AMD

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

© 2013 — 2021 Advanced Micro DevicesInc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct thisinformation. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectua property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’ s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, ateration, distribution,

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX isatrademark and Pentium is aregistered trademark of Intel Corporation.

[AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Contents
GO Nt S . .o i
UM S, . oo XiX
TaADIES . o XXi
REVISION HiStOrY . . o e e XXiii
PrEfaCE. . .. XXVil
AbOUt ThISBOOK.o e XXVii
AUdIENCE. . . .o e XXVil
(@070 . (o XXVil
Conventionsand DefiNitioNS ottt e XXVl
Related DOCUMENES. oot e e e e e e e e e x|
1 INErOdUCTION .« . . e 1
11 Syntax and NOtation i e 2
12 Extended Instruction ENCodingo e 3
1.2.1 Immediate Byte Usage Uniqueto the SSE instructions. 4
1.2.2 Instruction Format EXamplest 4
13 VSIB AQArESSING. . . . oottt et e e e e 6
1.3.1 Effective Address Array Computationt 7
1.3.2 Notational Conventions Related to VSIB AddressingMode 8
1.3.3 Memory Ordering and ExceptionBehavior 9
14 Enabling SSE INStruction EXECULIONo o e 10
15 String CompPare INSITUCLIONSot e e e e 10
1.5.1SourceDataFormatcci i e 13
15,2 COMPariSON TY P . o v ettt et et e 14
1.5.3 Comparison Summary Bit Vector. i e 16
1.5.4 Intermediate Result POSt-ProCeSSING.o v v ettt e 18
1.550utput Option SElECtIONot 18
L5 6AMeCt ONFlagS . . . oo 19
2 INStrUCtioN REfEI ENCEo e et 21
ADDPD
VA D DD PD . . . 23
ADDPS
VA D D PS . . o 25
ADDSD
VA D DD D . . .ttt 27
ADDSS
VA D DD SS .. . 29
ADDSUBPD
VADDSUBPD . . .ot 31
ADDSUBPS
VADD SUBPS . .. 33
AESDEC

[AMD Public Use] !

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VAESDEC . . e 35
AESDECLAST
VAESDECL A ST . . 37
AESENC
VAESEN C . . 39
AESENCLAST
VAESEN CL A ST . . 41
AESIMC
VAESIM C . . 43
AESKEY GENASSIST
VAESKEY GENA SSI ST . .ottt e e e e e e 45
ANDNPD
VANDN D .. 47
ANDNPS
VANDN S, 49
ANDPD
VAN DD D . . L 51
ANDPS
VAN D PSS . . 53
BLENDPD
VBLENDPD . .o 55
BLENDPS
VBLEND S, . . o 57
BLENDVPD
VBLENDV PD 59
BLENDVPS
VBLENDYV PS . . 61
CMPPD
VM PP D . . .t 63
CMPPS
VO PP . . 67
CMPSD
VM P D . . o 71
CMPSS
VCOM PSS . . L 75
COMISD
NV COMI D . . ot 79
COMISS
VO OMI S . L 82
CVTDQ2PD
VOV TDQ2PD . ..ottt e e e e 84
CVTDQ2PS
VOV T D Q2PS . . 86
CVTPD2DQ
VOV TPD 2D . . . ittt e e e e e e e 88
CVTPD2PS
VOV T PD 2P, . . .t 90

v [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CVTPS2DQ
VOV TPS2DQ . ittt e e e 92
CVTPS2PD
VOV T PS2PD . . .ttt e e 94
CVTSDzsl
VOV T D2l ..t 96
CVTSD2SS
VOV T D 2SS, . . o e 99
CVTSI2sD
VCVTSI2SD ..ot e e e e e 101
CVTSI2SS
VOV T S 2SS ..t 104
CVTSS2SD
VOV T S22 . . ittt e 107
CVTSSszs
VOV T S S 2 .ttt 109
CVTTPD2DQ
VCVTTPDZ2DQ . . ittt ettt e e e e e e e e e e 112
CVTTPS2DQ
VOV T T PS 2D . o .ottt e e e e e 115
CVTTSD2S
VOV T T DS . ottt e e e e e e e e 117
CVTTSS28
VOV T T SO . . 120
DIVPD
VDIV PD o 123
DIVPS
VDIV PSS, 125
DIVSD
VDIV D o 127
DIVSS
VDIV SS . o 129
DPPD
VD PP D L 131
DPPS
VD PP, . e 134
EXTRACTPS
VEXTRACT S . . o e e e e 137
EX T RO .ot 139
HADDPD
VHAD DD PD . .ot 141
HADDPS
VHA DD PS . . 143
HSUBPD
VHSUBPDD. . .ot 146
HSUBPS
VHSUB S . . 149

[AMD Public Use] '

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
INSERTPS
VINSERT PS .. 152
INSERT Q. . .ottt 154
LDDQU
VDD QU .o 156
LDMXCSR
VL DM X C SR . . o 158
MASKMOVDQU
VMASKMOVDQU . . . e e e e 160
MAXPD
VM A X D ot 162
MAXPS
VM A X PSS, 165
MAXSD
VM A X D i 168
MAXSS
M A X S S, e 170
MINPD
VMIN D L 172
MINPS
VMIN PS L 175
MINSD
VMINSD .. 178
MINSS
VMINSS L 180
MOVAPD
VMOV AP . .o e 182
MOVAPS
VMOV A PS . 184
MOVD
VMOV D . 186
MOVDDUP
VMOVDDUP . .o e 188
MOVDQA
VMOV DA . e 190
MOVDQU
VMOV DU .. 192
MOVHLPS
VM OVHLPS . . o 194
MOVHPD
VMOVHPDD . . 196
MOVHPS
VMOVHPS . . 198
MOVLHPS
VMOV LHPS . . o 200
MOVLPD
VMOV LD . .o 202

g [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MOVLPS
VMOV LS . 204
MOVMSKPD
VMOVMSK PD . . e e e 206
MOVMSKPS
VMOVM KPS . . 208
MOVNTDQ
VMOVNTDQ . .ot e e e e e 210
MOVNTDQA
VM OVN T D QA . o e e e e e e e 212
MOVNTPD
VMOVN T P . . ot e e e e e 214
MOVNTPS
VMOVN T PS . . e 216
MOVNT D .o e e 218
MOV N T S L e e 220
MOVQ
VMOV Q o 222
MOV SD
VMOV D . 224
MOV SHDUP
VMOV SHDUP . . e e e 226
MOV SLDUP
VMOV SLDUP. .. 228
MOVSS
VMOV SS. 230
MOVUPD
VMOV UPD . . e e e 232
MOVUPS
VMOV UPS . . 234
MPSADBW
VM P SA D BW . . 236
MULPD
VMU D o 241
MULPS
VMU PS . 243
MULSD
VMUL D o e 245
MULSS
MU S . o 247
ORPD
VORPDD . o 249
ORPS
NV ORPS L 251
PABSB
VA B S . 253
PABSD

[AMD Public Use] v

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VA B D ... 255
PABSW
VA B O . o e 257
PACKSSDW
VRA CK SO . . . 259
PACKSSWB
VA CK SO B . . . 261
PACKUSDW
VA CKUSDW .. e 263
PACKUSWB
VRACKUSWB. . . e e 265
PADDB
VA DD .. . 267
PADDD
VA DD D . . .t 269
PADDQ
VA D D Q. . .ttt 271
PADDSB
VA DD B . . o 273
PADDSW
VRAD D S . ot 275
PADDUSB
VA D DU S ..ot 277
PADDUSW
VA D DU S . o 279
PADDW
VA D D .o 281
PALIGNR
VA LGN R . . 283
PAND
VAN D . 285
PANDN
VAN DN . L 287
PAVGB
VAV G B ... 289
PAVGW
VA G V. L 291
PBLENDVB
VPBLENDV B . . . 293
PBLENDW
VPBLENDWV . . o 295
PCLMULQDQ
VPCLMULQDQ . . ottt e e e e e 297
PCMPEQB
VPCMPEQB . .ttt 300
PCMPEQD
VPCMPEQD . .ttt e 302

v [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PCMPEQQ
VPCMPEQQ . . .ot 304
PCMPEQW
VPCM PEQW . . o e 306
PCMPESTRI
VPCM PEST RI. . .o e 308
PCMPESTRM
VPCMPEST RM .. 311
PCMPGTB
VPCMPGT B . .o e 314
PCMPGTD
VPCMPGT D . .ot e e e e 316
PCMPGTQ
VPCMPGT Q . .ttt e e 318
PCMPGTW
VPCM PG T . . o e e e e e 320
PCMPISTRI
VPCM P ST R . o e 322
PCMPISTRM
VPCM P ST RM .. 325
PEXTRB
VPEX T RB . . 328
PEXTRD
VPEX T RD . .o 330
PEXTRQ
VPEX T RO . . ottt e 332
PEXTRW
VPEX TR e 334
PHADDD
VPHADDD . .. 336
PHADDSW
NV PHA D D S, . . 338
PHADDW
VPHA D D . . 341
PHMINPOSUW
VPHMINPOSUW . .. e e e e e e 344
PHSUBD
VPHSUBDD. . ..o 346
PHSUBSW
VPHSUB S ..o e 348
PHSUBW
VPHSUBW . 351
PINSRB
VPINSRB . . 354
PINSRD
VPINSRD . . 357
PINSRQ

[AMD Public Use] '

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VPINSRQ . .o 359
PINSRW
VPIN SR . L 361
PMADDUBSW
VPMADDUBSWV. . . . e e e 363
PMADDWD
VPMADDWDD . .. 366
PMAXSB
VPM A X B . 368
PMAXSD
VPM A X D . ittt 370
PMAXSW
VPM A X O L 372
PMAXUB
VPM AXUB L 374
PMAXUD
VPMAXUD . .t e 376
PMAXUW
VPM AXUW 378
PMINSB
VPMIN S B . o 380
PMINSD
VPMIN S D . . 382
PMINSW
VPMIN SO, L 384
PMINUB
VPMINU B . . . e e 386
PMINUD
VPMINUDD. . o e e 388
PMINUW
VPMINUW L 390
PMOVMSKB
VPMOVMSK B . . e e e 392
PMOVSXBD
VPMOV SXBD ..ttt e e e e 394
PMOVSXBQ
VPMOV SXBO .ottt e 396
PMOVSXBW
VPMOV SXBW . o e e e e 398
PMOVSXDQ
VPMOV SXDQ . .ottt ettt et e e e 400
PMOVSXWD
VPMOV SX WD . . . e e e 402
PMOVSXWQ
VPMOV SXW .« ettt e e e e e e e e 404
PMOVZXBD
VPMOVZXBD ..ot e e e e e e e e 406

" [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PMOVZXBQ
VPMOVZXBQ .ot e e e e e 408
PMOVZXBW
VPMOV ZXBW . . e e e e e e 410
PMOVZXDQ
VPMOVZXDQ . .ottt et ettt e e e e e e e e e e 412
PMOVZXWD
VPMOV ZX WD . . .ttt e 414
PMOVZXWQ
VPMOVZXWQ. . oottt e e e e e e e e e e e 416
PMULDQ
VPMULDQ . .ot e e e e 418
PMULHRSW
VPMULHRSOW . e 420
PMULHUW
VPMULHUW L e e 422
PMULHW
VPMULHW . L 424
PMULLD
VPMULLD ..o 426
PMULLW
VPMUL LW 428
PMULUDQ
VPMULUDQ. . .o e e e e e 430
POR
VPO R, o 432
PSADBW
VP SAD BV . . 434
PSHUFB
VPSHURB 436
PSHUFD
VPSHURD 438
PSHUFHW
VPSHURHW L e 441
PSHUFLW
VPSHURLW . 444
PSIGNB
VPSS GN B .. 447
PSIGND
VPSIGND .. 449
PSIGNW
VPSS GN Y . L 451
PSLLD
VPO LD . 453
PSLLDQ
VPSS LD Q. . .ttt 456
PSLLQ

[AMD Public Use] .

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VPO L .t 458
PSLLW
VPO LW L 461
PSRAD
VPSR A DD .. 464
PSRAW
VPSR AW . 467
PSRLD
VPSR D .. 470
PSRLDQ
VPSR D Q. . .ottt e 473
PSRLQ
VPSR .ttt 475
PSRLW
VPSR Y L 478
PSUBB
VP SUB B ... 481
PSUBD
VPSUBDD ... 483
PSUBQ
VP SUB Q) . . ottt 485
PSUBSB
VP SUB B . . ottt 487
PSUBSW
VPSUB SO, L 489
PSUBUSB
VPSUBUSB. . . 491
PSUBUSW
VPSUBU SV ..o e 493
PSUBW
VPSUB WY . 495
PTEST
NPT E ST . e 497
PUNPCKHBW
VPUNPCKHBW . . e e e 499
PUNPCKHDQ
VPUNPCKHDQ . .o e e e e e e 502
PUNPCKHQDQ
VPUNPCKHODQ . . .ottt e e e e e e e e 505
PUNPCKHWD
VPUNPCKHWDD e e e e e 508
PUNPCKLBW
VPUNPCKLBW . . e e 511
PUNPCKLDQ
VPUNPCKLDQ ..ottt e e e e e e e e 514
PUNPCKLQDQ
VPUNPCKLQDQ . . .ttt it et ettt et e e e et 517

. [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PUNPCKLWD
VPUNPCKLWD . .o e e e e e e 520
PXOR
VP X OR L 523
RCPPS
VRO PPS .. 525
RCPSS
VRO PSS ... 527
ROUNDPD
VROUNDPD e e e e e 529
ROUNDPS
VROUN D PPS . . o e e 532
ROUNDSD
VROUND S . . .ottt e e e e 535
ROUNDSS
VROUND S . . e e 538
RSQRTPS
VRS OQRT PSS . . o e 541
RSQRTSS
VRSO ORT S . ..t t 543
SHALRN D . . . 545
SHAINEXTE . 547
SHA LM SG . . . 549
SHA LM S G . . . o e 551
SHAZE56RNDS?. . . .o 553
SHA EBM SG L. . . oottt 555
SHAZSBM SG2. . . .ottt 557
SHUFPD
V SHURPD . . . 559
SHUFPS
VSHURPS . . 562
SQRTPD
VSR PD . . .t 565
SQRTPS
VSR PS . . o 567
SQRTSD
N OORT SD . .ot 569
SQRTSS
VSR S . o it 571
STMXCSR
VST X SR .ottt 573
SUBPD
VSUBPD ... 575
SUBPS
VSUB S . 577
SUBSD
VSUB D . 579

[AMD Public Use] -

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
SUBSS
N OUB S o 581
UCOMISD
VUCOMISD .o e e e e 583
UCOMISS
VUCOMISS. . ot e e 585
UNPCKHPD
VUNPCKHPD . .. e e e e 587
UNPCKHPS
VUNPCKHPS . . L e e 589
UNPCKLPD
VUNPCK LD . .. e e e 591
UNPCKLPS
VUNPCK LS . . e e 593
VBROAD CASTFL28 ... e e e e 595
VBROAD CAST 128, . . .t e e e e 597
VBROAD CA ST D . . ottt e e 599
VBROAD C A ST S . . ittt e e 601
VOV T PHZPS. . . 603
VOV TP S2PH . . . 606
VEXTRACTRFL28 . . . e e e 610
VEXTRACTIL28. .. e e e e 612
VFMADDPD
VFMADD132PD
VFMADD213PD
VEMADD 23IPD . . .ot e 614
VFMADDPS
VFMADD132PS
VFMADD213PS
VEMADD 231 PS . . . 617
VFMADDSD
VFMADD132SD
VFMADD213SD
VEMADDZ23LSD . . ottt e e 620
VFMADDSS
VFMADD132SS
VFMADDZ213SS
VM A DD 23LSS . . ottt 623
VFMADDSUBPD
VFMADDSUB132PD
VFMADDSUB213PD
VEMADDSUB23IPD . . .ottt e e e 626
VFMADDSUBPS
VFMADDSUB132PS
VFMADDSUB213PS
VEMADDSUBZ23IPS e 629
VFMSUBADDPD

e [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

VFMSUBADD132PD

VFMSUBADD213PD

VEMSUBADDZ23IPD . . .ottt e e e e 632
VFMSUBADDPS

VFMSUBADD132PS

VFMSUBADD213PS

VEMSUBADDZ3IPS . . . o 635
VFMSUBPD

VFMSUB132PD

VFMSUB213PD

VEMSUBZ3LPD . .. 638
VFMSUBPS

VFMSUB132PS

VFMSUB213PS

VEMSUBZ3LPS . .. 641
VFMSUBSD

VFMSUB132SD

VFMSUB213SD

VEMSUBZ23LSD . ..o 644
VFMSUBSS

VFMSUB132SS

VFMSUB213SS

VEMSUBZ23LSS . . 647
VFNMADDPD

VFNMADD132PD

VFNMADD213PD

VENMADDZ3IPD .. o e e 650
VFENMADDPS

VFNMADD132PS

VFNMADD213PS

VENMADD 23 PS. . . o e e 653
VFNMADDSD

VFNMADD132SD

VFNMADD213SD

VENMADDZ3LSD . . .o 656
VFNMADDSS

VFNMADD132SS

VFNMADD?213SS

VENMADDZ3LSS. . . o e e e 659
VFENMSUBPD

VFNMSUB132PD

VFNMSUB213PD

VENMSUBZ31PD . . . o e e 662
VFNMSUBPS

VFNMSUB132PS

VFNMSUB213PS

VENMSUB Z23aPS . . . o 665

[AMD Public Use] Y

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VFENMSUBSD
VFNMSUB132SD
VFNMSUB213SD
VENMSUB 231D . . .ottt et e e e e e e e e 668
VFNMSUBSS
VFNMSUB132SS
VFNMSUB213SS
VENM SUB 23 SS . . . oot e e e e 671
VERCZPD . . o 674
VR CZPS . . . 676
VR CZ D . . oot 678
VR CZSS . . e 680
VGATHERDPD. . ..o e e 682
VGATHERD S e e 684
VGATHER QP . . . o e e 686
VGATHER QS . . . e 688
VINSERTFL28 . .. e e e e e 690
VINSERT L8 . . . e e e e 692
VMASKMOV PD .. 694
VMASKMOV PS. . 696
VPBLENDD . .o e 698
VPBROAD CAST B . . .ottt et e e e e 700
VPBROAD CA ST D . . ittt ittt e e e 702
VPBROAD CA ST Q. . ottt e e e 704
VPBROAD CASTW . e 706
NV PCMOV o e 708
VPCOMB . . 710
VPCOMD .. 712
VPCOMOQ . .ottt e e 714
VPCOMUB . . 716
VPCOMUD . .. 718
VPCOMU D . .ot 720
VPCOMUW. L e e e e e e e 722
VPCOMWN . o 724
VPERM 2F 128 . . . o e 726
VPERM 2l 128 . . 728
VPERM DD . . . o 730
VPERMIL 2P 732
VPERMIL 2PS . . . 736
VPERMILPD . . oo 740
VPERMI L PS . . o 743
VPERM D .. 747
VPERM S . . 749
VPERM Q. . .o 751
VPGATHERDD.t e 753
VPGATHERDQ. . . o oottt e e e e e e e e e e 755
VPGATHERQD. . . .t e e e e e e 757

X [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
VPGATHERQQ. . . o .ottt e e e e e e e 759
VPHADDBDD . . .o 761
VPHAD DB . . .ot 763
VPHADDBW ..o 765
VPHADDDQ. . .ttt e e e e e 767
VPHADDUBD . ..t e e 769
VPHADDUBQ ...ttt e e e e 771
VPHA D DUBW . .. 773
VPHADDUDQ ...ttt e e 775
VPHADDUWND . . . e e e e e 7
VPHADDUWQ . . . oot e e e e e 779
VPHADDWD . .. e e e 781
VPHADDWO . . 783
VPHSUBBW . . e 785
VPHSUBDQ . . oot e e 787
VPHSUBWDD e e e e e e e e 789
VPMACSD DD . . it 791
VPMACSDOH . . 793
VPMACSD QL. . et 795
VPM A CSSD D . ..ttt 797
VPMACSSDOH . .o 799
VPMACSSD QL. . ettt et e e 801
VPMAGCSSWD . .ttt e e e e e e e e e e 803
VPM A SO . . 805
VPMACSW D . . 807
N PM A C SO . L e 809
VPMADCSSWD . . ottt et e e e e 811
VPMADCSWD . .ttt e e e e e 813
VPMASKMOVD .. e e e e 815
VPMASKMOVQ ..o e e e 817
VPPERM . 819
VPR T B ..o 821
VPROT DD .ot 823
VPROT Q . ottt e e e 825
VPRO T . o 827
VPSHA B .. 829
VPSHA DD .. 831
VP SHA QD . . o 833
VP SH A . L 835
VPSHL B .. 837
VPSHL D .. 839
VPSHL O .o 841
VPSHLW L 843
VPO LY D . 845
VP S LV Q . ottt 847
VPSRAV D . . . 849
VPSRV D . .. 851
XVii

[AMD Public Use]

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VPSRV Q. .ttt 853
VT EST PD .. e e e 855
VT EST PS .. 857
VZEROALL ..o 859
VZEROUPPER e e e e e 860
XGET BV .t 861
XORPD
VX ORPD . . e e 862
XORPS
VX ORPS . . . 864
XRSTOR . e 866
XRSTORS . . . 868
X SAVE. . o 870
XSAVE C . . 872
XSAV E O T . . e e e e 874
X SGAVES . 876
XOET BV . 878
3 EXCEPLION SUMMaArY . ..o e e e e e 881
Appendix A AESINSIIUCLIONS . . .ot e 975
Al AES OVEIV B . o oottt e 975
A2 Coding CONVENLIONSttt e e e et et et et 975
A3 AES DaaSIUCIUIES . . . oo 976
A4 Algebrac Praliminaries. 976
A.41 MultiplicationintheFieldGF. e 977
A.4.2 Multiplication of 4x4 MatricesOver GF. it 978
A5 AES OPEraiONS. . . oot 978
A5.1 Sequenceof OpPeralionsttt e 980
A.6 Initializing the Sbox and INVSBOX MatriCeso e 981
A.6.1 Computation of SBoxand INVSBOX i 982
A.6.2 Initidization of INVSBOX[. ...t ii i 984
A7 Encryption and Decryption i 986
A.7.1 TheEncrypt()and Decrypt() Procedurescoiiiiiinnennn.n, 986
A.7.2 Round Sequencesand Key EXpansionot 987
A8 TheCipher FUNCLION o e e 988
A.8.1 TexttoMatriX CONVEISION.ttt e et et e e e 989
A.8.2 Cipher Transformations.ot et 989
A.B.3 MatriXx to Text CONVErSION.ttt e e 991
A9 ThelnvCipher FUNCLION. e e 991
A91 TexttoMatriXx CONVErSION.ottt et e e 992
A.9.2 InvCypher Transformations.t e 992
A.9.3 MatriXx to TeXt CONVEISION.ottt e ettt et e e e e 994
A.10 AnAlternative Decryption Procedure.t e 994
A.11 Computation of GFInv with Euclidean Greatest Common Divisor 996
I X o 999
XVviii

[AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Figures

Figure1-1. Typica Descriptive Synopsis - Extended SSE Instructions. 3
Figure1-2. VSIB BYtEFOIMat e e 7
Figure 1-3. Byte-wide Character String—Memory and Register Image. 13
Figure2-1. Typical INStruction DeSCHPtioNot e e e e e e e e e 21
Figure2-2. (V)MPSADBW INSIrUCLION.ot e et et et ettt et e 238
Figure A-1. GFMatrix Representation of 16-byteBlock i .. 976
Figure A-2. GFMatrix to Operand Byte Mappings oottt e 976

[AMD Public Use] >

AMDA
AMDG64 Technology 26568—Rev. 3.25—November 2021

a [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Tables

Table1-1. Three-Operand SEIECioNo e e 5
Table1-2. Four-Operand SEleCtion e 6
Table1-3. Source DataFormatot 14
Table 1-4. CoMPaiSON Ty P . vttt ettt e e e e e e e e e 15
Table1-5. Post-processing OptioNSottt e e e 18
Table1-6. Indexed Output Option SElECHiONot 18
Table1-7. Masked Output Option SEIECHONot e 18
Table1-8. State of Affected Flags After EXecution. i i e 19
Table3-1. Instructions By EXCeption Class.ot e e e e e 881
Table A-1. SBOX DEfiNItion 984
Table A-2. INVSBOX DEfiNitioN. e 986
Table A-3. Cipher Key, Round Sequence, and RoundKey Length 987

[AMD Public Use] .

AMDA
AMDG64 Technology 26568—Rev. 3.25—November 2021

o [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Revision History

Date Revision Description

Corrections to XRSTOR, XRSTORS, XSAVE, XSAVEC,
XSAVEOPT, XSAVES, XGETBYV, and XSETBV descriptions.

November 2021 3.25

Chapter 2: Sections: Updated VAESDEC, VAESDECLAST,
May 2020 3.24 VAESENC, VAESENCLAST, VCMPPS, VPCLMULQDQ, and
VPCMPGTQ.

Updated the Exceptions table for MOVNTDAQA and
VMOVNTDAQA.

January 2019 323 | Corrections to VPMACSSDD and VPMACSSWW.
Corrected scrl to srcl throughout the document.
Update Packed String Compare Algorithm
May 2018 3.92 Fixed a number of erroneous references to double precision that

should be single precision
Separate out MOVQ from MOVD

Clarifications to XGETBV, XRSTOR, XRSTORS, XSAVE,
XSAVEC, XSAVEOPT, XSAVES, and XSETBYV instructions.

Corrections to ROUNDPD, VROUNDPD, ROUNDPS,
VROUNDPS, ROUNDSD, VROUNDSD, ROUNDSS,
VROUNDSS, VPERMD, VPERMPD, VPERMPS, VPERMQ,
VTESTPD, VTESTPS, XGETBV, XSETBV, XSAVE, and AVX

December 2017 3.21

March 2017 3.20 instruction descriptions.
Added SHA1RNDS4, SHAINEXTE, SHA1IMSG1, SHAIMSGZ2,
SHA256RNDS2, SHA256MSG1, SHA256MSG2, XRSTOR,
XRSTORS and XSAVEC instructions.

June 2015 319 Corrections to the MOVLPD, PHSUBW, PHSUBSW instruction

descriptions.

Added AVX2 Instructions.
October 2013 3.18 Added “Instruction Support” subsection to each instruction
reference page that lists CPUID feature bit information in a table.

Removed all references to the CPUID specification which has
been superseded by Volume 3, Appendix E, "Obtaining
Processor Information Via the CPUID Instruction."

Corrected exceptions table for the explicitly-aligned load/store
instructions. General protection exception does not depend on
state of MXCSR.MM bit.

May 2013 3.17

[AMD Public Use] i

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
Date Revision Description
Corrected REX.W bit encoding for the MOVD instruction. (See
page 186.)
September 3.16 Corrected L bit encoding for the VMOVQ (D6h opcode)
2012 ' instruction. (See page 222.)

Corrected statement about zero extension for third encoding (11h
opcode) of MOVSS instruction. (See page 230.)

Corrected instruction encoding for VPCOMUB, VPCOMUD,
March 2012 3.15 VPCOMUQ, VPCOMUW, and VPHSUBDQ instructions. Other
minor corrections.

Reworked Section 1.5, "String Compare Instructions” on page 10.

Revised descriptions of the string compare instructions in
instruction reference.

December 2011 3.14 Moved AES overview to Appendix A.

Clarified trap and exception behavior for elements not selected
for writing. See MASKMOVDQU VMASKMOVDQU on page 160.

Additional minor corrections and clarifications.

Moved discussion of extended instruction encoding; VEX and
XOP prefixes to Volume 3.

Added FMA instructions. Described on the corresponding FMA4

September 2011 3.13 reference page.
Moved BMI and TBM instructions to Volume 3.

Added XSAVEOPT instruction.
Corrected descriptions of VSQRTSD and VSQRTSS.

May 2011 3.12 Added F16C, BMI, and TBM instructions.

Complete revision and reformat accommodating 128-bit and 256-
bit media instructions. Includes revised definitions of legacy SSE,
SSE2, SSE3, SSE4.1, SSE4.2, and SSSE3 instructions, as well
as new definitions of extended AES, AVX, CLMUL, FMA4, and
December 2010 3.11 XOP instructions. Introduction includes supplemental information
concerning encoding of extended instructions, enhanced
processor state management provided by the XSAVE/XRSTOR
instructions, cryptographic capabilities of the AES instructions,
and functionality of extended string comparison instructions.

Added minor clarifications and corrected typographical and

September 2007 3.10 ¢ .
ormatting errors.

[AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Date Revision Description
Added the following instructions: EXTRQ, INSERTQ, MOVNTSD,
and MOVNTSS.
Added misaligned exception mask (MXCSR.MM) information.
Added imm8 values with corresponding mnemonics to
July 2007 309 | v)CMPPD, (V)CMPPS, (V)CMPSD, and (V)CMPSS.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and
formatting errors.
September 2006 3.08 Made minor corrections.
December 2005 3.07 Made minor editorial and formatting changes.
January 2005 3.06 Aqlded documentation on SSE3 instructions. Corrected numerous
minor factual errors and typos.
September 2003 3.05 Made numerous small factual corrections.
April 2003 3.04 Made minor corrections.

[AMD Public Use] o

AMDA
AMDG64 Technology 26568—Rev. 3.25—November 2021

[AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Preface

About This Book

Thisbook is part of amultivolume work entitled the AMD64 Architecture Programmer’s Manual.
The complete set includes the following volumes.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

Thisvolumeisintended for programmers who devel op application or system software.

Organization

Volumes 3, 4, and 5 describe the AMD®64 instruction set in detail, providing mnemonic syntax,
instruction encoding, functions, affected flags, and possible exceptions.

The AMD®64 instruction set isdivided into five subsets:

e General-purpose instructions

e Systeminstructions

e Streaming SIMD Extensions (includes 128-bit and 256-bit mediainstructions)
e 64-bit mediainstructions (MM X ™)

» x87 floating-point instructions

Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the Streaming SIMD Extensions (SSE) instruction set which includes 128-bit
and 256-bit media instructions. SSE includes both legacy and extended forms. The index at the end
cross-references topics within this volume. For other topics relating to the AMDG64 architecture, and
for information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

[AMD Public Use] Xxvii

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Conventions and Definitions

The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents’ on page x| for further information about the legacy x86 architecture. Finally, the
Registers section lists the registers which are a part of the system programming model.

Notational Conventions

Section 1.1, “ Syntax and Notation” on page 2 describes notation relating specifically to instruction
encoding.
#GP(0)

An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value, in this example, a4-bit value.

FOEA_0B40h
A hexadecimal value, in this example a 32-bit value. Underscore characters may be used to
improve readability.

128
Numbers without an al pha suffix are decimal unless the context indicates otherwise.

74
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

#GP(0)
A general-protection exception (#GP) with error code of 0.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the” RRR’ notation is followed by
“ XYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

xxvii [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

CR4[OSXSAVE], CR4.0SXSAVE
The OSXSAVE bit of the CR4 register.

CRO[PE] =1,CRO.PE=1
The PE bit of the CRO register hasavalue of 1.

EFER[LME] =0, EFER.LME=0
The LME field of the EFER register is cleared (contains avalue of 0).

DS:rS

The content of a memory location whose segment addressisin the DS register and whose offset
relative to that segment isin the rSI register.

RFLAGS[13:12]

A field within aregister identified by its bit range. In this example, corresponding to the |OPL
field.

Definitions

128-bit mediainstruction

Instructions that operate on the various 128-bit vector datatypes. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit mediainstruction

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit mediainstructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MM X and 3DNow! ™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
asregister extensions, are supported for system and application software.

[AMD Public Use]

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

absolute

A displacement that references the base of a code segment rather than an instruction pointer.
Seerelative.

AES
Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX

Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SIMD Extensions.

biased exponent

The sum of afloating-point value' s exponent and a constant biasfor a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear, cleared
To writethe value 0 to abit or arange of bits. See set.

compatibility mode
A submode of long mode. In compatibility mode, the default address sizeis 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
Toirreversibly write, in program order, an instruction’ sresult to software-visible storage, such asa
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. Seeindirect.

displacement

A signed value that is added to the base of a segment (absol ute addressing) or an instruction pointer
(relative addressing). Same as offset.

o [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For all exceptions except SSE floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (or service
routine) for that exception as defined by the exception’ s vector. For floating-point exceptions
defined by the IEEE 754 standard, there are both masked and unmasked responses. When
unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE instructions
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SSMD Extensions (SSE). Includes
theAVX, FMA, FMA4, and XOP instructions. Compare legacy SSE.
flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, asin “flush the cache
line,” or (2) invalidate, asin “flush the pipeline,” or (3) change avalue, asin “flush to zero.”
FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

GDT
Global descriptor table.

[AMD Public Use]

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on aread is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
Thelong-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
Thelegacy x86 architecture.

legacy mode
An operating mode of the AM D64 architecturein which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. L egacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE instructions

All Streaming SIMD Extensions instructions prior to AV X, XOP, and FMA4. Legacy SSE
instructions primarily utilize operands held in XMM registers. The legacy SSE instructions
include the original Streaming SIMD Extensions (SSE1) and the subsequent extensions SSE2,
SSE3, SSSE3, SSE4, SSE4A, SSE4.1, and SSE4.2. See Sreaming SMD instructions.

long mode

An operating mode unique to the AMD®64 architecture. A processor implementation of the
AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

oo [AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Isb

L east-significant bit.
LSB

L east-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that isinstalled in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for acontrol purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. Seereserved.

memory
Unless otherwise specified, main memory.

moffset

A 16, 32, or 64-bit offset that specifiesamemory operand directly, without usingaModRM or SIB
byte.

msb

Most-significant bit.
MSB

Most-significant byte.
octword

Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

[AMD Public Use] XXXiii

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, eight bytes, or 64 hits.

RAZ

Read as zero. Value returned on aread is always zero (0) regardless of what was previously
written. Seereserved.

real-address mode, real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (offset) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified asRAZ), nor upon the ability of such fieldsto return apreviously written state.

If afield is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from aprior read.

Reserved fields may be qualified asIGN, MBZ, RAZ, or SBZ (see definitions).

REX
A legacy instruction modifier prefix that specifies 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit relative instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

[AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

Set
To writethe value 1 to abit or arange of bits. Seeclear.

SIMD
Singleinstruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)

Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSE1

Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A
A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit
A bit that is set or cleared by hardware and that remainsin that state until explicitly changed by
software.

TSS
Task-state segment.

[AMD Public Use] o

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

underflow

The condition in which afloating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most mediainstructions use vectors as operands. Also called packed or SMD operands.

(2) Aninterrupt descriptor table index, used to access exception handlers. See exception.

VEX prefix

Extended instruction encoding escape prefix. Introduces a two- or three-byte encoding escape
sequence used in the encoding of AV X instructions. Opens a new extended instruction encoding
space. Fields select the opcode map and allow the specification of operand vector length and an
additional operand register. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

XOPinstructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix

Extended instruction encoding escape prefix. Introduces a three-byte escape sequence used in the
encoding of XOP instructions. Opens a new extended instruction encoding space distinct from the
VEX opcode space. Fields select the opcode map and allow the specification of operand vector
length and an additional operand register. See VEX prefix.

Registers
In the following list of registers, mnemonicsrefer either to the register itself or to the register content:

AH-DH
The high 8-bit AH, BH, CH, and DH registers. See[AL-DL].

[AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AL-DL

Thelow 8-bit AL, BL, CL, and DL registers. See [AH-DH].
AL—T15B

Thelow 8-bitAL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B—15B] registers, availablein 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CSs
Code segment register.

eAX—-eSP
The 16-bit AX, BX, CX, DX, DI, SI, BR, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESPregisters. See [rAX—rSP].

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. See rFLAGS

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. SeerlP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, theseare AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
datasize, theseinclude RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8-R15.

