPTIMIZED_LAPACK_BLAS=OFF 

cmake .. -DBUILD_SHARED_LIBS=OFF -DBLAS_LIBRARIES="-fopenmp  <path to AOCL-BLIS library>/
libblis-mt.a" -DLAPACK_LIBRARIES=<path to AOCL-BLIS library>/libflame.a  -
DCMAKE_C_COMPILER=mpiicc -DCMAKE_Fortran_COMPILER=mpiifort -DUSE_OPTIMIZED_LAPACK_BLAS=OFF;

Table 11. Compiler and Type of Library

Compiler Library 
Type Threading

Command
[<>] - use if ILP64 binary required



Chapter 8 AOCL-ScaLAPACK 77

 

AOCL User Guide57404 Rev. 4.0 November 2022

d. Ensure CMake locates AOCL-libFLAME and AOCL-BLIS libraries. On completion, a 
message, “LAPACK routine dgesv is found: 1” similar to the following in CMake output is 
displayed:

e. Compile the code:

When the building process is complete, the AOCL-ScaLAPACK library is created in the lib directory. 
The test application binaries are generated in the <aocl-scalapack>/build/TESTING folder.

8.1.2 Using Pre-built Libraries

AOCL-ScaLAPACK library binaries for Linux are available at the following URLs:

• https://github.com/amd/aocl-scalapack/releases 

• https://developer.amd.com/amd-aocl/scalapack/ 

Also, AOCL-ScaLAPACK binary can be installed from the AOCL master installer tar file available at 
the following URL:

https://developer.amd.com/amd-aocl/ 

The tar file includes pre-built binaries of other AMD Libraries as explained in “Using Master 
Package” on page 12.

8.2 Usage

You can find the applications demonstrating the usage of ScaLAPACK APIs in the TESTING 
directory of ScaLAPACK source package:

8.3 Building AOCL-ScaLAPACK from Source on Windows

GitHub URL: https://github.com/amd/aocl-scalapack

AOCL-ScaLAPACK uses CMake along with Microsoft Visual Studio for building the binaries from 
the sources on Windows. The following sections explain the GUI and command-line schemes of 
building the binaries and test suite.

….
…
-- CHECKING BLAS AND LAPACK LIBRARIES
-- --> LAPACK supplied by user is <path>/libflame.a.
-- --> LAPACK routine dgesv is found: 1.
-- --> LAPACK supplied by user is WORKING, will use <path>/libflame.a.
-- BLAS library: <path>/libblis.a
-- LAPACK library: <path>/libflame.a
…
…

$ make -j

$ cd scalapack/TESTING

https://github.com/amd/aocl-scalapack/releases
https://developer.amd.com/amd-aocl/scalapack/ 
https://developer.amd.com/amd-aocl/
https://github.com/amd/aocl-scalapack


78 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.0 November 2022AOCL User Guide

Prerequisites

The following prerequisites must be met:

• Windows10/11 or Windows Server 2019/2022

• LLVM 13/14 for AMD “Zen3” and AMD “Zen4” support (or LLVM 11 for AMD “Zen2” 
support)

• LLVM plug-in for Microsoft Visual Studio (if latest version of LLVM is installed separately, this 
plug-in enables linking Microsoft Visual Studio with the installed LLVM tool-chain)

• CMake versions 3.0 through 3.23.3

• MPI compiler

• Fortran 90 compiler

• Microsoft Visual Studio 2019 (build 16.8.7) through 2022 (build 17.3.2)

• Microsoft Visual Studio tools

– Python development
– Desktop development with C++: C++ Clang-Cl for v142 build tool (x64 or x86)

8.3.1 Building AOCL-ScaLAPACK Using GUI

8.3.1.1 Preparing Project with CMake GUI

Complete the following steps to prepare the project with CMake GUI:

1. Set the source (folder containing aocl-scalapack source code) and build (folder in which the 
project files will be generated, for example, out) folder paths. It is not recommended to use the 
folder named build as a folder with that name exists at the top of libFLAME source tree.

2. Click on the Configure button to prepare the project options.

3. Set the generator to Visual Studio 16 2019 and the compiler to ClangCl or LLVM.

4. Update the options based on the project requirements. All the available options are listed in the 
following table:

Table 12. AOCL-ScaLAPACK CMake Parameter List
Build Feature CMake Command

Select debug or Release mode build CMAKE_BUILD_TYPE=Debug/Release

Shared library BUILD_SHARED_LIBS=ON
BUILD_STATIC_LIBS=OFF

Static library BUILD_STATIC_LIBS=ON
BUILD_SHARED_LIBS=OFF

Provide external BLAS/BLIS library BLAS_LIBRARIES
=<Path to BLAS/BLIS lib>



Chapter 8 AOCL-ScaLAPACK 79

 

AOCL User Guide57404 Rev. 4.0 November 2022

5. Select the available and recommended options as follows:

Figure 10. AOCL-ScaLAPACK CMake Options

Figure 11. AOCL-ScaLAPACK CMake Config Options

Provide external LAPACK/libFLAME 
library

LAPACK_LIBRARIES
=<Path to lapack/libflame lib>

Integer bit length:
• ON => 64-bit integer length
• OFF => 32-bit integer length

ENABLE_ILP64

Flags disabled by default USE_OPTIMIZED_LAPACK_BLAS

Table 12. AOCL-ScaLAPACK CMake Parameter List

 

 



80 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.0 November 2022AOCL User Guide

6. Click the Generate button and then Open Project.

8.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on 
page 78.

2. To generate the AOCL-ScaLAPACK binaries, build the ScaLAPACK project. The library files 
would be generated in the folder out based on the project settings.

For example: 

aocl-scalapack/out/lib/Release/scalapack.lib

aocl-scalapack/out/Testing/Release/scalapack.dll 

8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as 
follows:

8.3.2.1 Configuring the Project in Command Prompt

Complete the following steps to configure the project using the command prompt:

1. In the ScaLAPACK project folder, create a folder out. 

2. Open the command prompt in that directory and run the following command:

Refer Table 12 to update the parameter options in the command according to the project 
requirements.

8.3.2.2 Building the Project in Command Prompt

Complete the following steps to build the project using the command prompt:

1. Open command prompt in the aocl-scalapack/out directory. 

2. Invoke CMake with the build command and release or debug option. For example: 

The library files would be generated inside the folder Release or Debug based on the project settings.

cmake -S .. -B . -G "Visual Studio 16 2019" -DCMAKE_BUILD_TYPE=Release 
-DBUILD_SHARED_LIBS=ON 
-DBUILD_STATIC_LIBS=OFF -DBLAS_LIBRARIES="<path to BLIS library>/AOCL-
LibBlis-Win-MT-dll.lib" 
-DLAPACK_LIBRARIES="<path to libflame library>/AOCL-LibFLAME-Win-MT-dll.lib"

cmake --build . --config Release



Chapter 8 AOCL-ScaLAPACK 81

 

AOCL User Guide57404 Rev. 4.0 November 2022

8.3.2.3 Building and Running the Individual Tests

Microsoft Visual Studio projects for the individual tests are generated as part of the CMake generate 
step. Refer the previous sections to build the test projects from Microsoft Visual Studio GUI or 
command prompt.

8.3.2.4 Running Individual Tests

The test application binaries are generated in the folder <aocl-scalapack>/out/Testing/Release or 
<aocl-scalapack>/out/Testing/Debug based on the project settings. Run the tests from the command 
prompt as follows:

8.4 Checking AOCL-ScaLAPACK Operation Progress

AOCL libraries perform tasks that can be computationally expensive. The AOCL Progress feature 
provides a mechanism, for a selected set of APIs, for the application to check how far a computation 
has progressed through a callback function.

Usage

The application must define a callback function in a specific format and register this callback function 
with the AOCL-ScaLAPACK library.

The callback function prototype must be defined as follows:

The following table explains AOCL-ScaLAPACK Progress feature callback function parameters:

Callback Registration

The callback function must be registered with the library to report the progress:

Release> mpiexec xcbrd.exe

int aocl_scalapack_progress(
char* api,
integer lenapi,
integer *progress,
integer *mpi_rank,
integer *total_mpi_processes
)

Table 13. AOCL-ScaLAPACK Progress Feature Callback Function Parameters
Parameter Purpose

api Name of the API running currently
lenapi Length of the API name character buffer
progress Linear progress made in the current thread so far
mpi_rank Current process rank
total_mpi_processes Total number of processes used to perform the operation

aocl_scalapack_set_progress(aocl_scalapack_progress);



82 AOCL-ScaLAPACK Chapter 8

 

57404 Rev. 4.0 November 2022AOCL User Guide

Example:

Limitation

Currently, AOCL-ScaLAPACK progress feature is supported only on Linux.

int aocl_scalapack_progress(char* api, int *lenapi, int *progress, int *mpi_rank, int 
*total_mpi_processes)
{
    printf( "In AOCL Progress MPI Rank: %i    API: %s   progress: %i   MPI processes: %i\n", 
*mpi_rank, api, *progress,*total_mpi_processes );
    return 0;
}



Chapter 9 AOCL-RNG 83

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 9 AOCL-RNG

The AMD Random Number Generator (AOCL-RNG) library is a pseudorandom number generator 
library. It provides a comprehensive set of statistical distribution functions and various uniform 
distribution generators (base generators) including Wichmann-Hill and Mersenne Twister. The library 
contains six base generators and twenty-three distribution generators. In addition, you can supply a 
custom-built generator as the base generator for all the distribution generators.

9.1 Installation

Note: AOCL-RNG can only be installed from pre-built binaries.

The AOCL-RNG binary is available at the following URL:

https://developer.amd.com/amd-aocl/rng-library/

Also, AOCL-RNG binary can be installed from the AOCL master installer tar file available at the 
following URL:

https://developer.amd.com/amd-aocl/ 

• The tar file includes pre-built binaries of other AMD libraries as explained in Using Master 
Package. 

To install the AOCL-RNG binary for Windows, refer to section 3.2.4. rng_amd.dll and rng_amd.lib 
are a part of the dynamic library and rng_amd-static.lib is a static library.

9.2 Using AOCL-RNG Library on Linux

To use the AOCL-RNG library in your application, link the library while building the application.

The following is a sample Makefile for an application that uses the AOCL-RNG library:

For more information, refer the examples directory in the AOCL-RNG library install location. 

RNGDIR := <path-to-AOCL-RNG-library>
CC := gcc
CFLAGS := -I$(RNGDIR)/include
//CFLAGS For ILP64 case
//CFLAGS := -I$(RNGDIR)/include -DINTEGER64
CLINK := $(CC)
CLINKLIBS := -lgfortran -lm -lrt -ldl
LIBRNG := $(RNGDIR)/lib/librng_amd.so
//Compile the program
$(CC) -c $(CFLAGS) test_rng.c -o test_rng.o
//Link the library
$(CLINK) test_rng.o $(LIBRNG) $(CLINKLIBS) -o test_rng.exe

https://developer.amd.com/amd-aocl/rng-library/
https://developer.amd.com/amd-aocl/


84 AOCL-RNG Chapter 9

 

57404 Rev. 4.0 November 2022AOCL User Guide

9.3 Using AOCL-RNG Library on Windows

Complete the following steps to use AOCL-RNG library on Windows:

1. Create a 64-bit console app project in Visual Studio 16 2019.

2. Use the following navigation to select Clang-cl compiler:

Project >Properties >Configuration Properties >General >Platform Toolset >LLVM(Clang-
cl)

3. Use example/* sources as a reference to find the RNG API call flow.

4. Include the AOCL-RNG header file (rng.h) and call required AOCL-RNG APIs in Windows 
application.

5. Copy the AOCL-RNG header file (rng.h) and AOCL-RNG dll library (rng_amd.dll and 
rng_amd.lib) to same project folder.

6. Use the following navigation to add WIN64 preprocessor definition:

Project >Properties >C/C++ >Preprocessor >Preprocessor Definitions

7. Compile and then run the application.

8. You may create Fortran based project in similar manner and compile it using ifort compiler.

9. You can also compile your application using AOCL-RNG static library (rng_amd-static.lib).



Chapter 10 AOCL-SecureRNG 85

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 10 AOCL-SecureRNG

AOCL-SecureRNG is a library that provides the APIs to access the cryptographically secure random 
numbers generated by the AMD hardware based RNG. These are high quality robust random numbers 
designed for the cryptographic applications. The library makes use of RDRAND and RDSEED x86 
instructions exposed by the AMD hardware. The applications can just link to the library and invoke a 
single or a stream of random numbers. The random numbers can be of 16-bit, 32-bit, 64-bit, or 
arbitrary size bytes.

10.1 Installation

The AOCL-SecureRNG library can be downloaded from following URL:

https://developer.amd.com/amd-aocl/rng-library/ 

Also, AMD SecureRNG can be installed from the AOCL master installer tar file available at the 
following URL:

https://developer.amd.com/amd-aocl/

• The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master 
Package” on page 15. 