[AMD Public Use] XXXVl

AMDZU

AMDG64 Technology

IDTR
Interrupt descriptor table register.

IP

16-bit instruction-pointer register.
LDTR

Local descriptor table register.
MSR

M odel-specific register.
r8—15

26568—Rev. 3.25—November 2021

The 8-bit RBB—R15B registers, or the 16-bit RBW—-R15W registers, or the 32-bit RBD-R15D

registers, or the 64-bit R8—R15 registers.

FAX—SP

The 16-bit AX, BX, CX, DX, DI, SI, BR, and SPregisters, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESPregisters, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-hit size, or “R” for 64-

bit size.

RAX

64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. See RFLAGS

RFLAGS
64-bit flags register. SeerFLAGS

xxxviii [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

riP
16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESPregister.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CR8).

TR
Task register.

YMM/XMM

Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registersthat hold
scalar and vector operands used by the SSE instructions.

Endian Order

The x86 and AMDG64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of
string bytes increase from right to | eft.

[AMD Public USG] XXXiX

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume 1l, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
AMD, 3DNow! ™ Technology Manual, Sunnyvale, CA, 2000.
AMD, AMD Extensionsto the 3DNow! ™ and MMX™ [nstruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabgjyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOSInternals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer’ s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

x|

[AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 4869_C Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 4869.C2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486D X2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

Institute of Electrical and Electronics Engineers, IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-1ndependent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Sreaming SMD Extensions in the Pentium IlI,
www.x86.org/articles/sse ptl/ simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOSExtender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i1386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

[AMD Public Use] !

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Walter A. Triebel, The 80386D X Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
John Wharton, The Compl ete x86, MicroDesign Resources, Sebastopol, California, 1994.
Web sites and newsgroups.

www.amd.com
news.comp.arch
news.comp.lang.asm.x86
news.intel.microprocessors
news.microsoft

xlii

[AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

1 Introduction

Processors capable of performing the same mathematical operation simultaneously on multiple data
streams are classified as single-instruction, multiple-data (SIMD). Instructions that utilize this
hardware capability are called SIMD instructions.

Software can utilize SIMD instructions to drastically increase the performance of media applications
which typically employ algorithmsthat perform the same mathematical operation on a set of valuesin
parallel. The original SIMD instruction set was called MM X and operated on 64-bit wide vectors of
integer and floating-point elements. Subsequently a new SIMD instruction set called the Streaming
SIMD Extensions (SSE) was added to the architecture.

The SSE instruction set defines a new programming model with its own array of vector data registers
(YMM/XMM registers) and a control and status register (MXCSR). Most SSE instructions pull their
operands from one or more Y MM/XMM registers and store resultsin aYMM/XMM register,
although some instructions use a GPR as either a source or destination. Most instructions allow one
operand to be loaded from memory. The set includes instructionsto load aY MM/XMM register from
memory (aligned or unaligned) and store the contents of aY MM/XMM register.

An overview of the SSE instruction set is provided in Volume 1, Chapter 4.

Thisvolume provides detail ed descriptions of each instruction within the SSE instruction set. The SSE
instruction set comprises the legacy SSE instructions and the extended SSE instructions.

Legacy SSE instructions comprise the following subsets:
* Theorigina Streaming SIMD Extensions (herein referred to as SSE1)

» SSE2
 SSE3
» SSSE3
» SSE4.1
» SSEA4.2
» SSE4A

» Advanced Encryption Standard (AES)
Extended SSE instructions comprise the following subsets:

« AVX
« AVX2
- FMA
- FMA4
« XOP

[AMD Public Use]

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Legacy SSE architecture supports operations involving 128-bit vectors and defines the base
programming model including the SSE registers, the Media eXtension Control and Status Register
(MXCSR), and the instruction exception behavior.

The Streaming SIMD Extensions (SSE) instruction set is extended to include the AVX, FMA, FMA4,
and XOP instruction sets. The AV X instruction set provides an extended form for most legacy SSE
instructions and several new instructions. Extensions include providing for the specification of a
unique destination register for operations with two or more source operands and support for 256-bit
wide vectors. Some AV X instructions also provide enhanced functionality compared to their legacy
counterparts.

A significant feature of the extended SSE instruction set architecture isthe doubling of the width of the
XMM registers. Theseregisters arereferred to asthe Y MM registers. The XMM registers overlay the
lower octword (128 hits) of the Y MM registers. Registers Y MM/XMMO0-7 are accessible in legacy
and compatibility mode. Registers Y MM/XMM8-15 are available in 64-bit mode (a subset of long
mode). VEX/XOP instruction prefixes alow instruction encodings to address the additional registers.

The SSE instructions can be used in processor legacy mode or long (64-bit) mode. CPUID
Fn8000_0001 EDX[LM] indicatesthe availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages.

* Accessto an additional eight YMM/XMM registersfor atotal of 16
» Accessto an additional eight 64-bit general -purpose registersfor atotal of 16
» Accessto the 64-hit virtual address space and the RIP-rel ative addressing mode

Hardware support for each of the subsets of SSE instructionslisted aboveisindicated by CPUID
feature flags. Refer to Volume 3, Appendix D, “Instruction Subsets and CPUID Feature Flags,” for a
complete list of instruction-related feature flags. The CPUID feature flags that pertain to each
instruction are aso given in the instruction descriptions below. For information on using the CPUID
instruction, see the instruction description in Volume 3.

Chapter 2, “Instruction Reference” contains detailed descriptions of each instruction, organizedin
alphabetic order by mnemonic. For those legacy SSE instructions that have an AV X form, the
extended form of the instruction is described together with the legacy instruction in one entry. For
these instructions, the instruction reference page islocated based on the instruction mnemonic of the
legacy SSE and not the extended (AV X) form. Those AV X instructions without alegacy form are
listed in order by their AV X mnemonic. The mnemonic for all extended SSE instructionsincluding the
FMA and XOP instructions begin with the letter V.

1.1 Syntax and Notation

The descriptive synopsis of opcode syntax for legacy SSE instructions follows the conventions
described in Volume 3: General Purpose and System Instructions. See Chapter 2 and the section
entitled “Notation.”

? [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

For general information on the programming model and overview descriptions of the SSE instruction
Set, see!

e “Streaming SIMD Extensions Mediaand Scientific Programming” in Volume 1.

e “Instruction Encoding” in Volume 3

« “Summary of Registersand Data Types’ in Volume 3.

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix sequence fields. Figure 1-1 shows the
descriptive synopsis of atypical XOP instruction. The synopsis of VEX-encoded instructions have the

same format, differing only in regard to the instruction encoding escape prefix, that is, VEX instead of
XOP.

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src.1.00 A2 /rib
W bit J)
assembly language representation vy field
; ; L bit
encoding escape prefix
g pep pp field
3-bit field representing R, X, B bit values opcode
register/memory type specifier

5-bit map_select field
immediate operand

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions

1.2 Extended Instruction Encoding

Thelegacy SSE instructions are encoded using the legacy encoding syntax and the extended
instructions are encoded using an enhanced encoding syntax which is compatible with the legacy
syntax. Both are described in detail in Chapter 1 of Volume 3.

Asdescribed in Volume 3, the extended instruction encoding syntax utilizes multi-byte escape
sequences to both select alternate opcode maps as well as augment the encoding of the instruction.
Multi-byte escape sequences are introduced by one of the two VEX prefixes or the XOP prefix.

The AV X and AV X2 instructions utilize either the two-byte (introduced by the VEX C5h prefix) or the
three-byte (introduced by the VEX C4h prefix) encoding escape sequence. XOPinstructions are
encoded using athree-byte encoding escape sequence introduced by the XOP prefix (except for the
XOPinstructions VPERMIL2PD and VPERMIL2PS which are encoded using the VEX prefix). The
XOP prefix is 8Fh. The three-byte encoding escape sequences utilize the map_select field of the
second byte to select the opcode map used to interpret the opcode byte.

[AMD Public Use]

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Thetwo-byte VEX prefix sequence implicitly selectsthe secondary (“two-byte”) opcode map.

1.2.1 Immediate Byte Usage Unique to the SSE instructions

Animmediateisavalue, typicaly an operand, explicitly provided within the instruction encoding.
Depending on the opcode and the operating mode, the size of animmediate operand canbe 1, 2, 4, or 8
bytes. Legacy and extended mediainstructionstypically use an immediate byte operand (imm3).

A one-byteimmediate is generally shown in the instruction synopsisas“ib” suffix. For extended SSE
instructions with four source operands, the suffix “is4” isused to indicate the presence of the
immediate byte used to select the fourth source operand.

The VPERMIL2PD and VPERMIL2PS instructions utilize afifth 2-bit operand which is encoded
along with the fourth register select index in an immediate byte. For this special case the immediate
bytewill be shown in the instruction synopsisas*“is5”.

1.2.2 Instruction Format Examples

The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning that the result of the
operation is written to a separately specified destination register rather than overwriting one of the
source operands. This preserves the contents of the source registers. Most legacy SSE instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content islost.

1.2.2.1 XMM Register Destinations

Thefollowing general properties apply to YMM/XMM register destination operands.

» Forlegacy instructionsthat use XMM registers as adestination: When aresult iswrittento a
destination XMM register, bits[255:128] of the corresponding Y MM register are not affected.

» For extended instructions that use XMM registers as adestination: When aresult iswrittento a
destination XMM register, bits [255:128] of the corresponding Y MM register are cleared.

1.2.2.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand isthe destination, selected by the ModRM .reg field, and the second operand is either aregister
or amemory source, selected by the ModRM.r/m field.

VCVTDQ2PD isan example of atwo-operand AV X instruction.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 E6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

) [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. Thesourceiseither aY MM/XMM register or amemory location specified by ModRM.r/m
Because this instruction converts packed doubleword integers to double-precision floating-point
values, the source data size is smaller than the destination data size.

VEX.vvvv isnot used and must be set to 1111b.

1.2.2.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB isan example of athree-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.
VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.src.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /rib

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM .reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XORPW.

* When XOPW =0, srciseither an XMM register or a 128-bit memory location specified by
ModRM.r/m, and variable-count isan XMM register specified by XOPvvvv.

* When XOPW =1, srcisan XMM register specified by XOPvvvv and variable-count is either an
XMM register or a128-bit memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the XOPW bit on operand selection.
Table 1-1. Three-Operand Selection

XOP.W dest src variable-count
0 ModRM.reg ModRM.r/m XOP.vvwv
1 ModRM.reg XOP.vwwv ModRM.r/m

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location

[AMD Public Use]

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

specified by ModRM.r/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of theinstruction will cause an Invalid Opcode (#UD) exception.

1.2.2.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. Thisis
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FM A4 instruction.
VFMSUBPD dest, srcl, src2, src3 dest = srcl* src2 - src3

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src.1.01 6D /ris4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /ris4

The first operand, the destination (dest), isan XMM register or aY MM register (as determined by
VEX.L) selected by ModRM.reg. The following three operands (srcl, src2, src3) are sources.

The srcl operandisan XMM or Y MM register specified by VEX.vvvv.

VEX.W determines the configuration of the src2 and src3 operands.

* When VEX.W =0, src2 iseither aregister or amemory location specified by ModRM.r/m, and
src3 isaregister specified by bits[7:4] of the immediate byte.

« WhenVEX.W =1, src2isaregister specified by bits[7:4] of theimmediate byte and src3 iseither
aregister or amemory location specified by ModRM..r/m.

Table 1-1 summarizes the effect of the VEX.W bit on operand selection.
Table 1-2. Four-Operand Selection

VEX.W dest srcl src2 src3
0 ModRM.reg VEX.vwwv ModRM.r/m is4[7:4]
1 ModRM.reg VEX.vvwv is4[7:4] ModRM.r/m

1.3 VSIB Addressing

Specific AV X2 instructions utilize a vectorized form of indexed register-indirect addressing called
vector SIB (VSIB) addressing. In contrast to the standard indexed register-indirect address mode,
which generates a single effective address to access a single memory operand, V SIB addressing gen-
erates an array of effective addresses which is used to access data from multiple memory locationsin
asingle operation.

° [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

VSIB addressing is encoded using three or six bytes following the opcode byte, augmented by the X
and B bits from the VEX prefix. The first byte isthe ModRM byte with the standard mod, reg, and
r/m fields (although allowed values for the mod and r/m fields are restricted). The second isthe VSIB
byte which replaces the SIB byte in the encoding. The VSIB byte specifies a GPR which servesasa
base address register and an XMM/Y MM register that contains a packed array of index values. The
two-bit scale field specifies acommon scaling factor to be applied to al of the index values. A con-
stant displacement value is encoded in the one or four bytes that follow the VSIB byte.

Figure 1-2 shows the format of the VSIB byte.

7 6 5 4 3 2 1 0
| SS | index base |VSIB

VEX.X extends this field to 4 bits J

VEX.B extends this field to 4 bits

v4_VSIB_format.eps

Figure 1-2. VSIB Byte Format

VSIB.SS (Bits [7:6]). The SSfield is used to specify the scale factor to be used in the computation
of each of the effective addresses. The scale factor scaleis equal to 25 (two raised to power of the
value of the SSfield). Therefore, if SS=00b, scale=1, if SS=01b, scale= 2; if SS= 10b, scale= 4;
and if SS= 11b, scale = 8.

VSIB.index (Bits [5:3]). Thisfield is concatenated with the complement of the VEX.X bit ({X,
index}) to specify the YMM/XMM register that contains the packed array of index valuesindex[i] to
be used in the computation of the array of effective addresses effective address]i].

VSIB.base (Bits [5:3]). Thisfield is concatenated with the complement of the VEX.B bit ({B,
base}) to specify the general-purpose register (base GPR) that contains the base address base to be
used in the computation of each of the effective addresses.

1.3.1 Effective Address Array Computation
Each element i of the effective address array is computed using the formula:
effective address][i] = scale * index]i] + base + displacement.

where index{i] isthe ith element of the XMM/YMM register specified by {X,VSIB.index}. An index
element is either 32 or 64 bitswide and is treated as a signed integer.

Variants of this mode use either an eight-bit or a 32-bit displacement value. One variant sets the base
to zero. The value of the ModRM.mod field specifies the specific variant of VSIB addressing mode,
as shown in Table 1. In the table, the notation [XMMn/Y MMn] indicates the XMM/Y MM register
that contains the packed index array and [base GPR] means the contents of the base GPR selected by
{B, base}.

[AMD Public Use]

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Table 1: Vectorized Addressing M odes
Index’ ModRM.mod
00 01 10
0000 |scale * [xMMO/YMMO] + Disp32 [sé:i‘éee *Ea[él%MO/YMMO] + Disp8 + [stg::;z *Es[é(gl]MO/YMMO] + Disp32 +
0001 [scale * [XMM1/YMM1] + Disp32 fgg;g géF“{']Ml/YMMll + Disp8 + ﬁfg;g ’gégl]'\/'l/YMMl] + Disp32 +
0010 |[scale * [XMM2/YMM2] + Disp32 [sk)c:é(é *G[|>D(|I¥I]M2/YMM2] + Disp8 + [552;2 *Es[égl]MZIYMMZ] + Disp32 +
0011 |scale * [XMM3/YMM3] + Disp32 ﬁ()::fé *E;[;(Fl\él]MSIYMMB] + Disp8 + fg:ég **C;[I)D(FA{I]MSIYMMS] + Disp32 +
0100 |scale * [XMM4/YMM4] + Disp32 ﬁ()::fé *E;[;(Fl\él]M4/YMM4] + Disp8 + fg:ég **C;[I)D(FA{I]M4/YMM4] + Disp32 +
0101 |scale * [XMMS5/YMMS] + Disp32 fgg‘é‘z *G[éF'\{']ME’/YMMES] + Disp8 + fggé% ’E;[éF“f]M5’YMM5] + Disp32 +
0110 |scale * [xMM6/YMM6] + Disp32 [sé:%z ’Es[él%MG/YMMG] + Disp8 + [stg::;z *Es[égl]Mes/YMms] + Disp32 +
0111 |scale * [XMM7/YMM7] + Disp32 fggs'g gé%mNMW] + Disp8 + ﬁfg;g ’gégl]W/YMW] + Disp32 +
1000 [scale * [XMM8/YMM8] + Disp32 [sk)c:é(é *G[|>D(|I¥I]M8/YMM8] + Disp8 + [552;2 *Es[égl]MSIYMMS] + Disp32 +
1001 |scale * [XMM9/YMM9] + Disp32 ﬁ()::fé *E;[;(Fl\él]MQIYMMQ] + Disp8 + fg:ég **C;[I)D(FA{I]MQIYMMQ] + Disp32 +
1010 |scale * [XMM10/YMM10] + Disp32 ft()::sl,ee *G[)Iél\Fgl]MlolYMMlo] + Disp8 + ft;::slee ’E;[;(&A]MlolYMMlo] + Disp32 +
1011 |scale * [XMM11/YMM11] + Disp32 ?t?:é% *G[I)D(II\Q/I]MlllYMMll] + Disp8 + [Q'g:éi *G[;(II\Q/I]MlllYMMll] + Disp32 +
1100 |scale * [XMM12/YMM12] + Disp32 [sé:%% *G[)F(>I\R/I]M12/YMM12] + Disp8 + [56::;2 ’;B[éll\?/l]MlzlYMMlz] + Disp32 +
1101 |scale * [XMM13/YMM13] + Disp32 [sé:aas'i *G[)F(>I\R/I]M13/YMM13] + Disp8 + [56::;2 *Ea[éll\q/l]MB/YMMlB] + Disp32 +
1110 |scale * [XMM14/YMM14] + Disp32 [sbc:éz *G[él\R/|]M14/YMM14] + Disp8 + [sk()::;ee *G[|)D(|I\?/I]Ml4/YMM14] + Disp32 +
1111 |scale * [XMM15/YMM15] + Disp32 ft()::sl,ee *G[él\Fg]Mlsllevlls] + Disp8 + ft;::slee *G[I)D(IF\Q/I]M15/YMM15] + Disp32 +
Note 1. Index = {VEX.X,VSIB.index}. In 32-bit mode, VEX.X = 1.

1.3.2 Notational Conventions Related to VSIB Addressing Mode

In the instruction descriptions that follow, the notation vm32x indicates a packed array of four 32-bit
index values contained in the specified XMM index register and vm32y indicates a packed array of
eight 32-bit index values contained in the specified Y MM index register. Depending on the instruc-
tion, these indices can be used to compute the effective address of up to four (vm32x) or eight

(vm32y) memory-based operands.

The notation vm64x indicates a packed array of two 64-bit index values contained in the specified
XMM index register and vm64y indicates a packed array of four 64-bit index values contained in the
specified YMM index register. Depending on the instruction, these indices can be used to compute
the effective address of up to two (vm64x) or four (vm64y) memory-based operands.

[AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

In body of the description of the instructions, the notation mem32[vm32x] is used to represent a
sparse array of 32-bit memory operands where the packed array of four 32-bit indices used to calcu-
late the effective addresses of the operandsis held in an XMM register. The notation mem32[vm32y]
refersto asimilar array of 32-bit memory operands where the packed array of eight 32-bit indicesis
held in aYMM register. The notation mem32[vm64x] means a sparse array of 32-bit memory oper-
ands where the packed array of two 64-bit indicesisheld in an XMM register and mem32[vm64y]
means a sparse array of 32-bit memory operands where the packed array of four 64-bit indicesis held
inaYMM register.

The notation mem64[index_array], whereindex_array is either vm32x, vm64x, or vm64y, speci-
fiesasparse array of 64-bit memory operands addressed via a packed array of 32-bit or 64-bit indices
held in an XMM/Y MM register. If an instruction uses either an XMM or aY MM register, depending
on operand size, to hold the index array, the notation vm32x/y or vm64x/y is used to represent the
array.

In summary, given a maximum operand size of 256-bits, a sparse array of 32-bit memory-based oper-
ands can be addressed using avma32x, vm32y, vm64x, or vm64y index array. A sparse array of 64-
bit memory-based operands can be addressed using avma32x, vm64x, or vm64y index array. Spe-
cific instructions may use fewer than the maximum number of memory operands that can be
addressed using the specified index array.

VSIB addressing isonly valid in 32-bit or 64-bit effective addressing mode and is only supported for
instruction encodings using the VEX prefix. The ModRM.mod value of 11bisnot valid in VSIB
addressing mode and ModRM.r/m must be set to 100b.

1.3.3 Memory Ordering and Exception Behavior

V SIB addressing has some special considerations relative to memory ordering and the signaling of
exceptions.

V SIB addressing specifies an array of addresses that allows an instruction to access multiple memory
locations. The order in which datais read from or written to memory is not specified. Memory order-
ing with respect to other instructions follows the memory-ordering model described in Volume 2.

Data may be accessed by theinstruction in any order, but access-triggered exceptions are delivered in
right-to-left order. That is, if aexception istriggered by the load or store of an element of an
XMM/Y MM register and delivered, all elementsto the right of that element (all the lower indexed
elements) have been or will be completed without causing an exception. Elements to the | eft of the
element causing the exception may or may not be completed. If the load or store of a given element
triggers multiple exceptions, they are delivered in the conventional order.

Because data can be accessed in any order, elements to the left of the one that triggered the exception
may be read or written before the exception is delivered. Although the ordering of accessesis not
specified, it is repeatable in a specific processor implementation. Given the same input values and ini-
tial architectural state, the same set of elementsto the left of the faulting one will be accessed.

V SIB addressing should not be used to access memory mapped I/O as the ordering of the individual
loads is implementation-specific and some implementations may access data larger than the data ele-
ment size or access elements more than once.

[AMD Public Use] °

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

1.4 Enabling SSE Instruction Execution

Application software that utilizes the SSE instructions requires support from operating system
software.

To enable and support SSE instruction execution, operating system software must:

* enable hardware for supported SSE subsets

* manage the SSE hardware architectural state, saving and restoring it as required during and after
task switches

» provide exception handlersfor al unmasked SSE exceptions.
See Volume 2, Chapter 11, for details on enabling SSE execution and managing its execution state.

1.5 String Compare Instructions

Thelegacy SSE instructions PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM and the
extended SSE instructions VPCMPESTRI, VPCMPESTRM, VPCMPISTRI, and VPCMPISTRM
provide a versatile means of classifying characters of astring by performing one of several different
types of comparison operations using a second string as a prototype.

This section describes the operation of the legacy string compare instructions. This discussion applies
equally to the extended versions of the instructions. Any difference between the legacy and the
extended version of agiven instruction is described in the instruction reference entry for the
instruction in the following chapter.

A character string isavector of data elementsthat is normally used to represent an ordered
arrangement of graphemes which may be stored, processed, displayed, or printed. Ordered strings of
graphemes are most often used to convey information in a human-readable manner. The string
compare instructions, however, do not restrict the use or interpretation of their operands.

Thefirst source operand provides the prototype string and the second operand is the string to be
scanned and characterized (referred to herein asthe string under test, or SUT). Four string formats and
four types of comparisons are supported. The intermediate result of this processing isabit vector that
summarizes the characterization of each character in the SUT. This bit vector isthen post-processed
based on options specified in theinstruction encoding. Instruction variants determine thefinal result—
either an index or amask.

Instruction execution affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the significance
of many of the flagsis redefined to provide information tailored to the result of the comparison
performed. See Section 1.5.6, “ Affect on Flags’ on page 19.

Theinstructions have a defined base function and additional functionality controlled by bit fieldsin an
immediate byte operand (imm8). The base function determines whether the source strings have
implicitly (PCMPISTRI and PCMPISTRM) or explicitly (PCMPESTRI and PCMPESTRM) defined
lengths, and whether the result is an index (PCMPISTRI and PCMPESTRI) or amask (PCMPISTRM
and PCMPESTRM).

10

[AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

PCMPISTRI and PCMPESTRI return their final result (an integer value) viathe ECX register, while
PCMPISTRM and PCMPESTRM write abit or character mask, depending on the option selected, to
the XMMO register.

There are anumber of different schemes for encoding a set of graphemes, but the most common ones
use either an 8-bit code (ASCII) or a 16-bit code (unicode). The string compare instructions support
both character sizes.

[AMD Public Use] H

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Bit fields of the immediate operand control the following functions:

e Source dataformat — character size (byte or word), signed or unsigned values

e Comparisontype

* Intermediate result postprocessing

e Output option selection

This overview description covers functions common to all of the string compare instructions and
describes some of the differentiated features of specific instructions. Information on instruction

encoding and exception behavior are covered in the individual instruction reference pagesin the
following chapter.

2 [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

1.5.1 Source Data Format

The character strings that constitute the source operands for the string compare instructions are
formatted as either 8-bit or 16-hit integer values packed into a 128-bit datatype. The figure below
illustrates how astring of byte-wide charactersislaid out in memory and how these characters are
arranged when loaded into an XMM register.

[null] (00) 112h Highest address
. (2Eh) 111h
Memory Image g (67h) 110h
n (6Eh) 10Fh
i (69h) 10Eh
r (72h) 10Dh
t (74h) 10Ch

128-bit String of
Byte-wide s (73h) 10Bh
Characters in
Memory (ASCII

[blank] (20h) | 10Ah

Encoded) t (74h) 109h
r (72h) 108h
o (6Fh) 107h
h (68h) 106h
s (73h) 105h

[blank] (20h) | 104h

Lowest address

A (41h) 103h Defines address of string
XMM Register Image
63 7 6 5 4 3 2 1 0 0
[blank] (20h) t (74h) r (72h) o (6Fh) h (68h) s (73h) [blank] (20h)| A (41h)
127 15 14 13 12 11 10 9 8 64
[null] (00) | . (2Eh) g (67h) n (6Eh) i (69h) r (72h) t (74h) s (73h)

v4_String_layout.eps

Figure 1-3. Byte-wide Character String — Memory and Register Image

Note from the figure that the longest string that can be packed in a 128-bit data object is either sixteen
8-bit characters (asillustrated) or eight 16-bit characters. When loaded from memory, the character
read from the lowest addressin memory is placed in the least-significant position of the register and
the character read from the highest addressis placed in the most-significant position. In other words,
for character i of width w, bits [w—1:0] of the character are placed in bits[iw + (w—1):iw] of the
register.

[AMD Public Use] e

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Bits[1:0] of theimmediate byte operand specify the source string data format, as shown in Table 1-3.

Table 1-3. Source Data Format

Imm8[1:0] Character Format Maximum String Length
00b unsigned bytes 16
01b unsigned words 8
10b signed bytes 16
11b signed words 8

The string compareinstructions are defined with the capability of operating on strings of lengthsfrom
0 to the maximum that can be packed into the 128-hit data type as shown in the table above. Because
strings being processed may be shorter than the maximum string length, ameansis provided to
designate the length of each string. As mentioned above, one pair of string compare instructionsrelies
on an explicit method while the other utilizes an implicit method.

For the explicit method, the length of the first operand (the prototype string) is specified by the
absolute value of the signed integer contained inrAX and the length of the second operand (the SUT)
isspecified by the absolute val ue of the signed integer contained inrDX. If aspecified length isgreater
than the maximum allowed, the maximum value is used. Using the explicit method of length
specification, null characters (characters whose numerical valueis 0) can beincluded within astring.

Using the implicit method, a string shorter than the maximum length is terminated by anull character.
If no null character isfound in the string, itslength isimplied to be the maximum. For the example
illustrated in Figure 1-3 above, theimplicit length of the string is 15 because the final character isnull.
However, using the explicit method, a specified length of 16 would include the null character in the
string.

In the following discussion, |, isthe length of the first operand string (the prototype string), I, isthe
length of the second operand string (the SUT) and mis the maximum string length based on the
selected character size.

1.5.2 Comparison Type

Although the string compare instructions can be implemented in many different ways, the instructions
are most easily understood as the sequential processing of the SUT using the characters of the
prototype string as atemplate. The templateis applied at each character index of SUT, processing the
string from the first character (index 0) to the last character (index [,—1).

Theresult of each comparison isrecorded in successive positions of asummary bit vector Cmpr Summ.
When the sequence of comparisons is complete, this bit vector summarizes the results of comparison
operations that were performed. The length of the CmprSumm bit vector is equal to the maximum
input operand string length (m). Therulesfor the setting of Cmpr Summ bits beyond the end of the SUT
(CmprSumm[m—1:1,]) are dependent on the comparison type (see Table 1-4 below.)

Bits[3:2] of theimmediate byte operand determine the comparison type, as shown in Table 1-4.

14

[AMD Public Use]

AMDZU

26568—Rev. 3.25—November 2021

Table 1-4. Comparison Type

Imm8[3:2]

Comparison
Type

Description

00b

Subset

Tests each character of the SUT to determine if it is within the subset of
characters specified by the prototype string. Each set bit of CmprSumm
indicates that the corresponding character of the SUT is within the subset
specified by the prototype. Bits [m-1:l,] are cleared.

01b

Ranges

Tests each character of the SUT to determine if it lies within one or more
ranges specified by pairs of values within the prototype string. The ranges
are inclusive. Each set bit in CmprSumm indicates that the corresponding
character of the SUT is within one or more of the inclusive ranges specified.
Bits [m-1:1,] are cleared. If the length of the prototype is odd, the last value

in the prototype is effectively ignored.

10b

Match

Performs a character-by-character comparison between the SUT and the
prototype string. Each set bit of CmprSumm indicates that the
corresponding characters in the two strings match. If not, the bit is cleared.
Bits [m-1:max(l4, I5)] of CmprSumm are set.

11b

Sub-string

Searches for an exact match between the prototype string and an ordered
sequence of characters (a sub-string) in the SUT beginning at the current
index i. Bit i of CmprSumm is set for each value of i where the sub-string
match is made, otherwise the bit is cleared. See discussion below.

In the Sub-string comparison type, any matching sub-string of the SUT must match the prototype
string one-for-one, in order, and without gaps. Null charactersin the SUT do not match non-null
charactersin the prototype. If the prototype and the SUT are equal in length and less than the max
length, the two strings must be identical for the comparison to be TRUE. In this case, bit O of
CmprSummis set to one and theremainder are al Os. If the length of the SUT islessthan the prototype
string, no match is possible and CmprSummisall Os.

If the prototype string is shorter than the SUT (1, <1,), asequential search of the SUT is performed.

For each i from Oto |,—14, the prototype is compared to characters|[i + |,—1:i] of the SUT. If the
prototype and the sub-string SUT[i + |;—1:i] match exactly, then Cmpr Summ(i] isset, otherwise the bit
is cleared. When the comparison at i = I,—, iscomplete, no further testing is required because there

are not enough charactersremaining in the SUT for amatch to be possible. The remaining bitsl,—1,+1

through m-1 are all setto 0.

For the Match comparison type, the character-by-character comparison is performed on all m
charactersin the 128-bit operand data, which may extend beyond the end of one or both strings. A null
character at index i within one string is not considered a match when compared with a character
beyond the end of the other string. In this case, Cmpr Sumn[i] is cleared. For index positions beyond
the end of both strings, Cmpr Summ[i] is set.

AMDG64 Technology

The following section provides more detail on the generation of the comparison summary bit vector
based on the specified comparison type.

[AMD Public Use]

15

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

1.5.3 Comparison Summary Bit Vector

The following pseudo code provides more detail on the generation of the comparison summary bit
vector Cmpr Summ. The function Conpar eSt r gs defined below returnsabit vector of length m, the
maximum length of the operand data strings.

bit vector ConpareStrgs(ProtoType, |engthl, SUT, |ength2, CnpType, signed, m
doubl eword vector StrUndTst /] tenmp vector; holds string under test

doubl eword vector StrProto /1 tenmp vector; holds prototype string
bit vector[n] Result /1 length of vector is m

StrProto = n{ 0} [linitialize melenents of StrProto to O
StruUndTst = n{ 0} /linitialize melenents of StrUndTst to O
Result = n{0} /linitialize result bit vector

FORi =0 to lengthl

StrProto[i] = signed ? SignExtend(ProtoType[i]) : ZeroExtend(ProtoType[i])
FORi =0 to length2
StrUndTst[i] = signed ? SignExtend(SUT[i]) : ZeroExtend(SUT[i])

| F CpType == Subset

FORj =0to length2 - 1 /1 j indexes SUT
FORi =0to lengthl - 1 /1 i indexes prototype
Result[j] |= (StrProto[i] == StrUndTst[j])
I F CpType == Ranges
FORj =0tolength2 - 1 /1 j indexes SUT
FORi =0to lengthl - 2, BY 2 /1 1 indexes prototype
Result[j] |= (StrProto[i] <= StrUndTst[j])

&% (StrProto[i+1] >= StrUndTst[j])

| F CpType == Match
FORi =0to (mn(lengthl, |ength2)-1)
Result[i] = (StrProto[i] == StrUndTst[i])
FOR i = min(lengthl, length2) to (max(lengthl, |ength2)-1)
Result[i] =0
FOR i = max(lengthl, length2) to (m1)
Result[i] =1

| F CnpType == Sub-string
I F (I engt h2==16) & (| engt h1==16)
max| engt h=15
el se
mex| ength = | engt h2-1engthl
IF length2 >= | enght1l

FORj = 0 to naxlength /1 j indexes result bit vector
Result[j] =1
k =] /'l k scans the SUT
FORi =0to lengthl - 1 /1 i scans the Prototype
Result[j] & (StrProto[i] == StrUndTst[k])// Result[j] is cleared if
any of the conparisons do not match
k++

Return Resul t

16

[AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Given the above definition of Conpar eSt r gs() , thefollowing pseudo code computes the value of
Cmpr Summ:

ProtoType = contents of first source operand (xml)

SUT = contents of xmmR2 or 128-bit value read fromthe specified nmenory |ocation
Il engthl = I ength of first operand string /lspecified inplicitly or explicitly
| ength2 = I ength of second operand string /lspecified inplicitly or explicitly
m = Maxi mum String Length from Table 1-3 above

CrpType = Conpari son Type from Tabl e 1-4 above

signed = (im8B[1] == 1) ? TRUE : FALSE

bit vector [nm CnprSumm /1 CnprSummis mbits |ong

Cpr Summ = Conpar eStrgs(Prot oType, |engthl, SUT, |ength2, CnpType, signed, m

The following examples demonstrate the comparison summary bit vector Cmpr Summ for each
comparison type. For the sake of illustration, the operand strings are represented as A SCI I -encoded
strings. Each character value is represented by itsASCII grapheme. Strings are displayed with the
lowest indexed character on the left as they would appear when printed or displayed. CmprSummis
shown in reverse order with the least significant bit on the |eft to agree with the string presentation.

Comparison Type = Subset

Prot otype: ZCx
SUT: aCx%bZr eCx
Cnopr Summ 0110101001100000

Comparison Type = Ranges

Pr ot ot ype: ACax
SUT: aCx%xbzr eCx
Cnpr Summ 1110110111100000

Comparison Type = Match

Prototype: ZCx
SUT: aCx%xbZzr eCx
Crpr Summ 0110000000011111

Comparison Type = Sub-string

Prot otype: ZCx
SUT: aZCx% CZr eZCxCZ
Cnpr Summ 0100000000100000

17

[AMD Public Use]

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

1.5.4 Intermediate Result Post-processing

Post-processing of the CmprSumm bit vector is controlled by imm8[5:4]. The result of thisstep is
designated pCmpr Summ.

Bit [4] of the immediate operand determines whether a ones' complement (bit-wise inversion) is
performed on CmprSumm; bit [5] of the immediate operand determines whether the inversion applies
to the entire comparison summary bit vector (CmprSumm) or just to those bits that correspond to
characterswithin the SUT. See Table 1-5 below for the encoding of theimm8[5:4] field.

Table 1-5. Post-processing Options

Imm8[5:4] Post-processing Applied

x0b pCmprSumm = CmprSumm

01b pCmprSumm = NOT CmprSumm

11b pCmprSumm[i] = ICmprSumml[i] for i < |,
pCmprSumm(i] = CmprSumm[i], for I, £ i<m

1.5.5 Output Option Selection

For PCMPESTRI and PCMPISTRI, imm8[6] determines whether the index of the lowest set bit or the
highest set bit of pCmpr Summ iswritten to ECX, as shown in Table 1-6.

Table 1-6. Indexed Output Option Selection
Imm8[6] Description
Ob Return the index of the least significant set bit in pCmprSumm.
1b Return the index of the most significant set bit in pCmprSumm.

For PCMPESTRM and PCMPISTRM, imm8[6] specifies whether the output from the instruction isa
bit mask or an expanded mask. The bit mask is a copy of pCmpr Summ zero-extended to 128 bits. The
expanded mask is a packed vector of byte or word elements, as determined by the string operand
format (as indicated by imm8[0]). The expanded mask is generated by copying each bit of
pCmprSumm to all bits of the element of the same index. Table 1-7 below shows the encoding of
immg[6].

Table 1-7. Masked Output Option Selection

Imm8[6] Description
Ob Return pCmprSumm as the output with zero extension to 128 bits.

1b Return expanded pCmprSumm byte or word mask.

The PCMPESTRM and PCMPISTRM instructions return their output in register XMMO. For the
extended forms of the instructions, bits[127:64] of YMMO are cleared.

w [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

1.5.6 Affect on Flags

The execution of a string compare instruction updates the state of the CF, PF, AF, ZF, SF, and OF flags
within the rFLAGs register. All other flags are unaffected. The PF and AF flags are always cleared.
The ZF and SFflags are set or cleared based on attributes of the source strings and the CF and OF flags
are set or cleared based on attributes of the summary bit vector after post processing.

The CFflag is cleared if the summary bit vector, after post processing, is zero; the flag is set if one or
more of the bitsin the post-processed bit vector are 1. The OF flag is updated to match the value of the
least significant bit of the post-processed summary bit vector.

The ZF flag is set if the length of the second string operand (SUT) is shorter than m, the maximum
number of 8-bit or 16-bit charactersthat can be packed into 128 bits. Similarly, the SFflag is set if the
length of the first string operand (prototype) is shorter than m.

Thisinformation is summarized in Table 1-8 below.

Table 1-8. State of Affected Flags After Execution

Unconditional Source String Length Post-processed Bit Vector
PF AF SF ZF CF OF
0 0 (g <m) (I, <m) pCmprSumm # 0 | pCmprSumm [0]

[AMD Public Use] 0

AMDA
AMDG64 Technology 26568—Rev. 3.25—November 2021

2 [AMD Public Use]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

2 Instruction Reference

Instructions are listed by mnemonic, in aphabetic order. Each entry describes instruction function,
syntax, opcodes, affected flags and exceptions related to the instruction.

Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particul ar
instruction, such as a synopsis of the 256-bit form, may be omitted.

INST Instruction
VINST Mnemonic Expansion

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FFFF /r Brief summary of legacy operation.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VINST xmm1, xmm2/mem128, xmm3 C4 RXB.11 0.5rc.0.00 FF 4
VINST ymm1, ymm2/imem256, ymm3 c4 RXB.11 0.src.0.00 FF /

Related Instructions

Instructions that perform similar or related functions.
rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

Figure 2-1. Typical Instruction Description

Instruction Reference [AMD PUb“C Use] 21

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Exceptions

Under various conditions instructions described below can cause exceptions. The conditions that
cause these exceptions can differ based on processor mode and instruction subset. Thisinformation is
summarized at the end of each instruction reference page in an Exception Table. Rows list the appli-
cable exceptions and the different conditions that trigger each exception for the instruction. For each
processor mode (real, virtual, and protected) a symbol in the table indicates whether this exception
condition applies.

Each AV X instruction has alegacy form that comes from one of the legacy (SSE1, SSE2, ...) subsets.
An*“X” at the intersection of a processor mode column and an exception cause row indicates that the
causing condition and potential exception appliesto both the AV X instruction and the legacy SSE
instruction. “A” indicates that the causing condition applies only to the AV X instruction and “ S’ indi-
cates that the condition applies to the SSE legacy instruction.

Note that XOP and FM A4 instructions do not have corresponding instructions from the SSE legacy
subsets. In the exception tables for these instructions, “X” represents the XOP instruction and “F’
represents the FM A4 instruction.

22 [AMD PUb“C Use] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ADDPD Add
VADDPD Packed Double-Precision Floating-Point

Adds each packed double-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
quadword of the destination.

There are legacy and extended forms of the instruction:
ADDPD

Adds two pairs of values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds two pairs of values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding
Adds four pairs of values.

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ADDPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDPD xmm1, xmm2/mem128 66 OF 58 /r Adds two packed double-precision floating-point
values in xmml1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 Ir
VADDPD ymm1, ymmz2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 Ir

Instruction Reference [AWPlgUYﬁlDCDU)Sﬂ 23

AMDZU

AMDG64 Technology

Related Instructions

(V)ADDPS, (V)ADDSD, (V)ADDSS

26568—Rev. 3.25—November 2021

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ | RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
E ti Mode c fE i
xception ReallVirt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foatng-poim, #xE | 5 | s | x [Somasked SIUD Fastnapoin oo e i
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

24

(AR PuBlic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ADDPS Add
VADDPS Packed Single-Precision Floating-Point

Adds each packed single-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
elements of the destination.

There are legacy and extended forms of the instruction:
ADDPS

Adds four pairs of values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds four pairs of values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding
Adds eight pairs of values.

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ADDPS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDPS xmm1, xmm2/mem128 OF 58 /r Adds four packed single-precision floating-point values in
xmml to corresponding values in xmm2 or mem2128. Writes
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDPS xmm1, xmmz2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 /r
VADDPS ymm1, ynm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 Ir

Instruction Reference [AIOI[ESDEUYﬁlDCfose] 25

AMDZU

AMDG64 Technology

Related Instructions

(V)ADDPD, (V)ADDSD, (V)ADDSS

rFLAGS Affected
None

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-poin, x| 5 | s | x| D e e e s CPT =L
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

26

[AWB)Pﬁuml%fose] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ADDSD Add
VADDSD Scalar Double-Precision Floating-Point

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
ADDSD

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a64-bit memory location. The first source register is aso the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding Y MM register are not affected.

VADDSD

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination isathird XMM register. Bits [127:64] of the first
source operand are copied to bits[127:64] of the destination. Bits[255:128] of the Y MM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
ADDSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSD xmm1, xmm2/mem64 F2 OF 58 /r Adds low-order double-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSS

rFLAGS Affected
None

Instruction Reference [AW%UYJA'%DWS@] 27

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | Lmasked SIUD Mot ot exeept e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

28

[AW?BUmI%Dﬁ)SG] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ADDSS Add
VADDSS Scalar Single-Precision Floating-Point

Adds the single-precision floating-point value in the low-order doubleword of the first source oper-
and to the corresponding value in the low-order doubleword of the second source operand and writes
the result into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
ADDSS

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding Y MM register are not affected.

VADDSS

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination isathird XMM register. Bits [127:32] of the first
source register are copied to bits[127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
ADDSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VADDSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSS xmm1, xmm2/mem32 F3 0F 58 /r Adds a single-precision floating-point value in the low-order
doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSD

rFLAGS Affected
None

Instruction Reference [AIOI[ESDﬁuYﬁlDCDﬁse] 29

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | Lmasked SIUD Mot ot exeept e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

30

[AI\?IT?%UYJAIPCfose] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ADDSUBPD Alternating Addition and Subtraction
VADDSUBPD Packed Double-Precision Floating-Point

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ADDSUBPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDSUBPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSUBPD xmm1, xmm2/mem128 66 OF DO /r Adds a value in the upper 64 bits of xmm1 to the
corresponding value in xmmz2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of

xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DO /r
VADDSUBPD ymm1, ymm2, ymm3/mem256 Cc4 RXB.00001 X.src.1.01 DO /r

Instruction Reference A[%\Wpﬁu}/ﬂ%)ﬂ)ggf 31

AMDZU

AMDG64 Technology

Related Instructions

(V)ADDSUBPS

rFLAGS Affected
None

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-poin, x| 5 | s | x| D e e e s CPT =L
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

32

A[%\W Plguml[)CDfYSBgr Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ADDSUBPS Alternating Addition and Subtraction
VADDSUBPS Packed Single-Precision Floating Point

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth ele-
ments of the destination. Subtracts the first and third single-precision floating-point values of the sec-
ond source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ADDSUBPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VADDSUBPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSUBPS xmm1, xmm2/mem128 F2 OF DO /r Adds the second and fourth packed single-precision
values in xmm2 or mem128 to the corresponding
values in xmm21 and writes results to the
corresponding positions of xmm21. Subtracts the first
and third packed single-precision values in xmm2 or
mem2128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSUBPS xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.11 DO /r
VADDSUBPS ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.11 DO /r

Instruction Reference A[%\ﬁlﬁlﬁu}/ﬂl%DﬂJng]i 33

AMDZU

AMDG64 Technology

Related Instructions

(V)ADDSUBPD

rFLAGS Affected
None

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-poin, x| 5 | s | x| D e e e s CPT =L
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

34

A[%\ﬁlﬁpﬁum%)ﬂ’s%’f Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AESDEC AES
VAESDEC Decryption Round

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Appendix A on page 975 for more information about the operation of the AES instructions.

Decryption consistsof 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
aunique final round, N,. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entriesin a4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:

AESDEC

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the

YMM register that corresponds to the destination are not affected.

VAESDEC

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
AESDEC AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESDEC 128 AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESDEC 256 | VAES | CPUID Fn0000_0007_ECX[VAES]_xO0 (bit 9)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [AﬁﬁEﬁU}/ﬂFCsﬁge] 35

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

AESDEC xmm1, xmm2/mem128 66 OF 38 DE /r Performs one decryption round on a state value
in xmm21 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE/r
VAESDEC ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DE /r

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEY GENASSIST

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception

Cause of Exception

AVX instructions are only recognized in protected mode.

nlnl>
nlnl>

S |CRO.EM=1.
. S |CR4.0SFXSR =0.
Invalid opcode, #UD —
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

36 [AﬁﬁEﬁU%ﬂFCSﬁSCe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AESDECLAST AES
VAESDECLAST Last Decryption Round

Performs the final round of AES decryption. Compl etes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.

See Appendix A on page 975 for more information about the operation of the AES instructions.

Decryption consistsof 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
aunique final round, N,.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entriesin a4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESDECLAST

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESDECLAST
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag

AESDECLAST AES | CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESDECLAST 128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

VAESDECLAST 256]/ VAES | CPUID Fn0000_0007_ECX[VAES]_xO0 (bit 9)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESDECLAST xmm1, xmm2/mem128 66 OF 38 DF/r Performs the last decryption round on a state
value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Instruction Reference AETB\WHEU\@FCS[ﬁgéTST 37

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r
VAESDECLAST ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DF Ir

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEY GENASSIST

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S | S |CRAOSFXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

38 AETB\I]:\ﬁbAEU\ﬁ]FCS[ﬁgéTST Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AESENC AES
VAESENC Encryption Round

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Appendix A on page 975 for more information about the operation of the AES instructions.

Encryption consistsof 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
auniquefinal round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entriesin a4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

There are legacy and extended forms of the instruction:
AESENC

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESENC
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
AESENC AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESENC 128 AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESENC 256 | VAES | CPUID Fn0000_0007_ECX[VAES]_xO0 (bit 9)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESENC xmm1, xmm2/mem128 66 OF 38 DC /r Performs one encryption round on a state value
in xmm1 using the key value in xmmz2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Instruction Reference [AﬁﬁlﬁU}/ﬂFCswge] 39

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC /r
VAESENC ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DC /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEY GENASSIST

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception Cause of Exception

AVX instructions are only recognized in protected mode.

nlnl>
nlnl>x

S |CRO.EM=1.
. S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

40 [Aﬁﬁlﬁu%ﬂﬁ)sﬂge] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AESENCLAST AES
VAESENCLAST Last Encryption Round

Performs the final round of AES encryption. Compl etes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.

See Appendix A on page 975 for more information about the operation of the AES instructions.

Encryption consistsof 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
auniquefinal round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entriesin a4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESENCLAST

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESENCLAST
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
AESENCLAST AES | CPUID Fn0O000_0001_ECX[AES] (bit 25)
VAESENCLAST 128 AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESENCLAST 256 VAES | CPUID Fn0000_0007_ECX[VAES]_xO (bit 9)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESENCLAST xmm1, xmm2/mem128 66 OF 38 DD /r Performs the last encryption round on a
state value in xmm1 using the key value in xmm2
or mem128. Writes results to xmmZ1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Instruction Reference AET/&WHEU@F@%T%@TST 41

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r
VAESENCLAST ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DD /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEY GENASSIST

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S | S |CRAOSFXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

42 AETEWbAﬁU\@FéSE[DgéTST Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AESIMC AES
VAESIMC InvMixColumn Transformation

Appliesthe AES InvMixColumns() transformation to expanded round keys in preparation for decryp-
tion. Transforms an expanded key specified by the second source operand and writes the result to a
destination register.

See Appendix A on page 975 for more information about the operation of the AES instructions.

The 128-bit round key vector isinterpreted as 16-byte column-major entriesin a 4-by-4 matrix of
bytes. The transformed result is written to the destination in column-major order.

AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.

There are legacy and extended forms of the instruction:
AESIMC

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESIMC

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESIMC AES | CPUID Fn0000_0001_ECXJ[AES] (bit 25)
VAESIMC AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESIMC xmm1, xmm2/mem128 66 OF 38 DB /r Performs AES InvMixColumn transformation on
a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEY GENASSIST

rFLAGS Affected
None

Instruction Reference [Aﬁ}fﬁl\ﬁu}/ﬂﬁ:&m%e] 43

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S | S |CRAOSFXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

44

(AN Pubiic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
AESKEYGENASSIST AES
VAESKEYGENASSIST Assist Round Key Generation

Expands around key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.

See Appendix A on page 975 for more information about the operation of the AES instructions.

The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector isinterpreted as 16-byte column-major entriesin a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.

There are legacy and extended forms of the instruction:
AESKEYGENASSIST

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESKEYGENASSIST

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESKEYGENASSIST | AES | CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESKEYGENASSIST| AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 OF 3ADF /rib Expands a round key in xmm2 or
mem128 using an immediate
round constant. Writes the result

to xmml1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF/rib

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

rFLAGS Affected
None

Instruction Reference AESKEY%IﬁU\ﬁIFCSﬁgngASSIST 45

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

46

AESKEY%Iﬁu\ﬁFgﬁgngASSIST Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ANDNPD AND NOT
VANDNPD Packed Double-Precision Floating-Point

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones -complement of the two corresponding packed double-precision floating-point
valuesin the first source operand and writes the result into the destination.

There are legacy and extended forms of the instruction:
ANDNPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDNPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ANDNPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VANDNPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDNPD xmm1, xmm2/mem128 66 OF 55 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDNPD xmm1, xmm2, xmm3/mem128 Cca RXB.00001 X.src.0.01 55 /r
VANDNPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55/r

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference [WPﬁUYJAﬁ\ICDWSDe] 47

AMDZU

AMDG64 Technology

rFLAGS Affected
None

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S| S |CRAOSEXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

48

[AMDPuBIC Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ANDNPS AND NOT
VANDNPS Packed Single-Precision Floating-Point

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones -complement of the four corresponding packed single-precision floating-point
valuesin the first source operand, and writes the result in the destination.

There are legacy and extended forms of the instruction:
ANDNPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDNPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ANDNPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VANDNPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDNPS xmm1, xmm2/mem128 OF 55 /r Performs bitwise AND of four packed single-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of four packed single-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDNPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 55 /r
VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55/r

Related Instructions
(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference [mwiﬁU}/ﬂi\lCDWSSe] 49

AMDZU

AMDG64 Technology

rFLAGS Affected
None

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

50

[AND PuBliC Use)

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ANDPD AND
VANDPD Packed Double-Precision Floating-Point

Performs bitwise AND of two packed double-precision floating-point values in the first source oper-
and with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ANDPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VANDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDPD xmm1, xmm2/mem128 66 OF 54 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm21 with corresponding values in
Xxmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 54 Ir
VANDPD ymm1, ymmz2, ymm3/mem256 ca RXB.00001 X.src.1.01 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference [AWPlgUYﬁi\ICDU)Sﬂ 51

AMDZU

AMDG64 Technology

rFLAGS Affected
None

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

52

AN PuBlic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ANDPS AND
VANDPS Packed Single-Precision Floating-Point

Performs bitwise AND of the four packed single-precision floating-point valuesin the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding el ements of the destination.

There are legacy and extended forms of the instruction:
ANDPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ANDPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VANDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDPS xmm1, xmm2/mem128 OF 54 /r Performs bitwise AND of four packed single-precision floating-
point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.wvvv.L.pp Opcode
VANDPS xmm1, xmmz2, xmm3/mem128 c4 RXB.00001 X.src.0.00 54 /r
VANDPS ymm1, ynm2, ymm3/mem256 ca RXB.00001 X.src.1.00 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference [A'OIIB%UY)AWCDDSSQ] 53

AMDZU

AMDG64 Technology

rFLAGS Affected
None

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

54

AN PuBliC Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
BLENDPD Blend
VBLENDPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in
the destination register. When amask bit = 0, the specified element of thefirst sourceis copied to the
corresponding position in the destination register. When amask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.

VBLENDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared. Only mask bits[1:0] are used.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird Y MM register. Only mask bits [3:0] are used.

Instruction Support

Form Subset Feature Flag
BLENDPD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VBLENDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

BLENDPD xmm1, xmm2/mem128, imm8 66 OF 3A0D /rib Copies values from xmm21 or
xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /rib
VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 c4 RXB.00011 X.src.1.01 OD /rib

Instruction Reference [%\LIWPIBU\{J%{_CI:E%E’@] 55

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S| S |CRAOSEXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

56

ANV PUbIE s8]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
BLENDPS Blend
VBLENDPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in
the destination register. When amask bit = 0, the specified element of the first sourceis copied to the
corresponding position in the destination register. When amask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.

VBLENDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.Only mask bits [3:0] are used.

YMM Encoding

Thefirst operandisaY MM register and the second operand is either aY MM register or a 256-bit
memory location. The destination isathird Y MM register. All 8 bits of the mask are used.

Instruction Support

Form Subset Feature Flag
BLENDPS SSE4.1 | CPUID Fn0000_0001_ ECX[SSE41] (bit 19)
VBLENDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

BLENDPS xmm1, xmm2/mem128, imm8 66 OF 3A0C /rib Copies values from xmm21 or
xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.wvvv.L.pp Opcode
VBLENDPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0C/rib
VBLENDPS ymm1, ymmz2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 OC/rib

Instruction Reference [%\WPﬁu\bﬁfgwgg] 57

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S| S |CRAOSEXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

58

AMB Pubticse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
BLENDVPD Variable Blend
VBLENDVPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by amask operand.

Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of
the destination. The position of amask bit corresponds to the position of the most significant bit of a
copied value. When amask bit = 0, the specified element of the first sourceis copied to the corre-
sponding position in the destination. When a mask bit = 1, the specified element of the second source
is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:
BLENDVPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the

YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMMO.

VBLENDVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits[255:128] of the Y MM reg-
ister that corresponds to the destination are cleared. The mask is defined by bits 127 and 63 of afourth
XMM register.

YMM Encoding

Thefirst operandisaY MM register and the second operand is either aY MM register or a 256-bit
memory location. The destinationisathird YMM register. The mask is defined by bits 255, 191, 127,
and 63 of afourth YMM register.

Instruction Support

Form Subset Feature Flag
BLENDVPD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VBLENDVPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference E[AWPIBU\{JE”CETB%/ET 59

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

BLENDVPD xmm1, xmm2/mem128 66 OF 38 15 /r Copies values from xmm1 or xmm2/mem128 to
xmm1, as specified by the MSB of corresponding
elements of xmmO.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDVPD xmm1, xmm2, xmm3/mem128, xmmé4 C4 RXB.00011 X.src.0.01 4B Ir
VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 Cc4 RXB.00011 X.src.1.01 4B Ir

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

60 E[AEI\%WPIBU\@'LCETB)%/E? Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
BLENDVPS Variable Blend
VBLENDVPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by amask operand.

Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of
the destination register. The position of amask bits corresponds to the position of the most significant
bit of a copied value. When amask bit = 0, the specified element of the first sourceis copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:
BLENDVPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the

YMM register that corresponds to the destination are not affected. The mask is defined by bits 127,
95, 63, and 31 of the implicit register XMMO.

VBLENDVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits[255:128] of the Y MM reg-
ister that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63, and 31 of
afourth XMM register.

YMM Encoding

Thefirst operandisaY MM register and the second operand is either aY MM register or a 256-bit
memory location. The destination isathird Y MM register. The mask is defined by bits 255, 223, 191,
159, 127, 95, 63, and 31 of afourth YMM register.

Instruction Support

Form Subset Feature Flag
BLENDVPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VBLENDVPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference ITAWWP&U\E%_&ETB%/ET 61

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

BLENDVPS xmm1, xmm2/mem128 66 OF 38 14 /r Copies packed single-precision
floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmmaO.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 aA Ir
VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 c4 RXB.00011 X.src.1.01 4A Ir

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

62 TAWWPﬁu\bEii_CEwggT Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CMPPD Compare
VCMPPD Packed Double-Precision Floating-Point

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the desti-
nation element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FAL SE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FAL SE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison typeisn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an | E.

There are legacy and extended forms of the instruction:
CMPPD

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a128-bit memory location.The first source register is also the destination. Bits [255:128] of the
Y MM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an
immediate byte operand.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination operand isaY MM register. Comparison type is speci-
fied by bits[4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPD uses hits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations.

Instruction Reference [A%Pﬁu\bﬂ\éptj)se] 63

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Immediate Operand

Compare Operation

Result If NaN Operand

QNaN Operand Causes

Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPD with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQPD 00h, 08h, 10h, 18h
(V)CMPLTPD 01h, 09h, 11h, 19h
(V)CMPLEPD 02h, OAh, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPD 04h, OCh, 14h, 1Ch
(V)CMPNLTPD 05h, ODh, 15h, 1Dh
(V)CMPNLEPD 06h, OEh, 16h, 1Eh
(V)CMPORDPD 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCMPPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

64

[AMS Bubile Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic
CMPPD xmm1, xmm2/mem128, imm8

Mnemonic

VCMPPD xmm1, xmm2, xmm3/mem128, imm8
VCMPPD ymm1, ymm2, ymm3/mem256, imm8

Related Instructions

Opcode
66 OF C2 /rib

VEX
C4
C4

AMDG64 Technology

Description

Compares two pairs of values in xmm1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Encoding
RXB.map_select W.vvvv.L.pp Opcode
RXB.00001 X.src.0.01 C2/rib
RXB.00001 X.src.1.01 C2/rib

(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE

M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference

[AMS Bubile Use]

65

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nnnn nw n

nnnn v n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[P O [X0 X|X|X| X | X|>ZI>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

x

A source operand was an SNaN value.

Invalid operation, IE

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

66

[AMS Bubile Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CMPPS Compare
VCMPPS Packed Single-Precision Floating-Point

Compares each of the four packed single-precision floating-point values of thefirst source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the desti-
nation element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FAL SE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FAL SE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison typeisn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an | E.

There are legacy and extended forms of the instruction:
CMPPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is aso the destination. Bits [255:128] of the

Y MM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an
immediate byte operand.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination operand isaY MM register. Comparison type is speci-
fied by bits[4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although V CM PPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shownin
with the directly supported comparison operations.

Instruction Reference [AWPﬁu\fﬁi\éPDSse] 67

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Immediate Operand

Compare Operation

Result If NaN Operand

QNaN Operand Causes

Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPS with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQPS 00h, 08h, 10h, 18h
(V)CMPLTPS 01h, 09h, 11h, 19h
(V)CMPLEPS 02h, OAh, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPS 04h, OCh, 14h, 1Ch
(V)CMPNLTPS 05h, ODh, 15h, 1Dh
(V)CMPNLEPS 06h, OEh, 16h, 1Eh
(V)CMPORDPS 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCMPPS AVX | CPUID Fn0000_0001_ECXJ[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

68

[AMS Bubile Use]

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CMPPS xmm1, xmm2/mem128, imm8 OFC2/rib Compares four pairs of values in xmm1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2/rib
VCMPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.00 C2/rib

Related Instructions
(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference [AWPﬁu\fﬁi\éPDSse] 69

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nnnn nw n

nnnn v n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[P O [X0 X|X|X| X | X|>ZI>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

x

A source operand was an SNaN value.

Invalid operation, IE

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

70

[AMS Bubile Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CMPSD Compare
VCMPSD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with adouble-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits
of the destination element are set; when acomparison is FAL SE, all 64 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FAL SE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FAL SE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an |IE.

There are legacy and extended forms of the instruction:
CMPSD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 64-bit memory location. Thefirst source register is aso the destination. Bits [127:64] of the destina-
tion are not affected. Bits[255:128] of the Y MM register that corresponds to the destination are not
affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings
by doubleword) instruction in the general -purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

VCMPSD

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The destination isathird XMM register. Bits [127:64] of the destination
are copied from bits[127:64] of the first source. Bits[255:128] of the Y MM register that corresponds
to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate byte oper-
and.

Immediate Operand Encoding

CMPSD uses hits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result.

Instruction Reference [A%ﬁgu\{ﬁi\@a)se] 71

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Immediate Operand

Compare Operation

Result If NaN Operand

QNaN Operand Causes

Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSD with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQSD 00h, 08h, 10h, 18h
(V)CMPLTSD 01h, 09h, 11h, 19h
(V)CMPLESD 02h, OAh, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSD 04h, OCh, 14h, 1Ch
(V)CMPNLTSD 05h, ODh, 15h, 1Dh
(V)CMPNLESD 06h, OEh, 16h, 1Eh
(V)CMPORDSD 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCMPSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

72

AME BB Tse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CMPSD xmm1, xmm2/mem64, imm8 F20F C2/rib Compares double-precision floating-point
values in the low-order 64 bits of xmm1 with
corresponding values in xmm2 or mem64.
Comparison type is determined by imms8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPSD xmm1, xmm2, xmm3/mem64, imm38 C4 RXB.00001 X.src.X.11 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference [A%ﬁgu\fﬁi\épa)se]

73

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Exceptions
. Mode .
Exception - Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
L Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
SIMD floating-point, #XF S X see SIMD Floating-Point Exceptions below for details.
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

74

AME BB Tse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CMPSS Compare
VCMPSS Scalar Single-Precision Floating-Point

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits
of the destination element are set; when a comparison is FAL SE, all 32 bits of the destination element
are cleared. Comparison typeis specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FAL SE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FAL SE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison typeisn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an | E.

There are legacy and extended forms of the instruction:
CMPSS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 32-bit memory location. Thefirst source register is aso the destination. Bits [127:32] of the destina-
tion are not affected. Bits[255:128] of the Y MM register that corresponds to the destination are not
affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

VCMPSS

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The destination isathird XMM register. Bits [127:32] of the destination
are copied from bits [127L.32] of the first source. Bits[255:128] of the Y MM register that corre-
sponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate byte
operand.

Immediate Operand Encoding

CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCM PSS supports 20h encoding val ues, the comparison types echo
those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

Instruction Reference [AW%UYJ?%PPJSS@] 75

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Immediate Operand
Value

Compare Operation

Result If NaN Operand

QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSS with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQSS 00h, 08h, 10h, 18h
(V)CMPLTSS 01h, 09h, 11h, 19h
(V)CMPLESS 02h, OAh, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSS 04h, OCh, 14h, 1Ch
(V)CMPNLTSS 05h, 0Dh, 15h, 1Dh
(V)CMPNLESS 06h, OEh, 16h, 1Eh
(V)CMPORDSS 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCMPSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

76

[AMD Bubiie tse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic
CMPSS xmm1, xmm2/mem32, imm8

Mnemonic

Opcode

F3OF C2/rib

VCMPSS xmm1, xmm2, xmm3/mem32, imm8

Related Instructions

AMDG64 Technology

Description

Compares single-precision floating-point
values in the low-order 32 bits of xmm1 with
corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

C4 RXB.00001 X.src.X.10 C2Irib

(VYCMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference [AW%U%)?%P@SSG] 77

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Exceptions
. Mode .
Exception - Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
L Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
SIMD floating-point, #XF S X see SIMD Floating-Point Exceptions below for details.
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

78

[AMD Bubiie tse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
COMISD Compare Ordered
VCOMISD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of the first operand with a
double-precision floating-point value in the low-order 64 bits of the second operand and sets
rFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

The result is unordered if one or both of the operand valuesisaNaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:
COMISD

Thefirst source operand isan XMM register and the second source operand isan XMM register or a
64-bit memory location.

VCOMISD

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location.

Instruction Support

Form Subset Feature Flag
COMISD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCOMISD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
COMISD xmm1, xmm2/mem64 66 OF 2F /r Compares double-precision floating-point values in xmm21
with corresponding values in xmm2 or mem64 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

Instruction Reference [A?\WB'?BUWI%MBES@] 79

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021

rFLAGS Affected

ID | VIP | VIF | AC| VM | RF | NT IOPL OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 0 M 0 M | M

21 20 19 | 18 | 17 | 16 | 14 | 13 |12 11 | 10 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

80 [AWBI$U\63%MB[S)e] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nnn nw n

0nnn v n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

Instruction execution caused a page fault.

Alignment check, #AC

[N)

Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF

X | X[X|X|X|X[X]| X [X[Z>I>> 00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

x

A source operand was an SNaN value.

n

"

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMBPubiic8e]

81

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
COMISS Compare
VCOMISS Ordered Scalar Single-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 32 bits of the first operand with a
single-precision floating-point value in the low-order 32 bits of the second operand and sets
rFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

The result is unordered if one or both of the operand valuesisaNaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:
COMISS

Thefirst source operand isan XMM register and the second source operand isan XMM register or a
32-bit memory location.

VCOMISS

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location.

Instruction Support

Form Subset Feature Flag
COMISS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCOMISS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
COMISS xmm1, xmm2/mem32 OF 2F /r Compares single-precision floating-point values in xmm1
with corresponding values in xmm2 or mem32 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCOMISS xmm1, xmm2 /mem32 C4 RXB.00001 X.Src.X.00 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

82 [Aﬁtﬂlﬁu\fﬁ%\ﬂﬁge] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

rFLAGS Affected

ID[VIP|VIF|AC|VM |RF|[NT| IOPL |[OF [DF | IF | TF | SF | ZF | AF | PF | CF
0 O | M| O [M][M

21| 20 | 19 | 18 | 17 | 16 | 14 13|12 1 [10 | 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flags Affected

MM | FZ RC PM | UM | OM|ZM |DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

0nlni>

nlni>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS=1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nnn vl n

nnn v n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

Instruction execution caused a page fault.

Alignment check, #AC

[20N)

Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF

X [X[X|X|X|X[X]| X [X[Z>>I>> 00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

x

A source operand was an SNaN value.

wn

wn

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

AV PubiicD3e] >

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
CVTDQ2PD Convert Packed Doubleword Integers
VCVTDQ2PD to Packed Double-Precision Floating-Point

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTDQ2PD

Converts two packed 32-bit signed integer valuesin the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted valuesto an XMM register. Bits [255:128] of the Y MM register that corresponds to the desti-
nation are not affected.

VCVTDQ2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed 32-bit signed integer valuesin the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted valuesto an XMM register. Bits [255:128] of the Y MM register that corresponds to the desti-
nation are cleared.

YMM Encoding

Converts four packed 32-hit signed integer values in the low-order 128 bits of aY MM register or a
256-bit memory location to four packed double-precision floating-point values and writes the con-
verted valuesto aY MM register.

Instruction Support

Form Subset Feature Flag
CVTDQ2PD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTDQ2PD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTDQ2PD xmm1, xmm2/mem64 F30F E6 /r Converts packed doubleword signed integers in xmm2
or mem64 to double-precision floating-point values in

xmm1.
Mnemonic Encoding
VEX RXB.map_select W.wvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6 /r
VCVTDQ2PD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 E6 /r

84 T%\TI\I?'(E?PIBU\S.‘I?G'[E?SZET Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2dl, (V)CVTSI2SD, (V)CVTTPD2DQ, (V)CVTT-
SD2Sl

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference TATI\%%PIBU\SJ[?G'??SZET 85

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
CVTDQ2PS Convert Packed Doubleword Integers
VCVTDQ2PS to Packed Single-Precision Floating-Point

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTDQ2PS

Converts four packed 32-bit signed integer valuesin an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted valuesto an XMM reg-
ister. Bits [255:128] of the Y MM register that corresponds to the destination are not affected.

VCVTDQ2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts four packed 32-bit signed integer valuesin an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted valuesto an XMM reg-
ister. Bits [255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed 32-bit signed integer valuesin aY MM register or a 256-bit memory location
to eight packed single-precision floating-point values and writes the converted valuesto aY MM reg-
ister.

Instruction Support

Form Subset Feature Flag
CVTDQ2PS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTDQ2PS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTDQ2PS xmm1, xmm2/mem128 OF 5B /r Converts packed doubleword integer values in xmm2 or
mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding

VEX RXB.map_select W.wvvv.L.pp Opcode
VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B /r
VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /r

Related Instructions
(V)CVTPS2DQ, (V)CVTSIZSS, (V)CVTSS29l, (V)CVTTPS2DQ, (V)CVTTSS2S

86 R VTDQ2P Instruction Reference
TAMEFBubiic et

AMDZU

26568—Rev. 3.25—November 2021

rFLAGS Affected
None

MXCSR Flag_]s Affected

AMDG64 Technology

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

nlnl>

nlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nnnn v n

nnnn o n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X|>Z O | X[X|X[X]| X [X|ZI>>I> 00

Instruction execution caused a page fault.

SIMD floating-point, #XF

X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE

S | s | X [Aresultcould not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

TAMEPubiic tréer ”

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTPD2DQ to Packed Doubleword Integer

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (—231 to +23L — 1), the instruction returns the 32-hit indefinite integer value (8000 0000h)
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTPD2DQ

Converts two packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits[127:64] of the destination are cleared. Bits
[255:128] of the Y MM register that corresponds to the destination are not affected.

VCVTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Convertstwo packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits[127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point valuesin aY MM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the Y MM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTPD2DQ SSE2 | CPUID Fn0O000_0001_EDX[SSEZ2] (bit 26)

VCVTPD2DQ | AVX |CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPD2DQ xmm1l, xmm2/mem128 F20F E6/r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPD2DQ xmml, xmm2/mem128 C4 RXB.00001 X.1111.0.11 E6 /r
VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 E6 /r

88 T%\m%qgu\bc‘ﬁe? §[é? Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD29Sl, (V)CVTSI2SD, (V)CVTTPD2DQ, (V)CVTT-
SD2Sl

rFLAGS Affected
None

MXCSR Flags Affected

MM | FZ | RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
AVX instructions are only recognized in protected mode.
CRO.EM =1.
CR4.0SFXSR = 0.
CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK|2:1] ! = 11b
VEX.vwwv ! = 1111b.
REX, F2, F3, or 66 prefix preceding VEX prefix.
Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.

Exception Cause of Exception

nlnl>
nlnl>

Invalid opcode, #UD

Device not available, #NM CRO.TS=1.

Stack, #SS Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

nnnon | v
nnnn | n

General protection, #GP

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Alignment check, #AC

Page fault, #PF Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

X | X2 0 | X X|X|X| X |X>Z>>>00

SIMD floating-point, #XF S

SIMD Floating-Point Exceptions

n
n
X

A source operand was an SNaN value.
S S X | Undefined operation.

Invalid operation, IE

Precision, PE S S X | Aresult could not be represented exactly in the destination format.
X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference T%\m[ﬁqgu\b(‘ﬁe? §[é 89

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTPD2PS Convert Packed Double-Precision Floating-Point
VCVTPD2PS to Packed Single-Precision Floating-Point

Converts packed double-precision floating-point values to packed single-precision floating-point val-
ues and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it isrounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTPD2PS

Converts two packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits[127:64] of the destination are cleared. Bits [255:128] of the Y MM register that
corresponds to the destination are not affected.