To install the AOCL-SecureRNG binary for Windows, refer to section 3.2.4. amdsecrng.dll and 
amdsecrng.lib are a part of the dynamic library and amdsec-static.lib is a static library.

10.2 Usage

The following source files are included in the AOCL-SecureRNG package:

• include/secrng.h — A header file that has declaration of all the library APIs.

• src_lib/secrng.c — Contains the implementation of the APIs.

• src_test/secrng_test.c — Test application to test all the library APIs.

• Makefile — To compile the library and test the application.

You can use the included makefile to compile the source files and generate dynamic and static 
libraries. Then, you can link it to your application and invoke the required APIs. 

https://developer.amd.com/amd-aocl/rng-library/
https://developer.amd.com/amd-aocl


86 AOCL-SecureRNG Chapter 10

 

57404 Rev. 4.0 November 2022AOCL User Guide

The following code snippet shows a sample usage of the library API:

In the example, get_rdrand64u is invoked to return a single 64-bit random value and get_rdrand64u_arr 
is used to return an array of 1000 64-bit random values.

10.3 Using AOCL-SecureRNG Library on Windows

Complete the following steps to use AOCL-SecureRNG library on Windows:

1. Create a 64-bit console app project in Visual Studio 16 2019.

2. Use the following navigation to select Clang-cl compiler:

Project >Properties >Configuration Properties >General >Platform Toolset >LLVM(Clang-
cl)

3. Use secrng_test.c as a reference to find the AOCL-SecureRNG API call flow.

//Check for RDRAND instruction support
int ret = is_RDRAND_supported();
int N = 1000;

//If RDRAND supported
if (ret == SECRNG_SUPPORTED)
{
   uint64_t rng64;

   //Get 64-bit random number
   ret = get_rdrand64u(&rng64, 0);

   if (ret == SECRNG_SUCCESS)
     printf("RDRAND rng 64-bit value %lu\n\n", rng64);
   else
     printf("Failure in retrieving random value using RDRAND!\n");

   //Get a range of 64-bit random values
   uint64_t* rng64_arr = (uint64_t*) malloc(sizeof(uint64_t) * N);

   ret = get_rdrand64u_arr(rng64_arr, N, 0);

   if (ret == SECRNG_SUCCESS)
   {
     printf("RDRAND for %u 64-bit random values succeeded!\n", N);
     printf("First 10 values in the range : \n");
     for (int i = 0; i < (N > 10? 10 : N); i++)
            printf("%lu\n", rng64_arr[i]);
   }
   else
     printf("Failure in retrieving array of random values using RDRAND!\n"); 
}
else
{
     printf("No support for RDRAND!\n");
}



Chapter 10 AOCL-SecureRNG 87

 

AOCL User Guide57404 Rev. 4.0 November 2022

4. Include the AOCL-SecureRNG header file (secrng.h) and call required RNG APIs under window 
application.

5. Copy the AOCL-SecureRNG header file (secrng.h) and AOCL-RNG dll library (amdsecrng.dll 
and amdsecrng.lib) to same project folder.

6. Compile and then run the application.

7. You may create Fortran based project in similar manner and compile it using ifort compiler.

8. You can also compile your application using AOCL-SecureRNG static library (amdsecrng-
static.lib).



88 AOCL-Sparse Chapter 11

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 11 AOCL-Sparse

AOCL-Sparse is a library containing basic linear algebra subroutines for the sparse matrices and 
vectors. It is designed to be used with C and C++. 

The current functionality of AOCL-Sparse is organized in the following categories:

• Sparse Level 3 functions describe the operations between a matrix in sparse format and a matrix 
in dense/sparse format. 

• Sparse Level 2 functions describe the operations between a matrix in sparse format and a vector in 
dense format. 

• Sparse Solver functions that perform matrix factorization and solution phases.

• Analysis and execute functionalities for performing optimized Sparse Matrix-Dense Vector 
multiplication and Sparse Solver. 

• Sparse Format Conversion functions describe operations on a matrix in sparse format to obtain a 
different matrix format.

The list of supported functions is as follows: 

• Sparse Level 3

– aoclsparse_xcsrmm (single and double precision)
– aoclsparse_xcsr2m (single and double precision)

• Sparse Level 2

– aoclsparse_xcsrmv (single and double precision)
– aoclsparse_xellmv (single and double precision)
– aoclsparse_xdiamv (single and double precision)
– aoclsparse_xbsrmv (single and double precision)
– aoclsparse_xcsrsv (single and double precision)
– aoclsparse_xtrsv (single and double precision)
– aoclsparse_dmv (double precision)

• Sparse Solvers

– aoclsparse_xilu_smoother
– aoclsparse_xilu0
– aoclsparse_itsol_d_rci_solve (double precision)
– aoclsparse_itsol_s_rci_solve (single precision)
– aoclsparse_itsol_d_solve (double precision)
– aoclsparse_itsol_s_solve (single precision)



Chapter 11 AOCL-Sparse 89

 

AOCL User Guide57404 Rev. 4.0 November 2022

• Sparse Auxiliary

– aoclsparse_get_version
– aoclsparse_create_mat_descr
– aoclsparse_destroy_mat_descr
– aoclsparse_copy_mat_descr
– aoclsparse_set_mat_fill_mode
– aoclsparse_get_mat_fill_mode
– aoclsparse_set_mat_diag_type
– aoclsparse_get_mat_diag_type
– aoclsparse_destroy_mat_csr
– aoclsparse_destroy()
– aoclsparse_create_xcsr (single and double precision)

• Conversion

– aoclsparse_csr2ell_width
– aoclsparse_xcsr2ell (single and double precision)
– aoclsparse_csr2dia_ndiag
– aoclsparse_xcsr2dia (single and double precision)
– aoclsparse_csr2bsr_nnz
– aoclsparse_xcsr2bsr (single and double precision)
– aoclsparse_xcsr2csc (single and double precision)
– aoclsparse_xcsr2dense (single and double precision)

• Analysis

– aoclsparse_set_mv_hint
– aoclsparse_set_lu_smoother_hint
– aoclsparse_set_mm_hint
– aoclsparse_set_2m_hint
– aoclsparse_optimize

Notes:
1. aoclsparse_create_mat_csr is not available from AOCL-Sparse 3.2 release. You can use the 

new function aoclsparse_create_(s/d)csr for creating a new matrix structure.

2. aoclsparse_destroy_mat_csr will be deprecated soon. You can use the new function 
aoclsparse_destroy for destroying the matrix structure and internal memory allocated.



90 AOCL-Sparse Chapter 11

 

57404 Rev. 4.0 November 2022AOCL User Guide

Multi-thread Support

AOCL-Sparse provides multi-thread support for specific APIs through OpenMP by default. You can 
set the total number of threads using the environment variables AOCLSPARSE_NUM_THREADS 
(recommended) or OMP_NUM_THREADS. If both environment variables are set, AOCL-Sparse 
library gives higher precedence to AOCLSPARSE_NUM_THREADS. If neither variable is set, the 
default number of threads is 1. The list of functions with multi-thread support are as follows:

• aoclsparse_xcsrmv (single and double precision)

• aoclsparse_xellmv (single and double precision)

• aoclsparse_dmv (double precision)

For more information on performing multi-thread runs, refer “Simple Test” on page 93.

For more information on the AOCL-Sparse APIs, refer aocl-sparse_API_Guide.pdf in the source 
directory (https://github.com/amd/aocl-sparse).

11.1 Installation

11.1.1 Building AOCL-Sparse from Source on Linux

The following prerequisites must be met:

• Git

• CMake versions 3.5 through 3.19.6

• Boost library versions 1.65 through 1.77

Complete the following steps to build different packages of the library, including dependencies and 
test application:

1. Download the latest release of aocl-sparse (https://github.com/amd/aocl-sparse). 

2. Clone the Git repository (https://github.com/amd/aocl-sparse.git).

3. Run the command:

4. Create the build directory and change to it:

cd aocl-sparse

$ mkdir -p build/release
cd build/release

https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse
https://github.com/amd/aocl-sparse.git


Chapter 11 AOCL-Sparse 91

 

AOCL User Guide57404 Rev. 4.0 November 2022

5. Run CMake as per the required compiler and library type:

6. From AOCL-Sparse 4.0, AVX-512 kernels for SPMV are supported as an experimental feature. It 
can be enabled using the CMake option:

Note: Ensure that the target CPU supports AVX-512 ISA.

Table 14. Compiler and Library Type

Compiler Library 
Type

ILP 64 
Support Command

G++
(Default)

Static OFF (Default) cmake ../.. -DBUILD_SHARED_LIBS=OFF

ON cmake ../.. -DBUILD_SHARED_LIBS=OFF -DBUILD_ILP64=ON

Shared 
(Default)

OFF (Default) cmake ../..

ON $ cmake ../.. -DBUILD_ILP64=ON

AOCC Static OFF (Default) cmake ../.. -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_SHARED_LIBS=OFF

ON cmake ../.. -DCMAKE_CXX_COMPILER=clang++ -
DBUILD_SHARED_LIBS=OFF -DBUILD_ILP64=ON

Shared 
(Default)

OFF (Default) cmake ../.. -DCMAKE_CXX_COMPILER=clang++

ON $ cmake ../..-DCMAKE_CXX_COMPILER=clang++ -
DBUILD_ILP64=ON

-DUSE_AVX512
Example: cmake ../.. -DUSE_AVX512=1 -DBUILD_SHARED_LIBS=OFF



92 AOCL-Sparse Chapter 11

 

57404 Rev. 4.0 November 2022AOCL User Guide

7. Following CMake build options are applicable for Windows and Linux systems:

8. Build the aocl-sparse library:

Table 15. AOCL-Sparse - CMake Build Options
Build Option Feature 

CMAKE_INSTALL_PREFIX Use -DCMAKE_INSTALL_PREFIX=<path> to choose the custom 
path. The default install path is /opt/aoclsparse/

CMAKE_BUILD_TYPE • release => Release Library (Default)
• debug => Debug Library

CMAKE_CXX_COMPILER Use -DCMAKE_CXX_COMPILER=clang++ for AOCC builds
BUILD_SHARED_LIBS • OFF => Build Static Library

• ON => Build Dynamic/Shared library (Default)
BUILD_ILP64 Integer length:

• OFF => 32-bit integer length (Default)
• ON => 64-bit integer length

SUPPORT_OMP Multi-threading using OpenMP:
• OFF => Disable OpenMP
• ON => Enable OpenMP (Default)

COMPILER_FLAGS If defined, requires a valid compiler flag:
• not defined => Use default flags
• -march=znver1 => specific for AMD “Zen1” processors
• -march=znver2 => specific for AMD “Zen2” and compatible with 

AMD “Zen1” processors
• -march=znver3 => specific for AMD “Zen3” and compatible with 

AMD “Zen1”/AMD ”Zen2” processors
• -march=znver4 => specific for AMD “Zen4” and compatible with 

AMD “Zen1”/AMD “Zen2”/AMD “Zen3” processors
USE_AVX512 • OFF => compiler flags depend upon the build flag 

COMPILER_FLAGS (Default)
• ON => Enable AVX512 kernels for SPMV

BUILD_CLIENTS_BENCHM
ARKS

• OFF => Disable building benchmarks (Default)
• ON => Build client benchmarking (requires Boost library)

BUILD_CLIENTS_SAMPLES • OFF => disable building sparse API examples (Default)
• ON => enable building sparse examples for SPMV, CSR2M, 

DTRSV, CG, and GMRES
BUILD_CLIENTS_TESTS • OFF => Disable building functionality/unit tests (Default)

• ON => Enable building functionality/unit tests for Hint, TRSV, and 
CG

$ make -j$(nproc)



Chapter 11 AOCL-Sparse 93

 

AOCL User Guide57404 Rev. 4.0 November 2022

9. Install aocl-sparse to the directory /opt/aoclsparse or a custom path:

11.1.2 Simple Test

After compiling the library with benchmarks, run the following aocl-sparse example to test the 
installation:

1. Navigate to the test binary directory:

2. Ensure that the shared library is available in the library load path:

3. Run CSR-SPMV on a randomly generated matrix to execute the aocl-sparse example:

4. Run multi-threaded (4 threads) CSR-SPMV on a randomly generated matrix:

11.1.3 Using Pre-built Libraries

You can find the AMD optimized AOCL-Sparse library binaries for Linux at the following URLs: 

https://github.com/amd/aocl-sparse/releases 

https://developer.amd.com/amd-aocl/aocl-sparse/ 

Also, you can install AOCL-Sparse binary from the AOCL master installer tar file available at the 
following URL: 

https://developer.amd.com/amd-aocl/ 

The tar file includes pre-built binaries of other AMD libraries as explained in “Using Master 
Package” on page 15.

11.2 Usage on Linux

You can find the sample programs demonstrating the usage of AOCL-Sparse APIs and performance 
benchmarking in the AOCL-Sparse source tests directory:

The sample programs are built as a part of AOCL-Sparse's CMake build system by enabling the flag 
BUILD_CLIENTS_SAMPLES and the binaries are located in <build_directory>/tests/examples. 