VCVTPD2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts two packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits[127:64] of the destination are cleared. Bits [255:128] of the Y MM register that
corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point valuesin aY MM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the Y MM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTPD2PS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTPD2PS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPD2PS xmm1, xmm2/mem128 66 OF 5A/r Converts packed double-precision floating-point
values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPD2PS xmm1, xmm2/mem128 Cc4 RXB.00001 X.1111.0.01 5A Ir
VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A Ir

90 RP2R VTRPD2P Instruction Reference
KM Bubhic Uée

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected
None

MXCSR Flags Affected

MM | FZ | RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
AVX instructions are only recognized in protected mode.

Exception

Cause of Exception

nlnl>
nlnl>

S |CRO.EM=1.
S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK[2:1]! = 11b
A | VEX.wwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,

see SIMD Floating-Point Exceptions below for details.
SIMD Floating-Point Exceptions

A source operand was an SNaN value.

Undefined operation.

Invalid operation, IE

Denormalized operand, DE A source operand was a denormal value.

Overflow, OE Rounded result too large to fit into the format of the destination operand.

Underflow, UE
Precision, PE

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Rounded result too small to fit into the format of the destination operand.
A result could not be represented exactly in the destination format.

nNnnnnnn
nNnnnnnn
X X[X | X[X[X

Instruction Reference f}xmlePﬁu\bG“\gP %Iéi 91

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTPS2DQ to Packed Doubleword Integers

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (—231 to +23L — 1), the instruction returns the 32-hit indefinite integer value (8000 0000h)
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTPS2DQ

Converts four packed single-precision floating-point valuesin an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted valuesto an XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VCVTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point valuesin an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted valuesto an XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point valuesin aY MM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted valuesto aY MM
register.

Instruction Support

Form Subset Feature Flag
CVTPS2DQ SSE2 | CPUID Fn0O0O00_0001_EDX[SSEZ2] (bit 26)

VCVTPS2DQ | AVX | CPUID Fn0000_0001_ECX]AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPS2DQ xmm1, xmm2/mem128 66 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B /r
VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

92 Tx\mﬁqgu\bﬁie? %[é(f Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)CVTDQ2PS, (V)CVTSIZSS, (V)CVTSS2sl, (V)CVTTPS2DQ, (V)CVTTSS2S

rFLAGS Affected
None

MXCSR Flags Affected
MM | FZ RC PM|[UM|[OM | ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
AVX instructions are only recognized in protected mode.

Exception

Cause of Exception

nlnl>
nlnl>

S |CRO.EM=1.
S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK[2:1]! = 11b
A | VEX.wwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD floating-point, #XF S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,

see SIMD Floating-Point Exceptions below for details.
SIMD Floating-Point Exceptions

S S X | Asource operand was an SNaN value.

S S X | Undefined operation.

Invalid operation, IE

Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference T%\mﬁqgu\bﬂgp %[é 93

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTPS2PD Convert Packed Single-Precision Floating-Point
VCVTPS2PD to Packed Double-Precision Floating-Point

Converts packed single-precision floating-point values to packed double-precision floating-point val-
ues and writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTPS2PD

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the Y MM register that corre-
sponds to the destination are not affected.

VCVTPS2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the Y MM register that corre-
sponds to the destination are cleared.

YMM Encoding

Converts four packed single-precision floating-point valuesin aYMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted valuesto aY MM
register.

Instruction Support

Form Subset Feature Flag
CVTPS2PD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)

VCVTPS2PD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPS2PD xmm1, xmm2/mem64 OF 5A/r Converts packed single-precision floating-point values
in xmm2 or mem64 to packed double-precision floating-
point values in xmmZ1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.00 5A Ir
VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

94 f}&mﬁﬁgu\fﬁl\gﬁgé Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
rFLAGS Affected
None

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception ReallVirt [Prot ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | LAmasked SIUD Heeling pont exception il o S XMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | Asource operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference f}&mﬁﬁgu\bﬂgﬁé% 95

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
CVTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTSD2SI to Signed Doubleword or Quadword Integer

Converts a scalar double-precision floating-point value to a 32-hit or 64-bit signed integer value and
writes the converted value to a general-purpose register.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the canversign is larger than the maximum signed dou-
bleword (=231 to +231 — 1) or quadword value (=283 to +2%3 — 1), the instruction returns the indefinite
integer value (8000 _0000h for 32-bit integers, 8000_0000 0000 _0000h for 64-bit integers) when the
invalid-operation exception (1E) is masked.

There are legacy and extended forms of the instruction:
CVTSD2SI
The legacy form has two encodings:

« When REX.W = 0, converts ascalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a64-bit memory location to a 32-hit signed integer and writes the converted
value to a 32-bit general purpose register.

* When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2SI

The extended form of the instruction has two 128-bit encodings:

* When VEX.W =0, converts ascalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a64-bit memory location to a 32-hit signed integer and writes the converted
valueto a 32-bit general purpose register.

* When VEX.W =1, converts ascaar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

Instruction Support

Form Subset Feature Flag
CVTSD2SI SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTSD2SI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

96 [%\\1\?@25[]\6%6'?3%%] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CVTSD2SI reg32, xmml/mem64 F2 (WO0) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a doubleword integer in reg32.

CVTSD2SI regb4, xmml/mem64 F2 (W1) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a quadword integer in reg64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D Ir
VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D Ir

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ, (V)CVTT-
SD2S|

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM| ZM |DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference m%zau\bcﬁgﬁég] 97

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, #xF | 5 | s | x | Lmasked SIuD Mg ot exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

98

(AN Pubiic Uée]

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

CVTSD2SS Convert Scalar Double-Precision Floating-Point
VCVTSD2SS to Scalar Single-Precision Floating-Point

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSD2SS

Converts a scalar double-precision floating-point value in the low-order 64 bits of the second source

XMM register or a64-bit memory location to ascalar single-precision floating-point value and writes
the converted value to the low-order 32 bits of adestination XMM register. Bits[127:32] of the desti-
nation are not affected. Bits[255:128] of the Y MM register that corresponds to the destination are not
affected.

VCVTSD2SS

The extended form of the instruction has a 128-bit encoding only.

Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits[127:32] of the destina-
tion are copied from the first source XMM register. Bits [255:128] of the Y MM register that corre-
sponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSD2SS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTSD2SS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTSD2SS xmm1, xmm2/mem64 F2 OF 5A/r Converts a scalar double-precision floating-point
value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5AIr

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

rFLAGS Affected
None

Instruction Reference ﬁ&ﬁﬁﬁu\bﬂgﬁéaj 99

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SD foatng-poi, i | 5 | 5 | x [Amasked SIUD fostinaipont excepton while CRA,OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
. . S S X | A source operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

100

AME Pubic T8]

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

CVTSI2SD Convert Signed Doubleword or Quadword Integer
VCVTSI2SD to Scalar Double-Precision Floating-Point

Converts asigned integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the valueis
rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SD

The legacy form as two encodings:

When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits[255:128] of the corresponding Y MM register are not affected.

« When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit doubl e-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits[255:128] of the corresponding Y MM register are not affected.

VCVTSI2SD

The extended form of the instruction has two 128-bit encodings:

When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits[127:64] of the
first source XMM register are copied to the destination XMM register. Bits[255:128] of theY MM
register that corresponds to the destination are cleared.

When VEX.W =1, convertsasigned quadword integer value from a64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits[127:64] of thefirst
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSI2SD SSE2 | CPUID Fn0O000_0001_EDX[SSEZ2] (bit 26)
VCVTSI2SD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [%\%ﬁgu\bﬂgﬁssé)] 101

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

CVTSI2SD xmm1, reg32/mem32 F2 (WO0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
double-precision floating-point value in xmm1.

CVTSI2SD xmml, reg64/mem64 F2 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
double-precision floating-point value in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SD xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.11 2A Ir
VCVTSI2SD xmm1, xmm2, reg64/mem64 c4 RXB.00001 1.src.X.11 2A I

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPRI2PD, (V)CVTSD2dl, (V)CVTTPD2DQ, (V)CVTT-
SD2Sl

rFLAGS Affected
None

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM | ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE

M

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

102 [%\Wﬁgu\bcﬁ\gﬁzssé)] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, #xE | 5 | S | x| oD e e e e CPT =L

SIMD Floating-Point Exceptions
Precision, PE | S | S | X |A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [(A%ﬁgu\bﬂe'%’zssé)] 103

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTSIZ2SS Convert Signed Doubleword or Quadword Integer
VCVTSI2SS to Scalar Single-Precision Floating-Point

Converts asigned integer value to a single-precision floating-point value and writes the converted
valueto an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SS

The legacy form has two encodings:

When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits[255:128] of the corresponding Y MM register are not affected.

« When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits[255:128] of the corresponding Y MM register are not affected.

VCVTSIZ2SS

The extended form of the instruction has two 128-bit encodings:

When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits[127:32] of the
first source XMM register are copied to the destination XMM register. Bits[255:128] of theY MM
register that corresponds to the destination are cleared.

When VEX.W =1, convertsasigned quadword integer value from a64-bit source general-purpose
register or a 64-bit memory location to a single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits[127:32] of thefirst
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSI2SS SSE1 | CPUID FnO000_0001_EDX[SSE] (bit 25)
VCVTSI2SS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

104 @\Wﬁu\b{‘ﬁgﬁs‘s@] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CVTSI2SS xmm1, reg32/mem32 F3 (WO0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
single-precision floating-point value in xmm1.

CVTSI2SS xmm1, reg64/mem64 F3 (W1) OF 2A /r Converts a quadword integer in reg64 or memé64 to a
single-precision floating-point value in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SS xmm1, xmm2, reg32/mem32 Cc4 RXB.00001 0.src.X.10 2A0r
VCVTSI2SS xmm1, xmm2, reg64/mem64 c4 RXB.00001 1.src.X.10 2A

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2sl, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected
None

MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE

M

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference [%\W%U\bﬁ?gﬁssé] 105

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

X

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnlx>

nlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nnn nu n

nnn | n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

"

Instruction execution caused a page fault.

Alignment check, #AC

(0]

X[X[X|X[X[X| X [X|>|>I> 00

Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF

X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE

S | s | X [Aresultcould not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

106

(AN Pubtic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CVTSS2SD Convert Scalar Single-Precision Floating-Point
VCVTSS2SD to Scalar Double-Precision Floating-Point

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.

There are legacy and extended forms of the instruction:
CVTSS2SD

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM reg-
ister or a 32-hit memory location to a scalar double-precision floating-point value and writes the con-
verted value to the low-order 64 bits of a destination XMM register. Bits[127:64] of the destination
and bits [255:128] of the corresponding Y MM register are not affected.

VCVTSS2SD

The extended form of the instruction has a 128-bit encoding only.

Converts a scalar single-precision floating-point value in the low-order 32 bits of the second source
XMM register or 32-bit memory location to a scalar double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits[127:64] of the des-
tination are copied from the first source XMM register. Bits [255:128] of the Y MM register that cor-
responds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSS2SD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTSS2SD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTSS2SD xmm1, xmm2/mem32 F3 0OF 5A/r Converts a scalar single-precision floating-point value
in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSS2SD xmm1, xmm2, xmm3/mem64 Cca RXB.00001 X.src.X.10 5AIr

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

Instruction Reference f}xﬁﬁﬁgu\fﬁl\gﬁése[j 107

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SD foatng-poi, i | 5 | 5 | x [Amasked SIUD fostinaipont excepton while CRA,OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
. . S S X | A source operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

108

fﬁ(ﬁﬁ%ﬁ%ﬁ%@ﬁ Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
CVTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTSS2SI to Signed Doubleword or Quadword Integer

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a genera-purpose register.

When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point value isaNaN, infinity, or the result of the conversion islarger
than the maximum signed doubleword (—231 to +231 — 1) or quadword value (—253to +253 — 1), the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTSS2SI

The legacy form has two encodings:

* When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When REX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI

The extended form of the instruction has two 128-bit encodings:

* When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

Instruction Support

Form Subset Feature Flag
CVTSS2S| SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCVTSS2SI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [g\W@ZEU\bﬂgﬁég] 109

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

CVTSS2SI reg32, xmml/mem32 F3 (W0) OF 2D /r Converts a single-precision floating-point value in
xmml or mem32 to a 32-bit integer value in reg32

CVTSS2SI reg64, xmml//mem64 F3 (W1) OF 2D /r Converts a single-precision floating-point value in
xmml or mem64 to a 64-bit integer value in reg64

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSS2SI reg32, xmml/mem32 C4 RXB.00001 0.1111.X.10 2D Ir
VCVTSS2SI reg64, xmml/mem64 C4 RXB.00001 1.1111.X.10 2D Ir

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSIZSS, (V)CVTTPS2DQ, (V)CVTTSS2S

MXCSR Flags Affected
MM | FZ RC PM|[UM|[OM|ZM |[DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

110 ﬁ\%Zﬁlu\fﬁl\gﬁég] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, #xF | 5 | s | x | Lmasked SIuD Mg ot exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[ANDPubtic U82] o

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTTPD2DQ to Packed Doubleword Integer, Truncated

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
valueisaNaN, infinity, or the result of the conversion islarger than the maximum signed doubleword
(-231to +231 — 1), the instruction returns the 32-bit indefinite integer value (8000_0000h) when the
invalid-operation exception (1E) is masked.

There are legacy and extended forms of the instruction:
CVTTPD2DQ

Convertstwo packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits[127:64] of the destination are cleared. Bits
[255:128] of the Y MM register that corresponds to the destination are not affected.

VCVTTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [255:128] of the Y MM register that corresponds
to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point valuesin aY MM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM regis-
ter. Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTTPD2DQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)

VCVTTPD2DQ| AVX |CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

112 CTATW'[SHQU\{J%&TU[S)ZQITQ Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

CVTTPD2DQ xmm1, xmm2/mem128

Mnemonic

Opcode
66 OF E6 /r

VCVTTPD2DQ xmm1, xmm2/mem128
VCVTTPD2DQ xmm1, ymm2/mem256

Related Instructions

AMDG64 Technology

Description

Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1. Truncates inexact result.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 E6 /r
C4 RXB.00001 X.1111.1.01 E6 /r

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected

MM | FZ RC PM|UM | OM| ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference

“TAVISBubic USE} e

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK[2:1]! = 11b
A |VEX.wvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-poim, e | s | s | x [Smasked SIuD Faatna b o e i
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

114

“TAVISBubiic USE}

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

CVTTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTTPS2DQ to Packed Doubleword Integers, Truncated

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value isa Nal, infinity, or the result of the conversion islarger than the max-
imum signed doubleword (23! to +231 — 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (1E) is masked.

There are legacy and extended forms of the instruction:
CVTTPS2DQ

Converts four packed single-precision floating-point valuesin an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted valuesto an XMM
register. The high-order 128-bits of the corresponding Y MM register are not affected.

VCVTTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point valuesin an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted valuesto an XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point valuesin aY MM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted valuestoaY MM
register.

Instruction Support

Form Subset Feature Flag
CVTTPS2DQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTTPS2DQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTTPS2DQ xmml, xmm2/mem128 F3 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact

result.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r
VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

Instruction Reference CrAmﬁqgu\fﬁl\e'UszeﬁQ 115

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2S!, (V)CVTTSS2S

MXCSR Flag_]s Affected

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK[2:1] ! = 11b
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-point, x| 5 | s | x | LAmasked SIUD Heeling pontexceptio e o SXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | Asource operand was an SNaN value.
S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

116

“TAMB Pubiic Use]®

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

CVTTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTTSD2SI to Signed Double- or Quadword Integer, Truncated

Converts a scalar double-precision floating-point value to a signed integer value and writes the con-
verted value to a general-purpose register.

When the result of the conversion is an inexact value, the valueis truncated (rounded toward zero).
When the floating-point val ue, |s a NaN infinity, or the result of the convers on is larger than the max-
imum signed doubleword (— 231 to +231 —1) or quadword value (- 26310 +203 1), the instruction
returns the indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSD2SI

The legacy form of the instruction has two encodings:

* When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a64-bit memory location to a 32-hit signed integer and writes the converted
valueto a 32-bit general purpose register.

« When REX.W =1, convertsascalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI

The extended form of the instruction has two 128-bit encodings.

* When VEX.W =0, converts ascaar double-precision floating-point value in the low-order 64 bits
of an XMM register or a64-bit memory location to a 32-bit signed integer and writes the converted
value to a32-hit general purpose register.

* When VEX.W =1, converts ascalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

Instruction Support

Form Subset Feature Flag
CVTTSD2SI SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTTSD2SI AVX | CPUID Fn0000_0001_ECXJ[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference TATN]ﬁBZl%IU\bGﬁgB[SDZeT 117

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

CVTTSD2SI reg32, xmml/mem64 F2 (WO0) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI reg64, xmml/mem64 F2 (W1) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2CIr
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2CIr

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2S!, (V)CVTSI2SD,
(V)CVTTPD2DQ

MXCSR Flags Affected
MM | FZ RC PM|[UM|[OM|ZM |[DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

118 TX\TN]@Z&IU\ECHXG'H[S%T Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, #xF | 5 | s | x | Lmasked SIuD Mg ot exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

TAVIDPubtic Use] e

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

CVTTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTTSS2SI to Signed Double or Quadword Integer, Truncated

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a genera-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value isa NaN, infinity, or the result of the conversion islarger than the max-
imum signed doubleword (231 to +231 — 1) or quadword value (=283 to +2%2 — 1), the indefinite inte-
ger value (8000 _0000h for 32-bit integers, 8000_0000_ 0000 0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTTSS2SI

The legacy form of the instruction has two encodings:

* When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the

converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

* When REX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit genera-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI

The extended form of the instruction has two 128-bit encodings:

* When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

Instruction Support

Form Subset Feature Flag
CVTTSS2SI SSE1 | CPUID FnO000_0001_EDX[SSE] (bit 25)
VCVTTSS2SI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

120 T%\TWZEG{J%@'H%Z&I Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CVTTSS2SI reg32, xmml/mem32 F3 (W0) OF 2C /r Converts a single-precision floating-point value in
xmml or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI regb4, xmml/mem64 F3 (W1) OF 2C /r Converts a single-precision floating-point value in
xmm21 or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTSS2SI reg32, xmml/mem32 C4 RXB.00001 0.1111.X.10 2CIr
VCVTTSS2SI reg64, xmml/mem64 C4 RXB.00001 1.1111.X.10 2C Ir

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSIZSS, (V)CVTSS2sl, (V)CVTTPS2DQ

MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference T%\Tl\'yﬁizlglu\bcﬂxe'ﬁgéil 121

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, #xF | 5 | s | x | Lmasked SIuD Mg ot exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

122

TAVDPubic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
DIVPD Divide
VDIVPD Packed Double-Precision Floating-Point

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point val ues of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPD

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a128-bit memory location and writes the two results adestination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides four packed double-precision floating-point values in the first source Y MM register by the
corresponding packed double-precision floating-point values in either a second source Y MM register
or a 256-bit memory location and writes the two results a destination Y MM register.

Instruction Support

Form Subset Feature Flag
DIVPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VDIVPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVPD xmm1, xmm2/mem128 66 OF 5E /r Divides packed double-precision floating-point values in
xmm1l by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E /r
VDIVPD ymm1, ymm2, ymm3/mem256 ca RXB.00001 X.src.1.01 5E /r

Instruction Reference [AWPIBU\b[ii\épase] 123

AMDZU

AMDG64 Technology

Related Instructions

(V)DIVPS, (V)DIVSD, (V)DIVSS

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM|UM | OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] | = 11h.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-point, #xF | 5 | s | x | Lmesked SIUD Meetng it exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

124

[AMBPUbIIE Ose]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
DIVPS Divide
VDIVPS Packed Single-Precision Floating-Point

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPS

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a128-bit memory location and writes two results to athird destination XMM register. Bits
[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Divides eight packed single-precision floating-point values in the first source Y MM register by the
corresponding packed single-precision floating-point values in either a second source Y MM register
or a 256-bit memory location and writes the two results a destination Y MM register.

Instruction Support

Form Subset Feature Flag
DIVPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VDIVPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVPS xmm1, xmm2/mem128 OF 5E /r Divides packed single-precision floating-point values in
xmml1 by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E /r
VDIVPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

Instruction Reference [AWPﬁu\b[ﬂ\épﬁse] 125

AMDZU

AMDG64 Technology

Related Instructions

(V)DIVPD, (V)DIVSD, (V)DIVSS

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM|UM | OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] | = 11h.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-point, #xF | 5 | s | x | Lmesked SIUD Meetng it exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

126

[AMYPubti¢Ose]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
DIVSD Divide
VDIVSD Scalar Double-Precision Floating-Point

Divides the double-precision floating-point value in the low-order quadword of the first source oper-
and by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.

There are legacy and extended forms of the instruction:

DIVSD

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a64-bit memory location. The first source register is also the destination register. Bits[127:64]
of the destination are not affected. Bits [255:128] of the Y MM register that corresponds to the desti-

nation are not affected.

VDIVSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a64-bit memory location. Bits[127:64] of the first source operand are copied to bits[127:64] of
the destination. The destination isathird XMM register. Bits[255:128] of the Y MM register that cor-
responds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
DIVSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VDIVSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVSD xmm1, xmm2/mem64 F2 OF 5E /r Divides the double-precision floating-point value in the low-
order 64 bits of xmm1by the corresponding value in xmm2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E Ir

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSS

Instruction Reference [Al\mﬁgu\b[ﬂ\ésase] 127

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | LAmasked SIUD Heelng pontexcepti e o SXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | Asource operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

128

[AMBBUBTEDse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
DIVSS Divide Scalar Single-Precision Floating-Point
VDIVSS

Divides the single-precision floating-point value in the low-order doubleword of the first source oper-
and by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:

DIVSS

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits[127:32]
of the destination are not affected. Bits [255:128] of the Y MM register that corresponds to the desti-
nation are not affected.

VDIVSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is athird XMM register. Bits [127:32] of thefirst
source operand are copied to bits[127:32] of the destination. Bits[255:128] of the Y MM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
DIVSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VDIVSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVSS xmm1, xmm2/mem32 F3 OF 5E /r Divides a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E /r

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSD

Instruction Reference [AW%U\GH\(/;S@S@] 129

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | LAmasked SIUD Heelng pontexcepti e o SXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | Asource operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

130

[AMBPUBTEDse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
DPPD Dot Product
VDPPD Packed Double-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.

Selectively multiplies packed double-precision values in a source operand by the corresponding val-
ues in a second source operand, writes the results to atemporary location, adds the results, writes the
sum to a second temporary location and selectively writes the sum to a destination.

Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When amask bit = 1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When amask bit = O, the corre-
sponding position of the temporary location is cleared.

After the two 64-bit valuesin the first temporary location are added and written to the 64-bit second
temporary location, mask bits[1:0] of the same 8-bit immediate operand perform write selection. Bit
1 selects bits[127:64] of the destination; bit O selects bits[63:0] of the destination. When amask bit =
1, the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When amask bit = 0, the corresponding position of the destination is cleared.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN2
Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] iswritten to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

Instruction Reference [AWPIBU\b[TiEPlEJse] 131

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

There are legacy and extended forms of the instruction:
DPPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDPPD

The extended form of the instruction has a single 128-bit encoding.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits[255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
DPPD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VDPPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DPPD xmm1, xmm2/mem128, imm8 66 OF 3A 41 /rib Selectively multiplies packed double-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvv.L.pp Opcode
VDPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 41 /rib

Related Instructions

(V)DPPS

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM |[DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M [M

171514\131211109876543210

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

132 [Al\/l[ﬁPlgu\b[ﬂEPlbse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nnnnw | n

nnnnw | v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

()

X | X[>Z| 0 | X0 X|X|X| X |X>Z>>>00N

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

A source operand was an SNaN value.

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

Overflow, OE

Rounded result too large to fit into the format of the destination operand.

Underflow, UE

Rounded result too small to fit into the format of the destination operand.

Precision, PE

nnnnnon

0nnnnnon

XXX | X[X[X

A result could not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMD BubiiidUse]

133

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
DPPS Dot Product
VDPPS Packed Single-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.

Selectively multiplies packed single-precision values in a source operand by corresponding valuesin
a second source operand, writes results to a temporary location, adds pairs of results, writes the sums
to additional temporary locations, and selectively writes a cumulative sum to a destination.

Mask bits[7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits[95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When amask bit = 1, the corresponding packed single-preci-
sion floating point values are multiplied and the product is written to the corresponding position of a
128-bit temporary location. When amask bit = 0, the corresponding position of the temporary loca
tionis cleared.

After multiplication, three pairs of 32-bit values are added and written to temporary locations.
Bits[63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location
3; then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location
4,

After addition, mask bits[3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-hit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64],
bit 1 selects bits[63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-
bit value of the fourth temporary location is written to the corresponding position of the destination.
When amask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this processis performed on the upper and lower 128 bits of the
affected YMM registers.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN2
Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits[31:0] iswritten to all indicated fields

134 [AMlﬁfPﬁu\b[h P?JS@] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) iswritten
to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

There are legacy and extended forms of the instruction:
DPPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is aso the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
DPPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VDPPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DPPS xmm1, xmm2/mem128, imm38 66 OF 3A 40 /rib Selectively multiplies packed single-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40/rib
VDPPS ymm1, ymmz2, ymm3/mem256, imms8 c4 RXB.00011 X.src.1.01 40/rib

Related Instructions
(V)DPPD

Instruction Reference [AMﬁpﬁu\b[ﬂDCP%JSG] 135

AMDZU

AMDG64 Technology

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] | = 11h.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-point, #xF | 5 | s | x | LImesked SIUD Mot ot exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

136

[Al\/lrffplﬁUﬁﬁ:P?Jse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
EXTRACTPS Extract
VEXTRACTPS Packed Single-Precision Floating-Point

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.

Bits[1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits[7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:
EXTRACTPS

The source operand isan XMM register. The destination can be ageneral purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.

VEXTRACTPS

The extended form of the instruction has a single 128-bit encoding.

The source operand isan XMM register. The destination can be ageneral purpose register or a 32-bit
memory location.

Instruction Support

Form Subset Feature Flag
EXTRACTPS | SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VEXTRACTPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
EXTRACTPS reg32/mem32, xmm1 66 OF 3A 17 /rib Extract the single-precision floating-point
imm8 element of xmm1 specified by imm8 to
reg32/mema32.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 Irib

Related Instructions
(V)INSERTPS

Instruction Reference ETAWﬁPﬁU\bI:‘ﬁ(CTTﬁgéTS 137

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nnnnwn

nnnnwn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

wn

Instruction execution caused a page fault.

Alignment check, #AC

XIX|X|X|X[X|X|X|[Z>>I>>0nW0

Unaligned memory reference when alignment checking enabled.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

138

“IRRD Pubtic Use]

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

EXTRQ Extract Field From Register

Extracts specified bits from the lower 64 bits of the first operand (the destination XMM register). The
extracted bits are saved in the least-significant bit positions of the lower quadword of the destination;
the remaining bitsin the lower quadword of the destination register are cleared to 0. The upper quad-
word of the destination register is undefined.

The portion of the source data being extracted is defined by the bit index and the field length. The bit
index defines the least-significant bit of the source operand being extracted. Bits [bit index + length
field — 1]:[bit index] are extracted. If the sum of the bit index + length field is greater than 64, the
results are undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source [47:32] in bits 15:0, with zerosin bits 63:16.

A value of zero in the field length is defined as alength of 64. If the length field is 0 and the
bit index is 0, bits 63:0 of the source are extracted. For any other value of the bit index, the results are
undefined.

The bit index and field length can be specified asimmediate values (second and first immediate oper-
ands, respectively, in the case of the three argument version of the instruction), or they can both be
specified by fieldsin an XMM source operand. In the latter case, bits[5:0] of the XMM register spec-
ify the number of bitsto extract (the field length) and bits [13:8] of the XMM register specify the
index of thefirst bit in the field to extract. The bit index and field length are each six bitsin length;
other bits of the field are ignored.

The diagram below illustrates the operation of thisinstruction.

XMM1
second imm8 first imm8
127 6463 ‘ 0 7 5 0 7 5 0
shift right g
mask to field length-e
|

XMM1 XMM2
127 6463 % 0 127 138 50
shift right g
mask to field length-e
|

Instruction Reference [AMD B(JBRC Use] 139

AMDZU

AMDG64 Technology

Instruction Support

26568—Rev. 3.25—November 2021

Form Subset

Feature Flag

EXTRQ SSE4A

CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Mnemonic

EXTRQ xmml, imm8, imm38

EXTRQ xmm1l, xmm2

Related Instructions

Opcode

66 OF 78 /0 ib ib

66 OF 79 /r

INSERTQ, PINSRW, PEXTRW

Description

Extract field from xmmZ1, with the least significant bit
of the extracted data starting at the bit index
specified by [5:0] of the second immediate byte, with
the length specified by [5:0] of the first immediate
byte.

Extract field from xmmZ1, with the least significant bit
of the extracted data starting at the bit index
specified by xmm2[13:8], with the length specified
by xmm2[5:0].

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSEA4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.
Eﬁ\ﬂce not available, X X X The task-switch bit (TS) of CRO was set to 1.
140

AVD B Use] eveton Refrece

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
HADDPD Horizontal Add
VHADDPD Packed Double-Precision Floating-Point

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:
HADDPD

Adds the packed double-precision valuesin bits[127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the Y MM register that
corresponds to the destination are not affected.

VHADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Adds the packed double-precision valuesin bits[127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding dou-
blewords of the second source XMM register or a 128-bit memory location and writes the sum to bits
[127:64] of the destination. Bits[255:128] of the Y MM register that corresponds to the destination
are cleared.

YMM Encoding

Adds the packed double-precision valuesin bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination Y MM register; adds the corre-
sponding doublewords of the second source Y MM register or a 256-bit memory location and writes
the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

Instruction Support

Form Subset Feature Flag
HADDPD SSE3 | CPUID Fn0000_0001_ECX[SSES3] (bit 0)
VHADDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
HADDPD xmm1, xmm2/mem128 66 OF 7C /r Adds adjacent pairs of double-precision values in xmm1
and xmmz2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7CIr
VHADDPD ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.01 7CIr

Instruction Reference [AWPlgu\bl-’fCDPfSDe] 141

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)HADDPS, (V)HSUBPD, (V)HSUBPS

MXCSR Flag_]s Affected

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] | = 11h.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-point, #xF | 5 | s | x | Lmesked SIUD Meetng it exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

142

[AWPIBU\H’Q:DBDSDe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
HADDPS Horizontal Add
VHADDPS Packed Single-Precision

Adds adjacent pairs of single-precision floating-point valuesin two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:
HADDPS

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination; adds the packed single-precision valuesin bits
[127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the destina-

tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and writes the sum to bits[95:64] and [127:96] of the destination. The first source register is also the
destination. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VHADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of thefirst source XMM regis-
ter and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-preci-
sion valuesin bits[127:96] and bits[95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Adds the packed single-precision valuesin bits [63:32] and bits[31:0] of the first source YMM regis-
ter and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-preci-
sion valuesin bits[127:96] and bits[95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding valuesin the second source Y MM register or a
256-bit memory location and writes the sumsto bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

Instruction Support

Form Subset Feature Flag
HADDPS SSE3 | CPUID Fn0000_0001_ECX[SSES3] (bit 0)
VHADDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [AI—IOI[ES)Plﬁu\bI-hOCDPJDSSe] 143

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 OF 7C /r Adds adjacent pairs of single-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7CIr
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7CIr

Related Instructions
(V)HADDPD, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
7|14 |2|nn|1w0]9 |87][6][5]4]3]2]1]0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

144 [AI-IOI[ES)PlﬁU\bI-hBCDPJDSSe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-poim, e | s | s | x [Lmasked SIuD Faatnapo e e i
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

(AR PusticUse]

145

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
HSUBPD Horizontal Subtract
VHSUBPD Packed Double-Precision

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.

There are legacy and extended forms of the instruction:
HSUBPD

The first source register is also the destination.

Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the corre-
sponding values of the second source XMM register or a 128-bit memory location and writes the dif-
ferenceto bits[127:64] of the destination. Bits[255:128] of the Y MM register that correspondsto the
destination are not affected.

VHSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Subtracts the packed double-precision valuesin bits[127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register; sub-
tracts the corresponding values of the second source XMM register or a 128-bit memory location and
writes the difference to bits [127:64] of the destination. Bits [255:128] of the Y MM register that cor-
responds to the destination are cleared.

YMM Encoding

Subtracts the packed double-precision valuesin bits [127:64] from the value in bits [63:0] of the of
thefirst source Y MM register and writes the difference to bits [63:0] of the destination YMM regis-
ter; subtracts the corresponding values of the second source Y MM register or a 256-bit memory loca-
tion and writes the difference to bits [127:64] of the destination. Performs the same process for the
upper 128 bits of the sources and destination.

Instruction Support

Form Subset Feature Flag
HSUBPD SSE3 | CPUID Fn0O0O00_0001_ECX[SSES3] (bit 0)
VHSUBPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

146 [A%Pﬁu\bﬁtuﬁé)e] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode
HSUBPD xmm1, xmm2/mem128 66 OF 7D /r

Subtracts adjacent pairs of double-precision floating-

AMDG64 Technology

Description

point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D Ir
VHSUBPD ymm1, ymm2, ymm3/mem256 Cca RXB.00001 X.src.1.01 7D Ir
Related Instructions
(V)HSUBPS, (V)HADDPD, (V)HADDPS
MXCSR Flags Affected
MM | FZ RC PM | UM |OM | ZM |DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Instruction Reference 147

[AMGPuslic' Use]

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-poim, e | s | s | x [Lmasked SIuD Faatnapo e e i
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

148

[AMGPuslic' Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
HSUBPS Horizontal Subtract Packed Single
VHSUBPS

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes
the differences to a destination.

There are legacy and extended forms of the instruction:
HSUBPS

Subtracts the packed single-precision values in bits [63:32] from the valuesin bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the sec-
ond source XMM register or a 128-bit memory location and writes the differences to bits [95:64] and
[127:96] of the destination. The first source register is also the destination. Bits [255:128] of the

YMM register that corresponds to the destination are not affected.

VHSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register; sub-
tracts the packed single-precision valuesin bits[127:96] from the value bits [95:64] of thefirst source
register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. Bits [255:128] of the Y MM register that corresponds to the destina-
tion are cleared.

YMM Encoding

Subtracts the packed single-precision values in bits[63:32] from the value in bits [31:0] of the first
source Y MM register and writes the difference to bits [31:0] of the destination Y MM register; sub-
tracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source Y MM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

Instruction Support

Form Subset Feature Flag
HSUBPS SSE3 | CPUID Fn0000_0001_ECX[SSES3] (bit 0)
VHSUBPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [WPﬁuBIﬁ%UHDSSe] 149

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 OF 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2
or mem128. Writes differences to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7D Ir
VHSUBPS ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.11 7D Ir

Related Instructions
(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM |[DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
7|14 |12|nn|1w0]9|8]|]7][6][5]4]3]2]1]0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

150 [WPﬁu}SIﬁ%UHDSSe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-poim, e | s | s | x [Lmasked SIuD Faatnapo e e i
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[AMBPublic tse]

151

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
INSERTPS Insert
VINSERTPS Packed Single-Precision Floating-Point

Copies aselected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.

Selections are specified by three fields of an immediate 8-bit operand:

7 \ 6 5 \ 4 3 \ 2 | 1 \ 0
COUNT_S | COUNT_D ZMASK

COUNT_S— The binary value of the field specifies a 32-bit element of a source register, counting
upward from the low-order doubleword. COUNT _Sis used only for register source; when the source
isamemory operand, COUNT_S=0.

COUNT _D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.

ZMASK — Set abit to clear a 32-bit element of the destination.

There are legacy and extended forms of the instruction:

INSERTPS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the Y MM register that corresponds to the destination are not
affected.

When the source operand is aregister, the instruction copies the 32-bit element of the source specified
by Count_S to the location in the destination specified by Count_D, and clears destination elements
as specified by ZMask. Elements of the destination that are not cleared are not affected.

When the source operand is amemory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count_D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.

VINSERTPS

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination isan XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

When the second source operand is aregister, the instruction copies the 32-bit element of the source
specified by Count_Sto the location in the destination specified by Count_D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.

When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count_D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

Instruction Support

Form Subset Feature Flag
INSERTPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VINSERTPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

152 rﬂﬁlﬁPﬁu\ﬂlﬁéEﬁgPe Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

Instruction Encoding

Mnemonic

INSERTPS xmm1, xmm2/mem32, imm8

Opcode Description

66 OF 3A 21 /rib Insert a selected single-precision floating-
point value from xmm2 or from mem32 at a
selected location in xmm1 and clear
selected elements of xmm1. Selections
specified by imm8.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21/rib

Related Instructions

(V)EXTRACTPS
Exceptions
Excepti Mode C f Excepti
Xxception Reall Virt [Prot ause or exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

fﬂﬁﬁpﬁuﬁl“iﬁ%"e 153

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

INSERTQ Insert Field

Inserts bits from the lower 64 bits of the source operand into the lower 64 bits of the destination oper-
and. No other bitsin the lower 64 bits of the destination are modified. The upper 64 bits of the desti-
nation are undefined.

Theleast-significant | bits of the source operand are inserted into the destination, with the | east-signif-
icant bit of the source operand inserted at bit position n, where | and n are defined as the field length
and bit index, respectively.

Bits (field length — 1):0 of the source operand are inserted into bits (bit index + field length — 1):(bit
index) of the destination. If the sum of the bit index + length field is greater than 64, the results are
undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source operand[15:0] in bits 47:32. Bits 63:48 and bits 31:0 are not modified.

A value of zeroin thefield length is defined as alength of 64. If the length field is 0 and the bit index
is 0, bits 63:0 of the source operand are inserted. For any other value of the bit index, the results are
undefined.

The bitsto insert are located in the XMM2 source operand. The bit index and field length can be spec-
ified asimmediate values or can be specified in the XMM source operand. In the immediate form, the
bit index and the field length are specified by the fourth (second immediate byte) and third operands
(first immediate byte), respectively. In the register form, the bit index and field length are specified in
bits [77:72] and bits [69:64] of the source XMM register, respectively. The bit index and field length
are each six bitsin length; other bitsin the field are ignored.

The diagram below illustrates the operation of thisinstruction.

first second

XMM2 imm8 imm8
127 6463 075 075 0
XMM1
| 2 JE
127 6463 ‘ 0 select number of bits to insert ¢——

select bit position for insert -
|

XMM1 XMM2

77 69
127 6463 0 127 72 6463 0

Lselect number of bits to insert

L :
L select bit position for insert

154 [AMDII]@EBTﬁ Use] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Support

Form Subset

Feature Flag

INSERTQ SSE4A

CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Mnemonic

Opcode Description

Insert field starting at bit 0 of xmm2 with the length

INSERTQ xmml, xmm2, imm8, F2 OF 78 Irib ib specified by [5:0] of the first immediate byte. This

imm8

INSERTQ xmm1l, xmm2

Related Instructions

field is inserted into xmm1 starting at the bit position
specified by [5:0] of the second immediate byte.

Insert field starting at bit 0 of xmm2 with the length

F2 OF 79 /r specified by xmm2[69:64]. This field is inserted into
xmm1 starting at the bit position specified by
xmm2[77:72].

EXTRQ, PINSRW, PEXTRW

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.
#I?ISJ\ICICG not available, X X X The task-switch bit (TS) of CRO was set to 1.

Instruction Reference

[AMD"BaBlie Use] 0

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
LDDQU Load
VLDDQU Unaligned Double Quadword

L oads unaligned double quadwords from a memory location to a destination register.

Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-hit or 256-bit operand from an
unaligned memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytesto get the first part of the operand, and an
aligned 16 or 32 bytesto get the second part of the operand. This behavior isimplementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the mem-
ory operand isin amemory range where reading extra bytes can cause performance or functiona
issues, use (V)MOVUPD instead of (V)LDDQU.

Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-protec-
tion exceptions.

There are legacy and extended forms of the instruction:
LDDQU

The source operand is an unaligned 128-bit memory location. The destination operand isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination register are not
affected.

VLDDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The source operand is an unaligned 128-bit memory location. The destination operand isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination register are cleared.

YMM Encoding

The source operand is an unaligned 256-bit memory location. The destination operandisaY MM reg-
ister.

Instruction Support

Form Subset Feature Flag
LDDQU SSE3 | CPUID Fn0000_0001_ECX[SSEZ3] (bit 0)
VLDDQU AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
LDDQU xmm1, mem128 F20F FO/r Loads a 128-bit value from an unaligned mem128 to
xmm1l.
Mnemonic Encoding
VEX RXB.map_select W.wvvv.L.pp Opcode
VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 FO /r
VLDDQU ymm1, mem256 C4 RXB.00001 X.1111.1.11 FO /r

156 [AMB?HU\{JL“ D%JS@] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

AMDG64 Technology

(VMOVDQU
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Alignment check, #AC S S X | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMBPUBIC Ose] !

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
LDMXCSR Load
VLDMXCSR MXCSR Control/Status Register

Loads the MXCSR register with a 32-bit value from memory.

For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
isa 32-bit memory location and the destination operand is the MXCSR.

If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or Y MM register operand and
causes that particular SIMD floating-point exception to be reported executes.

A general protection exception occursif theinstruction attempts to load non-zero valuesinto reserved
MXCSR bits. Software can use MXCSR_MASK to determine which bits are reserved. For details,
see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.

The MXCSR register is described in “Registers’ in Volume 1.

Instruction Support

Form Subset Feature Flag
LDMXCSR SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VLDMXCSR AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
LDMXCSR mem32 OF AE /2 Loads MXCSR register with 32-bit value from memory.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

Related Instructions

(V)STMXCSR

MXCSR Flags Affected

MM | FZ RC PM|UM|OM|ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE
MM MM [M[M[M[M|[M|[M[M|M|[M[M|MI[M]|[M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference

e AV Pubiic'

(@)
ke

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Null data segment used to reference memory.
S S X | Attempt to load non-zero values into reserved MXCSR bits
Page fault, #PF X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

(AL Pubic'Use] 0

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MASKMOVDQU Masked Move
VMASKMOVDQU Double Quadword Unaligned

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bitsin the second source operand. The memory location may be
unaligned.

The mask consists of the most significant bit of each byte of the second source register.
When amask bit = 1, the corresponding byte of the first source register iswritten to the destination;
when amask bit = 0, the corresponding byte is not written.

Exception and trap behavior for elements not selected for storage to memory isimplementation
dependent. For instance, a given implementation may signal a data breakpoint or a page fault for
bytes that are zero-masked and not actually written.

The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described
in “Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple pro-
cessors, thisinstruction should be used together with afence instruction in order to ensure data coher-
ency (see“Cache and TLB Management” in Volume 2).

There are legacy and extended forms of the instruction:
MASKMOVDQU

Thefirst source operand isan XMM register and the second source operand isan XMM register. The
destination is a 128-bit memory location.

VMASKMOVDQU

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand is an XMM register and the second source operand isan XMM register. The
destination is a 128-bit memory location.

Instruction Support

Form Subset Feature Flag
MASKMOVDQU | SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMASKMOVDQU | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MASKMOVDQU xmm1, xmmz2 66 OF F7 /r Move bytes selected by a mask value in xmm2 from
xmmd1 to the memory location specified by DS:rDI.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7ir

Related Instructions
(VIMASKMOVPD, (VIMASKMOVPS

160 MASE&I%%U\G\WCSU\%%\TDQU Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

0nnnon

0nnnwn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X|>| 0 [X|X|X|X[X|>>>>>00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

RSB

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MAXPD Maximum
VMAXPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPD

Compares two pairs of packed double-precision floating-point values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMAXPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination isan XMM register. Bits [255:128] of the Y MM
register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destinationisaY MM register.

Instruction Support

Form Subset Feature Flag
MAXPD SSE2 | CPUID Fn0O0O00_0001_EDX[SSEZ2] (bit 26)
VMAXPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

162 [AWPIBU\{JI\ﬁOCXUjse] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

MAXPD xmm1, xmm2/mem128 66 OF 5F /r Compares two pairs of packed double-precision values in
xmml and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F Ir
VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F Ir

Related Instructions
(VIMAXPS, (VIMAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference [AWWBU\G\WCXU)S@] 163

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nnnn nw n

nnnn v n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[P O [X0 X|X|X| X | X|>ZI>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

x

A source operand was an SNaN value.

Invalid operation, IE

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

164

[AND Bublfie Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MAXPS Maximum
VMAXPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPS

Compares four pairs of packed single-precision floating-point values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMAXPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination isan XMM register. Bits [255:128] of the Y MM
register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destinationisaY MM register.

Instruction Support

Form Subset Feature Flag
MAXPS SSE1 | CPUID FnO000_0001_EDX[SSE] (bit 25)
VMAXPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [AWPﬁu\bI\ﬁOCXDSse] 165

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

MAXPS xmm1, xmm2/mem128 OF 5F /r Compares four pairs of packed single-precision values in
xmm2l and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5F Ir
VMAXPS ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.00 5F Ir

Related Instructions
(VIMAXPD, (VIMAXSD, (VIMAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

166 [AWPﬁu\bl\ffCXDSse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nnnn nw n

nnnn v n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[P O [X0 X|X|X| X | X|>ZI>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

x

A source operand was an SNaN value.

Invalid operation, IE

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[AMD Ui Use] !

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MAXSD Maximum
VMAXSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 64-bit memory location. Thefirst source register is also the destination. When the second source is
a 64-bit memory location, the upper 64 bits of the first source register are copied to the destination.
Bits[127:64] of the destination are not affected. Bits [255:128] of the Y MM register that corresponds
to the destination are not affected.

VMAXSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination isan XMM register. When the second source is a 64-
bit memory location, the upper 64 bits of the first source register are copied to the destination. Bits
[127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MAXSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMAXSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MAXSD xmm1, xmm2/mem64 F2 OF 5F /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the greater value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5F Ir

Related Instructions
(VIMAXPD, (VIMAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

168 [AWﬁBu\bl\ﬁééxa)Se] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception

Cause of Exception

AVX instructions are only recognized in protected mode.

nlnl>
nlnlx>

S |CRO.EM=1.
S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,

SIMD floating-point, #XF S S see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

"
"
x

. . A source operand was an SNaN value.
Invalid operation, |IE

S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [AWﬁBu\bl\ffCXﬂ)Se] 169

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MAXSS Maximum
VMAXSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a32-bit memory location. The first source register is also the destination. Bits[127:32] of the destina-
tion are not affected. Bits[255:128] of the YMM register that corresponds to the destination are not
affected.

VMAXSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination isan XMM register. Bits[127:32] of the destination
are copied from the first source operand. Bits [255:128] of the Y MM register that corresponds to the
destination are cleared.

Instruction Support

Form Subset Feature Flag
MAXSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMAXSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MAXSS xmm1, xmm2/mem32 F3 OF 5F /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F Ir

Related Instructions
(VIMAXPD, (V)MAXPS, (V)MAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

170 [AW%U\G\WCX@S@] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception

Cause of Exception

AVX instructions are only recognized in protected mode.

nlnl>
nlnlx>

S |CRO.EM=1.
S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,

SIMD floating-point, #XF S S see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

"
"
x

. . A source operand was an SNaN value.
Invalid operation, |IE

S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [AW§U\6\#CX®SS€] 171

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MINPD Minimum
VMINPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPD

Compares two pairs of packed double-precision floating-point values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMINPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination isan XMM register. Bits [255:128] of the Y MM
register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destinationisaY MM register.

Instruction Support

Form Subset Feature Flag
MINPD SSE2 | CPUID FnO0O00_0001_EDX[SSEZ2] (bit 26)
VMINPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

172 [AI\Wﬁ'PIBU\thfIIIEPlase] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

MINPD xmm1, xmm2/mem128 66 OF 5D /r Compares two pairs of packed double-precision values in
xmm2l and xmm2 or mem128 and writes the lesser value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D Ir
VMINPD ymm1, ymm2, ynm3/mem256 c4 RXB.00001 X.src.1.01 5D Ir

Related Instructions
(VIMAXPD, (VIMAXPS, (V)MAXSD, (V)MAXSS, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference [AI\Wﬁ'PIBU\Hﬁlepﬁse] 173

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nnnn nw n

nnnn v n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[P O [X0 X|X|X| X | X|>ZI>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

x

A source operand was an SNaN value.

Invalid operation, IE

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

174

[AMDPUBAC Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MINPS Minimum
VMINPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPS

Compares four pairs of packed single-precision floating-point values.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMINPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination isan XMM register. Bits [255:128] of the Y MM
register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destinationisaY MM register.

Instruction Support

Form Subset Feature Flag
MINPS SSE1 | CPUID FnO000_0001_EDX[SSE] (bit 25)
VMINPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [AWPﬁu\ﬂ\ﬁllc\:lPﬁse] 175

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

MINPS xmm1, xmm2/mem128 OF 5D /r Compares four pairs of packed single-precision values in
xmml and xmm2 or mem128 and writes the lesser values
to the corresponding positions in xmmZ1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /r
VMINPS ymm1, ymm2, ymm3/mem256 ca RXB.00001 X.src.1.00 5D Ir

Related Instructions
(VIMAXPD, (VIMAXPS, (VIMAXSD, (V)MAXSS, (V)MINPD, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM | FZ RC PM|[UM|[OM|ZM |[DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

176 [AWPﬁU\G\ﬁIEPﬁse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nnnn nw n

nnnn v n

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[P O [X0 X|X|X| X | X|>ZI>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

x

A source operand was an SNaN value.

Invalid operation, IE

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[AMB"PuBit Ose] !

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MINSD Minimum
VMINSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a64-bit memory location. The first source register is also the destination. Bits[127:64] of the destina-
tion are not affected. Bits[255:128] of the YMM register that corresponds to the destination are not
affected.

VMINSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination isan XMM register. Bits[127:64] of the destination
are copied from the first source operand. Bits [255:128] of the Y MM register that corresponds to the
destination are cleared.

Instruction Support

Form Subset Feature Flag
MINSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMINSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MINSD xmm1, xmm2/mem64 F2 OF 5D /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5D /r

Related Instructions
(VIMAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSS

178 [Al\WbﬁBU\ﬂ\ﬂeﬁﬁse] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

MXCSR Flags Affected
MM | FZ RC PM|UM|[OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception

Cause of Exception

AVX instructions are only recognized in protected mode.

nlnl>
nlnlx>

S |CRO.EM=1.
S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =1,

SIMD floating-point, #XF S S see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

"
"
x

. . A source operand was an SNaN value.
Invalid operation, |IE

S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [AI\Wﬁ'ﬁBU\ﬂﬁlﬁase] 179

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MINSS Minimum
VMINSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand isaNaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a32-bit memory location. The first source register is also the destination. Bits[127:32] of the destina-
tion are not affected. Bits[255:128] of the YMM register that corresponds to the destination are not
affected.

VMINSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination isan XMM register. Bits[127:32] of the destination
are copied from the first source operand. Bits [255:128] of the Y MM register that corresponds to the
destination are cleared.

Instruction Support

Form Subset Feature Flag
MINSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMINSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MINSS xmm1, xmm2/mem32 F30F 5D /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

Related Instructions
(VIMAXPD, (VIMAXPS, (VIMAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

180 [AW%U\G\WE%S@] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

MXCSR Flags Affected

AMDG64 Technology

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | Lmasked SIUD Mot ot exeept e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[AMBPuBit Ose] .

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVAPD Move Aligned
VMOVAPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from aregister or mem-
ory location to aregister; or from aregister to aregister or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVAPD

Moves two double-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand isan XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move:

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand isan XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move:

* The source operand is either a YMM register or a 256-bit memory location. The destination
operandisaYMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVAPD SSE2 | CPUID Fn0O000_0001_EDX[SSEZ2] (bit 26)
VMOVAPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

182 [mﬁPﬁu\bl\ﬁ%VUDSDe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

MOVAPD xmm1, xmm2/mem128

MOVAPD xmm1/mem128, xmm2

Mnemonic

VMOVAPD xmm1, xmm2/mem128
VMOVAPD xmm1/mem128, xmm2
VMOVAPD ymm1, ymm2/mem256
VMOVAPD ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 28 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.

66 OF 29 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
ca RXB.00001 X.1111.0.01 28 Ir
C4 RXB.00001 X.1111.0.01 29 Ir
ca RXB.00001 X.1111.1.01 28 Ir
C4 RXB.00001 X.1111.1.01 29 Ir

(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

0nlni>

nlnix>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

nnnnnn

nnnnnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| T | X|O|X|X|X|X|Z> > >>0W0N

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

[AMB Bupic'Use] e

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVAPS Move Aligned
VMOVAPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from aregister or memory
location to aregister; or from aregister to aregister or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVAPS

Moves four single-precision floating-point values.

There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operandisan XMM register.

» The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operandisan XMM register.

» The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.
Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.

» The source operand is either a YMM register or a 256-bit memory location. The destination
operandisaYMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVAPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVAPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

184 [WTﬁPﬁu\bl\ﬁ%VUDSSe] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description
MOVAPS xmm1, xmm2/mem128 OF 28 /r Moves four packed single-precision floating-point
values from xmm2 or mem128 to xmm1.
MOVAPS xmm1/mem128, xmm2 OF 29 /r Moves four packed single-precision floating-point
values from xmm1 or mem128 to xmm2.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVAPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 28 Ir
VMOVAPS xmm1/mem128, xmm?2 c4 RXB.00001 X.1111.0.00 29 Ir
VMOVAPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 28 Ir
VMOVAPS ymm1/mem256, ymm2 c4 RXB.00001 X.1111.1.00 29 Ir

Related Instructions

(V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(VIMOVUPS

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
AVX instructions are only recognized in protected mode.
CRO.EM =1.
CR4.0SFXSR = 0.
CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK[2:1] ! = 11b.
VEX.vwwv | = 1111b.
REX, F2, F3, or 66 prefix preceding VEX prefix.
Lock prefix (FOh) preceding opcode.
CRO.TS =1.
Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Memory operand not aligned on a 16-byte boundary.
Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.
Instruction execution caused a page fault.

Exception Cause of Exception

0nlni>
nlnix>

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

nNnnnnnn
nNnnnnnn

General protection, #GP

X[X| T | X|O|X|X|X|X|Z> > >>O0W0N

Page fault, #PF S

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [mﬁPﬁu\bl\ﬁ%VUDSSe] 185

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVD Move
VMOVD Doubleword or Quadword

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.

The quadword form of thisinstruction is distinct from the differently-encoded (V)MOV Q instruction.

There are legacy and extended forms of the instruction:

MOVD

There are two encodings for 32-bit moves, characterized by REX.W = 0.

e The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination isan XMM register. The 32-bit value is zero-extended to 128 bits.

* Thesourceoperandisan XMM register. The destination is either a 32-bit general-purpose register
or a32-bit memory location.

There are two encodings for 64-bit moves, characterized by REX.W = 1.

» The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination isan XMM register. The 64-bit value is zero-extended to 128 bits.

» Thesourceoperandisan XMM register. The destination is either a 64-bit general -purpose register
or a64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVD

The extended form of the instruction has four 128-bit encodings.

There are two encodings for 32-bit moves, characterized by VEX.W = 0.

» The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination isan XMM register. The 32-bit value is zero-extended to 128 bits.

* Thesourceoperandisan XMM register. The destination is either a 32-bit general -purpose register
or a32-bit memory location.

There are two encodings for 64-bit moves, characterized by VEX.W = 1.

» The source operand is either a 64-hit general-purpose register or a 64-bit memory location. The
destination isan XMM register. The 64-bit valueis zero-extended to 128 bits.

» Thesourceoperandisan XMM register. The destination is either a 64-bit general -purpose register
or a 64-bit memory location.

Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVD SSE2 | CPUID Fn0O000_0001_EDX[SSEZ2] (bit 26)
VMOVD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

186 [AMﬁ\ﬁu\bl\ﬁ%Vﬁse] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MOVD xmm, reg32/mem32 66 (W0) OF 6E /r Move a 32-bit value from reg32/mem32 to xmm.
MOVD xmm, reg64/mem64 66 (W1) OF 6E /r Move a 64-bit value from reg64/mem64 to xmm.
MOVD reg32/mem32, xmm 66 (W0) OF 7E /r Move a 32-bit value from xmm to reg32/mem32
MOVD reg64/mem64, xmm 66 (W1) OF 7E /r Move a 64-bit value from xmm to reg64/mem64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVD?! xmm, reg32/mem32 C4 RXB.00001 0.1111.0.01 6E Ir
VMOVQ xmm, reg64/mem64 C4 RXB.00001 1.1111.0.01 6E /r
VvMOVD1 reg32/mem32, xmm C4 RXB.00001 0.1111.0.01 TE Ir
VMOVQ reg64/mem64, xmm C4 RXB.00001 1.1111.0.01 TE Ir

Note: 1. Also known as MOVQ in some developer tools.

Related Instructions
(VIMOVDQA, (V)MOVDQU, (V)MOVQ

Exceptions
E i Mode C fE [
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwv ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [AMB\BU\G\ﬁ%V&SQ] 187

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVDDUP Move and Duplicate
VMOVDDUP Double-Precision Floating-Point

Moves and duplicates double-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVDDUP

Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of datain memory. The destination isan XMM register. Bits [255:128] of the Y MM
register that corresponds to the destination are not affected.

VMOVDDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of datain memory. The destination isan XMM register. Bits [255:128] of the Y MM
register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates two even-indexed quadword values.

The source operand is either aY MM register or the address of the least-significant byte of 256 bits of
datain memory. The destination isaY MM register.Bits [63:0] of the source are written to bits

[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

Instruction Support

Form Subset Feature Flag
MOVDDUP SSE3 | CPUID Fn0000_0001_ECX[SSES3] (bit 0)
VMOVDDUP AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVDDUP xmm1, xmm2/mem64 F2 OF 12 /r Moves two copies of the low 64 bits of xmm2 or
mem64 to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 /r
MOVDDUP ymm1, ymm2/mem256 Cc4 RXB.00001 X.1111.1.11 12 /r

188 MCi\\//l[ESDLﬁu\bI\ﬁ%VH)SUeP] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

(V)MOVSHDUP, (V)MOVSLDUP

AMDG64 Technology

Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

RSB PR

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVDQA Move Aligned
VMOVDQA Double Quadword

Moves aligned packed integer values. Values can be moved from aregister or amemory location to a
register, or from aregister to aregister or amemory location.

A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:

MOVDQA

Moves two aligned quadwords (128-bit move). There are two encodings.
e The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

* Thesource operand is either an XMM register or a 128-bit memory location. The destination isan
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVDQA

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two aligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

» Thesourceoperand is either an XMM register or a 128-bit memory location. The destination isan
XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves four aligned quadwords (256-bit move). There are two encodings.

* The source operand is a YMM register. The destination is either a YMM register or a 256-bit
memory location.

* The source operand is either aYMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

Form Subset Feature Flag
MOVDQA SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVDQA AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

190 [N%%u\bl\ﬁocv Ae] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

MOVDQA xmm1, xmm2/mem128

MOVDQA xmm1/mem128, xmm2

Mnemonic

VMOVDQA xmm1, xmm2/mem128
VMOVDQA xmm1/mem128, xmm2
VMOVDQA ymm1, xmm2/mem256
VMOVDQA ymm1/mem256, ymm2

Related Instructions
(VMOVD, (V)MOVDQU, (V)MOVQ

Exceptions

AMDG64 Technology

Opcode Description
66 OF 6F /r Moves aligned packed integer values from xmmz2

ormem128 to xmml1.

66 OF 7F /r Moves aligned packed integer values from xmmZ1 or

mem128 to xmm2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.1.01 TF Ir
C4 RXB.00001 X.1111.1.01 7F Ir

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnl>x

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS=1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

nNnnnnnwn

nNnnnnnwn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| P | X|O|X[|X|X|X> > >>0W0N

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

(KRG PuBi e o

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVDQU Move
VMOVDQU Unaligned Double Quadword

Moves unaligned packed integer values. Values can be moved from aregister or amemory location to
aregister, or from aregister to aregister or amemory location.

There are legacy and extended forms of the instruction:

MOVDQU

Moves two unaligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

» Thesource operand is either an XMM register or a 128-bit memory location. The destination isan
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQU
The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two unaligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

» Thesourceoperand is either an XMM register or a 128-bit memory location. The destination isan
XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves four unaligned quadwords (256-bit move). There are two encodings:

* The source operand is a YMM register. The destination is either a YMM register or a 256-bit
memory location.

» The source operand is either aYMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

Form Subset Feature Flag
MOVDQU SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVDQU AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

192 [N%qyu\bl\ﬁ%v%%] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

MOVDQU xmm1, xmm2/mem128

MOVDQU xmm1/mem128, xmm2

Mnemonic

VMOVDQU xmm1, xmm2/mem128
VMOVDQU xmmi1/mem128, xmm2
VMOVDQU ymm1, xmm2/mem256
VMOVDQU ymm1/mem256, ymm2

Related Instructions
(VMOVD, (V)MOVDQA, (V)MOVQ

Exceptions

AMDG64 Technology

Opcode Description
F3 OF 6F /r Moves unaligned packed integer values from xmm2 or

mem128 to xmm1.

F3 OF 7F /Ir Moves unaligned packed integer values from xmmZ1 or

mem128 to xmm2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.1.10 TF Ir
C4 RXB.00001 X.1111.1.10 7F Ir

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

0nlni>

nlnix>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nnnnon

nnnnon

Write to a read-only data segment.

Null data segment used to reference memory.

Alignment check, #AC

(0]

(7]

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

(%)

X[X|X|X|X[|X|X|X|> > > > 00

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

[KRBPuBi e o

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVHLPS Move High to Low
VMOVHLPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the high quadword of an XMM regis-
ter to the low quadword of an XMM register.

There are legacy and extended forms of the instruction:
MOVHLPS

The source operand is bits[127:64] of an XMM register. The destination is bits[63:0] of an XMM
register. Bits[127:64] of the destination are not affected. Bits[255:128] of the Y MM register that cor-
responds to the destination are not affected.

VMOVHLPS

The extended form of the instruction has a 128-bit encoding only.

The source operands are bits [127:64] of two XMM registers. The destination isathird XMM regis-
ter. Bits[127:64] of the first source are moved to bits [127:64] of the destination; bits[127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the Y MM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVHLPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVHLPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVHLPS xmm1, xmm2 OF 12 /r Moves two packed single-precision floating-point
values from xmm2[127:64] to xmm21[63:0].
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 /r

Related Instructions

(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(VIMOVUPS

194 R IOVHLP Instruction Reference
AND Pubie'Usg)

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
. Mode :
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S | CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMD Pupic'Use] e

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVHPD Move High
VMOVHPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPD

There are two encodings.

* The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

» The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPD

The extended form of the instruction has two 128-bit encodings:

» Therearetwo source operands. Thefirst sourceisan XMM register. The second source is a 64-bit
memory location. The destination isan XMM register. Bits[63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVHPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVHPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

196 [m\ﬁlPﬁu\bhﬁ%VUDSDe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode
MOVHPD xmm1, mem64 66 OF 16 /r
MOVHPD mem64, xmm1l 66 OF 17 Ir

Mnemonic

VMOVHPD xmm1, xmm2, mem64
VMOVHPD mem64, xmm1

Related Instructions
(VMOVAPD, (V)MOVLPD, (V)MOV
Exceptions

AMDG64 Technology

Description

Moves a packed double-precision floating-point value from
mem64 to xmm1[127:64].

Moves a packed double-precision floating-point value from
Xmm1[127:64] to mem64.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
c4 RXB.00001 X.src.0.01 16 /r
C4 RXB.00001 X.1111.0.01 17 Ir

MSKPD, (V)MOVSD, (V)MOVUPD

Mode
Virt

Exception

Real Prot

Cause of Exception

x

X X

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

nlnl>
nlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

nnnnown
nnnnown

General protection, #GP

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

n

Instruction execution caused a page fault.

XIX|X| X[X|X|X|X[>|> > > > 00

Alignment check, #AC

)

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[AMS"Pupic'Use]

197

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVHPS Move High
VMOVHPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPS

There are two encodings.

* The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

» The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPS

The extended form of the instruction has two 128-bit encodings:

» Therearetwo source operands. Thefirst sourceisan XMM register. The second source is a 64-bit
memory location. The destination isan XMM register. Bits[63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVHPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVHPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

198 [mﬁPﬁu\bl\ﬁ%VUDSSe] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description
MOVHPS xmm1, mem64 OF 16 /r Moves two packed double-precision floating-point value from
mem64 to xmm1[127:64].
MOVHPS mem64, xmm1 OF 17 Ir Moves two packed double-precision floating-point value from
Xmm1[127:64] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 16 /r
VMOVHPS mem64, xmm1 c4 RXB.00001 X.1111.0.00 17 Ir

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(VIMOVUPS

Exceptions
. Mode :
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvwv ! = 1111b (for memory destination encoding only).
A |VEXL=1
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [mﬁPﬁu\bl\ﬁ%VUDSSe] 199

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVLHPS Move Low to High
VMOVLHPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the low quadword of an XMM register
to the high quadword of a second XMM register.

There are legacy and extended forms of the instruction:
MOVLHPS

The source operand is bits [63:0] of an XMM register. The destination is bits[127:64] of an XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VMOVLHPS
The extended form of the instruction has a 128-bit encoding only.

The source operands are bits [63:0] of two XMM registers. The destination is athird XMM register.
Bits [63:0] of the first source are moved to bits [63:0] of the destination; bits [63:0] of the second
source are moved to bits [127:64] of the destination. Bits [255:128] of the Y MM register that corre-
sponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVLHPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVLHPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MOVLHPS xmm1, xmm2 OF 16 /r Moves two packed single-precision floating-point
values from xmm2[63:0] to xmm1[127:64].

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLHPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 16 /r

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(VIMOVUPS

200 R IQVLHP Instruction Reference
AND PuBi2'USE)

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
. Mode :
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S | CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMD"Pupic’Use] o

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVLPD Move Low
VMOVLPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVLPD

There are two encodings.

* Thesource operand isa64-bit memory location. The destination isbits[63:0] of an XMM register.
Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

» Thesource operand ishits[63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPD

The extended form of the instruction has two 128-bit encodings.

e There are two source operands. Thefirst sourceisan XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits[127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

» Thesourceoperandisbits[63:0] of an XMM register. The destination isa 64-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVLPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVLPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVLPD xmm1, mem64 66 OF 12 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[63:0].
MOVLPD mem64, xmm1 66 OF 13 /r Moves a packed double-precision floating-point value from
xmm1[63:0] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 121r
VMOVLPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 13 /r

202 [A/Mbplgu\bl\ﬁ%vu%[)e] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

AMDG64 Technology

(V)MOVAPD, (V)MOVHPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nnnnon

nnnnwn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

wn

Instruction execution caused a page fault.

Alignment check, #AC

XIX|X|X|X[X|X|X|[Z > >I>>0nW0

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMSPupic’Use] o

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVLPS Move Low Packed Single-Precision
VMOVLPS Floating-Point

Moves two packed single-precision floating-point values. Va ues can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVLPS

There are two encodings.

* Thesource operand isa64-bit memory location. The destination isbits[63:0] of an XMM register.
Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

» Thesourceoperandishits[63:0] of an XMM register. The destination isa64-bit memory location.

VMOVLPS

The extended form of the instruction has two 128-bit encodings.

» Therearetwo source operands. Thefirst sourceisan XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits[127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

» Thesourceoperandishits[63:0] of an XMM register. The destination isa64-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVLPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVLPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVLPS xmm1, mem64 OF 12 /r Moves two packed single-precision floating-point value from
mem64 to xmm1[63:0].
MOVLPS mem64, xmm1 OF 13 /r Moves two packed single-precision floating-point value from
xmm1[63:0] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLPS xmm1, xmm2, mem64 c4 RXB.00001 X.src.0.00 12 Ir
VMOVLPS mem64, xmm1 c4 RXB.00001 X.1111.0.00 13 /r

204 [Al\i\ﬂﬁPlﬁu\bl\ﬁ%VUDSSe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

AMDG64 Technology

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVMSKPS, (V)MOVSS,

(VMOVUPS
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
. A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A | VEX.wwwv ! = 1111b (for memory destination encoding only).
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AM5 Pupic’'Use] e

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVMSKPD Extract Sign Mask
VMOVMSKPD Packed Double-Precision Floating-Point

Extracts the sign bits of packed double-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:
MOVMSKPD

Extracts two mask hits.

The source operand isan XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits[255:128] of the Y MM register that corresponds to the source are not affected.

MOVMSKPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts two mask bits.

The source operand isan XMM register. The destination can be either a64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Extracts four mask bits.

The source operand isaY MM register. The destination can be either a 64-bit or a 32-bit general pur-

pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

Instruction Support

Form Subset Feature Flag
MOVMSKPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVMSKPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVMSKPD reg, xmm 66 OF 50 /r Move zero-extended sign bits of packed double-precision
values from xmm to a general-purpose register.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKPD reg, xmm C4 RXB.00001 X.1111.0.01 50 /r
VMOVMSKPD reg, ymm C4 RXB.00001 X.1111.1.01 50 /r

206 M@\/WPIBU\bI\ﬁ%VM Ke D Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

(VMOVMSKPS, (V)PMOVMSKB

AMDG64 Technology

Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S | CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

EOR YR

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVMSKPS Extract Sign Mask
VMOVMSKPS Packed Single-Precision Floating-Point

Extracts the sign bits of packed single-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:
MOVMSKPS

Extracts four mask bits.

The source operand isan XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts four mask bits.

The source operand isan XMM register. The destination can be either a64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

YMM Encoding

Extracts eight mask bits.

The source operand isaY MM register. The destination can be either a 64-bit or a 32-bit general pur-

pose register. Writes the extracted bits to positions [7:0] of the destination and clears the remaining
bits.

Instruction Support

Form Subset Feature Flag
MOVMSKPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVMSKPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVMSKPS reg, xmm OF 50 /r Move zero-extended sign bits of packed single-precision
values from xmm to a general-purpose register.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKPS reg, xmm C4 RXB.00001 X.1111.0.00 50 /r
VMOVMSKPS reg, ymm C4 RXB.00001 X.1111.1.00 50 /r

208 N[%\\/M%Plﬁu\bl\ﬁ%vmssléjs Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

(VMOVMSKPD, (V)PMOVMSKB

AMDG64 Technology

Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S | CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

PR EUR U

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVNTDQ Move Non-Temporal
VMOVNTDQ Double Quadword

Moves double quadword values from aregister to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

Theinstruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTDQ

Moves one 128-hit value.

The source operand isan XMM register. The destination is a 128-bit memory location.
VMOVNTDQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves one 128-hit value.

The source operand isan XMM register. The destination is a 128-bit memory location.

YMM Encoding
Moves two 128-hit values.

The source operandisaY MM register. The destination is a 256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVNTDQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVNTDQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVNTDQ mem128, xmm 66 OF E7 /r Moves a 128-bit value from xmm to mem128, minimizing
cache pollution.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTDQ mem128, xmm Cc4 RXB.00001 X.1111.0.01 E7 Ir
VMOVNTDQ mem256, ymm C4 RXB.00001 X.1111.1.01 E7 Ir

210 m\ﬁﬁqgu\bl\ﬁ%vaSDeﬂ Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(VIMOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
AVX instructions are only recognized in protected mode.
CRO.EM =1.
CR4.0SFXSR = 0.
CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK|2:1] ! = 11b.
VEX.vww ! = 1111b.
REX, F2, F3, or 66 prefix preceding VEX prefix.
Lock prefix (FOh) preceding opcode.
CRO.TS =1.
Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Memory operand not aligned on a 16-byte boundary.
Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.
Instruction execution caused a page fault.