$ make install

$ cd aocl-sparse/build/release/tests/staging

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:<path/to/libaoclsparse.so>

$ ./aoclsparse-bench --function=csrmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 --
verify=1

AOCLSPARSE_NUM_THREADS=4 numactl --physcpubind=4,5,6,7 ./aoclsparse-bench --function=csrmv --
precision=d --sizem=1000 --sizen=1000 --sizennz=4000 --verify=1

$ cd aocl-sparse/tests/examples

https://github.com/amd/aocl-sparse/releases
https://developer.amd.com/amd-aocl/aocl-sparse/
https://developer.amd.com/amd-aocl/


94 AOCL-Sparse Chapter 11

 

57404 Rev. 4.0 November 2022AOCL User Guide

11.2.1 Use by Applications

To use AOCL-Sparse in your application, link the library while building the application. Configure 
the install directory using CMAKE_INSTALL_PREFIX and install the libraries using CMake build 
command:

Provide this install directory as the path to aocl sparse header and library.

Examples to Build Sample Applications

cmake --build . --target install --config Release

SPMV:
g++ sample_spmv.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

CSR2M:
g++ sample_csr2m.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

TRSV:
g++ sample_dtrsv.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse -o test_aoclsparse.x

CG example using Reverse Communication Interface(RCI):
g++ sample_itsol_d_cg_rci.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse  -o test_aoclsparse.x

CG example using Direct Interface:
g++ sample_itsol_d_cg.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse  -o test_aoclsparse.x

GMRES example using Reverse Communication Interface(RCI):
g++ sample_itsol_d_gmres_rci.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-
library>/
-laoclsparse  -o test_aoclsparse.x

GMRES example using Direct Interface:
g++ sample_itsol_d_gmres.cpp -I<path-to-aocl-sparse-header> -L<path-to-aocl-sparse-library>/
-laoclsparse  -o test_aoclsparse.x



Chapter 11 AOCL-Sparse 95

 

AOCL User Guide57404 Rev. 4.0 November 2022

The following is a sample cpp file depicting the AOCL-Sparse spmv API usage:
//file :sample_spmv.cpp
#include "aoclsparse.h"
#include <iostream>

#define M 5
#define N 5
#define NNZ 8

int main(int argc, char* argv[])
{
    aoclsparse_operation   trans     = aoclsparse_operation_none;

    double alpha = 1.0;
    double beta  = 0.0;

    // Print aoclsparse version
    std::cout << aoclsparse_get_version() << std::endl;

    // Create matrix descriptor
    aoclsparse_mat_descr descr;
    // aoclsparse_create_mat_descr set aoclsparse_matrix_type to aoclsparse_matrix_type_general
    // and aoclsparse_index_base to aoclsparse_index_base_zero.
    aoclsparse_create_mat_descr(&descr);

aoclsparse_index_base base = aoclsparse_index_base_zero;

    // Initialise matrix
    //  1  0  0  2  0
    //  0  3  0  0  0
    //  0  0  4  0  0
    //  0  5  0  6  7
    //  0  0  0  0  8
    aoclsparse_int csr_row_ptr[M+1] = {0, 2, 3, 4, 7, 8};
    aoclsparse_int csr_col_ind[NNZ]= {0, 3, 1, 2, 1, 3, 4, 4};
    double         csr_val[NNZ] = {1, 2, 3, 4, 5, 6, 7, 8};
    aoclsparse_matrix A;
    aoclsparse_create_dcsr(A, base, M, N, NNZ, csr_row_ptr, csr_col_ind, csr_val);

    // Initialise vectors
    double x[N] = { 1.0, 2.0, 3.0, 4.0, 5.0};
    double y[M];

    //to identify hint id(which routine is to be executed, destroyed later)
    aoclsparse_set_mv_hint(A, trans, descr, 1);



96 AOCL-Sparse Chapter 11

 

57404 Rev. 4.0 November 2022AOCL User Guide

A sample compilation command with the gcc compiler for the above code:

11.3 Build AOCL-Sparse from Source on Windows

GitHub URL: https://github.com/amd/aocl-sparse 

AOCL-Sparse uses CMake along with Microsoft Visual Studio for building binaries from the sources 
on Windows. The following sections explain the GUI and command-line schemes of building the 
binaries and test suite.

Prerequisites

For more information, refer to the Prerequisites sub-section in section “Build AOCL-BLIS from 
Source on Windows” on page 44.

11.3.1 Building AOCL-Sparse Using GUI

11.3.1.1 Preparing Project with CMake GUI

Complete the following steps to prepare the project with CMake GUI:

1. Set the source (folder containing aocl-sparse source code) and build (folder in which the project 
files will be generated, for example, out) folder paths. It is not recommended to use the folder 
named build as it is already used for Linux build system.

2. Click on the Configure button to prepare the project options.

 // Optimize the matrix, "A"
    aoclsparse_optimize(A);

    std::cout << "Invoking aoclsparse_dmv..";
    //Invoke SPMV API (double precision)
    aoclsparse_dmv(trans,
    &alpha,
    A,
    descr,
    x,
    &beta,
    y);
    std::cout << "Done." << std::endl;
    std::cout << "Output Vector:" << std::endl;
    for(aoclsparse_int i=0;i < M; i++)
std::cout << y[i] << std::endl;

    aoclsparse_destroy_mat_descr(descr);
    aoclsparse_destroy(A);
    return 0;
}

g++ sample_csrmv.cpp -I<path-to-aocl-sparse-header> -L<path-to aocl-sparse-library> -
laoclsparse -o test_aoclsparse.x

https://github.com/amd/aocl-sparse


Chapter 11 AOCL-Sparse 97

 

AOCL User Guide57404 Rev. 4.0 November 2022

3. Set the generator to Visual Studio 16 2019 and the compiler to ClangCl.

4. Update the options based on the project requirements. All the available options are listed in  
Table 15.Select the available and recommended options as follows:

Figure 12. AOCL-Sparse CMake Config Options

5. Click the Generate button and then Open Project.

11.3.1.2 Building the Project in Visual Studio GUI

Complete the following steps in Microsoft Visual Studio GUI:

1. Open the project generated by CMake (build folder) in “Preparing Project with CMake GUI” on 
page 96.

2. To generate the AOCL-Sparse binaries, build the AOCL-Sparse project. The library files would 
be generated in the folder bin based on the project settings.

For example: 

aocl-sparse/build/library/Release/aoclsparse.dll

aoclsparse.lib

11.3.2 Building AOCL-Sparse using Command-line Arguments

The project configuration and build procedures can be triggered from the command prompt as 
follows:

11.3.2.1 Configuring the Project in Command Prompt

Complete the following steps to configure the project using command prompt:



98 AOCL-Sparse Chapter 11

 

57404 Rev. 4.0 November 2022AOCL User Guide

1. In the AOCL-Sparse project folder, create a folder out. 

2. Open the command prompt in that directory and run the following command:

Refer Table 15 to update the parameter options in the command according to the project 
requirements.

11.3.2.2 Building the Project in Command Prompt

Complete the following steps to build the project using command prompt:

1. Open command prompt in the aocl-sparse/out directory. 

2. Invoke CMake with the build command and release or debug option. For example: 

The library files would be generated inside the folder Release or Debug based on the project settings.

11.3.2.3 Building and Running the Test Suite

Microsoft Visual Studio projects for the individual tests are generated as a part CMake generate step. 
Refer previous sections to build the test projects from Microsoft Visual Studio GUI or command 
prompt.

11.3.2.4 Running Individual Tests

The AOCL-Sparse executable accepts 2 types of inputs, namely randomly generated matrix data and 
matrices in Matrix Market format (mtx). The MTX inputs can be downloaded from SuiteSparse 
Matrix Collection website (https://sparse.tamu.edu/). Usage of both the type of inputs is shown 
below.

Copy the generated library and test bench from the release folder to <aocl-sparse>/tests/staging/
Release. Run the tests from the command prompt as follows:

Run multi-threaded (4 threads) CSR-SPMV on a randomly generated matrix:

cmake .. -DBUILD_ILP64=OFF -DBUILD_SHARED_LIBS=ON -DBUILD_CLIENTS_BENCHMARKS=ON -
DBUILD_CLIENTS_SAMPLES=ON -G "Visual
Studio 16 2019" -T LLVM

cmake --build . --config Release

Random Data:
./aoclsparse-bench.exe --function=optmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 
-verify=1

MTX Input:
./aoclsparse-bench.exe --function=optmv --precision=d --mtx=LFAT5.mtx --verify=1

set AOCLSPARSE_NUM_THREADS=4
./aoclsparse-bench.exe --function=csrmv --precision=d --sizem=1000 --sizen=1000 --sizennz=4000 
--verify=1

https://sparse.tamu.edu/


Chapter 12 AOCL-LibMem 99

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 12 AOCL-LibMem

AOCL-LibMem is a Linux library of data movement and manipulation functions (such as memcpy() 
and strcpy()) highly optimized for AMD Zen micro-architecture. This library has multiple 
implementations of each function that can be chosen based on the application requirements as per 
alignments, instruction choice, threshold values, and tunable parameters. By default, this library will 
choose the best fit implementation based on the underlying micro-architectural support for CPU 
features and instructions.

This is the first release of the AOCL-LibMem library and it supports the following functions:

• memcpy

• mempcpy

• memmove

• memset

• memcmp

12.1 Building AOCL-LibMem for Linux

Minimum software requirements for compilation:

• GCC 11.1

• AOCC 3.2

• Python 3.6

• CMake 3.10

Complete the following steps to build AOCL-LibMem for Linux:

1. Download and install the AOCL master installer (aocl-linux-<compiler>-<version>.tar.gz) from:

https://developer.amd.com/amd-aocl/

2. Locate the aocl-libmem folder in the root directory.

3. Create build directory:
$ mkdir build
$ cd build

https://developer.amd.com/amd-aocl/


100 AOCL-LibMem Chapter 12

 

57404 Rev. 4.0 November 2022AOCL User Guide

4. Configure for one of the following builds as required:

– GCC

– AOCC (Clang)

5. Build:

6. Install:

After compilation, a shared library file libaocl-libmem.so will be generated and stored in <build/lib> 
path.

Note: It is recommended not to load/run the AVX512 library on a non-AVX512 machine as it can 
lead to crash (invalid instructions).

12.2 Running an Application

The applications must preload AOCL-LibMem to replace standard c library memory functions for 
better performance gains on AMD “Zen” micro-architectures.

To run the application, preload the libaocl-libmem.so generated from the build procedure above:

12.3 Running an Application with Tunables

LibMem built with tunables enabled exposes two tunable parameters that will help you select the 
implementation of your choice:

• LIBMEM_OPERATION: Instruction based on alignment and cacheability

• LIBMEM_THRESHOLD: The threshold for ERMS and Non-Temporal instructions

Default
$ cmake -D CMAKE_C_COMPILER=gcc ../aocl-libmem

Enabling Tunable Parameters
$ cmake -D CMAKE_C_COMPILER=gcc -D ENABLE_TUNABLES=Y ../aocl-libmem

Compiling AVX512 on non-avx512 Machine
$ cmake -D CMAKE_C_COMPILER=gcc -D ENABLE_TUNABLES=Y -D USE_AVX512=Y ../aocl-libmem

Default
$ cmake -D CMAKE_C_COMPILER=clang ../aocl-libmem

Enabling Tunable Parameters
$ cmake -D CMAKE_C_COMPILER=clang -D ENABLE_TUNABLES=Y ./aocl-libmem

Compiling AVX512 on non-avx512 Machine
$ cmake -D CMAKE_C_COMPILER=clang -D ENABLE_TUNABLES=Y -D USE_AVX512=Y ../aocl-libmem

$ cmake --build .

$ make install

$ LD_PRELOAD=<path to build/lib/libaocl-libmem.so> <executable> <params>



Chapter 12 AOCL-LibMem 101

 

AOCL User Guide57404 Rev. 4.0 November 2022

Following two states are possible with this library based on the tunable settings:

• Default State: None of the parameters is tuned.

• Tuned State: One of the parameters is tuned with a valid option. 

12.3.1 Default State

In this state, none of the parameters are tuned; the library will pick up the best implementation based 
on the underlying AMD “Zen” micro-architecture.

Run the application by preloading the tunables enabled libaocl-libmem.so:

12.3.2 Tuned State

In this state, one of the parameters is tuned by the application at run time. The library will choose the 
implementation based on the valid tuned parameter at run time. Only one of the tunable can be set to 
a valid set of format/options as described in Table 16.

12.3.2.1 LIBMEM_OPERATION

You can set the tunable LIBMEM_OPERATION as follows:

Based on this option, the library chooses the best implementation based on the combination of move 
instructions, alignment of the source and destination addresses.

Valid Options

• <operations> = [avx2|avx512|erms]

• <source_alignment> = [b|w|d|q|x|y|n]

• <destination_alignmnet> = [b|w|d|q|x|y|n]

Use the following table to select the right implementation for your application:

$ LD_PRELOAD=<path to build/lib/libaocl-libmem.so> <executable> <params>

LIBMEM_OPERATION=<operations>,<source_alignment>,<destination_alignmnet>

Table 16. Application Implementations

Application Requirement LIBMEM_OPERATION Instructions Side-effects

Vector unaligned source and de
stination

[avx2|avx512],b,b Load:VMOVDQU; 
Store:VMOVDQU

None

Vectoraligned source and desti
nation

[avx2|avx512],y,y Load:VMOVDQA; 
Store:VMOVDQA

Unaligned source 
and/or destination 
address will lead 
to crash

Vectoraligned source and 
unaligned destination

[avx2|avx512],y,[b|w|d|q|x] Load:VMOVDQA; 
Store:VMOVDQU

None



102 AOCL-LibMem Chapter 12

 

57404 Rev. 4.0 November 2022AOCL User Guide

Note: A best-fit solution for the underlying micro-architecture will be chosen if the tunable is in an 
invalid format.

For example, to use only avx2-based move operations with both unaligned source and aligned 
destination addresses:

12.3.2.2 LIBMEM_THRESHOLD

You can set the tunable LIBMEM_THRESHOLD as follows:

Based on this option, the library will choose the implementation with tuned threshold settings for 
supported instruction sets: {vector, rep mov, non-temporal}.

Valid Options

Vector unaligned source andali
gned destination

[avx2|avx512],[b|w|d|q|x], y Load:VMOVDQU; 
Store:VMOVDQA

None

Vector non temporal load and 
store

[avx2|avx512],n,n Load:VMOVNTDQ
A; 
Store:VMOVNTDQ

Unaligned source 
and/or 
destination address 
will lead to crash

Vector non temporal load [avx2|avx512],n,[b|w|d|q|x|
y]

Load:VMOVNTDQ
A; 
Store:VMOVDQU

None

Vector non temporal store [avx2|avx512],[b|w|d|q|x|y],
n

Load:VMOVDQU; 
Store:VMOVNTDQ

None

Rep movs unaligned source or 
destination

erms,b,b REP MOVSB None

Rep movs word aligned source 
and destination

erms,w,w REP MOVSW Data corruption or 
crash if the length is 
not a multiple of 2

Rep movs double word aligned 
source and destination

erms,d,d REP MOVSD Data corruption or 
crash if the length is 
not a multiple of 4

Rep movs quad word aligned 
source and destination

erms,q,q REP MOVSQ Data corruption or 
crash if the length is 
not a multiple of 8

$ LD_PRELOAD=<build/lib/libaocl-libmem.so> LIBMEM_OPERATION=avx2,b,y <executable>

LIBMEM_THRESHOLD=<repmov_start_threshold>,<repmov_stop_threshold>,<nt_start_threshold>,
<nt_stop_threshold>

Table 16. Application Implementations

Application Requirement LIBMEM_OPERATION Instructions Side-effects



Chapter 12 AOCL-LibMem 103

 

AOCL User Guide57404 Rev. 4.0 November 2022

• <repmov_start_threshold> = [0, +ve integers]

• <repmov_stop_threshold> = [0, +ve integers, -1]

• <nt_start_threshold> = [0, +ve integers]

• <nt_stop_threshold> = [0, +ve integers, -1]

Where, -1 refers to the maximum length.

Refer the following table for the sample threshold settings:

Note: A system configured threshold will be chosen if the tunable is in an invalid format.

For example, to use **REP MOVE** instructions for a range of 1KB to 2KB and non_temporal 
instructions for a range of 512 KB and above:

Table 17. Sample Threshold Settings
LIBMEM_THRESHOLD Vector Range RepMov Range Non-Temporal Range

0,2048,1048576,-1 (2049, 1048576) [0,2048] [1048576, max value of unsigned long 
long)

0,0,1048576,-1 [0,1048576) [0,0] [1048576, max value of unsigned long 
long)

$ LD_PRELOAD=<build/lib/libaocl-libmem.so> LIBMEM_THRESHOLD=1024,2048,524288,-1 <executable>



104 AOCL-Cryptography Chapter 13

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 13 AOCL-Cryptography

AOCL-Cryptography is a Linux library consisting of the basic cryptographic functions optimized for 
AMD “Zen” micro-architecture. This library has multiple implementations of different Advanced 
Encryption Standard (AES) cryptographic encryption/decryption ciphers and Secure Hash Algorithm 
2 (SHA-2) hash functions.

This is the first release of the AOCL-Cryptography library with the following functions:

• AES encrypt/decrypt routines supporting the following cipher modes:

– Cipher Block Chaining (CBC)
– Cipher Feedback (CFB)
– Output Feedback (OFB)
– Counter (CTR)
– Galois/Counter Mode (GCM)
– Ciphertext Stealing Mode (XTS)
All the mentioned cipher modes support 128, 192, and 256-bit key sizes.

• SHA-2 hash functions with the following digest sizes:

– SHA-224
– SHA-256
– SHA-384
– SHA-512

13.1 Requirements

• CMake 3.14

• GCC 11.1.0

• For more information on supported Linux operating systems, refer “Operating Systems” on 
page 13.

13.2 Using AOCL-Cryptography in a Sample Application

A few pointers for using AOCL-Cryptography in a sample application:

• For using the encrypt/decrypt routines, use the header file in the test application: 

include/alcp/alcp.h

An example to use the cipher routines can be found in: 

aocl-crypto/examples/cipher



Chapter 13 AOCL-Cryptography 105

 

AOCL User Guide57404 Rev. 4.0 November 2022

• For using the digest routines, use the header file:

include/alcp/digest.h

An example to use the digest routines can be found in: 

aocl-crypto/examples/digest

13.2.1 Compiling and Running AOCL-Cryptography Examples

Complete the following steps to compile and run the AOCL-Cryptography examples:

1. Download and untar the aocl-crypto package.

2. cd amd-crypto 

3. make 

4. To run example applications (for digest):

13.2.2 Running OpenSSL Benchmarks Using AOCL-Cryptography Library

Use OpenSSL 3.0.0 to execute the following command:

LD_LIBRARY_PATH=<path where aocl libs are installed> ./bin/digest/sha2_384_example

openssl speed -provider <libname> -provider-path <path> -evp sha512



106 AOCL-Compression Chapter 14

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 14 AOCL-Compression

AOCL-Compression is a software framework of various lossless data compression and 
decompression methods tuned and optimized for AMD “Zen”-based CPUs. This library suite 
supports the following:

• Linux and Windows platforms.

• lz4, zlib/deflate, lzma, zstd, bzip2, snappy, and lz4hc based compression and decompression 
methods. 

• A unified standardized API set and the existing native APIs of the respective methods. 

• Dynamic dispatcher feature that executes the most optimal function variant implemented using 
Function Multi-versioning and hence, offering a single optimized library portable across different 
x86 CPU architectures.

A test suite is provided for validation and performance benchmarking of the supported compression 
and decompression methods. The test suite also supports the benchmarking of IPP compression 
methods, such as lz4, lz4hc, and zlib on the Linux-based platforms.

14.1 Installation

The library and test bench binary for Linux and Windows can be installed from one of the following:

• AOCL-Compression page (https://developer.amd.com/amd-aocl/aocl-compression/)

• AOCL master installer: tar and zip packages for Linux and Windows respectively (https://
developer.amd.com/amd-aocl/)

14.2 Running AOCL-Compression Test Bench on Linux

Test bench supports several options to validate, benchmark, or debug the supported compression 
methods. It uses the unified API set to invoke the compression methods supported by AOCL-
Compression. It can also invoke and benchmark some of the IPP's compression methods.

To check the various options supported by the test bench, use one of the following commands:

Use the following command for an example to run the test bench and validate the outputs from all the 
supported compression and decompression methods for a given input file:

aocl_compression_bench -h
Or
aocl_compression_bench --help

aocl_compression_bench -a -t <input filename>

https://developer.amd.com/amd-aocl/aocl-compression/
https://developer.amd.com/amd-aocl/


Chapter 14 AOCL-Compression 107

 

AOCL User Guide57404 Rev. 4.0 November 2022

Use the following command for an example to run the test bench and check the performance of a 
particular compression and decompression method for a given input file:

Here, 5 is the level and 0 is the additional parameter to specify the custom window size for the ZSTD 
method.

To run the test bench with error/debug/trace/info logs, use the command:

Here, you can pass -v with a number such as v<n> that can take the following values: 

• 1 for Error (default)

• 2 for Info

• 3 for Debug

• 4 for Trace

To test and benchmark the performance of IPP's compression methods, use the test bench option -c 
along with the other relevant options (as explained above).

Currently, IPP's lz4, lz4hc, and zlib methods are supported by the test bench.

Complete the following steps:

1. Set the library path environment variable (export LD_LIBRARY_PATH on Linux) to point to the 
installed IPP library path.

Alternatively, you can also run vars.sh that comes along with the IPP installation to setup the 
environment variable.

2. Download lz4-1.9.3 and zlib-1.2.11 source packages.

3. Apply IPP's lz4 and zlib patch files as follows:

4. Build the patched IPP lz4 and zlib libraries as per the steps in the IPP README files (in the 
corresponding patch file locations) for these compression methods.

5. Set the library path environment variable (export LD_LIBRARY_PATH on Linux) to point to the 
patched IPP lz4 and zlib libraries.

6. Run the test bench to benchmark IPP library methods as follows:

aocl_compression_bench -ezstd:5:0 -p <input filename>

aocl_compression_bench -a -t -v <input filename>

patch -p1 <"path to corresponding patch file">

aocl_compression_bench -a -p -c <input filename>
aocl_compression_bench -elz4 -p -c <input filename>
aocl_compression_bench -elz4hc -p -c <input filename>
aocl_compression_bench -ezlib -p -c <input filename>



108 AOCL-Compression Chapter 14

 

57404 Rev. 4.0 November 2022AOCL User Guide

14.3 Running AOCL-Compression Test Bench on Windows

Test bench on Windows supports all the user options as on Linux, except for the -c option to link and 
test the IPP's compression methods. For more information, refer to “Running AOCL-Compression 
Test Bench on Linux” on page 106.

To set and launch the test bench with a specific user option:

1. Go to project aocl_compression_bench > Properties > Debugging.

2. Specify the user options and the input test file.

14.4 API Reference

14.4.1 Unified Standardized API Set

14.4.2 Interface Data Structures

//Interface API to compress data
int64_t aocl_llc_compress(aocl_compression_desc *handle,
                          aocl_compression_type codec_type);

//Interface API to decompress data
int64_t aocl_llc_decompress(aocl_compression_desc *handle,
                            aocl_compression_type codec_type);

//Interface API to setup the compression method
void aocl_llc_setup(aocl_compression_desc *handle,
                    aocl_compression_type codec_type);

//Interface API to destroy the compression method
void aocl_llc_destroy(aocl_compression_desc *handle,
                      aocl_compression_type codec_type);

//Interface API to get compression library version string
const char *aocl_llc_version(void);

//Types of compression methods supported
typedef enum
{
    LZ4 = 0,
    LZ4HC,
    LZMA,
    BZIP2,
    SNAPPY,
    ZLIB,
    ZSTD,
    AOCL_COMPRESSOR_ALGOS_NUM
} aocl_compression_type;



Chapter 14 AOCL-Compression 109

 

AOCL User Guide57404 Rev. 4.0 November 2022

14.4.3 Native APIs

//Interface data structure
typedef struct
{
    char *inBuf;         //pointer to input buffer data
    char *outBuf;        //pointer to output buffer data
    char *workBuf;       //pointer to temporary work buffer
    size_t inSize;       //input data length
    size_t outSize;      //output data length
    size_t level;        //requested compression level
    size_t optVar;       //additional variables or parameters
    int numThreads;      //number of threads available for multi-threading
    int numMPIranks;     //number of available multi-core MPI ranks
    size_t memLimit;     //maximum memory limit for compression/decompression
    int measureStats;    //Measure speed and size of compression/decompression
    uint64_t cSize;      //size of compressed output
    uint64_t dSize;      //size of decompressed output
    uint64_t cTime;      //time to compress input
    uint64_t dTime;      //time to decompress input
    float cSpeed;        //speed of compression
    float dSpeed;        //speed of decompression
    int optOff;          //Turn off all optimizations
    int optLevel;        //Optimization level:0-NA,1-SSE2,2-AVX,3-AVX2,4-AVX512
    int printDebugLogs;  //print debug logs
    //size_t chunk_size; //Unused variable
} aocl_compression_desc;

//bzip2 Interface API to compress data
int BZ2_bzBuffToBuffCompress(
char*         dest, 
unsigned int* destLen,
char*         source, 
unsigned int  sourceLen,
int           blockSize100k, 
int           verbosity, 
int           workFactor 
   );