Exception Cause of Exception

nlnl>x>
nlnlrx>

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

nNnnnnnwn
nNnnnnnwn

General protection, #GP

X[X| P | X|O|X[|X|X|X> > >>0W0N

Page fault, #PF S

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference m\ﬁﬁqgu\bl\ﬁ%vwrsD& 211

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVNTDQA Move Non-Temporal
VMOVNTDQA Double Quadword Aligned

Loadsan XMM/Y MM register from a naturally-aligned 128-bit or 256-bit memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the load as awrite-combining (WC) memory read, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

Theinstruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an MFENCE instruction to force strong memory ordering of MOVNTDQA with respect
to other reads.

An attempted |oad from a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTDQA

Loads a 128-bit value into the specified XMM register from a 16-byte aligned memory location.
VMOVNTDQA

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Loads a 128-bit value into the specified XMM register from a 16-byte aligned memory location.
YMM Encoding

L oads a 256-bit value into the specified Y MM register from a 32-byte aligned memory location.

Instruction Support

Form Subset Feature Flag
MOVNTDQA SSE4.1 | CPUID Fn0000_0001_ECX[SSEA41] (bit 19)
VMOVNTDQA 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VMOVNTDQA 256-bit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MOVNTDQA xmm, mem128 66 OF 38 2A/r Loads xmm from an aligned memory location, minimizing
cache pollution.

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTDQA xmm, mem128 C4 RXB.02 X.1111.0.01 2A Ir
VMOVNTDQA ymm, mem256 C4 RXB.02 X.1111.1.01 2A[r

Related Instructions
(VMOVNTDQ, (V)MOVNTPD, (V)MOVNTPS

212 NF%\\/MTB%U\G\{I'%VUFSD&A Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wlnl>

wlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

nunnnnon

nunnnnon

Write to a read-only data segment.

256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

S

X|X| B | X|O| X[X|X|X|[>|>>>I> 00

Instruction execution caused a page fault.

X — AVX, AVX2, and SSE exception

A — AVX, AVX2 exception
S — SSE exception

Instruction Reference

PRI

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVNTPD Move Non-Temporal
VMOVNTPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values from aregister to amemory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

Theinstruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTPD

Moves two values.

The source operand isan XMM register. The destination is a 128-bit memory location.
MOVNTPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves two values.

The source operand isan XMM register. The destination is a 128-bit memory location.

YMM Encoding
Moves four values.

The source operandisaY MM register. The destination is a 256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVNTPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVNTPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVNTPD mem128, xmm 66 OF 2B /r Moves two packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding
VEX RXB.map_select W.wvvv.L.pp Opcode
VMOVNTPD mem128, xmm C4 RXB.00001 X.1111.0.01 2B Ir
VMOVNTPD mem256, ymm C4 RXB.00001 X.1111.1.01 2B /Ir

214 MWIHPIBU\bl\ﬁ%VHTSP& Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
AVX instructions are only recognized in protected mode.
CRO.EM =1.
CR4.0SFXSR = 0.
CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK|2:1] ! = 11b.
VEX.vww ! = 1111b.
REX, F2, F3, or 66 prefix preceding VEX prefix.
Lock prefix (FOh) preceding opcode.
CRO.TS =1.
Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Memory operand not aligned on a 16-byte boundary.
Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.
Instruction execution caused a page fault.

Exception Cause of Exception

nlnl>x>
nlnlrx>

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

nNnnnnnwn
nNnnnnnwn

General protection, #GP

X[X| P | X|O|X[|X|X|X> > >>0W0N

Page fault, #PF S

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference Mﬁ\%lﬁpﬁu\bl\ﬁ%vwrga 215

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVNTPS Move Non-Temporal
VMOVNTPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values from aregister to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

Theinstruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTPS

Moves four values.

The source operand isan XMM register. The destination is a 128-bit memory location.
MOVNTPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves four values.

The source operand isan XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves eight values.

The source operandisaY MM register. The destination is a 256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVNTPS SSE1 | CPUID Fn0000_0001_EDX|[SSE] (bit 25)
VMOVNTPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVNTPS mem128, xmm OF 2B /Ir Moves four packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding
VEX RXB.map_select W.wvvv.L.pp Opcode
VMOVNTPS mem128, xmm C4 RXB.00001 X.1111.0.00 2B Ir
VMOVNTPS mem256, ymm C4 RXB.00001 X.1111.1.00 2B /Ir

216 FAWIﬂPﬁu\bl\ﬁ%VUEPeS] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Related Instructions

AMDG64 Technology

(VMOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTQ

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

nNnnnnnwn

nNnnnnnwn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| P | X|O|X[|X|X|X> > >>0W0N

Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMY Pupic'Use] o

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

MOVNTSD Move Non-Temporal Scalar
Double-Precision Floating-Point

Stores one double-precision floating-point value from an XMM register to a 64-bit memory location.
Thisinstruction indicates to the processor that the datais non-temporal, and is unlikely to be used
again soon. The processor treats the store as awrite-combining memory write, which minimizes cache
pollution.

The diagram below illustrates the operation of thisinstruction:

mem64
XMM register
63 0 127 6463 0
copy
Instruction Support
Form Subset Feature Flag

MOVNTSD | SSE4A |CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
Stores one double-precision floating-point XMM

MOVNTSD mem64, xmm F2 OF 2B /Ir register value into a 64 bit memory location. Treat as
a non-temporal store.

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVNTSS

rFLAGS Affected
None

218 [AM@AB\GHEE Use] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The SSE4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (CR0.EM) was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.0SFXSR) was cleared to 0.
gﬁ\'\//ilce not available, X X X The task-switch bit (CRO.TS) was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
_ was non-canonical.
#(.t;ce;geral protection, X A null data segment was used to reference memaory.
X The destination operand was in a non-writable
segment.
Page fault, #PF X X A page fault resulted from executing the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

Instruction Reference [AMD\AB\(JI\B'I?E Use] 219

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

MOVNTSS Move Non-Temporal Scalar
Single-Precision Floating-Point

Stores one single-precision floating-point value from an XMM register to a 32-bit memory location.
Thisinstruction indicates to the processor that the datais non-temporal, and isunlikely to be used
again soon. The processor treats the store as awrite-combining memory write, which minimizes cache
pollution.

The diagram below illustrates the operation of thisinstruction:

mema32

XMM register
31 0 127 31 0

COpYy-

Instruction Support

Form Subset Feature Flag
MOVNTSS SSE4A | CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
Stores one single-precision floating-point XMM

MOVNTSS mem32, xmm F30F 2B /r register value into a 32-bit memory location. Treat as
a non-temporal store.

Related Instructions
MOVNTDQ, MOVNTI, MOVNTOPD, MOVNTPS, MOVNTQ, MOVNTSD

rFLAGS Affected
None

220 [AMD\AB\GHES Use] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The SSE4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (CR0.EM) was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.0SFXSR) was cleared to 0.
gﬁ\'\//ilce not available, X X X The task-switch bit (CRO.TS) was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
_ was non-canonical.
#(.t;ce;geral protection, X A null data segment was used to reference memaory.
X The destination operand was in a non-writable
segment.
Page fault, #PF X X A page fault resulted from executing the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

Instruction Reference [AMDVIBYJ Tﬁ?é Use] 221

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVQ Move
VMOVQ Quadword

Moves 64-bit values. The source is either the low-order quadword of an XMM register or a 64-bit
memory location. The destination is either the low-order quadword of an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

There are legacy and extended forms of the instruction:
MOVQ

There are two encodings:

* The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. The 64-bit value is zero-extended to 128 bits.

» The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is aregister, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVQ

The extended form of the instruction has three 128-bit encodings:

» The source operand is an XMM register. The destination is an XMM register. The 64-bit valueis
zero-extended to 128 hits.

» The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
valueis zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is aregister, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

222 [AM/Bvlgu\bl\ﬁ%V8se] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

MOVQ xmm1, xmm2/mem64

MOVQ xmml/mem64, xmm2

Mnemonic

VMOVQ xmm1, xmm2
VMOVQ xmm1, mem64

VMOVQ xmml/mem64, xmm2

Related Instructions

AMDG64 Technology

Opcode Description
F30F 7E /r Move a zero-extended 64-bit value from xmm2 or mem64

to xmm1.

66 OF D6 /r Move a 64-bit value from xmm2 to xmm1 or mem64.

Zero-extends for register destination.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 TE Ir
C4 RXB.00001 X.1111.0.10 7E Ir
C4 RXB.00001 X.1111.0.01 D6 /r

(V)MOVD, (V)MOVDQA, (V)MOVDQU

Exceptions

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

nlnl>

nlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS=1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

0nnnnwn

nnnnwn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

wn

Instruction execution caused a page fault.

Alignment check, #AC

)

X X|X| X[X[X|X|X[Z|>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMB Ui Bse] 2

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVSD Move
VMOVSD Scalar Double-Precision Floating-Point

Moves scalar double-precision floating point values. The sourceis either alow-order quadword of an
XMM register or a 64-bit memory location. The destination is either alow-order quadword of an
XMM register or a 64-bit memory location.

There are legacy and extended forms of the instruction:
MOVSD

There are two encodings.

* The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. If the source operand is aregister, bits[127:64] of the destination are not affected.
If the source operand is a 64-bit memory location, the upper 64 bits of the destination are cleared.

e The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, bits [127:64] of the destination are not
affected.

Bits [255:128] of the YMM register that corresponds to the destination are not aff ected.

VMOVSD

The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-

ally equivalent.

* The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
valueis zero-extended to 128 bits.

» Thesourceoperandisan XMM register. The destination is a 64-bit memory location.

» Two functionally-equivalent encodings:

There aretwo source XMM registers. The destination isan XMM register. Bits[127:64] of thefirst
source register are copied to bits [127:64] of the destination; the 64-bit value in bits [63:0] of the
second source register iswritten to bits[63:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This instruction must not be confused with the MOV SD (move string doubleword) instruction of the
general-purpose instruction set. Assemblers can distinguish the instructions by the number and type
of operands.

Instruction Support

Form Subset Feature Flag
MOVSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

224 [AWﬁBu\ﬂ\ﬁ%Vﬂjse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic
MOVSD xmm1, xmm2/mem64

MOVSD xmml/mem64, xmm2
Mnemonic

VMOVSD xmm1l, mem64
VMOVSD mem64, xmm1l

AMDG64 Technology

Opcode Description
F2 OF 10 /r Moves a 64-bit value from xmm2 or mem64 to xmm1l. Zero

extends to 128 bits when source operand is memory.

F2 OF 11 /r Moves a 64-bit value from xmm2 to xmm1 or mem64.

VMOVSD xmm1, xmm2, xmm3 2

VMOVSD xmm1l, xmm2, xmm3 2

Note 1: The addressing mode differentiates between the two operand form (where one operand is a memory location) and
the three operand form (where all operands are held in registers).

Note 2: These two encodings are functionally equivalent.

Related Instructions

Encoding *

VEX RXB.map_select W.vvvv.L.pp Opcode
c4 RXB.00001 X.1111.X.11 10 /r
c4 RXB.00001 X.1111.X.11 11 /r
c4 RXB.00001 X.src.X.11 10 /r
c4 RXB.00001 X.src.X.11 11 /r

(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVUPD

Exceptions

Mode

Exception
P Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

nlnl>

nlnl>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vwwv ! = 1111b (for memory destination enoding only).

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

ninnnon

General protection, #GP

nnnnon

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

"

Instruction execution caused a page fault.

Alignment check, #AC

X X|X| X[X|X|X|X[>Z > >> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

(AN PuBic'Tse] 2

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVSHDUP Move High and Duplicate
VMOVSHDUP Single-Precision

Moves and duplicates odd-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVSHDUP

Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits[63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the Y MM register that corresponds to the destination are not affected.

VMOVSHDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits[63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina
tion. Bits [255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates four odd-indexed single-precision floating-point values.

The source operand isaY MM register or a 256-bit memory location. The destinationisaYMM reg-
ister. Bits [255:224] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits[191:160] of the source are duplicated and written to bits[191:160] and [159:128] of
the destination. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of

the destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

Instruction Support

Form Subset Feature Flag
MOVSHDUP SSE3 | CPUID Fn0000_0001_ECX[SSES3] (bit 0)

VMOVSHDUP AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

226 N[%\\ml—ﬁ)ﬁu\bl\ﬁ%vwsDeLﬁP Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic
MOVSHDUP xmm1, xmm2/mem128

Mnemonic
VMOVSHDUP xmm1, xmm2/mem128
VMOVSHDUP ymm1, ymm2/mem256

Related Instructions
(V)MOVDDUR, (V)MOVSLDUP

AMDG64 Technology

Opcode Description

F30F 16 /r Moves and duplicates two odd-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 16 /r
C4 RXB.00001 X.1111.1.10 16 /r

Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

TAMD Pubfic sef !

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVSLDUP Move Low and Duplicate
VMOVSLDUP Single-Precision

Moves and duplicates even-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVSLDUP

Moves and duplicates two even-indexed single-precision floating-point values.

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the Y MM register that corresponds to the destination are not affected.

VMOVSLDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves and duplicates two even-indexed single-precision floating-point values.

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[95:64] of the source are duplicated and written to bits[127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates four even-indexed single-precision floating-point values.

The source operand isaY MM register or a 256-bit memory location. The destinationisaYMM reg-
ister. Bits [223:192] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits[159:128] of the source are duplicated and written to bits[191:160] and [159:128] of
the destination. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of

the destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

Instruction Support

Form Subset Feature Flag
MOVSLDUP SSE3 | CPUID Fn0000_0001_ECX[SSES3] (bit 0)
VMOVSLDUP AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

228 !\fﬂﬁlﬁﬁu\ﬁ\f%vas[)éj‘? Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic
MOVSLDUP xmm1, xmm2/mem128

Mnemonic
VMOVSLDUP xmm1, xmm2/mem128
VMOVSLDUP ymm1, ymm2/mem256

Related Instructions
(V)MOVDDUR, (V)MOVSHDUP

AMDG64 Technology

Opcode Description

F30F 12 /r Moves and duplicates two even-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 12 /r
Cc4 RXB.00001 X.1111.1.10 12 /r

Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

TRRAD Pubfic Usel 2

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVSS Move
VMOVSS Scalar Single-Precision Floating-Point

Moves scalar single-precision floating point values. The source is either alow-order doubleword of
an XMM register or a 32-bit memory location. The destination is either alow-order doubleword of an
XMM register or a 32-bit memory location.

There are legacy and extended forms of the instruction:

MOVSS

There are three encodings.

» The source operand isan XMM register. The destination isan XMM register. Bits[127:32] of the
destination are not affected.

» The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
valueis zero-extended to 128 bits.

e The source operand is an XMM register. The destination is either an XMM register or a 32-bit
memory location. When the destination is a register, bits [127:32] of the destination are not
affected.

Bits [255:128] of the YMM register that corresponds to the source are not affected.

VMOVSS

The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.

* The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
valueis zero-extended to 128 bits.
* Thesourceoperandisan XMM register. The destination is a 32-bit memory location.

» Two functionally-equivalent encodings:
There aretwo source XMM registers. The destination isan XMM register. Bits[127:64] of thefirst
source register are copied to bits [127:64] of the destination; the 32-bit value in bits [31:0] of the
second source register iswritten to bits[31:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

230 [AW%UYJW:V[SJS%] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic
MOVSS xmm1, xmm2
MOVSS xmm1, mem32

MOVSS xmm2/mem32, xmm1l

Mnemonic

VMOVSS xmm1, mem32
VMOVSS mem32, xmm1l

AMDG64 Technology

Opcode Description

F30F 10/r Moves a 32-bit value from xmm2 to xmm1.
F3O0F 10 /r Moves a zero-extended 32-bit value from mem32 to xmml1.
F30F 11 /r Moves a 32-bit value from xmm1 to xmm2 or mem32.

VMOVSS xmm1, xmm2, xmm3 2

VMOVSS xmm1, xmm2, xmm3 2

Note 1: The addressing mode differentiates between the two operand form (where one operand is a memory location) and
the three operand form (where all operands are held in registers).

Note 2: These two encodings are functionally equivalent.

Related Instructions

Encoding?

VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.X.10 10 /r
C4 RXB.00001 X.1111.X.10 11 /r
C4 RXB.00001 X.src.X.10 10 /r

c4 RXB.00001 X.src.X.10 11 /r

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,

(V)MOVUPS
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A | VEX.wwwv ! = 1111b (for memory destination enoding only).
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

[AMD Pubiic'Cise] =

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVUPD Move Unaligned
VMOVUPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from aregister or mem-
ory location to aregister; or from aregister to aregister or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:

MOVUPD

Moves two double-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand isan XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVUPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operandisan XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves four double-precision floating-point values. There are encodings for each type of move.

* The source operand is either a YMM register or a 256-bit memory location. The destination
operandisaYMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVUPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVUPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

232 [m\bJPIBU\bI\ﬁ%VUDSDe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

MOVUPD xmm1, xmm2/mem128

MOVUPD xmml/mem128, xmm2

Mnemonic

VMOVUPD xmm1, xmm2/mem128
VMOVUPD xmm1/mem128, xmm?2
VMOVUPD ymm1, ymm2/mem?256
VMOVUPD ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 10 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.

66 OF 11 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
c4 RXB.00001 X.1111.0.01 10 /r
c4 RXB.00001 X.1111.0.01 11 /r
c4 RXB.00001 X.1111.1.01 10 /r
c4 RXB.00001 X.1111.1.01 11 /r

(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnl>x

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS=1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nnnnwn

nnnnwn

Write to a read-only data segment.

Null data segment used to reference memory.

Alignment check, #AC

n

)

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

wn

X X|X|X|X[X|X|X|> > >> 00

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

[AMS Puic'Use] 2

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MOVUPS Move Unaligned
VMOVUPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from aregister or memory
location to aregister; or from aregister to aregister or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:

MOVUPS

Moves four single-precision floating-point values. There are encodings for each type of move.

» The source operand is either an XMM register or a 128-bit memory location. The destination
operandisan XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits[255:128] of the Y MM register that corresponds to the destination are not affected.
VMOVUPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

» The source operand is either an XMM register or a 128-bit memory location. The destination
operand isan XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves eight single-precision floating-point values. There are encodings for each type of move.

* The source operand is either a YMM register or a 256-bit memory location. The destination
operandisaYMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVUPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVUPS AVX | CPUID Fn0000_0001_ECXJ[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

234 [mePﬁu\bl\ﬁ%VUDSSe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic

MOVUPS xmm1, xmm2/mem128

MOVUPS xmm1/mem128, xmm2

Mnemonic

VMOVUPS xmm1, xmm2/mem128
VMOVUPS xmm1/mem128, xmm?2
VMOVUPS ymm1, ymm2/mem256
VMOVUPS ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
OF 10 /r Moves four packed single-precision floating-point

values from xmm2 or unaligned mem128 to xmm1.

OF 11 /r Moves four packed single-precision floating-point

values from xmm1 or unaligned mem128 to xmm2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.00 10 /r
C4 RXB.00001 X.1111.0.00 11/
C4 RXB.00001 X.1111.1.00 10 /r
C4 RXB.00001 X.1111.1.00 11/

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,

(V)IMOV'SS
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A |VEX.wvw ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Alignment check, #AC S S X | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

[AMS"Pupic’Use] 0

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
MPSADBW Multiple Sum of Absolute Differences
VMPSADBW

Calculates 8 or 16 sums of absolute differences of sequentially selected groups of four contiguous
unsigned byte integersin the first source operand and a selected group of four contiguous unsigned
byte integers in a second source operand and writes the eight or sixteen 16-bit unsigned integer sums
to sequential words of the destination register. The 256-bit form of the instruction additionally per-
forms asimilar but independent calculation using the upper 128 bits of the source operands.

Figure 2-2 on page 238 provides a graphical representation of the operation of the instruction. The
following description accompaniesiit.

The computation uses as inputs 11 bytes from the first source operand and 4 bytes in the second
source operand. Bit fields in the imm8 operand specify the index of the right-most byte of each group.

Bits[1:0] of the immediate operand determine the index of the right-most byte of four contiguous
bytes within the second source operand used in the operation that produces the result (or, in the case
of the 256-bit form of the instruction, the lower 128 bits of the result). Bit 2 of the immediate operand
determines the right-most index of the 11contiguous bytesin the first source operand used in the same
calculation. In the 128-hit form of the instruction, bits [7:3] of the immediate operand are ignored.

Bits[4:3] of the immediate operand determine the index of the right-most byte of four contiguous
bytes within the second source operand used in the operation that produces the upper 128 bits of the
result in the 256-bit form of theinstruction. Bit 5 of the immediate operand determines the right-most
index of the 11 contiguous bytes within in the upper half of the first 256-bit source operand used in
the same calculation. In the 256-bit form of the instruction, bits [7:6] of the immediate operand are
ignored.

Each word of the destination register receives the result of a separate computation of the sum of abso-
lute differences function applied to a specific pair of four-element vectors derived from the source
operands. The sum of absolute differences function SumAbsDiff (A, B) takes as input two 4-element
unsigned 8-bit integer vectors and produces a single unsigned 16-bit integer result. The function is
defined as:

SumAbsDiff(A, B) = | A[0]-B[0] | + | A[1]-B[1] | + | A[2]-B[2] | + | A[3]-B[3] |

The sum of absolute differences function produces a quantitative measure of the difference between
two 4-element vectors. Each of the calculations that generates a result uses this metric to assess the
difference between the selected 4-byte vector from operand 2 (B in the above equation) with each of
eight overlapping 4-byte vectors (A in the equation) selected sequentially from the first source oper-
and.

The right-most word (Word 0) of the destination receives the result of the comparison of the right-
most 4 bytes of the selected group of 11 from operand 1 (srcl[i1+3 : i1], as shown in the figure) to
the selected 4 bytes from operand 2 (src2[j1+3:j1], in the figure). Word 1 of the destination receives
the result of the comparison of the four bytes starting at an offset of 1 from the right-most byte of the
group of 11 (srclf i1+4 : i1+1] in the figure) to the 4 bytes from operand 2. Word 2 of the destination
receives the result of the comparison of the four bytes starting at an offset of 2 from the right-most
byte of the group of 11 (srcl[i1+5: i1+2], in the figure) to the selected 4 bytes from operand 2. This
continues in like manner until the left-most four bytes of the 11 are compared to the 4 bytes from
operand 2 with the result being written to Word 7. This compl etes the generation of the lower 128 bits
of the result.

236 B PSADB Instruction Reference
TARMSPUBICCRSE]

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

The generation of the upper 128 bits of the result for the 256-bit form of the instruction is performed
in like manner using separately selected groups of bytes from the upper half of the 256-bit operands,
as described above.

The following is amore formal description of the operation of the (V)MPSADBW instruction:

For both the 128-bit and 256-bit form of the instruction, the following set of operationsis performed:

srcl and src2 are byte vectors that overlay the first and second source operand respectively.
dest is a word vector that overlays the destination register.

tmp1[]is an array of 4-element vectors derived from the first source operand.

tmp2 and tmp3 are 4-element vectors derived from the second source operand.

i1 =imm8[2] * 4
j1=imm8[1:0] * 4

tmp1[0] = {src1[i1+3], src1[i1+2], src1[il+1], srcl[il]}
tmp1[1] = {srcl[il+4], srcl[i1+3], srcl[il+2], srcl[il+1]}
tmpl[2] = {srcl1[i1+5], src1[il+4], src1[i1l+3], src1[il+2]}
tmp1[3] = {srcl1[i1+6], srcl[il+5], srcl[il+4], src1[i1+3]}
tmpl[4] = {srcl1[i1+7], src1[il+6], srcl[il+5], src1[il+4]}
tmpl[5] = {srcl1[i1+8], src1[il+7], srcl[il+6], src1[il+5]}
tmpl[6] = {src1[i1+9], src1[i1+8], srcl[il+7], src1[i1+6]}
tmpl[7] = {src1[i1+10], src1[i1+9], src1[i1+8], src1[il+7]}
tmp2 = {src2[j1+3], src2[j1+2], src2[j1+1], src2[j1]}

dest[0] = SumAbsDiff(tmp1[0], tmp2)
dest[1] = SumAbsDiff(tmp1[1], tmp2)
dest[2] = SumAbsDiff(tmp1[2], tmp2)
dest[3] = SumAbsDiff(tmp1[3], tmp2)
dest[4] = SumAbsDiff(tmp1[4], tmp2)
dest[5] = SumAbsDiff(tmp1[5], tmp2)
dest[6] = SumAbsDiff(tmp1[6], tmp2)
dest[7] = SumAbsDiff(tmp1[7], tmp2)

Additionally, for the 256-bit form of the instruction, the following set of operations is performed:

i2 = imm8[5] * 4 + 16
j2= imm8[4:3] * 4 +16

tmp1[8] = {src1[i2+3], srcl[i2+2], src1[i2+1], srcl[i2]}
tmp1[9] = {srcl[i2+4], srcl[i2+3], srcl[i2+2], srcl[i2+1]}
tmp1[10] = {src1[i2+5], srcl[i2+4], src1[i2+3], srcl[i2+2]}
tmp1[11] = {src1[i2+6], src1[i2+5], srcl[i2+4], src1[i2+3]}
tmpl[12] = {srcl1[i2+7], srcl[i2+6], src1[i2+5], src1[i2+4]}
tmp1[13] = {src1[i2+8], srcl[i2+7], srcl[i2+6], srcl[i2+5]}
tmp1[14] = {src1[i2+9], src1[i2+8], src1[i2+7], srcl[i2+6]}
tmp1[15] = {src1[i2+10], src1[i2+9], src1[i2+8], src1[i2+7]}
tmp3 = {src2[j2+3], src2[j2+2], src2[j2+1], src2[j2]}

dest[8] = SumAbsDiIff(tmp1[8], tmp3)
dest[9] = SumAbsDiff(tmp1[9], tmp3)
dest[10] = SumAbsDiff(tmp1[10], tmp3)
dest[11] = SumADbsDiff(tmp1[11], tmp3)

Instruction Reference [KR/[\BBHU\bI\ﬁPCS{-\J)SBé/T 237

AMDZU

AMDG64 Technology

26568—Rev. 3.25—November 2021

dest[12] = SumAbsDiff(tmp1[12], tmp3)
dest[13] = SumAbsDiff(tmp1[13], tmp3)
dest[14] = SumAbsDiff(tmp1[14], tmp3)
dest[15] = SumAbsDiff(tmp1[15], tmp3)
srelfil+10:i1+7] srclfil+9:i1+6] srcl[il+8:i1+5] srclfil+7:i1+4] srcl[il+6:i1+3] srelfil+5:i1+2] srelfil+4:i1+1] srelfil+3:i1]
I‘II I‘II I‘II I‘II I‘II I;I I‘II I‘II
byfes byfes byfes byfes byfes byfes bytes | [bytes
tmpl[7] tmp1[6] tmpl[5] tmp1[4] tmp1[3] tmp1[2] tmp1[1]

¥ 2K 2a 2K ZB5 2K 28

word 7 word 6 word 5 word 4 word 3 word 2 word 1 word 0
Destination XMM Register (lower half of YMM Register)
srcl[i2+10:2+7] srcl[i2+9:i2+6) srcl[i2+8:i2+5) srcl[i2+7:i2+4] srcl[i2+6:i2+3] srclfi2+5:i2+2] srclfi2+4:2+1] srclfi2+3:i2]
I‘II I‘II I‘II I‘II I‘II I;I 1T I‘II
bytes | [bvtes | [ovies | [bytes | [obvies| [byvies| | bytes| [obyies

I tmpl[l‘4] 1

Itm p1[1‘5]
r

tmp1[13

—

Itmpl[l‘2] Itmpl[ll] 1tmp1[10] tmpl[QJ]

tmp1[8]

z1a1/ \z1a1/ \z1a1/ \=1a1/ \zi1a1/ \zja1/ \zja1/ \zjal/

word 15

word 14

word 13

word 12

word 11

word 10

word 9

word 8

Notes:

* il is a byte offset into source operand 1 (i1 =
* j1 is a byte offset into source operand 2 (j1 =
* i2 is a second byte offset into source operand 1 (i2 =
* j2 is a second byte offset into source operand 2 (j2 =

Destination YMM Register (upper half)

imma8[2] * 4).
imm8[1:0] * 4)
imm8[5] * 4 + 16)
imm8[4:3] * 4 + 16)

* ¥ |A] represents the sum of absolute differences function which operates on two

4-element unsigned packed byte values and produces an unsigned 16-bit integer.

Figure 2-2.

There are legacy and extended forms of the instruction:

MPSADBW

(V)MPSADBW Instruction

srcl[j1+3:1]

tmp2

srclfj2+3:j2]

tmp3

MPSADBW_instruct2.eps

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

238

IERASPubiictse

Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

VMPSADBW

The extended form of the instruction has 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register. Bits[127:0] of the destination
receive the results of the first 8 sums of absolute differences cal culation using the selected bytes of the
lower halves of the two source operands. Bits [255:128] of the destination receive the results of the
second 8 sums of absolute differences cal culation using selected bytes of the upper halves of the two
source operands.

Instruction Support

Form Subset Feature Flag

MPSADBW SSE4.1 | CPUID Fn0000_0001_ECX[SSEA41] (bit 19)
VMPSADBW 128-bit|] AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VMPSADBW 256-bit| AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MPSADBW xmm1, xmm2/mem128, imm8 66 OF 3A 42 /rib Sums absolute difference of groups of
four 8-bit integer in xmm1 and xmm?2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMPSADBW xmm1, xmm2, xmm3/mem128, imm8 Cc4 RXB.03 X.src1.0.01 42 Irib
VMPSADBW ymm1, ynm2, ymm3/mem256, imm8 c4 RXB.03 X.srcl1.1.01 42/rib

Related Instructions
(V)PSADBW, (V)PABSB, (V)PABSD, (V)PABSW

Instruction Reference [KR/[\BBHU\bI\ﬁPCS{-\J)SBé/T 239

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

240 [KMBB&U\G\WCS@)SB@T Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MULPD Multiply
VMULPD Packed Double-Precision Floating-Point

Multiplies each packed double-precision floating-point value of the first source operand by the corre-
sponding packed double-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding quadword of the destination.

There are legacy and extended forms of the instruction:
MULPD

Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double precision floating-point values in either a second XMM register or a 128-bit mem-
ory location. The first source register is also the destination. Bits [255:128] of the Y MM register that
corresponds to the destination are not affected.

VMULPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double-precision floating-point values in either a second source XMM register or a 128-bit
memory location. The destination isathird XMM register. Bits [255:128] of the Y MM register that
corresponds to the destination are cleared.

YMM Encoding

Multiplies four double-precision floating-point values in the first source Y MM register by the corre-
sponding double precision floating-point values in either a second source Y MM register or a 256-bit
memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
MULPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMULPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MULPD xmm1, xmm2/mem128 66 OF 59 /r Multiplies two packed double-precision floating-
point values in xmm1 by corresponding values in
Xxmm2 or mem2128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMULPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src.0.01 59 /r
VMULPD ymm1, ynm2, ymm3/mem256 C4 RXB.01 X.src.1.01 59 Ir

Instruction Reference [AM%PﬁU\ﬂ\ﬁ%LU)S@] 241

AMDZU

AMDG64 Technology

Related Instructions

(V)MULPS, (V)MULSD, (V)MULSS

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM|UM | OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] | = 11h.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-point, #xF | 5 | s | x | Lmesked SIUD Meetng it exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

242

[AMD Pubhic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MULPS Multiply
VMULPS Packed Single-Precision Floating-Point

Multiplies each packed single-precision floating-point value of the first source operand by the corre-
sponding packed single-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
MULPS

Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. Thefirst source register is also the destination. Bits [255:128] of the Y MM register
that corresponds to the destination are not affected.

VMULPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The destination is athird XMM register. Bits [255:128] of the Y MM register that
corresponds to the destination are cleared.

YMM Encoding

Multiplies eight single-precision floating-point values in the first source Y MM register by the corre-
sponding single-precision floating-point values of either a second source Y MM register or a 256-bit
memory location. Writes the resultsto athird Y MM register.

Instruction Support

Form Subset Feature Flag
MULPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMULPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MULPS xmm1, xmm2/mem128 OF 59 /r Multiplies four packed single-precision floating-point values
in xmm21 by corresponding values in xmm2 or mem128.
Writes the products to xmmZ1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMULPS xmm1, xmm2, xmm3/mem128 c4 RXB.01 X.src1.0.00 59 /r
VMULPS ymm1, ymm2, ynm3/mem256 ca RXB.01 X.src1.1.00 59/r

Instruction Reference [AM%Pﬁu\ﬂ\ﬁ%Lffse] 243

AMDZU

AMDG64 Technology

Related Instructions
(VMULPD, (V)MULSD, (V)MULSS

MXCSR Flag_]s Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM|UM | OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
Exception Real M\Zie Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] | = 11h.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-point, #xF | 5 | s | x | Lmesked SIUD Meetng it exeepti e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

244

[AME BuBiic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MULSD Multiply
VMULSD Scalar Double-Precision Floating-Point

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the product into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
MULSD

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a64-bit memory location. The first source register is aso the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding Y MM register are not affected.

VMULSD

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination isathird XMM register. Bits [127:64] of the first
source operand are copied to bits[127:64] of the destination. Bits[255:128] of the Y MM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MULSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMULSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MULSD xmm1, xmm2/mem64 F2 0F 59 /r Multiplies low-order double-precision floating-point values
in xmm1 by corresponding values in xmm2 or mem64.
Writes the products to xmml1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMULSD xmm1, xmm2, xmm3/mem64 C4 RXB.01 X.srcl.X.11 59 /r

Related Instructions
(VMULPD, (V)MULPS, (V)MULSS

Instruction Reference [AM%ﬁBu\ﬂ\ﬁ%Lﬂ%e] 245

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | Lmasked SIUD Mot ot exeept e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

246

[AMOBUBIC Bse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
MULSS Multiply Scalar Single-Precision Floating-Point
VMULSS

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second
source operand and writes the product into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
MULSS

The first source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding Y MM register are not affected.

VMULSS

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination isathird XMM register. Bits [127:32] of the first
source register are copied to bits[127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MULSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMULSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MULSS xmm1, xmm2/mem32 F3 OF 59 /r Multiplies a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmmz2 or mem32. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMULSS xmm1, xmm2, xmm3/mem32 Cc4 RXB.01 X.srcl.X.10 59 /r

Related Instructions
(VMULPD, (V)MULPS, (V)MULSD

Instruction Reference [AM%%U\G\ﬁ%LﬁSSQ] 247

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

MM | FZ RC PM | UM |OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 | 15 | 14 ‘ 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
E ti Mode c fE i
xception Reall Virt IProt ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT =0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-point, x| 5 | s | x | Lmasked SIUD Mot ot exeept e o> MEXCPT =1
SIMD Floating-Point Exceptions
. . S S X | Asource operand was an SNaN value.
Invalid operation, IE - -
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

248

[AME BuBlic- tse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ORPD OR
VORPD Packed Double-Precision Floating-Point

Performs bitwise OR of two packed double-precision floating-point valuesin the first source operand
with the corresponding two packed double-precision floating-point values in the second source oper-
and and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ORPD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VORPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ORPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VORPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ORPD xmm1, xmm2/mem128 66 OF 56 /r Performs bitwise OR of two packed double-precision
floating-point values in xmm1 with corresponding values in
Xxmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VORPD xmm1, xmmz2, xmm3/mem128 C4 RXB.01 X.src1.0.01 56 /r
VORPD ymm1, ynm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 56 /r

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference [Ampﬁu\b(fll:éPase] 249

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

250

[AMD BubiiE Bse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
ORPS OR
VORPS Packed Single-Precision Floating-Point

Performs bitwise OR of the four packed single-precision floating-point values in the first source oper-
and with the corresponding four packed single-precision floating-point values in the second source
operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ORPS

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VORPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
ORPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VORPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ORPS xmm1, xmm2/mem128 OF 56 /r Performs bitwise OR of four packed double-precision floating-
point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.wvvv.L.pp Opcode
VORPS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.00 56 /r
VORPS ymm1, ymmz2, ymm3/mem256 C4 RXB.01 X.src1.1.00 56 /r

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)XORPD, (V)XORPS

Instruction Reference [AWPﬁu\b(T%PFJse] 251

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.25—November 2021

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD —
A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

252

[AMD BUbE Vse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PABSB Packed Absolute Value
VPABSB Sighed Byte

Computes the absolute value of 16 or 32 packed 8-bit signed integers in the source operand. Each
byte of the destination receives an unsigned 8-bit integer that is the absolute value of the signed 8-bit
integer in the corresponding byte of the source operand.