//bzip2 Interface API to decompress data
int BZ2_bzBuffToBuffDecompress ( 
char*         dest, 
unsigned int* destLen,
char*         source, 
unsigned int  sourceLen,
int           small, 
int           verbosity 
   );



110 AOCL-Compression Chapter 14

 

57404 Rev. 4.0 November 2022AOCL User Guide

//lz4 Interface API to compress data
int LZ4_compress_default(
      const char* src, 
char* dst, 
int srcSize, 
int dstCapacity
);

//lz4 Interface API to decompress data
int LZ4_decompress_safe  (
const char* src,
char* dst,
int compressedSize,
int dstCapacity
);

//lz4hc Interface API to compress data
int LZ4_compress_HC(
      const char* src, 
char* dst, 
int srcSize, 
int dstCapacity,
int compressionLevel
);

//lz4hc Interface API to decompress data
int LZ4_decompress_safe (
const char* src,
char* dst,
int compressedSize,
int dstCapacity
);

//lzma Interface API to compress data
int LzmaEncode(
Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig
);

//lzma Interface API to decompress data
int LzmaDecode(
Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc
);



Chapter 14 AOCL-Compression 111

 

AOCL User Guide57404 Rev. 4.0 November 2022

//snappy Interface API to compress data
void RawCompress(
const char* input,
size_t input_length,
char* compressed,
size_t* compressed_length
);

//snappy Interface API to decompress data
bool RawUncompress(
const char* compressed, size_t compressed_length,
char* uncompressed
);

//zlib Interface API to compress data
Int compress2(
unsigned char *dest,   unsigned long *destLen,
const unsigned char *source, unsigned long sourceLen,
int level
);

//zlib Interface API to decompress data
int uncompress(
unsigned char *dest,   unsigned long *destLen,
const unsigned char *source, unsigned long sourceLen
);

//zstd Interface API to compress data
size_t ZSTD_compress_advanced(
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params
);

//zstd Interface API to decompress data
size_t ZSTD_decompressDCtx(
ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize
);



112 AOCL-Compression Chapter 14

 

57404 Rev. 4.0 November 2022AOCL User Guide

14.4.4 Example Test Program

The following test program shows the sample usage and calling sequence of aocl-compression APIs 
to compress and decompress a test input:
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "api/api.h"

int main (int argc, char **argv)
{
aocl_compression_desc aocl_compression_ds;
aocl_compression_desc *aocl_compression_handle = &aocl_compression_ds;
FILE *inFp = NULL;
int file_size = 0;
char *inPtr = NULL, *compPtr = NULL, *decompPtr = NULL;
int64_t resultComp = 0, resultDecomp = 0;

if (argc < 2)
{
    printf("Provide input test file path\n");
    return -1;
}
inFp = fopen(argv[1], "rb");
fseek(inFp, 0L, SEEK_END);
file_size = ftell(inFp);
rewind(inFp);

//One of the compression methods as per aocl_compression_type
aocl_compression_type method = LZ4;

aocl_compression_handle->level = 0;
aocl_compression_handle->optVar = 0;
aocl_compression_handle->printDebugLogs = 0;
aocl_compression_handle->inSize = file_size;
aocl_compression_handle->outSize = (file_size + (file_size / 6) + (16*1024));
inPtr = (char *)calloc(1, aocl_compression_handle->inSize);
compPtr = (char *)calloc(1, aocl_compression_handle->outSize);
decompPtr = (char *)calloc(1, aocl_compression_handle->inSize);
aocl_compression_handle->inBuf = inPtr;
aocl_compression_handle->outBuf = compPtr;
file_size = fread(inPtr, 1, file_size, inFp);

//1. setup and create a handle
aocl_llc_setup(aocl_compression_handle, method);

//2. compress
resultComp = aocl_llc_compress(aocl_compression_handle, method);
if (resultComp <= 0)
{
           printf("Compression: failed\n");
           goto error_exit;
}



Chapter 14 AOCL-Compression 113

 

AOCL User Guide57404 Rev. 4.0 November 2022

To build this example test program on a Linux system using GCC or AOCC, you must specify the 
api.h header file and link the libaocl_compression.so file as follows:

14.5 Optional Optimization Options

Some additional optimization options are supported in the library that can give performance benefits 
based on specific test conditions. These optional features are not enabled by default and must be 
turned on depending on their need:

• SNAPPY_MATCH_SKIP_OPT: If this configure option is enabled, AOCL optimized Snappy 
method uses an improved heuristic-based match skipping approach to improve the compression 
speed with a minor trade off in the compression ratio.

• AOCL_LZ4_OPT_PREFETCH_BACKWARDS: If this configure option is enabled, prefetching 
is used in the backward direction for extending the match. This helps improve the performance of 
the compression process depending upon the test input data. In other cases, when the test input 
conditions do not satisfy the conditions assumed by this optimization, a minor performance drop 
may be observed.

 //decompress
aocl_compression_handle->inSize = resultComp;
aocl_compression_handle->outSize = file_size;
aocl_compression_handle->inBuf = compPtr;
aocl_compression_handle->outBuf = decompPtr;
resultDecomp = aocl_llc_decompress(aocl_compression_handle, method);
if (resultDecomp <= 0)
{
           printf("Decompression Failure\n");
           goto error_exit;
}

//destroy handle
aocl_llc_destroy(aocl_compression_handle, method);

error_exit:
if (inPtr)
           free(inPtr);
if (compPtr)
           free(compPtr);
if (decompPtr)
           free(decompPtr);

return 0;
}

gcc test.c -I< api.h file path> -L < libaocl_compression.so file path> -laocl_compression



114 Linking- AOCL to Applications Chapter 15

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 15 Linking- AOCL to Applications

This section provides examples of how AOCL can be linked with the HPL benchmark and MUMPS 
sparse solver library.

15.1 High-performance LINPACK Benchmark (HPL)

HPL is a software package that solves a (random) dense linear system in double precision (64-bits) 
arithmetic on distributed memory computers. It is a LINPACK benchmark that measures the floating-
point rate of execution for solving a linear system of equations.

To build an HPL binary from the source code, edit the MPxxx and LAxxx directories in your 
architecture-specific Makefile to match the installed locations of your MPI and Linear Algebra 
library. For AOCL-BLIS, use the F77 interface with F2CDEFS = -DAdd__ -DF77_INTEGER=int -
DStringSunStyle. 

Use the multi-threaded AOCL-BLIS with the following configuration for an optimal performance:

Setup HPL.dat before running the benchmark.

15.1.1 Configuring HPL.dat

HPL.dat file contains the configuration parameters. The important parameters are Problem Size, 
Process Grid, and BlockSize.

• Problem Size (N) — For best results, the problem size must be set large enough to use 80-90% of 
the available memory.

• Process Grid (P and Q) — P x Q must match the number of MPI ranks. P and Q must be as close 
to each other as possible. If the numbers cannot be equal, Q must be larger.

• BlockSize (NB) — HPL uses the block size for the data distribution and for the computational 
granularity. Set NB=240 for an optimal performance.

• Set BCASTs=2 — Increasing-2-ring (2rg) broadcast algorithm gives a better performance than 
the default broadcast algorithm.

15.1.2 Running the Benchmark

The combination of multi-threading (through OpenMP library) and MPI is important to configure for 
optimal performance. Set the number of MPI tasks to number of L3 caches in the system for optimal 
performance. 

The HPL benchmark typically produces a better single node performance number with the following 
configurations depending on which generation of AMD EPYCTM processor is used:

./configure --enable-cblas -t openmp --disable-sup-handling --prefix=<path> auto



Chapter 15 Linking- AOCL to Applications 115

 

AOCL User Guide57404 Rev. 4.0 November 2022

• 2nd Gen AMD EPYCTM Processors (codenamed “Rome”)

A dual socket AMD EPYC 7742 system consists of 32 CCXs, each having an L3 cache and a total 
of 2 x 64 cores (four cores per CCX). For maximum performance, use 32 MPI ranks with 4 
OpenMP threads. Each MPI rank is bonded to 1 CCX and 4 threads per L3 cache.

Set the following flags while building and running the tests:

Execute the following command to run the test:

BLIS_IC_NT and BLIS_JC_NT parameters are set for DGEMM parallelization at each shared L3 
cache to improve the performance further.

• 3rd Gen AMD EPYCTM Processors (codenamed “Milan”)

The number of MPI ranks and maximum thread count per MPI rank depends on the specific 
EPYC SKU. For better performance, bind each MPI rank to a CCX, if there are 4 OpenMP 
threads. However, if 8 threads are used, then you should specify CCD instead of CCX.

Set the following flags while building and running the tests:

Execute the following command to run the test:

15.2 MUMPS Sparse Solver Library

MUltifrontal Massively Parallel Solver (MUMPS: http://mumps-solver.org/) is an open-source 
package for solving systems of linear equations of the form: 

Ax = b

Where, A is a square sparse matrix that can be one of the following on distributed memory 
computers:

• Unsymmetric

• Symmetric positive definite

• General symmetric

MUMPS implements a direct method based on a multi-frontal approach which performs the Gaussian 
factorization:

A = LU 

export BLIS_IC_NT=4
export BLIS_JC_NT=1

mpirun -np 32 --report-bindings --map-by ppr:1:l3cache,pe=4 -x OMP_NUM_THREADS=4 -x 
OMP_PROC_BIND=TRUE -x OMP_PLACES=cores ./xhpl

export BLIS_IC_NT=8
export BLIS_JC_NT=1

mpirun -np 16 --report-bindings --map-by ppr:1:l3cache,pe=8 -x OMP_NUM_THREADS=8 -x 
OMP_PROC_BIND=TRUE -x OMP_PLACES=cores ./xhpl

http://mumps-solver.org/


116 Linking- AOCL to Applications Chapter 15

 

57404 Rev. 4.0 November 2022AOCL User Guide

Where, L is a lower triangular matrix and U an upper triangular matrix. 

If the matrix is symmetric then the factorization:

A = LDLT 

Where, D is a block diagonal matrix performed.

The system Ax = b is solved in the following steps:

1. Analysis

During an analysis, preprocessing including re-ordering and a symbolic factorization are 
performed. This depends on the external libs METIS, SCOTCH, and PORD (inside MUMPS 
source). Apre denotes the preprocessed matrix.

2. Factorization

During the factorization, Apre = LU or Apre = LDLT, depending on the symmetry of the 
preprocessed matrix, is computed. The original matrix is first distributed (or redistributed) onto 
the processors depending on the mapping computed during the analysis. The numerical 
factorization is then a sequence of dense factorization on the frontal matrices.

3. Solution

The solution xpre of:

LUxpre = bpre or LDLT xpre = bpre 

Where, xpre and bpre are the transformed solution x and right-hand side b respectively. They are 
associated to the preprocessed matrix Apre and obtained through the forward elimination step:

Ly = bpre or LDy = bpre 

Followed by the backward elimination step:

Uxpre = y or L T xpre = y . 

The solution xpre is finally processed to obtain the solution x of the original system Ax = b.

The AOCL libraries can be integrated with the MUMPS sparse solver to perform highly optimized 
linear algebra operations on AMD “Zen”-based processors.

15.2.1 Enabling AOCL with MUMPS

15.2.1.1 Using Spack On Linux

Complete the following steps to enable AOCL with MUMPS on Linux:

1. Set up Spack on the target machine. 



Chapter 15 Linking- AOCL to Applications 117

 

AOCL User Guide57404 Rev. 4.0 November 2022

2. Link the AOCL libraries AOCL-BLIS, AOCL-libFLAME, and AOCL-ScaLAPACK while 
installing MUMPS. Use the following Spack commands to install MUMPS with:

– gcc compiler:

– aocc compiler:

– To use an external reordering library (for example, METIS), run the following command:

15.2.1.2 On Windows

GitHub URL: https://github.com/amd/mumps-build

Prerequisites

Ensure that the following prerequisites are met:

• CMake and Ninja Makefile Generator — Ensure that Ninja is installed/updated in the Microsoft 
Visual Studio installation folder:

C:\Program Files (x86)\Microsoft Visual 
Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja

• Download the latest Binary Ninja from the URL:

https://github.com/ninja-build/ninja/releases

• Intel® oneAPI toolkit must include C, C++, Fortran Compilers, and MPI. For more information, 
refer Intel documentation (https://software.intel.com/content/www/us/en/develop/articles/oneapi-
standalone-components.html#vtune).

• Pre-built AOCL libraries for AOCL-BLIS, AOCL-libFLAME, and AOCL-ScaLAPACK.

• If reordering library is METIS, complete the following steps:

a. Download the pre-built METIS library from SuiteSparse public repository (https://
github.com/grup-gu/SuiteSparse.git). 

b. Build METIS library from the metis folder:

c. Define IDXTYPEWIDTH and REALTYPEWIDTH to 32 or 64 based on the required 
integer size in metis/include/metis.h.

d. Configure:

e. Build the project:

The library metis.lib is generated in ninja_build_dir\lib.