There are legacy and extended forms of the instruction:
PABSB

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.
VPABSB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

The source operand isaY MM register or a 256-bit memory location. The destinationisaYMM reg-
ister. All 32 bytes of the destination are written.

Instruction Support

Form Subset Feature Flag

PABSB SSSE3 | CPUID Fn0000_0001_ECX[SSSE3] (bit 9)
VPABSB 128-bitf AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPABSB 256-bitf AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PABSB xmm1, xmm2/mem128 OF 38 1C /r Computes the absolute value of each packed 8-bit signed
integer value in xmm2/mem128 and writes the 8-bit unsigned
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPABSB xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 1C/Ir
VPABSB ymm1, ymm2/mem256 C4 RXB.02 X.1111.1.01 1C/hr

Related Instructions
(V)PABSW, (V)PABSD

Instruction Reference [AW%UY) ;ichﬁse] 253

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

MXCSR Flags Affected

None
Exceptions
E ti Mode c fE i
Xxception Reall Virt [Prot ause or exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwy ! =1111b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

254 [Al\?ﬁﬁﬁgu\b f\CBﬁse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PABSD Packed Absolute Value
VPABSD Signed Doubleword

Computes the absolute value of four or eight packed 32-bit signed integers in the source operand.
Each doubleword of the destination receives an unsigned 32-bit integer that is the absolute value of
the signed 32-hit integer in the corresponding doubleword of the source operand.

There are legacy and extended forms of the instruction:
PABSD

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VPABSD

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

The source operand isaY MM register or a 256-bit memory location. The destinationisaYMM reg-
ister. All four doublewords of the destination are written.

Instruction Support

Form Subset Feature Flag

PABSD SSSE3 | CPUID Fn0000_0001_ECX[SSSE3] (bit 9)
VPABSD 128-bitf AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPABSD 256-bitf AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PABSD xmm1, xmm2/mem128 OF 38 1E /r Computes the absolute value of each packed 32-bit signed
integer value in xmm2/mem128 and writes the 32-bit
unsigned results to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPABSD xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 1E /r
VPABSD ymm1, ymm2/mem256 C4 RXB.02 X.1111.1.01 1E /r

Related Instructions
(V)PABSB, (V)PABSW

Instruction Reference [AWﬁBu\b f\CB?j)S@] 255

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwvwv ! =1111b.
A | VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

256 [A'\?ﬁﬁﬁgu\b f\CB?j)S@] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PABSW Packed Absolute Value
VPABSW Sighed Word

Computes the absolute value of eight or sixteen packed 16-bit signed integers in the source operand.
Each word of the destination receives an unsigned 16-bit integer that is the absolute value of the
signed 16-bit integer in the corresponding word of the source operand.

There are legacy and extended forms of the instruction:
PABSW

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VPABSW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

The source operand isan XMM register or a 128-bit memory location. The destination isan XMM
register. Bits[255:128] of the Y MM register that corresponds to the destination are cleared.

YMM Encoding

The source operand isaY MM register or a 256-bit memory location. The destinationisaYMM reg-
ister. All 16 words of the destination are written.

Instruction Support

Form Subset Feature Flag
PABSW SSSE3 | CPUID Fn0O000_0001_ECX[SSSES3] (bit 9)
VPABSW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPABSW 256-bit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PABSW xmm1, xmm2/mem128 OF 38 1D /r Computes the absolute value of each packed 16-bit signed
integer value in xmm2/mem128 and writes the 16-bit
unsigned results to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPABSW xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 1D /r
VPABSW ymm1, ymm2/mem256 C4 RXB.02 X.1111.1.01 D /r

Related Instructions
(V)PABSB, (V)PABSD

Instruction Reference [AWS&U\@Al\gﬂ\ée] 257

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwvwv ! =1111b.
A | VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

258 [Awswu\m/l\gﬂvse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PACKSSDW Pack with Signed Saturation
VPACKSSDW Doubleword to Word

Converts four or eight 32-bit signed integers from the first source operand and the second source
operand into 16-bit signed integers and packs the results into the destination.

Positive source value greater than 7FFFh are saturated to 7FFFh; negative source values less than
8000h are saturated to 8000h.

Converted values from the first source operand are packed into the low-order words of the destina-
tion; converted values from the second source operand are packed into the high-order words of the
destination.

There are legacy and extended forms of the instruction:
PACKSSDW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPACKSSDW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PACKSSDW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPACKSSDW 128-bit | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKSSDW 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PACKSSDW xmm1, xmm2/mem128 66 OF 6B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit signed integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKSSDW xmm1, xmm2, xmm3/mem128 Cca RXB.01 X.src1.0.01 6B /r
VPACKSSDW ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.srcl.1.01 6B Ir

Instruction Reference Pr,&m%u\fﬂﬂl\é:lﬁggr 259

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Instructions
(V)PACKSSWB, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

260 P{ﬁm%u\fm\c(:ﬁggr Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PACKSSWB Pack with Signed Saturation
VPACKSSWB Word to Byte

Converts eight or sixteen 16-bit signed integers from the first source operand and the second source
operand into sixteen or thirty two 8-bit signed integers and packs the results into the destination.

Positive source values greater than 7Fh are saturated to 7Fh; negative source values |ess than 80h are
saturated to 80h.

Converted values from the first source operand are packed into the low-order bytes of the destination;
converted values from the second source operand are packed into the high-order bytes of the destina-
tion.

There are legacy and extended forms of the instruction:
PACKSSWB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPACKSSWB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PACKSSWB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)

VPACKSSWB 128-bit | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPACKSSWB 256-bit | AVX2 |CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PACKSSWB xmm1, xmm2/mem128 66 OF 63 /r Converts 16-bit signed integers in xmm1 and xmm2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKSSWB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 63 /r
VPACKSSWB ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 63 Ir

Instruction Reference P[\,&WV\EU\fﬂi\éiﬁgng 261

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Instructions
(V)PACK SSDW, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

262 Pr&m%ubﬁfgﬁgéf Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PACKUSDW Pack with Unsigned Saturation
VPACKUSDW Doubleword to Word

Converts four or eight 32-bit signed integers from the first source operand and the second source
operand into eight or sixteen 16-bit unsigned integers and packs the results into the destination.

Source values greater than FFFFh are saturated to FFFFh; source values less than 0000h are saturated
to 0000h.

Packs converted values from the first source operand into the low-order words of the destination;
packs converted values from the second source operand into the high-order words of the destination.

There are legacy and extended forms of the instruction:
PACKUSDW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPACKUSDW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PACKUSDW SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPACKUSDW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKUSDW 256-bit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PACKUSDW xmm1, xmm2/mem128 66 OF 38 2B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit unsigned integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKUSDW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 2B /Ir
VPACKUSDW ymm1, ymm2, ymm3/mem256 c4 RXB.02 X.src1.0.01 2B Ir

Instruction Reference P[}&MﬁD&u\mﬂl\CClﬁJgé)]'v 263

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSWB

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

264 P[\,&MﬁDwu\fm\Cmtygg]/v Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PACKUSWB Pack with Unsigned Saturation
VPACKUSWB Word to Byte

Converts eight or sixteen 16-bit signed integers from the first source operand and the second source
operand into sixteen or thirty two 8-bit unsigned integers and packs the results into the destination.

When asource value is greater than 7Fh it is saturated to FFh; when source valueislessthan 00h, it is
saturated to 00h.

Packs converted values from the first source operand into the low-order bytes of the destination;
packs converted values from the second source operand into the high-order bytes of the destination.

There are legacy and extended forms of the instruction:
PACKUSWB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPACKUSWB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PACKUSWB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPACKUSWB 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKUSWB 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PACKUSWB xmm1, xmm2/mem128 66 OF 67 /r Converts 16-bit signed integers in xmm1 and xmm2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKUSWB xmm1, xmm2, xmm3/mem128 c4 RXB.01 X.src1.0.01 67 Ir
VPACKUSWB ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 67 Ir

Instruction Reference P{\/&M’BV\EU\EW?CCWSS&B 265

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSDW

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

266 P{\}&M)ﬁV\Eu\bq;i\gWSSé\]B Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDB Packed Add
VPADDB Bytes

Adds 16 or 32 packed 8-bit integer valuesin the first source operand to corresponding valuesin the
second source operand and writes the integer sums to the corresponding bytes of the destination.

This instruction operates on both signed and unsigned integers. When aresult overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PADDB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDB 128-bitf AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDB 256-bitt AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
PADDB xmm1, xmm2/mem128 66 OF FC /r Adds packed byte integer values in xmm1 and xmm2 or
mem128 Writes the sums to xmmL1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 FC/r
VPADDB ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 FC/Ir

Instruction Reference [AW%u\m;i\é)lfjsse] 267

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

268

(AN BuBiS Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDD Packed Add
VPADDD Doublewords

Adds 4 or 8 packed 32-bit integer value in the first source operand to corresponding valuesin the sec-
ond source operand and writes integer sums to the corresponding doublewords of the destination.

This instruction operates on both signed and unsigned integers. When aresult overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDD

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PADDD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDD 128-bitf AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDD 256-bitt AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDD xmm1, xmm2/mem128 66 OF FE /r Adds packed doubleword integer values in xmm1 and
xmmz2 or mem128 Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDD xmm1, xmmz2, xmm3/mem128 c4 RXB.01 X.src1.0.01 FE /r
VPADDD ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 FE Ir

Instruction Reference [Al\lmqgu\m;i\é)lfj)se] 269

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

270

[AMBSPUBICUse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDQ Packed Add
VPADDQ Quadwords

Adds 2 or 4 packed 64-bit integer values in the first source operand to corresponding valuesin the
second source operand and writes the integer sums to the corresponding quadwords of the destination.

This instruction operates on both signed and unsigned integers. When aresult overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDQ

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDQ

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PADDQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDQ 128-hit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDQ 256-bit| AVX2 | CPUID Fn0000 0007 _EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDQ xmm1, xmm2/mem128 66 OF D4 /r Adds packed quadword integer values in xmm1 and
xmmz2 or mem128 Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDQ xmm1, xmm2, xmm3/mem128 ca RXB.00001 X.src1.0.01 D4 Ir
VPADDQ ymm1, ymm2, ynm3/mem256 c4 RXB.00001 X.src1.1.01 D4 Ir

Instruction Reference [Awqgu\fﬂi\é)%e] 271

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDD, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

272

(ARG PuBHE e

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDSB Packed Add with Signed Saturation
VPADDSB Bytes

Adds 16 or 32 packed 8-bit signed integer valuesin the first source operand to the corresponding val-
uesin the second source operand and writes the signed integer sums to corresponding bytes of the
destination.

Positive sums greater than 7Fh are saturated to 7Fh; negative sums less than 80h are saturated to 80h.
There are legacy and extended forms of the instruction:
PADDSB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDSB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PADDSB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDSB 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDSB 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDSB xmm1, xmm2/mem128 66 OF EC /r Adds packed signed 8-bit integer values in xmm1 and
Xxmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDSB xmm1, xmm2, xmm3/mem128 c4 RXB.01 X.src1.0.01 EC Ir
VPADDSB ymm1, ymm2, ynm3/mem256 c4 RXB.01 X.srcl.1.01 EC/r

Instruction Reference [APW%U\fﬂi\é)lijBe] 273

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

274

(AR PuBtic' e

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDSW Packed Add with Signed Saturation
VPADDSW Words

Adds 8 or 16 packed 16-bit signed integer value in the first source operand to the corresponding val-
ues in the second source operand and writes the signed integer sums to the corresponding words of
the destination.

Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums |l ess than 8000h are saturated
to 8000h.

There are legacy and extended forms of the instruction:

PADDSW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDSW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PADDSW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDSW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDSW 256-bit| AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDSW xmm1, xmm2/mem128 66 OF ED /r Adds packed signed 16-bit integer values in xmm1 and
xmm2 or mem128 with signed saturation. Writes the
sums to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src1.0.01 ED /r
VPADDSW ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src1.1.01 ED /r

Instruction Reference [KMBS&U\b%é)[ﬁgve] 275

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

276

(AR PUBHC Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDUSB Packed Add with Unsigned Saturation
VPADDUSB Bytes

Adds 16 or 32 packed 8-bit unsigned integer valuesin the first source operand to the corresponding
values in the second source operand and writes the unsigned integer sums to the corresponding bytes
of the destination.

Sums greater than FFh are saturated to FFh.
There are legacy and extended forms of the instruction:

PADDUSB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDUSB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PADDUSB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDUSB 128-hitf AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDUSB 256-bitf AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDUSB xmm1, xmm2/mem128 66 OF DC /r Adds packed unsigned 8-bit integer values in xmm1
and xmmz2 or mem2128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDUSB xmm1, xmm2, xmm3/mem128 c4 RXB.01 X.src1.0.01 DC /Ir
VPADDUSB ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.srcl.1.01 DC /r

Instruction Reference [%Sﬁu\fﬂi\g ésg] 277

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSW, (V)PADDW

rFLAGS Affected
None

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nlu|>

0nlu| >

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O XX X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-hit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

278

AV PuBic Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDUSW Packed Add with Unsigned Saturation
VPADDUSW Words

Adds 8 or 16 packed 16-bit unsigned integer value in the first source operand to the corresponding
valuesin the second source operand and writes the unsigned integer sums to the corresponding words
of the destination.

Sums greater than FFFFh are saturated to FFFFh.
There are legacy and extended forms of the instruction:
PADDUSW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDUSW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PADDUSW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDUSW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDUSW 256-bit| AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDUSW xmm1, xmm2/mem128 66 OF DD /r Adds packed unsigned 16-bit integer values in xmm1
and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDUSW xmm1, xmm2, xmm3/mem128 ca RXB.01 X.src1.0.01 DD /r
VPADDUSW ymm1, ymmz2, ymm3/mem256 C4 RXB.01 X.src1.1.01 DD /r

Instruction Reference m%s&u\fﬂi\gwgé\] 279

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDW

rFLAGS Affected
None

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nlu|>

0nlu| >

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O XX X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-hit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

280

(ARG PuBHc U]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PADDW Packed Add
VPADDW Words

Adds or 16 packed 16-bit integer value in the first source operand to the corresponding valuesin the
second source operand and writes the integer sums to the corresponding word of the destination.

This instruction operates on both signed and unsigned integers. When aresult overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PADDW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPADDW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDW 256-bit | AVX2 | CPUID Fn0O000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PADDW xmm1, xmm2/mem128 66 OF FD /r Adds packed 16-bit integer values in xmm1 and xmm?2
or mem128. Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDW xmm1, xmm2, xmm3/mem128 ca RXB.01 X.src1.0.01 FD /r
VPADDW ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 FD /r

Instruction Reference [AK/[\BDwU\mAl\C[:)W\Ise] 281

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW

RFlags Affected
None

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nlu|>

0nlu| >

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O XX X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-hit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

282

[AMBPUBHE Use]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PALIGNR Packed Align Right
VPALIGNR

Concatenates one or two pairs of 16-byte values from the first and second source operands and right-
shifts the concatenated values the number of bytes specified by the unsigned immediate operand.
Writes the least-significant 16 bytes of the shifted result to the destination or writes the least-signifi-
cant 16 bytes of the two shifted results to the upper and lower halves of the destination.

For the 128-bit form of the instruction, the first and second 128-bit source operands are concatenated
to form atemporary 256-bit value with the first source operand occupying the most-significant half of
the temporary value. After the right-shift operation, the lower 128 bits of the result are written to the
destination.

For the 256-bit form of the instruction, the lower 16 bytes of the first and second source operands are
concatenated to form afirst temporary 256-bit value with the bytes from the first source operand
occupying the most-significant half of the temporary value. The upper 16 bytes of thefirst and second
source operands are concatenated to form a second temporary 256-bit value with the bytes from the
first source operand occupying the most-significant half of the second temporary value. Both tempo-
rary values are right-shifted the number of bytes specified by the immediate operand. After the right-
shift operation, the lower 16 bytes of the first temporary value are written to the lower 128 bits of the
destination and the lower 16 bytes of the second temporary value are written to the upper 128 bits of
the destination.

The binary value of the immediate operand determines the byte shift value. On each shift the most-
significant byte is set to zero. When the byte shift value is greater than 31, the destination is zeroed.

There are two forms of the instruction.
PALIGNR

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPALIGNR

The extended form of the instruction has 128-bit and 256-bit encodings.

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PALIGNR SSSE3 | CPUID FnO000_0001_ECX[SSSE3] (bit 9)
VPALIGNR 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPALIGNR 256-bit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Instruction Reference ['&MBI\BU\m;i\é_Iﬂ\ISRe] 283

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PALIGNR xmm1, xmm2/mem128, imm8 66 OF 3AOF /r ib Right-shifts xmm21:xmm2/mem128 imm8
bytes. Writes shifted result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.wvvv.L.pp Opcode
VPALIGNR xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.03 X.src1.0.01 OF /rib
VPALIGNR ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 X.src1.1.01 OF /rib

Related Instructions
None

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

284 [/&MBI\BU\@?C%IEJ\ISRQ] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PAND Packed AND
VPAND

Performs a bitwise AND of the packed values in the first and second source operands and writes the
result to the destination.

There are legacy and extended forms of the instruction:
PAND
Thefirst source operand isan XMM register. The second source operand is either an XMM register or

a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPAND

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag

PAND SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPAND 128-hit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPAND 256-hit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
PAND xmm1, xmm2/mem128 66 OF DB /r Performs bitwise AND of values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPAND xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 DB /r
VPAND ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 DB /r

Related Instructions
(V)PANDN, (V)POR, (V)PXOR

Instruction Reference [AMP[sl\Bu\bﬁ;i\é\llbse] 285

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

286 [AM%'\BU\@?&\”EJS@] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PANDN Packed AND NOT
VPANDN

Generates the ones' complement of the value in the first source operand and performs a bitwise AND
of the complement and the value in the second source operand. Writes the result to the destination.

There are legacy and extended forms of the instruction:

PANDN

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPANDN

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PANDN SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPANDN 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPANDN 256-bit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PANDN xmm1, xmm2/mem128 66 OF DF /r Generates ones’ complement of xmm1, then performs
bitwise AND with value in xmm2 or mem128. Writes the
result to xmmZ1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPANDN xmm1, xmm2, xmm3/mem128 c4 RXB.01 X.src.0.01 DF /r
VPANDN ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src.1.01 DF /r

Related Instructions
(V)PAND, (V)POR, (V)PXOR

Instruction Reference [Al\lmﬁl[blu\b ?CNWSG] 287

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

288 [AW%IU\b ?CNWSG] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PAVGB Packed Average
VPAVGB Unsigned Bytes

Computes the rounded averages of 16 or 32 packed unsigned 8-bit integer valuesin the first source
operand and the corresponding values of the second source operand. Writes each average to the corre-
sponding byte of the destination.

An average is computed by adding pairs of 8-bit integer valuesin corresponding positions in the two
operands, adding 1 to a 9-bit temporary sum, and right-shifting the temporary sum by one bit position.

There are legacy and extended forms of the instruction:
PAVGB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPAVGB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag

PAVGB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPAVGB 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPAVGB 256-bit AVX2 | CPUID Fn0000_0007_EBX[AVX2] x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
PAVGB xmm1, xmm2/mem128 66 OF EO /r Averages pairs of packed 8-bit unsigned integer values
in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPAVGB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 EO /r
VPAVGB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.srcl.1.01 EO /r

Instruction Reference [AW%u\m}i\c\{ﬁse] 289

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Instructions
PAV GW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

290 [AW%u\bﬁfgﬁse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PAVGW Packed Average
VPAVGW Unsigned Words

Computes the rounded average of packed unsigned 16-bit integer valuesin the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
word of the destination.

An averageis computed by adding pairs of 16-bit integer valuesin corresponding positionsin the two
operands, adding 1 to a 17-bit temporary sum, and right-shifting the temporary sum by one bit posi-
tion.

There are legacy and extended forms of the instruction:
PAVGW

Thefirst source operand isan XMM register and the second source operand isan XMM register or
128-bit memory location. The destination is the same XMM register as the first source operand; the
upper 128-bits of the corresponding Y MM register are not affected.

VPAVGW

The extended form of the instruction has128-bit and 256-bit encodings.

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PAVGW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPAVGW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPAVGW 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2] x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
PAVGW xmm1, xmm2/mem128 66 OF E3 /r Averages pairs of packed 16-bit unsigned integer values
in xmm1 and xmm2 or mem128. Writes the averages to
xmm1l.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPAVGW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E3/r
VPAVGW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.srcl.1.01 E3/r

Instruction Reference [AWGfﬁ/U\fJ%(\:/Wse] 291

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Related Instructions
(V)PAVGB

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
E ti Mode c fE i
Xxception Reall Virt [Prot ause or exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s |Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

292 [AWqu\mAl\(\{wse] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PBLENDVB Variable Blend
VPBLENDVB Packed Bytes

Copies packed bytes from either of two sources to a destination, as specified by a mask operand.

The mask is defined by the most significant bit of each byte of the mask operand. The position of a

mask bit corresponds to the position of the most significant bit of a copied value.

* When a mask bit = 0, the specified element of the first source is copied to the corresponding
position in the destination.

* When amask bit = 1, the specified element of the second source is copied to the corresponding
position in the destination.

There are legacy and extended forms of the instruction:
PBLENDVB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the

YMM register that corresponds to the destination are not affected. The mask operand is the implicit
register XMMO.

VPBLENDVB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared. The mask operand is afourth XMM register
selected by bits[7:4] of an immediate byte.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register. The mask operand is afourth
YMM register selected by bits[7:4] of an immediate byte.

Instruction Support

Form Subset Feature Flag
PBLENDVB SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPBLENDVB 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPBLENDVB 256-hit AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference F[%\W\ﬁu\m%_wg\éj& 293

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

PBLENDVB xmm1, xmm2/mem128 66 OF 38 10 /r Selects byte values from xmm21 or xmm2/mem128,
depending on the value of corresponding mask bits
in XMMO. Writes the selected values to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPBLENDVB xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 4C /ris4
VPBLENDVB ymm1, ymm2, ymm3/mem256, ymm4 c4 RXB.03 0.src1.1.01 4C /ris4

Related Instructions
(V)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXW =1
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

294 F[%\W\ﬁu\ﬁfzd_wsme/l]‘s Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PBLENDW Blend
VPBLENDW Packed Words

Copies packed words from either of two sources to a destination, as specified by an immediate 8-bit
mask operand. For the 256-bit form, the same 8-bit mask is applied twice; once to select wordsto be
written to the lower 128 bits of the destination and again to select wordsto be written to the upper 128
bits of the destination.

Each bit of the mask selects aword from one of the source operands based on the position of the word
within the operand. Bit O of the mask selects the least-significant word (word 0) to be copied, bit 1
selects the next-most significant word (word 1), and so forth. Bit 7 selects word 7 (the most-signifi-
cant word for 128-bit operands).

For the 256-bit operands, the mask is reused to select words in the upper 128-bits of the source oper-
ands to be copied. Bit 0 of the mask selectsword 8, bit 1 selectsword 9, and so forth. Finally, bit 7 of
the mask selects the word from position 15.

* When a mask bit = 0, the specified element of the first source is copied to the corresponding
position in the destination.

* When amask bit = 1, the specified element of the second source is copied to the corresponding
position in the destination.

There are legacy and extended forms of the instruction:
PBLENDW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPBLENDW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PBLENDW SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPBLENDW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPBLENDW 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference r?&m%u\bq?é_ﬂgé\l] 295

AMDZU

AMDG64 Technology

Instruction Encoding

Mnemonic

PBLENDW xmm1, xmm2/mem128, imm8

26568—Rev. 3.25—November 2021

Opcode Description

66 OF 3AO0E /rib Selects word values from xmm1 or
xmm2/mem128, as specified by imm8.
Writes the selected values to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPBLENDW xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.03 X.src1.0.01 OE /rfib
VPBLENDW ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 X.src1.1.01 OE /r /ib

Related Instructions

(V)BLENDPD

rFLAGS Affected
None

MXCSR Flags Affected

None

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

X

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>

nlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nnnon

0nnnwn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X[IX[Z>>>0W0

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

A — AVX, AVX2 exception
S — SSE exception

X — SSE, AVX, and AVX2 exception

296

[RVEPUBIC Dse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PCLMULQDQ Carry-less Multiply
VPCLMULQDQ Quadwords

Performs a carry-less multiplication of a selected quadword element of the first source operand by a
selected quadword element of the second source operand and writes the product to the destination.

Carry-less multiplication, al'so known as binary polynomial multiplication, isthe mathematical opera-
tion of computing the product of two operands without generating or propagating carries. It isan
essential component of cryptographic processing, and typically requires alarge number of cycles.

The instruction provides an efficient means of performing the operation and is particularly useful in
implementing the Galois counter mode used in the Advanced Encryption Standard (AES). See
Appendix A on page 975 for additional information.

Bits 4 and O of an 8-bit immediate byte operand specify which quadword of each source operand to
multiply, asfollows.

Mnemonic Imm[0] | Imm[4] | Quadword Operands Selected
(V)PCLMULLQLQDQ 0 0 SRC1[63:0], SRC2[63:0]
(V)PCLMULHQLQDQ 1 0 SRC1[127:64], SRC2[63:0]
(V)PCLMULLQHQDQ 0 1 SRC1[63:0], SRC2[127:64]
(V)PCLMULHQHQDQ 1 1 SRC1[127:64], SRC2[127:64]

Alias mnemonics are provided for the various immediate byte combinations.
There are legacy and extended forms of the instruction:

PCLMULQDQ

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCLMULQDQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM

Thefirst source operand isaY MM register and the second source operand is either aY MM register
or a 256-bit memory location. The destination isathird YMM register.

Instruction Reference Pcrw_lsqgu\m%_wsl_ Q 297

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Support

Form Subset Feature Flag
PCLMULQDQ PCLMULQDQ | CPUID Fn0000_0001_ECX[PCLMULQDQ] (bit 1)

AVX or CPUID Fn0000_0001_ECX[PCLMULQDQ] (bit 1) or

VPCLMULQDQ 128 | 5o MuLQDQ | CPUID FnO000_0001_ECX[AVX] (bit 28)

VPCLMULQDQ 256 | VPCLMULQDQ | CPUID Fn0000_0007_ECX[VPCLMULQD]_xO (bit 10)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCLMULQDQ xmm1, xmm2/mem128, imm8 66 OF 3A 44 /rib Performs carry-less multiplication of a
selected quadword element of xmm1 by a
selected quadword element of xmm2 or
mem128. Elements are selected by bits 4
and 0 of imm8. Writes the product to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCLMULQDQ xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 44 Ir ib
VPCLMULQDQ ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 44 Irib

Related Instructions
(V)PMULDQ, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
. S S S | CR4.0SFXSR =0.
Invalid opcode, #UD —
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.

298 P CLMULODPQ Instruction Reference
TAMS Bl Oser

AMDZU

26568—Rev. 3.25—November 2021

AMDG64 Technology

Exceptions
. Mode :
Exception ReallVirt [Prot Cause of Exception
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

AN PudIic Oser”

299

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPEQB Packed Compare Equal
VPCMPEQB Bytes

Compares packed byte valuesin the first source operand to corresponding valuesin the second source
operand and writes a comparison result to the corresponding byte of the destination.

When values are equal, the result is FFh; when values are not equal, the result is 00h.
There are legacy and extended forms of the instruction:
PCMPEQB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPEQB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPEQB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPCMPEQB 128-hit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPEQB 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQB xmm1, xmm2/mem128 66 OF 74 /r Compares packed bytes in xmm1 to packed bytes in
xmmz2 or mem128. Writes results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQB xmm1, xmm2, xmm3/mem128 ca RXB.01 X.src1.0.01 74 Ir
VPCMPEQB ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 74 Ir

Related Instructions
(V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

300 ﬁ&Mfﬁ%uYﬂ?cMUESQeﬂ Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

rFLAGS Affected
None

MXCSR Flags Affected

None

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception

A — AVX, AVX2 exception
S — SSE exception

Instruction Reference

RSB UR T

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPEQD Packed Compare Equal
VPCMPEQD Doublewords

Compares packed doubleword values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding doubleword of the destina-
tion.

When values are equal, the result is FFFFFFFFh; when values are not equal, the result is 00000000h.
There are legacy and extended forms of the instruction:
PCMPEQD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPEQD

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPEQD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPCMPEQD 128-hit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPEQD 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQD xmm1, xmm2/mem128 66 OF 76 /r Compares packed doublewords in xmm1 to packed
doublewords in xmm2 or mem128. Writes results to

xmml.
Mnemonic Encoding
VEX RXB.map_select W.wvvv.L.pp Opcode
VPCMPEQD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 76 Ir
VPCMPEQD ymm1, ymmz2, ymm3/mem256 C4 RXB.01 X.src1.1.01 76 Ir

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

302 ﬁ&w[sqgu\mFCMUESQeﬂ Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

rFLAGS Affected
None

MXCSR Flags Affected

None

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception

A — AVX, AVX2 exception
S — SSE exception

Instruction Reference

RS BUR T

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPEQQ Packed Compare Equal
VPCMPEQQ Quadwords

Compares packed quadword values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding quadword of the destination.

When values are equal, the result is FFFFFFFFFFFFFFFFh; when values are not equal, the result is
0000000000000000h.

There are legacy and extended forms of the instruction:
PCMPEQQ

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPEQQ

The extended form of the instruction has 128-bit and 256-bit encodings.

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPEQQ SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPCMPEQQ 128-bit | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPCMPEQQ 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQQ xmm1, xmm2/mem128 66 OF 38 29 /r Compares packed quadwords in xmm1 to packed
guadwords in xmm2 or mem128. Writes results to

xmml.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQQ xmm1, xmm2, xmm3/mem128 c4 RXB.02 X.src1.0.01 29 Ir
VPCMPEQQ ymm1, ymm2, ymm3/mem256 c4 RXB.02 X.src1.1.01 29 Ir

304 rj&wlﬁqgu\mFCMUESQeﬂ Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference [:j&MDﬁqu\mFCMUESQ& 305

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPEQW Packed Compare Equal
VPCMPEQW Words

Compares packed word values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.

When values are equal, the result is FFFFh; when values are not equal, the result is 0000h.
There are legacy and extended forms of the instruction:
PCMPEQW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPEQW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPEQW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)

VPCMPEQW 128-bit| AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPCMPEQW 256-bit| AVX2 |CPUID Fn0000_0007_EBX[AVX2] xO0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQW xmml, xmm2/mem128 66 OF 75 /r Compares packed words in xmmZ1 to packed words in
xmmz2 or mem128. Writes results to xmm.1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQW xmm1, xmm2, xmm3/mem128 ca RXB.01 X.src1.0.01 75 Ir
VPCMPEQW ymm1, ynm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 75 Ir

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

306 [’I&wrﬁQwu\m?CMUESQeVT Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

rFLAGS Affected
None

MXCSR Flags Affected

None

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|IX[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-bhit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception

A — AVX, AVX2 exception
S — SSE exception

Instruction Reference

[RNIDPubiicUse] >

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPESTRI Packed Compare
VPCMPESTRI Explicit Length Strings Return Index

Compares character string datain the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.

The absolute value of the datain the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the datain the EDX/RDX register represents the
length of the character string in the second source operand.

If the absolute value of the dataiin either register is greater than the maximum string length that fitsin
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector isreturned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.

See Section 1.5, “ String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition
CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.
AF cleared.
ZF Set if the specified length of the second string is less than the maximum; otherwise
cleared.
SF Set if the specified length of the first string is less than the maximum; otherwise
cleared.
OF Equal to the value of the Isb of the post-processed comparison summary bit vector.

There are legacy and extended forms of the instruction:
PCMPESTRI

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.

VPCMPESTRI
The extended form of the instruction has a 128-bit encoding only.

308 P[:;&WTEU\{JWFCMEFSS%]QI Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.

Instruction Support

Form Subset Feature Flag
PCMPESTRI SSE4.2 | CPUID Fn0000_0001_ECX[SSE42] (bit 20)
VPCMPESTRI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPESTRI xmm1, xmm2/mem128, imm8 66 OF 3A 61 /rib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a result index to
the ECX register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPESTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 61 /rib

Related Instructions
(V)PCMPESTRM, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected
ID [VIP|VIF|AC | VM | RF | NT IOPL OF [DF | IF | TE| SF | ZF | AF | PF | CF

M M M 0 0 M
21 | 20 | 19 | 18 | 17 | 16 | 14 | 13 |12 11 | 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None

Instruction Reference PE&WTBUYJWFCMEFSS@'T&I 309

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Exception

Mode

Real

Virt

Cause of Exception
Prot P

X | Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nnnon

0nnnwn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X|>| 0 [X|X|X|X[X|>>>>>00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

310

p[:;&\/WTﬁlu\mFCMUESSéF]QI Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PCMPESTRM Packed Compare
VPCMPESTRM Explicit Length Strings Return Mask

Compares character string datain the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMMO/XMMO register.

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.

The absolute value of the datain the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the datain the EDX/RDX register represents the
length of the character string in the second source operand.

If the absolute value of the dataiin either register is greater than the maximum string length that fitsin
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMMO.

See Section 1.5, “ String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition
CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.
AF cleared.
ZF Set if the specified length of the second string is less than the maximum; otherwise
cleared.
SF Set if the specified length of the first string is less than the maximum; otherwise
cleared.
OF Equal to the value of the Isb of the post-processed summary bit vector.

There are legacy and extended forms of the instruction:
PCMPESTRM

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMMO register.

VPCMPESTRM
The extended form of the instruction has a 128-bit encoding only.

Instruction Reference P%PWRF\;IU\@FCMUESS&QM 311

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMMO register. Bits [255:128] of the
YMMO register are cleared.

Instruction Support

Form Subset Feature Flag
PCMPESTRM | SSE4.2 | CPUID Fn0000_0001_ECX[SSE42] (bit 20)
VPCMPESTRM| AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPESTRMxmm1, xmm2/mem128, imm8 66 OF 3A 60 /rib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a mask value to
the XMMO register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPESTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 60 /rib

Related Instructions
(V)PCMPESTRI, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected
ID [VIP|VIF|AC | VM | RF | NT IOPL OF [DF | IF | TE| SF | ZF | AF | PF | CF

M M M 0 0 M
21 | 20 | 19 | 18 | 17 | 16 | 14 | 13 |12 11 | 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None

312 PCF;A\PI\I?@RIMU\@FCMUESS&T&M Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S | CR4.0SFXSR =0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wvw ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCTAPWP]BIU\quCMUESSéFTM 313

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPGTB Packed Compare Greater Than
VPCMPGTB Sighed Bytes

Compares packed signed byte valuesin the first source operand to corresponding valuesin the second
source operand and writes a comparison result to the corresponding byte of the destination.

When avalue in thefirst operand is greater than a value in the second source operand, the result is
FFh; when avaluein thefirst operand isless than or equal to avalue in the second operand, the result
is 00h.