$ spack install mumps ^amdblis ^amdlibflame ^amdscalapack

$ spack install mumps ^amdblis ^amdlibflame ^amdscalapack %aocc

$ spack install mumps ^metis  ^amdblis ^amdlibflame ^amdscalapack

cd SuiteSparse\metis-5.1.0

cmake S . -B ninja_build_dir -G "Ninja" -DBUILD_SHARED_LIBS=OFF
-DCMAKE_BUILD_TYPE=Release -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON

cmake --build ninja_build_dir --verbose

https://github.com/amd/mumps-build
C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#vtune
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#vtune
https://github.com/grup-gu/SuiteSparse.git
https://github.com/ninja-build/ninja/releases


118 Linking- AOCL to Applications Chapter 15

 

57404 Rev. 4.0 November 2022AOCL User Guide

• Boost libraries on Windows:

– Required to read the .mtx files efficiently and quickly
– Essential for the test application aocl_amd.cpp that links to MUMPS libraries and measures the 

performance for an Symmetric Positive Definite (SPD) .mtx file
– Download sources and bootstrap as instructed at the following URL:

https://www.boost.org/doc/libs/1_55_0/more/getting_started/windows.html

– Define BOOST_ROOT in tests/CMakeLists.txt

Building MUMPS Sources

Complete the following steps to build the MUMPS sources on Windows:

1. Checkout the MUMPS build repository from AOCL GitHub (https://github.com/amd/mumps-
build).

2. Open Intel oneAPI command prompt for Intel 64 for Microsoft Visual Studio 2019 from 
Windows search box.

3. Edit the default options in options.cmake in mumps/cmake/.

4. Remove any build directory if it exists already.

https://www.boost.org/doc/libs/1_55_0/more/getting_started/windows.html
https://github.com/amd/mumps-build


Chapter 15 Linking- AOCL to Applications 119

 

AOCL User Guide57404 Rev. 4.0 November 2022

5. Configure the MUMPS project using Ninja:

The following options are enabled in the command:

– -DENABLE_AOCL=ON: <Enable AOCL Libraries>
– -DENABLE_MKL=OFF: <Enable MKL Libraries>
– -DBUILD_TESTING=ON: <Enable Mumps linking to test application to test>
– -Dscotch=ON: <Enable Metis Library for Reordering>
– -Dopenmp=ON: <Enable Multithreading using openmp>
– -Dintsize64=OFF: <Enable LP64 i.e., 32-bit integer size>
– -DBUILD_SHARED_LIBS=OFF: <Enable Static Library>
– -Dparallel=ON: <Enable Multithreading>
– -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON: <Enable verbose build log>
– -DCMAKE_BUILD_TYPE= Release: <Enable Release build>
– -DUSER_PROVIDED_BLIS_LIBRARY_PATH= “<path/to/blis/lib>”
– -DUSER_PROVIDED_BLIS_INCLUDE_PATH= “<path/to/blis/header>”
– -DUSER_PROVIDED_LAPACK_LIBRARY_PATH= “<path/to/libflame/lib >”
– -DUSER_PROVIDED_LAPACK_INCLUDE_PATH= “<path/to/libflame/include/header
– -DUSER_PROVIDED_SCALAPACK_LIBRARY_PATH= “<path/to/scalapack/lib 
– -DUSER_PROVIDED_METIS_LIBRARY= “<Metis/library/with/absolute/path >”
– -DUSER_PROVIDED_METIS_LIBRARY_PATH= “<path/to/metis/lib>”
– -DUSER_PROVIDED_METIS_INCLUDE_PATH= “<path/to/metis/header>”
– -DCMAKE_C_COMPILER= “<intel c compiler>”
– -DCMAKE_Fortran_COMPILER= “<intel fortran compiler>”
– -DBOOST_ROOT= “<path/to/BOOST/INSTALLATION>”
– -DUSER_PROVIDED_IMPILIB_ILP64_PATH=“<path/to/64-bit/Intel IMPI Library>”
– -DMUMPS_UPSTREAM_VERSION = “<valid/supported mumps source versions: 5.4.1 and 

5.5.0>”

cmake S . -B ninja_build_dir -G "Ninja" -DENABLE_AOCL=ON -DENABLE_MKL=OFF -DBUILD_TESTING=ON 
-DCMAKE_INSTALL_PREFIX="</mumps/install/path>" -Dscotch=ON -Dopenmp=ON -DBUILD_SHARED_LIBS=OFF 
-Dparallel=ON -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON -DCMAKE_BUILD_TYPE=Release 
-DUSER_PROVIDED_BLIS_LIBRARY_PATH="<path/to/blis/library/path>" 
-DUSER_PROVIDED_BLIS_INCLUDE_PATH="<path/to/blis/headers/path>" 
-DUSER_PROVIDED_LAPACK_LIBRARY_PATH="<path/to/libflame/library/path>" 
-DUSER_PROVIDED_LAPACK_INCLUDE_PATH="<path/to/libflame/headers/path>" 
-DUSER_PROVIDED_SCALAPACK_LIBRARY_PATH="<path/to/scalapack/library/path>" 
-DUSER_PROVIDED_METIS_LIBRARY_PATH="<path/to/metis/library/path>" 
-DUSER_PROVIDED_METIS_INCLUDE_PATH="<path/to/metis/include/path>" 
-DCMAKE_C_COMPILER=" icl.exe" -DCMAKE_CXX_COMPILER=" icl.exe" 
-DCMAKE_Fortran_COMPILER="ifort.exe" -DBOOST_ROOT="<path/to/boost_1_77_0>" -Dintsize64=OFF -
DUSER_PROVIDED_IMPILIB_ILP64_PATH="<path/to/64-bit/Intel IMPI Library>"
-DMUMPS_UPSTREAM_VERSION="5.4.1"



120 Linking- AOCL to Applications Chapter 15

 

57404 Rev. 4.0 November 2022AOCL User Guide

6. Toggle/Edit the options in step 5 to get:

a. Debug or Release build
b. LP64 or ILP64 libs
c. AOCL or MKL Libs

7. Build the project:

8. Run the executable in ninja_build_dir\tests:

cmake --build ninja_build_dir --verbose

mpiexec -n 2 --map-by L3cache --bind-to core Csimple.exe
mpiexec -n 2 --map-by L3cache --bind-to core amd_mumps_aocl sample.mtx



Chapter 16 AOCL Tuning Guidelines 121

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 16 AOCL Tuning Guidelines

This section provides tuning recommendations for AOCL.

16.1 AOCL-BLIS Thread Control

Application can set the desired number of threads during AOCL-BLIS initialization and runtime as 
explained below.

16.1.1 AOCL-BLIS Initialization

During AOCL-BLIS initialization, the preferred number of threads by an application in the BLAS 
routines can be set in multiple ways as follows:

• bli_thread_set_num_threads(nt) BLIS library API

• Valid value of BLIS_NUM_THREADS environment variable

• omp_set_num_threads(nt) OpenMP library API

• Valid value of OMP_NUM_THREADS environment variable

• If none of these is issued by an application, the number of logical cores would be used by the 
AOCL-BLIS library as the preferred number of threads

If the number of threads is set in one or more possible ways, the order of precedence for AOCL would 
be in the above mentioned order.



122 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.0 November 2022AOCL User Guide

The following table describes the sample scenarios for setting the number of threads during AOCL-
BLIS initialization:

16.1.2 Runtime

Once the number of threads is set during AOCL-BLIS initialization, it will be used in subsequent 
BLAS routine execution until the application modifies the number of threads (for example, 
omp_set_num_threads() API) to be used.

Table 18. Sample Scenarios - 1

Sample Pseudo Code 
for Application

Sample Command 
Executed

Number of 
Threads Set 

During 
AOCL-BLIS 
Initialization

Remarks

int main()
{

 ////pseudo 
code to use OpenMP 
API to set number of 
threads //////

 
omp_set_num_threads(
16);

 dgemm_( );
 ////////////
 return 0;

}

$ 
BLIS_NUM_THREADS=8 
./my_blis_program

8 BLIS_NUM_THREADS will have the 
maximum precedence.

$ ./
my_blis_program

16 BLIS_NUM_THREADS is not set and 
hence, omp_set_num_threads(16) has 
taken effect.

$ 
OMP_NUM_THREADS=4 
./my_blis_program

16 BLIS_NUM_THREADS is not set, 
omp_set_num_threads(16) has taken effect 
as it has more precedence than 
OMP_NUM_THREADS.

$ 
BLIS_NUM_THREADS=8 
OMP_NUM_THREADS=4 
./my_blis_program

8 BLIS_NUM_THREADS is set to 8, 
omp_set_num_threads(nt) and 
OMP_NUM_THREADS do not have any 
effect.

int main()
{

 ////pseudo 
code //////

 dgemm_( );
 ////////////
 return 0;

}

$ 
BLIS_NUM_THREADS=8 
./my_blis_program

8 BLIS_NUM_THREADS will have the 
maximum precedence.

$ ./
my_blis_program

64 BLIS_NUM_THREADS is not set, 
omp_set_num_threads() is not issued, and 
OMP_NUM_THREADS is not set, 
Considering the number of logical cores to 
be 64, number of threads is 64.

$ 
OMP_NUM_THREADS=4 
./my_blis_program

4 BLIS_NUM_THREADS is not set, 
omp_set_num_threads() is not issued, and 
OMP_NUM_THREADS is set to 4.



Chapter 16 AOCL Tuning Guidelines 123

 

AOCL User Guide57404 Rev. 4.0 November 2022

The following table describes the sample scenarios for setting the number of threads during runtime:

16.1.2.1 Runtime Thread Control

The Runtime Thread Control feature details are as follows:

• The Runtime Thread Control feature facilitates the application to allocate different number of 
threads to BLIS from the number of threads application is using.

• Previously, when an application sets BLIS_NUM_THREADS with a valid value, BLIS internally 
called omp_set_num_threads() API with same value. Due to this, the application would not be 
able to differentiate between the number of threads used in BLIS library and the application.

Table 19. Sample Scenarios - 2

Sample Pseudo Code for 
Application

Sample Command 
Executed

m Value in 
Sequence of 
Execution

Number of 
Threads for 

this BLAS Call
Remarks

int main()
{
////Pseudo code for 
sample usage of OpenMP 
API to set number of 
threads in the 
Application during Run 
Time//////

 do { 
if(m < 500) 

omp_set_num_threads(8);
 if(m >= 

500) 
omp_set_num_threads(16);

  if(m >= 
3000) 
omp_set_num_threads(32);

dgemm_( );
 } 

while(test_case_counter-
-)
 ////////////
 return 0;
}

$./my_blis_program 100 8 Application issued 
omp_set_num_threa
ds(8)

500 16 Application issued 
omp_set_num_threa
ds(16)

200 8 Application re-issued 
omp_set_num_threa
ds(8)

4000 32 Application issued 
omp_set_num_threa
ds(32)

1000 16 Application re-issued 
omp_set_num_threa
ds(16)

500 16 Application re-issued 
omp_set_num_threa
ds(16)

100 8 Application re-issued 
omp_set_num_threa
ds(8)



124 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.0 November 2022AOCL User Guide

• Currently, an application can choose either BLIS_NUM_THREADS environment variable or 
bli_thread_set_num_threads(nt) API for BLIS and OpenMP APIs/environment variables 
respectively.

• If BLIS_NUM_THREADS is set with a valid value, it will be used in the subsequent parallel 
regions unless bli_thread_set_num_threads() API is used by the application to modify the desired 
number of threads during BLIS API execution.

• Once BLIS_NUM_THREADS environment variable or bli_thread_set_num_threads(nt) API is 
used by the application, BLIS module would always give precedence to these values. BLIS API 
would not consider the values set using OpenMP API omp_set_num_threads(nt) API or 
OMP_NUM_THREADS environment variable.

• If BLIS_NUM_THREADS is not set,if the application is multithreaded and issued 
omp_set_num_threads(nt) with the desired number of threads, omp_get_max_threads() API will 
fetch the number of threads set earlier.

• If BLIS_NUM_THREADS is not set, omp_set_num_threads(nt) is not called by the application, 
but only OMP_NUM_THREADS is set, omp_get_max_threads() API will fetch the value of 
OMP_NUM_THREADS.

• If both environment variables are not set or if they are set with invalid values and 
omp_set_num_threads(nt) is not issued by application, omp_get_max_threads() API will return 
the number of the cores in the current context.

• BLIS will initialize rntm > num_threads with the value derived based on the above conditions. If 
omp_set_nested is false and the application calls BLIS APIs from parallel threads, BLIS APIs 
will run in a sequential manner. However, if nested parallelism is enabled, BLIS APIs can run on 
parallel threads internally.

• Order of precedence used for the number of threads:

a. Value set using bli_thread_set_num_threads(nt) by the application.
b. Valid value set for the environment variable BLIS_NUM_THREADS.
c. omp_set_num_threads(nt) issued by the application.
d. Valid value set for the environment variable OMP_NUM_THREADS.
e. The number of cores.

• If nt is not a valid value for omp_set_num_threads(nt) API, the number of threads would be set to 
1. omp_get_max_threads() API will return 1.

• OMP_NUM_THREADS environment variable is applicable only when OpenMP is enabled.

• Existing precedence of BLIS_*_NT environment variables and the decision of optimal number of 
threads obtained from the AOCL-BLIS Tuning Features, for example, AOCL Dynamic over the 
number of threads set by the application during BLIS initialization or runtime remains as it is.

16.2 AOCL Dynamic

The AOCL dynamic feature enables AOCL-BLIS to dynamically change the number of threads. 



Chapter 16 AOCL Tuning Guidelines 125

 

AOCL User Guide57404 Rev. 4.0 November 2022

This feature is enabled by default, however, it can be enabled or disabled at the configuration time 
using the options --enable-aocl-dynamic and --disable-aocl-dynamic respectively. 

You can also specify the preferred number of threads using the environment variables 
BLIS_NUM_THREADS or OMP_NUM_THREADS, BLIS_NUM_THREADS takes precedence if 
both of them are specified. 

The following table summarizes how the number of threads is determined based on the status of 
AOCL Dynamic and the user configuration using the variable BLIS_NUM_THREADS:

16.2.1 Limitations

The AOCL Dynamic feature has the following limitations:

• Support only for OpenMP Threads

• Supports only DGEMM, DGEMMT, DTRSM, and DSYRK APIs

• Specifying the number of threads more than the number of cores may result in deteriorated 
performance because of over-utilization of cores

16.3 AOCL-BLIS DGEMM Multi-thread Tuning

A AOCL-BLIS library can be used on multiple platforms and applications. Multi-threading adds 
more configuration options at runtime. This section explains the number of threads and CPU affinity 
settings that can be tuned to get the best performance for your requirements. 

16.3.1 Library Usage Scenarios

• The application and library are single-threaded:

This is straight forward - no special instructions needed. You can export 
BLIS_NUM_THREADS=1 indicating you are running AOCL-BLIS in a single-thread mode. If 
both BLIS_NUM_THREADS and OMP_NUM_THREADS are set, the former will take 
precedence over the later.

Table 20. AOCL Dynamic
AOCL Dynamic BLIS_NUM_THREADS Number of Threads Used by AOCL-BLIS

Disabled Unset Number of Cores.
Disabled Set BLIS_NUM_THREADS

Enableda

a.  The AOCL dynamic feature currently supports only DGEMM, DGEMMT, DTRSM, DTRMM, and 
DSYRK APIs. For the other APIs, the threads selection will be same as when AOCL Dynamic is disabled.

Unset Number of threads determined by AOCL Dynamic.

Enableda Set Minimum of BLIS_NUM_THREADS or the number of 
threads determined by AOCL. 



126 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.0 November 2022AOCL User Guide

• The application is single-threaded and the library is multi-threaded:

You can either use OMP_NUM_THREADS or BLIS_NUM_THREADS to define the number of 
threads for the library. However, it is recommend that you use BLIS_NUM_THREADS.

Example: 

$ export BLIS_NUM_THREADS=128 // Here, AOCL-BLIS runs at 128 threads. 

Apart from setting the number of threads, you must pin the threads to the cores using 
GOMP_CPU_AFFINITY or numactl as follows:

Note: For the Clang compiler, it is mandatory to use OMP_PROC_BIND=true in addition to 
the thread pinning (if numactl is used). For example, for a matrix size of 200 and 32 
threads, if you run DGEMM without OMP_PROC_BIND settings, the performance 
would be less. However, if you start using OMP_PROC_BIND=true, the performance 
would improve. This problem is not noticed with libgomp using gcc compiler. For the 
gcc compiler, the processor affinity defined using numactl is sufficient.

• The application is multi-threaded and the library is running a single-thread:

When the application is running multi-thread and number of threads are set using 
OMP_NUM_THREADS, it is mandatory to set BLIS_NUM_THREADS to one. Otherwise, 
AOCL-BLIS will run in multi-threaded mode with the number of threads equal to 
OMP_NUM_THREADS. This may result in a poor performance. 

• The application and library are both multi-threaded:

This is a typical scenario of nested parallelism. To individually control the threading at 
application and at the AOCL-BLIS library level, use both OMP_NUM_THREADS and 
BLIS_NUM_THREADS.

– The number of threads launched by the application is OMP_NUM_THREADS.
– Each application thread spawns BLIS_NUM_THREADS threads.
– To get a better performance, ensure that Number of Physical Cores = OMP_NUM_THREADS 

* BLIS_NUM_THREADS.
Thread pinning for the application and the library can be done using OMP_PROC_BIND:

OMP_PROC_BIND=spread,close 

At an outer level, the threads are spread and at the inner level, the threads are scheduled closer to 
their master threads. This scenario is useful for a nested parallelism, where the application is 
running at say OMP_NUM_THREADS and each thread is calling multi-threaded AOCL-BLIS.

$ BLIS_NUM_THREADS=128 GOMP_CPU_AFFINITY=0-127 <./application>

Or

$ BLIS_NUM_THREADS=128 GOMP_CPU_AFFINITY=0-127 numactl --i=all <./application>
$ BLIS_NUM_THREADS=128 numactl -C 0-127 --interleave=all <./test_application.x>

$ OMP_NUM_THREADS=4 BLIS_NUM_THREADS=8 OMP_PROC_BIND=spread,close <./application>



Chapter 16 AOCL Tuning Guidelines 127

 

AOCL User Guide57404 Rev. 4.0 November 2022

16.3.2 Architecture Specific Tuning

16.3.2.1 2nd and 3rd Gen AMD EPYCTM Processors

To achieve the best DGEMM multi-thread performance on 2nd Gen AMD EPYCTM processors 
(codenamed "Rome") and 3rd Gen AMD EPYCTM processors (codenamed "Milan”), execute one of 
the following commands:

Thread Size up to 16 (< 16)

Thread Size above 16 (>= 16)

16.3.2.2 1st Gen AMD EPYCTM Processors

To achieve the best DGEMM multi-thread performance on the 1st Gen AMD EPYCTM processors 
(codenamed "Naples"), complete the following steps:

The header file bli_family_zen.h in the AOCL-BLIS source directory \\blis\config\zen defines certain 
macros that help control the block sizes used by AOCL-BLIS. 

The required tuning settings vary depending on the number threads that the application linked to 
BLIS runs.

Thread Size upto 16 (< 16)

1. Enable the macro BLIS_ENABLE_ZEN_BLOCK_SIZES in the file bli_family_zen.h.

2. Compile AOCL-BLIS with multi-thread option as mentioned in “Multi-thread AOCL-BLIS” on 
page 21.

3. Link the generated AOCL-BLIS library to your application and execute it.

4. Run the application:

Thread Size above 16 (>= 16)

1. Disable the macro BLIS_ENABLE_ZEN_BLOCK_SIZES in the file bli_family_zen.h.

2. Compile AOCL-BLIS with the multi-thread option as mentioned in “Multi-thread AOCL-BLIS” 
on page 21.

3. Link the generated AOCL-BLIS library to your application.

4. Set the following OpenMP and memory interleaving environment settings:

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT>./test_gemm_blis.x

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> ./test_gemm_blis.x

OMP_PROC_BIND=spread
BLIS_NUM_THREADS = x     // x> 16
numactl --interleave=all



128 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.0 November 2022AOCL User Guide

5. Run the application.

Example: 

16.4 AOCL-BLIS DGEMM Block-size Tuning

AOCL-BLIS DGEMM performance is largely impacted by the block sizes used by AOCL-BLIS. A 
matrix multiplication of large m, n, and k dimensions is partitioned into sub-problems of the specified 
block sizes. 

Many HPC, scientific applications, and benchmarks run on high-end cluster of machines, each with 
multiple cores. They run programs with multiple instances through Message Passing Interface (MPI) 
based APIs or separate instances of each program. Depending on whether the application using 
AOCL-BLIS is running in multi-instance mode or single instance, the specified block sizes will have 
an impact on the overall performance.

The default values for the block size in AOCL-BLIS GitHub repository (https://github.com/amd/blis) 
is set to extract the best performance for such HPC applications/benchmarks, which use single-
threaded AOCL-BLIS and run in multi-instance mode on AMD EPYCTM AMD “Zen” core 
processors. However, if your application runs as a single instance, the block sizes for an optimal 
performance would vary. 

The following settings will help you choose the optimal values for the block sizes based on the way 
the application is run:

2nd Gen AMD EPYCTM Processors (codenamed "Rome")

1. Open the file bli_family_zen2.h in the AOCL-BLIS source:

2. For applications/benchmarks running in multi-instance mode and using multi-threaded AOCL-
BLIS, ensure that the macro AOCL_BLIS_MULTIINSTANCE is set to 0. As of AOCL 2.x 
release, this is the default setting. The HPL benchmark is found to generate better performance 
numbers using the following setting for multi-threaded AOCL-BLIS:

1st Gen AMD EPYCTM Processors (codenamed "Naples")

1. Open the file bli_cntx_init_zen.c under the AOCL-BLIS source:

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x

$ cd “config/zen2/ bli_family_zen2.h”

#define AOCL_BLIS_MULTIINSTANCE         0

$ cd “config/zen/bli_family_zen.h”

https://github.com/amd/blis


Chapter 16 AOCL Tuning Guidelines 129

 

AOCL User Guide57404 Rev. 4.0 November 2022

2. Ensure the macro, BLIS_ENABLE_ZEN_BLOCK_SIZES is defined:

Multi-instance Mode

For applications/benchmarks running in multi-instance mode, ensure that the macro 
BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES is set to 0. As of AOCL 2.x release, 
following is the default setting:

The optimal block sizes for this mode on AMD EPYCTM are defined in the file config/zen/
bli_cntx_init_zen.c:

Single-instance Mode

For the applications running as a single instance, ensure that the macro 
BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES is set to 1:

The optimal block sizes for this mode on AMD EPYCTM are defined in the file config/zen/
bli_cntx_init_zen.c:

16.5 Performance Suggestions for Skinny Matrices

AOCL-BLIS provides a selective packing for GEMM when one or two-dimensions of a matrix is 
exceedingly small. Selective packing is only applicable when sup is enabled. For an optimal 
performance:

#define BLIS_ENABLE_ZEN_BLOCK_SIZES

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES         0

bli_blksz_init_easy( &blkszs[ BLIS_MC ],   144,  240,   144,    72 );
bli_blksz_init_easy( &blkszs[ BLIS_KC ],   256,  512,   256,   256 );
bli_blksz_init_easy( &blkszs[ BLIS_NC ],  4080,  2040,  4080,  4080 );

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES         1

bli_blksz_init_easy( &blkszs[ BLIS_MC ],   144,  510,   144,    72 );
bli_blksz_init_easy( &blkszs[ BLIS_KC ],   256,  1024,   256,   256 );
bli_blksz_init_easy( &blkszs[ BLIS_NC ],  4080,  4080,  4080,  4080 );

C = beta*C + alpha*A*B
Dimension (Dim) of A – m x k          Dim(B) – k x n            Dim(c) – m x n
Assume row-major.
IF m >> n
$BLIS_PACK_A=1 ./test_gemm_blis.x – will give a better performance.
IF m << n
$BLIS_PACK_B=1 ./test_gemm_blis.x – will give a better performance.



130 AOCL Tuning Guidelines Chapter 16

 

57404 Rev. 4.0 November 2022AOCL User Guide

16.6 AOCL-libFLAME Multi-threading

From AOCL 4.0 release, AOCL-libFLAME supports multi-threading using OpenMP in selected 
APIs. This feature is enabled by default when AOCL-libFLAME is compiled with --enable-amd-flags 
or --enable-amd-aocc-flags. However, you can disable multi-threading by setting --enable-
multithreading=no.

The selected LAPACK interface APIs that support multi-threading automatically choose optimal 
number of threads. However, you can explicitly set the number of threads through the environment 
variable or OpenMP runtime APIs. In such a scenario, the number of threads is selected as follows:

16.7 AOCL-FFTW Tuning Guidelines

Following are the tuning guidelines to get the best performance out of AMD optimized FFTW:

• Use the configure option --enable-amd-opt to build the targeted library. This option enables all the 
improvements and optimizations meant for AMD EPYCTM CPUs. 

This is the mandatory master optimization switch that must be set for enabling any other optional 
configure options, such as:
– --enable-amd-mpifft
– --enable-amd-mpi-vader-limit
– --enable-amd-trans
– --enable-amd-fast-planner
– --enable-amd-top-n-planner
– --enable-amd-app-opt
– --enable-dynamic-dispatcher

• When enabling the AMD CPU specific improvements with the configure option --enable-amd-opt, 
do not use the configure option --enable-generic-simd128 or --enable-generic-simd256.

• An optional configure option --enable-amd-trans is provided and it may benefit the performance 
of transpose operations in the case of very large FFT problem sizes. This feature is to be used only 
when running in single-thread and single instance mode.