There are legacy and extended forms of the instruction:
PCMPGTB

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPGTB

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPGTB SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)

VPCMPGTB 128-hit | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPCMPGTB 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTB xmm1, xmm2/mem128 66 OF 64 /r Compares packed bytes in xmm1 to packed bytes in
xmmz2 or mem128. Writes results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTB xmm1, xmm2, xmm3/mem128 ca RXB.01 X.src1.0.01 64 Ir
VPCMPGTB ymm1, ynm2, ymm3/mem256 c4 RXB.01 X.srcl1.1.01 64 Ir

314 mp[?TlﬁU\mFCMU;STéB] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference w[?Tﬁu\bﬁFCMU%T& 315

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPGTD Packed Compare Greater Than
VPCMPGTD Signhed Doublewords

Compares packed signed doubleword valuesin thefirst source operand to corresponding valuesin the
second source operand and writes a comparison result to the corresponding doubleword of the desti-
nation.

When avalue in the first operand is greater than a value in the second operand, the result is
FFFFFFFFh; when avalue in the first operand is less than or equal to avalue in the second operand,
the result is 00000000h.

There are legacy and extended forms of the instruction:
PCMPGTD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPGTD

The extended form of the instruction has 128-bit and 256-bit encodings.

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPGTD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (hit 26)

VPCMPGTD 128-bit| AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPCMPGTD 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTD xmm1, xmm2/mem128 66 OF 66 /r Compares packed bytes in xmm1 to packed bytes in
xmmz2 or mem128. Writes results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTD xmm1, xmm2, xmm3/mem128 c4 RXB.01 X.src1.0.01 66 /r
VPCMPGTD ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 66 /r

316 mp[?TlgU\mFCMU;ST& Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference w[?TIBU\bﬁFCMUsST& 317

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPGTQ Packed Compare Greater Than
VPCMPGTQ Signhed Quadwords

Compares packed signed quadword valuesin the first source operand to corresponding valuesin the
second source operand and writes a comparison result to the corresponding quadword of the destina-
tion.

When avalue in the first operand is greater than a value in the second operand, the result is
FFFFFFFFFFFFFFFFh; when avaluein thefirst operand islessthan or equal to avaluein the second
operand, the result is 0000000000000000h.

There are legacy and extended forms of the instruction:
PCMPGTQ

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPGTQ

The extended form of the instruction has 128-bit and 256-bit encodings:

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PCMPGTQ SSE4.2 | CPUID Fn0000_0001_ ECX[SSE42] (bit 20)

VPCMPGTQ 128-bit | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPCMPGTQ 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTQ xmm1, xmm2/mem128 66 OF 38 37 /r Compares packed bytes in xmm1 to packed bytes in
xmmz2 or mem128. Writes results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTQ xmm1, xmm2, xmm3/mem128 c4 RXB.02 X.src1.0.01 37
VPCMPGTQ ymm1, ynm2, ymm3/mem256 c4 RXB.02 X.src1.1.01 371

318 Tr CMPGT Instruction Reference
(AN Publid'Use

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference ﬁ&w[vjuTﬁu\bﬁFCMUsST& 319

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPGTW Packed Compare Greater Than Signed Words
VPCMPGTW

Compares packed signed word values in the first source operand to corresponding valuesin the sec-
ond source operand and writes a comparison result to the corresponding word of the destination.

When avalue in the first operand is greater than a value in the second operand, the result is FFFFh;
when avaluein the first operand isless than or equal to a value in the second operand, the result is
0000h.

There are legacy and extended forms of the instruction:
PCMPGTW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCMPGTW

The extended form of the instruction has 128-bit and 256-bit encodings:
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

Instruction Support

Form Subset Feature Flag
PCMPGTW SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VPCMPGTW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPGTW 256-bit| AVX2 | CPUID Fn0O000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTW xmm1, xmm2/mem128 66 OF 65 /r Compares packed bytes in xmm1 to packed bytes in
xmmz2 or mem128. Writes results to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTW xmm1, xmm2, xmm3/mem128 ca RXB.01 X.src1.0.01 65 /r
VPCMPGTW ymm1, ymm2, ymm3/mem256 c4 RXB.01 X.src1.1.01 65 Ir

320 r}&w?ﬁTwu\bqlC:CMrfs'ré/\j Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s S s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference r/&mjﬁTwu\quCMU;STéAj 321

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PCMPISTRI Packed Compare
VPCMPISTRI Implicit Length Strings Return Index

Compares character string datain the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.

Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by anull character (value of 0). The characters prior to the null character constitute the string. 1f
thefirst (lowest indexed) character is null, the string length is 0.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector isreturned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.

See Section 1.5, “ String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.

AF cleared.

ZF Set if any byte (word) in the second operand is null; otherwise cleared.
SF Set if any byte (word) in the first operand is null; otherwise cleared

OF Equal to the value of the Isb of the post-processed summary bit vector.

There are legacy and extended forms of the instruction:
PCMPISTRI

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.

VPCMPISTRI

The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.

322 Tﬁ\WﬁTBU\mFCMﬂgTeF]I Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Support

Form Subset Feature Flag
PCMPISTRI SSE4.2 | CPUID Fn0000_0001_ECX[SSE42] (bit 20)
VPCMPISTRI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPISTRI xmm1, xmm2/mem128, imm8 66 OF 3A 63 /rib Compares packed string data in xmm1 and
Xmmz2 or mem128.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPISTRI xmm1, xmm2/mem128, imm8 C4 RXB.03 X.1111.0.01 63 /rib

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRM

rFLAGS Affected
ID [VIP|VIF| AC | VM | RF | NT IOPL OF |[DFE | IF | TF | SF | ZF | AF | PF | CF

M M M 0 0 M
21120 |19 |18 | 17 | 16 | 14 | 13 | 12 | 11 | 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None

Instruction Reference Tﬁ\WﬁTBU\mFCMﬂgTeF]I 323

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vwwv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnnn

0nlnnn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[>| O [X[X|X|X|X[>>>>>0NW0

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

324

TAVD PubliicUse]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PCMPISTRM Packed Compare Implicit Length
VPCMPISTRM Strings Return Mask

Compares character string datain the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMMO/XMMO register

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.

Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by anull character (value of 0). The characters prior to the null character constitute the string. 1f
thefirst (lowest indexed) character is null, the string length is 0.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMMO.

See Section 1.5, “ String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.

AF cleared.

ZF Set if any byte (word) in the second operand is null; otherwise cleared.
SF Set if any byte (word) in the first operand is null; otherwise cleared.
OF Equal to the value of the Isb of the post-processed summary bit vector.

There are legacy and extended forms of the instruction:
PCMPISTRM

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMMO register.

VPCMPISTRM
The extended form of the instruction has a 128-bit encoding only.

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMMO register. Bits [255:128] of the
YMMO register are cleared.

Instruction Reference PTXWPIBIUEWFCMﬂgng 325

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Support

Form Subset Feature Flag
PCMPISTRM | SSE4.2 | CPUID Fn0000_0001_ECX[SSE42] (bit 20)
VPCMPISTRM AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PCMPISTRM xmm1, xmm2/mem128, imm8 66 OF 3A 62 /rib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a result or mask
to the XMMO register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPISTRM xmm1, xmm2/mem128, imm8 C4 RXB.03 X.1111.0.01 62 /rib

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI

rFLAGS Affected
ID [VIP|VIF|AC | VM | RF | NT IOPL OF [DF | IF | TEF| SF | ZF | AF | PF | CF

M M M 0 0 M
21 | 20 | 19 | 18 | 17 | 16 | 14 | 13 |12 11 | 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None

326 PfMWPﬁIdﬁ%MU%EIjM Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vwwv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnnn

0nlnnn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[>| O [X[X|X|X|X[>>>>>0NW0

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

"XMD Pupiic'Use™ >

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PEXTRB Extract
VPEXTRB Packed Byte

Extracts a byte from a source register and writesit to an 8-bit memory location or to the low-order
byte of a general-purpose register, with zero-extension to 32 or 64 bits. Bits[3:0] of an immediate
byte operand select the byte to be extracted:

Value of imm8 [3:0] Source Bits Extracted
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

There are legacy and extended forms of the instruction:
PEXTRB

The source operand isan XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

VPEXTRB

The extended form of the instruction has a 128-bit encoding only.

The source operand isan XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

Instruction Support

Form Subset Feature Flag
PEXTRB SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPEXTRB AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

328 [Aﬁ\lﬂﬁlﬁu\ﬁﬁ(wge] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PEXTRB reg/m8, xmm, imm8 66 OF 3A 14 /rib Extracts an 8-bit value specified by imm8 from xmm
and writes it to m8 or the low-order byte of a general-
purpose register, with zero-extension.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRB reg/mem8, xmm, imm8 C4 RXB.03 X.1111.0.01 14 /rib

Related Instructions
(V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception Cause of Exception

AVX instructions are only recognized in protected mode.

CRO.EM =1.

nlnl>
nlnl>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK[2:1] ! = 11b.

Invalid opcode, #UD

VEX.vwvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

CRO.TS =1.
Memory address exceeding stack segment limit or non-canonical.

Device not available, #NM
Stack, #SS

Memory address exceeding data segment limit or non-canonical.

nnnnwn
0nnnnwn

General protection, #GP Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF
Alignment check, #AC S

X — AVX and SSE exception
A — AVX exception
S — SSE exception

wn

Instruction execution caused a page fault.
Unaligned memory reference when alignment checking enabled.

XIX|X| X[X[X|X|X|>Z|> > I>> 00

Instruction Reference [Apl\ﬁﬁﬁﬁu\bﬁ%ﬁge] 329

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PEXTRD Extract
VPEXTRD Packed Doubleword

Extracts a doubleword from a source register and writesit to an 32-bit memory location or a 32-bit
general-purpose register. Bits [1:0] of an immediate byte operand select the doubleword to be
extracted:

Value of imm8 [1:0] Source Bits Extracted
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

There are legacy and extended forms of the instruction:

PEXTRD

The encoding is the same as PEXTRQ, with REX.W = 0.
The source operand isan XMM register and the destination is either an 32-bit memory location or a

32-bit general-purpose register.
VPEXTRD

The extended form of the instruction has a 128-bit encoding only.

The encoding is the same as VPEXTRQ, with VEX.W = 0.

The source operand isan XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

Instruction Support

Form Subset Feature Flag
PEXTRD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPEXTRD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PEXTRD reg32/mem32, xmm, imm8 66 (WO0) OF 3A 16 /r ib Extracts a 32-bit value specified by imm8 from
xmm and writes it to mem32 or reg32.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRD reg32/mem32, xmm, imm8 C4 RXB.03 0.1111.0.01 16 /rib

330 [Aﬁ\ﬁﬁlﬁu\fﬂﬁ)ﬁ(ﬁge] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Related Instructions
(V)PEXTRB, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Excepti Mode C f Excepti
Xxception Reall Virt [Prot ause or exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwy ! =1111b.
A |VEXL=1
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [API\ﬁﬁﬁBu\qué(ﬁge] 331

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PEXTRQ Extract
VPEXTRQ Packed Quadword

Extracts a quadword from a source register and writes it to an 64-bit memory location or to a 64-bit
general-purpose register. Bit [0] of an immediate byte operand selects the quadword to be extracted:

Value of imm8 [0] Source Bits Extracted
0 [63:0]
1 [127:64]
There are legacy and extended forms of the instruction:

PEXTRQ

The encoding is the same as PEXTRD, with REX.W = 1.

The source operand isan XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

VPEXTRQ
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRD, with VEX.W = 1.

The source operand isan XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

Instruction Support

Form Subset Feature Flag
PEXTRD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPEXTRD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PEXTRQ reg64/mem64, xmm, imm8 66 (W1) OF 3A 16 /r ib Extracts a 64-bit value specified by imm8 from
xmm and writes it to mem64 or reg64.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRQ reg64/mem64, xmm, imm8 C4 RXB.03 1.1111.0.01 16 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

332 [APWﬁgu\bﬁFé(ﬁge] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

MXCSR Flags Affected

AMDG64 Technology

None
Exceptions
Excepti Mode C f Excepti
Xxception Reall Virt [Prot ause or exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.wwy ! =1111b.
A |VEXL=1
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

[AMBD BB USe] -

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PEXTRW Extract Packed Word
VPEXTRW

Extracts aword from a source register and writesit to a 16-bit memory location or to the low-order
word of a general-purpose register, with zero-extension to 32 or 64 bits. Bits[3:0] of an immediate
byte operand select the word to be extracted:

Value of imm8 [2:0] Source Bits Extracted
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

There are legacy and extended forms of the instruction:
PEXTRW

The legacy form of the instruction has SSE2 and SSE4.1 encodings.

The source operand is an XMM register and the destination is the low-order word of a genera -pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.

The source operand isan XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

VPEXTRW

The extended form of the instruction has two 128-bit encodings that correspond to the two legacy
encodings.

The source operand is an XMM register and the destination is the low-order word of a genera -pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.

The source operand isan XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

Instruction Support

Form Subset Feature Flag
PEXTRW reg SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
PEXTRW reg/mem16 | SSE4.1 | CPUID Fn0O0O00_0001_ ECX[SSE41] (bit 19)
VPEXTRW AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see A ppen-
dix E of Volume 3.

334 [ADWRwU\mllEé(B%Ve] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PEXTRW reg, xmm, imm8 66 OF C5/rib Extracts a 16-bit value specified by imm8 from xmm
and writes it to the low-order byte of a general-
purpose register, with zero-extension.

PEXTRW reg/m16, xmm, imm8 66 OF 3A 15 /rib Extracts a 16-bit value specified by imm8 from xmm
and writes it to m16 or the low-order byte of a
general-purpose register, with zero-extension.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRW reg, xmm, imm8 C4 RXB.01 X.1111.0.01 C5/rib
VPEXTRW reg/mem16, xmm, imm8 C4 RXB.03 X.1111.0.01 15 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None
Exceptions

Mode
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.

Exception

Cause of Exception

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>
nlnl>x

CR4.0SFXSR = 0.
CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD
XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vwwv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.
CRO.TS =1.

Device not available, #NM

Stack, #SS Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

nnnnwn
nnnnwn

General protection, #GP Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

wn

Instruction execution caused a page fault.

XIX|X|X|X[X|X|X|[Z > >I>> 00

Alignment check, #AC S Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference [Kﬁﬁwu\bq%(ﬁ\éve] 335

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PHADDD Packed Horizontal Add
VPHADDD Doubleword

Adds adjacent 32-bit signed integers in each of two source operands and packs the sumsinto the des-
tination. If asum overflows, the carry isignored (neither the overflow nor carry bit in rFLAGS s set)
and only the low-order 32 bits of the sum are written in the destination.

Adds the 32-bit signed integer valuesin bits[63:32] and bits [31:0] of the first source operand and
packs the sum into bits[31:0] of the destination; adds the 32-hit signed integer valuesin bits[127:96]
and bits [95:64] of the first source operand and packs the sum into bits [63:32] of the destination.
Adds the corresponding values in the second source operand and packs the sumsinto bits[95:64] and
[127:96] of the destination.

Additionally, for the 256-bit form, adds the 32-bit signed integer valuesin bits[191:160] and bits
[159:128] of the first source operand and packs the sum into bits [159:128] of the destination; adds
the 32-bit signed integer values in bits [255:224] and bits [223:192] of the first source operand and
packs the sum into bits[191:160] of the destination. Adds the corresponding values in the second
source operand and packs the sums into bits [223:192] and [255:224] of the destination.

There are legacy and extended forms of the instruction:
PHADDD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-hit memory location. The first source register is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination not affected.

VPHADDD

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PHADDD SSSE3 | CPUID Fn0000_0001_ECX[SSSES3] (bit 9)
VPHADDD 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHADDD 256-bit| AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

336 [/&W@U\QFCAWSD@] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PHADDD xmm1, xmm2/mem128 66 OF 38 02 /r Adds adjacent pairs of signed integers in xmm1 and
xmmz2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDD xmm1, xmm2, xmm3/mem128 c4 RXB.02 X.src1.0.01 02 /r
VPHADDD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 02 /r

Related Instructions
(V)PHADDW, (V)PHADDSW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference [qugu\mr@lﬂ)s[)e] 337

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PHADDSW Packed Horizontal Add with Saturation
VPHADDSW Word

Adds adjacent 16-bit signed integers in each of two source operands, with saturation, and packs the
16-bit signed sums into the destination.

Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.

For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register — either an XMM register or the corresponding YMM register.
srcl is the first source operand. src2 is the second source operand.
Ssum() is a function that returns the saturated 16-bit signed sum of its arguments.

dest[15:0] = Ssum(src1[31:16], src1[15:0])
dest[31:16] = Ssum(src1[63:48], src1[47:32])
dest[47:32] = Ssum(src1[95:80], src1[79:64])
dest[63:48] = Ssum(src1[127:112], src1[111:96])
dest[79:64] = Ssum(src2[31:16], src2[15:0])
dest[95:80] = Ssum(src2[63:48], src2[47:32])
dest[111:96] = Ssum(src2[95:80], src2[79:64])
dest[127:112] = Ssum(src2[127:112], src2[111:96])

Additionally, for the 256-bit form of the instruction, the following operations are performed:

dest[143:128] = Ssum(src1[159:144], src1[143:128])
dest[159:144] = Ssum(src1[191:176], src1[175:160])
dest[175:160] = Ssum(src1[223:208], src1[207:192])
dest[191:176] = Ssum(src1[255:240], src1[239:224])
dest[207:192] = Ssum(src2[159:144], src2[143:128])
dest[223:208] = Ssum(src2[191:176], src2[175:160])
dest[239:224] = Ssum(src2[223:208], src2[207:192])
dest[255:240] = Ssum(src2[255:240], src2[239:224])

There are legacy and extended forms of the instruction:
PHADDSW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPHADDSW

The extended form of the instruction has 128-bit and 256-bit encodings.

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

338 HADDS Instruction Reference
[ARBBUEITE s

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Support

Form Subset Feature Flag
PHADDSW SSSE3 | CPUID Fn0000_0001_ECX[SSSE3] (bit 9)
VPHADDSW 128-bitf AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHADDSW 256-bitf AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PHADDSW xmm1, xmm2/mem128 66 OF 38 03 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128, with saturation. Writes packed
sums to xmml1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 03 /r
VPHADDSW ymm1, ymm2, ymm3/mem256 c4 RXB.02 X.srcl.1.01 03 /r

Related Instructions
(V)PHADDD, (V)PHADDW

rFLAGS Affected
None

MXCSR Flags Affected
None

Instruction Reference mms&u\m?@ﬂ)ss& 339

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

340 HADDS Instruction Reference
[ARBBUEITE s

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PHADDW Packed Horizontal Add
VPHADDW Word

Adds adjacent 16-bit signed integersin each of two source operands and packs the 16-bit sumsinto
the destination. If asum overflows, the carry isignored (neither the overflow nor carry bit inrFLAGS
IS set).

For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register — either an XMM register or the corresponding YMM register.
srcl is the first source operand. src2 is the second source operand.

dest[15:0] = src1[31:16] + src1[15:0]
dest[31:16] = src1[63:48] + src1[47:32]
dest[47:32] = src1[95:80] + src1[79:64]
dest[63:48] = src1[127:112] + src1[111:96]
dest[79:64] = src2[31:16] + src2[15:0]
dest[95:80] = src2[63:48] + src2[47:32]
dest[111:96] = src2[95:80] + src2[79:64]
dest[127:112] = src2[127:112] + src2[111:96]

Additionally, for the 256-bit form of the instruction, the following operations are performed:

dest[143:128] = src1[159:144] + src1[143:128]
dest[159:144] = src1[191:176] + src1[175:160]
dest[175:160] = src1[223:208] + src1[207:192]
dest[191:176] = src1[255:240] + src1[239:224]
dest[207:192] = src2[159:144] + src2[143:128]
dest[223:208] = src2[191:176] + src2[175:160]
dest[239:224] = src2[223:208] + src2[207:192]
dest[255:240] = src2[255:240] + src2[239:224]

There are legacy and extended forms of the instruction:
PHADDW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPHADDW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.Y MM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Reference [,&N/[\BDwu\mll-léAlEj)éNe] 341

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Support

Form Subset Feature Flag
PHADDW SSSE3 | CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHADDW 128-bit | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPHADDW 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PHADDW xmm1, xmm2/mem128 66 OF 38 01 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 01 /r
VPHADDW ymm1, ymm2, ymm3/mem256 ca RXB.02 X.src1.1.01 01 /r

Related Instructions
(V)PHADDD, (V)PHADDSW

rFLAGS Affected
None

MXCSR Flags Affected
None

342 [/&N/[\BDwu\mrléAlEj)éNe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|X[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-hit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception

A — AVX, AVX2 exception
S — SSE exception

Instruction Reference

(AN PUBITE Tse] .

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

PHMINPOSUW Horizontal Minimum and Position
VPHMINPOSUW

Finds the minimum unsigned 16-bit value in the source operand and copies it to the low order word
element of the destination. Writes the source position index of the value to bits[18:16] of the destina-
tion and clears bitg[127:19] of the destination.

There are legacy and extended forms of the instruction:
PHMINPOSUW

The source operand isan XMM register or 128-bit memory location. The destination isan XMM reg-
ister. Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VPHMINPOSUW

The extended form of the instruction has a 128-bit encoding only.

The source operand isan XMM register or 128-bit memory location. The destination isan XMM reg-
ister. Bits [255:128] of the Y MM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
PHMINPOSUW | SSE4.1 | CPUID Fn0000_0001 ECX[SSE41] (bit 19)
VPHMINPOSUW AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PHMINPOSUW xmm1, xmm2/mem128 66 OF 38 41 /r Finds the minimum unsigned word element in
xmmz2 or mem128, copies it to xmm1[15:0]; writes
its position index to xmm1[18:16], and clears
xmm21[127:19].

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHMINPOSUW xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 41 Ir

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

344 PHTJ&WU&G@%MU%%?UW Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nlnl>x>

nlnlrx>

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vwvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

0nnnon

0nnnwn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X|>| 0 [X|X|X|X[X|>>>>>00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PYRRRS BUERDRE

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PHSUBD Packed Horizontal Subtract
VPHSUBD Doubleword

Subtracts adjacent 32-bit signed integersin each of two source operands and packs the differences
into the destination. The higher-order doubleword of each pair is subtracted from the lower-order
doubleword.

Subtracts the 32-bit signed integer value in bits [63:32] of the first source operand from the 32-bit
signed integer value in bits [31:0] of the first source operand and packs the difference into bits [31:0]
of the destination; subtracts the 32-bit signed integer value in bits[127:96] of the first source operand
from the 32-bit signed integer value in bits [95:64] of the first source operand and packs the differ-
ence into bits [63:32] of the destination. Performs the corresponding operations on pairs of 32-bit
signed integer values in the second source operand and packs the differences into bits[95:64] and
[127:96] of the destination.

Additionally, for the 256-bit form, subtracts the 32-bit signed integer value in bits [191:160] of the
first source operand from the 32-bit signed integer value in bits [159:128] of the first source operand
and packs the difference into bits [159:128] of the destination; subtracts the 32-bit signed integer
value in bits [255:224] of the first source operand from the 32-bit integer value in bits [223:192] of
the first source operand and packs the difference into bits [191:160] of the destination. Performs the
corresponding operations on pairs of 32-bit signed integer values in the second source operand and
packs the differences into bits [223:192] and [255:224] of the destination.

There are legacy and extended forms of the instruction:
PHSUBD

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPHSUBD

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Support

Form Subset Feature Flag
PHSUBD SSSE3 | CPUID Fn0000_0001_ECX[SSSEZJ] (bit 9)
VPHSUBD 128-bit| AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHSUBD 256-hit| AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

346 [ADWﬁgu\bﬁFCSltlJBéDe] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PHSUBD xmm1, xmm2/mem128 66 OF 38 06 /r Subtracts adjacent pairs of signed integers in xmm1 and
xmmz2 or mem128. Writes packed differences to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHSUBD xmm1, xmm2, xmm3/mem128 c4 RXB.02 X.src1.0.01 06 /r
VPHSUBD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 06 /r

Related Instructions
(V)PHSUBW, (V)PHSUBSW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Instruction Reference [,&Wlﬁgu\bﬁrcswge] 347

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PHSUBSW Packed Horizontal Subtract with Saturation
VPHSUBSW Word

Subtracts adjacent 16-bit signed integersin each of two source operands, with saturation, and packs
the differences into the destination. The higher-order word of each pair is subtracted from the lower-
order word.

Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.

For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register — either an XMM register or the corresponding YMM register.
srcl is the first source operand. src2 is the second source operand.
Sdiff(A,B) is a function that returns the saturated 16-bit signed difference A — B.

dest[15:0] = Sdiff(src1[15:0], src1[31:16])
dest[31:16] = Sdiff(src1[47:32], src1[63:48])
dest[47:32] = Sdiff(src1[79:64], src1[95:80])
dest[63:48] = Sdiff(src1[111:96], src1[127:112])
dest[79:64] = Sdiff(src2[15:0], src2[31:16])
dest[95:80] = Sdiff(src2[47:32], src2[63:48])
dest[111:96] = Sdiff(src2[79:64], src2[95:80])
dest[127:112] = Sdiff(src2[111:96], src2[127:112])

Additionally, for the 256-bit form of the instruction, the following operations are performed:

dest[143:128] = Sdiff(src1[143:128], src1[159:144])
dest[159:144] = Sdiff(src1[175:160], src1[191:176])
dest[175:160] = Sdiff(src1[207:192], src1[223:208])
dest[191:176] = Sdiff(src1[239:224], src1[255:240])
dest[207:192] = Sdiff(src2[143:128], src2[159:144])
dest[223:208] = Sdiff(src2[175:160], src2[191:176])
dest[239:224] = Sdiff(src2[207:192], src2[223:208])
dest[255:240] = Sdiff(src2[239:224], src2[255:240])

There are legacy and extended forms of the instruction:
PHSUBSW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPHSUBSW

The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a128-bit memory location. The destination isathird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisa’Y MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird YMM register.

348 mﬁlﬁswu\fﬂ?éﬁfé\j Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Instruction Support

AMDG64 Technology

Form Subset

Feature Flag

PHSUBSW SSSE3 | CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHSUBSW 128-bit| AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPHSUBSW 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode

Description

PHSUBSW xmm1, xmm2/mem128 66 OF 38 07 /r Subtracts adjacent pairs of signed integers in xmm1

Mnemonic

VPHSUBSW xmm1, xmm2, xmm3/mem128
VPHSUBSW ymm1, ymm2, ymm3/mem256

Related Instructions
(V)PHSUBD, (V)PHSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

and xmm2 or mem128, with saturation. Writes packed
differences to xmml1.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
c4 RXB.02 X.src1.0.01 07 Ir
C4 RXB.02 X.src1.1.01 07 Ir

Instruction Reference m%s&u\@r&slﬁgé\j 349

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
Exceptions
Exception que Cause of Exception
Real| Virt |Prot
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE =0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L =1 when AVX2 not supported.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.
Alignment check, #AC Alignment checking enabled and:
A | 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.
Page fault, #PF S X | Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

350 m%s&u\fﬂ?éﬁgé\j Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PHSUBW Packed Horizontal Subtract
VPHSUBW Word

Subtracts adjacent 16-bit signed integersin each of two source operands and packs the differences
into a destination. The higher-order word of each pair is subtracted from the lower-order word.

For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register — either an XMM register or the corresponding YMM register.
srcl is the first source operand. src2 is the second source operand.

dest[15:0] = src1[15:0] — src1[31:16
dest[31:16] = src1[47:32] — src1[63:48]
dest[47:32] = src1[79:64] — src1[95:80]
dest[63:48] = src1[111:96] - src1[127:112]
dest[79:64] = src2[15:0] — src2[31:16]
dest[95:80] = src2[47:32] — src2[63:48]
dest[111:96] = src2[79:64] — src2[95:80]
dest[127:112] = src2[111:96] - src2[127:112]

Additionally, for the 256-bit form of the instruction, the following operations are performed:

dest[143:128] = src1[143:128] - src1[159:144]
dest[159:144] = src1[175:160] - src1[191:176]
dest[175:160] = src1[207:192] - src1[223:208]
dest[191:176] = src1[239:224] - src1[255:240]
dest[207:192] = src2[143:128] - src2[159:144]
dest[223:208] = src2[175:160] - src2[191:176]
dest[239:224] = src2[207:192] - src2[223:208]
dest[255:240] = src2[239:224] - src2[255:240]

There are legacy and extended forms of the instruction:
PHSUBW

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination register. Bits[255:128] of
the YMM register that corresponds to the destination are not affected.

VPHSUBW

The extended form of the instruction has 128-bit and 256-bit encodings.

XMM Encoding

Thefirst source operand isan XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is athird XMM register. Bits [255:128] of the Y MM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

Thefirst source operandisaY MM register. The second source operand is either aY MM register or a
256-bit memory location. The destination isathird Y MM register.

Instruction Reference ['&WBwu\mTICSlfjﬁéNe] 351

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Support

Form Subset Feature Flag
PHSUBW SSSE3 | CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHSUBW 128-bit AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPHSUBW 256-bit | AVX2 | CPUID Fn0000_0007_EBX[AVX2]_xO (bit 5)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PHSUBW xmm1, xmm2/mem128 66 OF 38 05 /r Subtracts adjacent pairs of signed integers in xmm1
and xmm2 or mem128. Writes packed differences to

xmml.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 05 /r
VPHSUBW ymm1, ymm2, ynm3/mem256 c4 RXB.02 X.src1.1.01 05 /r

Related Instructions
(V)PHSUBD, (V)PHSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

352 ['&WBwu\mTICSlﬁéNe] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.L = 1 when AVX2 not supported.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnlnon

0nnnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

O X[X|X|X|X[Z>>>00

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Alignment checking enabled and:
256-hit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF

S

Instruction execution caused a page fault.

X — SSE, AVX, and AVX2 exception

A — AVX, AVX2 exception
S — SSE exception

Instruction Reference

(AN PUBIC O] -

AMDZU

AMDG64 Technology 26568—Rev. 3.25—November 2021
PINSRB Packed Insert
VPINSRB Byte

Inserts a byte from an 8-bit memory location or the low-order byte of a 32-bit general-purpose regis-
ter into a destination register. Bits[3:0] of an immediate byte operand select the location where the
byte isto be inserted:

Value of imm8 [3:0] Insertion Location
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

There are legacy and extended forms of the instruction:
PINSRB

The source operand is either an 8-bit memory location or the low-order byte of a 32-bit general-pur-
pose register and the destination an XM M register. The other bytes of the destination are not affected.
Bits[255:128] of the Y MM register that corresponds to the destination are not affected.

VPINSRB

The extended form of the instruction has a 128-bit encoding only.

There are two source operands. The first source operand is either an 8-bit memory location or the
low-order byte of a 32-bit general-purpose register and the second source operand isan XMM regis-
ter. The destination is a second XMM register. All the bytes of the second source other than the byte
that corresponds to the location of the inserted byte are copied to the destination. Bits[255:128] of the
YMM register that corresponds to destination are cleared.

354 [AW%U\Q% Bse] Instruction Reference

AMDZ\
26568—Rev. 3.25—November 2021 AMDG64 Technology

Instruction Support

Form Subset Feature Flag
PINSRB SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPINSRB AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PINSRB xmm, reg32/mem8, imm8 66 OF 3A 20 /rib Inserts an 8-bit value selected by imm8 from the
low-order byte of reg32 or from mem8 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRB xmm, reg/mem8, xmm, imm3 C4 RXB.03 X.1111.0.01 20 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRD, (V)PINSRQ, (V)PINSRW

rFLAGS Affected
None

MXCSR Flags Affected
None

Instruction Reference [AWFEU\EFW& Bse] 355

AMDZU

AMDG64 Technology

Exceptions

26568—Rev. 3.25—November 2021

Mode

Exception

Real

Virt

Prot

Cause of Exception

x

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0nl un|>

0nl un|>

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vwwv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

0nlnnn

0nlnnn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

"

Instruction execution caused a page fault.

Alignment check, #AC

X[X[X|X|X|X|X|>|> > >>0W0

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

356

[AMBBublictie]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PINSRD Packed Insert
VPINSRD Doubleword

Inserts a doubleword from a 32-bit memory location or a 32-bit general -purpose register into a desti-
nation register. Bits[1:0] of an immediate byte operand select the location where the doubleword isto
be inserted:

Value of imm8 [1:0] Insertion Location
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

There are legacy and extended forms of the instruction:
PINSRD

The encoding is the same as PINSRQ, with REX.W = 0.

The source operand is either a 32-bit memory location or a 32-bit general-purpose register and the
destination an XMM register. The other doublewords of the destination are not affected. Bits
[255:128] of the Y MM register that corresponds to the destination are not affected.

VPINSRD
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRQ, with VEX.W = 0.

There are two source operands. Thefirst source operand is either a 32-bit memory location or a 32-bit
general-purpose register and the second source operand isan XMM register. The destination is a sec-
ond XMM register. All the doublewords of the second source other than the doubleword that corre-
sponds to the location of the inserted doubleword are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
PINSRD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPINSRD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference [AWWBUY)W& %e] 357

AMDZ\
AMDG64 Technology 26568—Rev. 3.25—November 2021

Instruction Encoding

Mnemonic Opcode Description

PINSRD xmm, reg32/mem32, imm8 66 (WO0) OF 3A 22 /rib Inserts a 32-bit value selected by imm8 from
reg32 or mema32 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRD xmm, reg32/mem32, xmm, imm8 (o7} RXB.03 0.1111.0.01 22 Irib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRQ, (V)PINSRW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception ReallVirt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A | VEX.vwwv ! = 1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

358 [AWﬁBu\fﬂi% %e] Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PINSRQ Packed Insert
VPINSRQ Quadword

Inserts a quadword from a 64-bit memory location or a 64-bit general-purpose register into a destina-
tion register. Bit [0] of an immediate byte operand selects the location where the doubleword is to be
inserted:

Value of imm8 [0] Insertion Location
0 [63:0]
1 [127:64]

There are legacy and extended forms of the instruction:
PINSRQ

The encoding is the same as PINSRD, with REX.W = 1.

The source operand is either a 64-bit memory location or a 64-bit general-purpose register and the
destination an XMM register. The other quadwords of the destination are not affected. Bits[255:128]
of the Y MM register that corresponds to the destination are not affected.

VPINSRQ
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRD, with VEX.W = 1.

There are two source operands. Thefirst source operand is either a 64-bit memory location or a 64-bit
general-purpose register and the second source operand isan XMM register. The destination is a sec-
ond XMM register. All the quadwords of the second source other than the quadword that corresponds
to the location of the inserted quadword are copied to the destination. Bits[255:128] of the Y MM reg-
ister that corresponds to the destination XMM registers are cleared.

Instruction Support

Form Subset Feature Flag
PINSRQ SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPINSRQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

PINSRQ xmm, reg64/mem64, imm38 66 (W1) OF 3A 22 /rib Inserts a 64-bit value selected by imm8 from
reg64 or meme64 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRQ xmm, reg64/mem64, xmm, imm8 C4 RXB.03 1.1111.0.01 22 Irib

Instruction Reference [Amﬁgu\fﬂi%s@%e] 359

AMDZU

AMDG64 Technology

Related Instructions

26568—Rev. 3.25—November 2021

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
Excepti Mode C f Excepti
xception ReallVirt [Prot ause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
. A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A | VEX.wwy ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS=1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

360

[AMBPuBlc3e]

Instruction Reference

AMDZU

26568—Rev. 3.25—November 2021 AMDG64 Technology
PINSRW Packed Insert Word
VPINSRW

Inserts aword from a 16-bit memory location or the low-order word of a 32-bit general-purpose reg-
ister into a destination register. Bits [2:0] of an immediate byte operand select the location where the
byte isto be inserted:

Value of imm8 [2:0] Insertion Location
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

There are legacy and extended forms of the instruction:
PINSRW

The source operand is either a 16-bit memory location or the low-order word of a 32-bit general -pur-
pose register and the destination an XMM register. The other words of the destination are not
affected. Bits[255:128] of the Y MM register that corresponds to the destination are