• Use the configure option --enable-amd-mpifft to enable MPI FFT related optimizations. This is 
provided as an optional parameter and will benefit most of the MPI problem types and sizes.

• An optional configure option --enable-amd-mpi-vader-limit that controls enabling of AMD's new 
MPI transpose algorithms is supported. When using this configure option, you must set --mca 
btl_vader_eager_limit appropriately (current preference is 65536) in the MPIRUN command.

Thread Criteria Threads Used by API

 User specified threads > AOCL-libFLAME 
computed optimal threads

AOCL-libFLAME computed optimal threads 

User specified threads < AOCL-libFLAME 
computed optimal threads

User specified threads



Chapter 16 AOCL Tuning Guidelines 131

 

AOCL User Guide57404 Rev. 4.0 November 2022

• You can enable AMD optimized fast planner using the optional configure option --enable-amd-
fast-planner. You can use this option to reduce the planning time without much trade-off in the 
performance. It is supported for single and double precisions.

• To minimize single-threaded run-to-run variations, you can enable the planner feature Top N 
planner using configure option --enable-amd-top-n-planner. It works by employing WISDOM 
feature to generate and reuse a set of top N plans for the given size (wherein the value of N is 
currently set to 3). It is supported for only single-threaded execution runs.

• For best performance, use the PATIENT planner flag of FFTW.

A sample running of FFTW bench test application with PATIENT planner flag is as follows:

Where, -s option is for speed/performance run and icf options stand for in-place, complex data-
type, and forward transform.

• When configured with --enable-openmp and running multi-threaded test, set the OpenMP variables 
as:

Then, run the test bench executable binary using numactl as follows:

Where, numactl --interleave=0,1,2,3 sets the memory interleave policy on nodes 0, 1, 2, and 3.

• When running MPI FFTW test, set the appropriate MPI mapping, binding, and rank options.

For example, to run 64 MPI rank FFTW on a 64-core AMD EPYCTM processor, use:

• Use the configure option --enable-amd-app-opt to enable AMD’s application optimization layer in 
AOCL-FFTW to help uplift performance of various HPC and scientific applications. For more 
information, refer “AOCL-FFTW” on page 135.

• To build a single portable optimized library that can run on a wide range of CPU architectures, a 
dynamic dispatcher feature is implemented. Use --enable-dynamic-dispatcher configure option to 
enable this feature. It is supported for GCC compiler and Linux based systems for now. The set of 
x86 CPUs on which the single portable library can work depends on the highest level of CPU 
SIMD instruction set with which it is configured.

$ ./bench -opatient -s icf65536

set OMP_PROC_BIND=TRUE
OMP_PLACES=cores

numactl --interleave=0,1,2,3 ./bench -opatient -onthreads=64 -s icf65536

mpirun --map-by core --rank-by core --bind-to core -np 64 ./mpi-bench -opatient -s icf65536



132 Support Chapter 17

 

57404 Rev. 4.0 November 2022AOCL User Guide

Chapter 17 Support

For support options, the latest documentation, and downloads refer to AMD Developer Central 
(https://developer.amd.com/amd-aocl/).

https://developer.amd.com/amd-aocl/
https://developer.amd.com/amd-aocl/


Chapter 18 References 133

 

AOCL User Guide57404 Rev. 4.0 November 2022

Chapter 18 References

The following URLs have been used as references for this document:

• https://developer.amd.com/amd-aocl/ 

• http://www.netlib.org 

• http://www.netlib.org/benchmark/hpl/ 

• https://dl.acm.org/citation.cfm?id=2764454 

• https://github.com/flame/blis 

• http://fftw.org/ 

• http://mumps-solver.org/ 

• https://spack.io/ 

https://developer.amd.com/amd-aocl/
http://www.netlib.org
http://www.netlib.org/benchmark/hpl/
https://dl.acm.org/citation.cfm?id=2764454
https://github.com/flame/blis
http://fftw.org/
http://mumps-solver.org/
https://spack.io/


134 Appendix

 

57404 Rev. 4.0 November 2022AOCL User Guide

Appendix 

Check AMD Server Processor Architecture

On Linux

To identify your AMD processor's generation, perform the following steps on Linux:

1. Run the command:

2. Check the values of CPU family and Model fields:

a. For 1st Gen AMD EPYCTM Processors (codenamed “Naples”), CPU Core AMD “Zen”
– CPU Family: 23
– Model: Values in the range <1 – 47>

b. For 2nd Gen AMD EPYCTM Processors (codenamed “Rome”), CPU Core AMD “Zen2”
– CPU Family: 23
– Model: Values in the range <48 – 63>

c. For 3rd Gen AMD EPYCTM Processors (codenamed “Milan”), CPU Core AMD “Zen3”
– CPU Family: 25
– Model: Values in the range <1 – 15>

d. For 4th Gen AMD EPYCTM Processors (codenamed “Genoa”), CPU Core AMD “Zen4”
– CPU Family: 25
– Model: Values in the range <16–31, 96-111, 120-123, 160-175>

On Windows

To identify your AMD processor's generation, perform the following steps on Windows:

1. Run the command in Windows Command Prompt:

2. Check the values of CPU family and Model fields:

a. For 1st Gen AMD EPYCTM Processors (codenamed “Naples”), CPU Core AMD “Zen”
– CPU Family: 23
– Model: Values in the range <1 – 47>

b. For 2nd Gen AMD EPYCTM Processors (codenamed “Rome”), CPU Core AMD “Zen2”
– CPU Family: 23
– Model: Values in the range <48 – 63>

$ lscpu

wmic cpu get caption



Appendix 135

 

AOCL User Guide57404 Rev. 4.0 November 2022

c. For 3rd Gen AMD EPYCTM Processors (codenamed “Milan”), CPU Core AMD “Zen3”
– CPU Family: 25
– Model: Values in the range <1 – 15>

d. For 4th Gen AMD EPYCTM Processors (codenamed “Genoa”), CPU Core AMD “Zen4”
– CPU Family: 25
– Model: Values in the range <16–31, 96-111, 120-123, 160-175>

Application Notes

AOCL-FFTW

• Quad precision is supported in AOCL-FFTW using the AOCC v2.2 compiler (AMD clang 
version 10 onwards).

• Feature AMD application optimization layer has been introduced in AOCL-FFTW to uplift the 
performance of various HPC and scientific applications. 

– The configure option --enable-amd-app-opt enables this optimization layer and must be used 
with the master optimization configure switch --enable-amd-opt mandatorily.

– This optimization layer is supported for complex and real (r2c and c2r) DFT problem types in 
double and single precisions.

– Not supported for MPI FFTs, real r2r DFT problem types, Quad or Long double precisions, and 
split array format.


	Contents
	List of Tables
	List of Figures
	Revision History
	Chapter 1 Introduction
	Chapter 2 Supported OS and Compilers
	2.1 Operating Systems
	2.2 Compilers
	2.3 Library
	2.4 Message Passing Interface (MPI)
	2.5 Programming Language
	2.6 Build Utilities

	Chapter 3 Installing AOCL
	3.1 Building from Source
	3.2 Installing AOCL Binary Packages
	3.2.1 Using Master Package
	3.2.2 Using Library Package
	3.2.3 Using Debian and RPM Packages
	3.2.4 Using Windows Packages


	Chapter 4 AOCL-BLIS
	4.1 Installation on Linux
	4.1.1 Build AOCL-BLIS from Source
	4.1.2 Using Pre-built Binaries

	4.2 Application Development Using AOCL-BLIS
	4.2.1 API Compatibility Layers (Calling AOCL-BLIS)
	4.2.2 API Compatibility - Advance Options
	4.2.3 Linking Application with AOCL-BLIS
	4.2.4 Example Application - AOCL-BLIS Usage in FORTRAN
	4.2.5 AOCL-BLIS Usage in C

	4.3 Migrating/Porting
	4.4 Using AOCL-BLIS Library Features
	4.4.1 Dynamic Dispatch
	4.4.2 BLIS - Running the Test Suite
	4.4.3 Testing/Benchmarking
	4.4.4 BLIS APIs

	4.5 Debugging and Troubleshooting
	4.5.1 Debugging Build Using GDB
	4.5.2 Viewing Logs
	4.5.3 Checking AOCL-BLIS Operation Progress

	4.6 Build AOCL-BLIS from Source on Windows
	4.6.1 Building AOCL-BLIS using GUI
	4.6.2 Building AOCL-BLIS using Command-line Arguments
	4.6.3 Building and Running the Test Suite


	Chapter 5 AOCL-libFLAME
	5.1 Installing on Linux
	5.1.1 Building AOCL-libFLAME from Source
	5.1.2 Using Pre-built Libraries

	5.2 Usage
	5.2.1 Use by Applications

	5.3 Building AOCL-libFLAME from Source on Windows
	5.3.1 Building AOCL-libFLAME Using GUI
	5.3.2 Building AOCL-libFLAME using Command-line Arguments
	5.3.3 Building and Running Test Suite

	5.4 Checking AOCL-libFLAME Operation Progress

	Chapter 6 AOCL-FFTW
	6.1 Installing
	6.1.1 Building AOCL-FFTW from Source on Linux
	6.1.2 Building AOCL-FFTW from Source on Windows
	6.1.3 Using Pre-built Libraries

	6.2 Usage
	6.2.1 Sample Programs for Single-threaded and Multi-threaded FFTW
	6.2.2 Sample Programs for MPI FFTW
	6.2.3 Additional Options


	Chapter 7 AOCL-LibM
	7.1 Installation on Linux
	7.2 Compiling AOCL-LibM
	7.3 Usage
	7.4 Building AOCL-LibM on Windows

	Chapter 8 AOCL-ScaLAPACK
	8.1 Installation
	8.1.1 Building AOCL-ScaLAPACK from Source
	8.1.2 Using Pre-built Libraries

	8.2 Usage
	8.3 Building AOCL-ScaLAPACK from Source on Windows
	8.3.1 Building AOCL-ScaLAPACK Using GUI
	8.3.2 Building AOCL-ScaLAPACK using Command-line Arguments

	8.4 Checking AOCL-ScaLAPACK Operation Progress

	Chapter 9 AOCL-RNG
	9.1 Installation
	9.2 Using AOCL-RNG Library on Linux
	9.3 Using AOCL-RNG Library on Windows

	Chapter 10 AOCL-SecureRNG
	10.1 Installation
	10.2 Usage
	10.3 Using AOCL-SecureRNG Library on Windows

	Chapter 11 AOCL-Sparse
	11.1 Installation
	11.1.1 Building AOCL-Sparse from Source on Linux
	11.1.2 Simple Test
	11.1.3 Using Pre-built Libraries

	11.2 Usage on Linux
	11.2.1 Use by Applications

	11.3 Build AOCL-Sparse from Source on Windows
	11.3.1 Building AOCL-Sparse Using GUI
	11.3.2 Building AOCL-Sparse using Command-line Arguments


	Chapter 12 AOCL-LibMem
	12.1 Building AOCL-LibMem for Linux
	12.2 Running an Application
	12.3 Running an Application with Tunables
	12.3.1 Default State
	12.3.2 Tuned State


	Chapter 13 AOCL-Cryptography
	13.1 Requirements
	13.2 Using AOCL-Cryptography in a Sample Application
	13.2.1 Compiling and Running AOCL-Cryptography Examples
	13.2.2 Running OpenSSL Benchmarks Using AOCL-Cryptography Library


	Chapter 14 AOCL-Compression
	14.1 Installation
	14.2 Running AOCL-Compression Test Bench on Linux
	14.3 Running AOCL-Compression Test Bench on Windows
	14.4 API Reference
	14.4.1 Unified Standardized API Set
	14.4.2 Interface Data Structures
	14.4.3 Native APIs
	14.4.4 Example Test Program

	14.5 Optional Optimization Options

	Chapter 15 Linking- AOCL to Applications
	15.1 High-performance LINPACK Benchmark (HPL)
	15.1.1 Configuring HPL.dat
	15.1.2 Running the Benchmark

	15.2 MUMPS Sparse Solver Library
	15.2.1 Enabling AOCL with MUMPS


	Chapter 16 AOCL Tuning Guidelines
	16.1 AOCL-BLIS Thread Control
	16.1.1 AOCL-BLIS Initialization
	16.1.2 Runtime

	16.2 AOCL Dynamic
	16.2.1 Limitations

	16.3 AOCL-BLIS DGEMM Multi-thread Tuning
	16.3.1 Library Usage Scenarios
	16.3.2 Architecture Specific Tuning

	16.4 AOCL-BLIS DGEMM Block-size Tuning
	16.5 Performance Suggestions for Skinny Matrices
	16.6 AOCL-libFLAME Multi-threading
	16.7 AOCL-FFTW Tuning Guidelines

	Chapter 17 Support
	Chapter 18 References
	Appendix
	Check AMD Server Processor Architecture
	On Linux
	On Windows

	Application Notes
	AOCL-FFTW



