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Chapter 1 Introduction

This guide provides optimization information and recommendations for AMD Family 17h
processors. In this guide the term “the Family 17h processor” or “the processor” is used to refer to all
processors within Family 17h.

This chapter covers the following topics:

Topic Page
Intended Audience 9
Specialized Terminology 10

1.1 Intended Audience

This book isintended for compiler and assembler designers, as well as C, C++, and assembly
language programmers writing performance-sensitive code sequences. This guide assumes that you
arefamiliar with the AMDG64 instruction set and the AM D64 architecture (registers and programming
modes).

For complete information on the AM D64 architecture and instruction set, see the multivolume
AMDG64 Architecture Programmer’s Manual available from AMD.com. Individual volumes and their
order numbers are provided below.

Title Order Number
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

The following documents provide a useful set of guidelines for writing efficient code that have
general applicability to the Family 17h processor:

e AMD Family 15h Processors Software Optimization Guide (Order # 47414)
»  Software Optimization Guide for AMD Family 10h and 12h Processors (Order # 40546)

Refer to the Preliminary Processor Programming Reference (PPR) for AMD Family 17h Models 00h-
OFh Processors (Order # 54945) for more information about machine-specific registers, debug, and
performance profiling tools.

Chapter 1 Introduction 9
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1.2 Specialized Terminology

The following specialized terminology is used in this document:

Smashing

Superforwarding

Smashing (also known as Page smashing) occurs when a processor produces a
TLB entry whose page size is smaller than the page size specified by the page

tables for that linear address. Such TLB entries are referred to as smashed TLB
entries.

For example, when the Family 17h processor encounters alarger page sizein the
guest page tables which is backed by a smaller page in the host page tables, it
will smash trandations of the larger page size into the smaller page sizefoundin
the host.

Superforwarding is the capability of a processor to send (forward) the results of
aload instruction to a dependent floating-point instruction bypassing the need to
write and then read aregister in the FPU register file.

10

Introduction Chapter 1
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Chapter 2 Microarchitecture of
AMD Family 17h Processor

An understanding of the terms architecture, microarchitecture, and design implementation is
important when discussing processor design.

The architecture consists of the instruction set and those features of a processor that are visible to
software programs running on the processor. The architecture determines what software the processor
can run. The AMDG64 architecture of the AMD Family 17h processor is compatible with the industry-
standard x86 instruction set.

The term microarchitecture refers to the design features used to reach the target cost, performance,
and functionality goals of the processor.

The design implementation refers to a particular combination of physical logic and circuit elements
that comprise a processor that meets the microarchitecture specifications.

The AMD Family 17h processor employs areduced instruction set execution core with a
preprocessor that decodes and decomposes most of the simpler AMDG64 instructions into a sequence
of one or two macro ops. More complex instructions are implemented using microcode routines.

Decode is decoupled from execution and the execution core employs a super-scalar organization in
which multiple execution units operate essentially independently. The design of the execution core
allowsit to implement a small number of simple instructions which can be executed in asingle
processor cycle. This design ssmplifies circuit design, achieving lower power consumption and fast
execution at optimized processor clock frequencies.

This chapter covers the following topics:

Topic Page
Key Microarchitecture Features 12
Instruction Decomposition 14
Superscalar Organization 15
Processor Block Diagram 16
Processor Cache Operation 17
Memory Address Translation 19
Optimizing Branching 20
Instruction Fetch and Decode 25
Integer Execution Unit 26
Floating-Point Unit 28
Load-Store Unit 32
Optimizing Writing Data 34

Chapter 2 Microarchitecture of AMD Family 17h Processor 11
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Topic Page
Simultaneous Multi-Threading 37
LOCKs 39

2.1 Key Microarchitecture Features

The AMD Family 17h processor implements a specific subset of the AMD64 instruction set
architecture defined by the APM.

The following major classes of instructions are supported:

e General-purpose instructions, including support for 64-bit operands

» x87 Foating-point instructions

e 64-bit Multi-media (MM X ™) instructions

e 128-hit and 256-bit single-instruction / multiple-data (SIMD) instructions.
* AMD Virtuaization™ technology (AMD-V ™)

The following Streaming SIMD Extensions subsets are supported:
e Streaming SIMD Extensions 1 (SSE1)

e Streaming SIMD Extensions 2 (SSE2)

e Streaming SIMD Extensions 3 (SSE3)

*  Supplemental Streaming SIMD Extensions 3 (SSSE3)

e Streaming SIMD Extensions 4a (SSE44)

» Streaming SIMD Extensions 4.1 (SSE4.1)

» Streaming SIMD Extensions 4.2 (SSE4.2)

» Advanced Vector Extensions (AV X)

» Advanced Vector Extensions 2 (AVX2)

» Advanced Encryption Standard (AES) acceleration instructions

The following miscellaneous instruction subsets are supported:
« SHA, RDRAND

* Read and write FS.base and GS.base instructions

« Half-precision floating-point conversion (F16C)

* Carry-lessMultiply (CLMUL) instructions

* Move Big-Endian instruction (MOVBE)

e XSAVE / XSAVECPT

12 Microarchitecture of AMD Family 17h Processor Chapter 2
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e LZCNT /POPCNT

The following Bit Manipulation Instruction subsets are supported:
« BMIl
« BMI2

The AMD Family 17h processor does not support the following instructions/instruction subsets:
*  Four operand Fused Multiply/Add instructions (FMA4)

* XOPinstructions

e Trailing bit manipulation (TBM) instructions

» Light-weight profiling (LWP) instructions

* INVPCI D

The Family 17h processor adds support for the following new instructions:

* SMAP, RDSEED, XSAVEC, XSAVES, CLFLUSHOPT, and ADCX

e CLZERO

The AMD Family 17h processor includes many features designed to improve software performance.
These include the following key features:

*  Simultaneous Multi-threading

» Unified 512-Kbyte L2 cache per core

» 4-Mbyte or 8-Mbyte shared, victim L3, depending on configuration
* Integrated memory controller

* 64-Kbyte L1 instruction cache (IC) per core

e 32-Kbyte L1 data cache (DC) per core

» 2-Kbyte op cache (OC)

» Prefetchersfor L2 cache, L1 data cache, and L1 instruction cache

* Advanced dynamic branch prediction

e 32-byteinstruction cache fetch

* 4-way x86 instruction decoding with sideband stack optimizer

» Dynamic out-of-order scheduling and specul ative execution

» Four-way integer execution

* Two-way address generation (2 load/store)

* Four-way 128-bit wide floating-point and packed integer execution
* Integer hardware divider

Chapter 2 Microarchitecture of AMD Family 17h Processor 13
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» Superforwarding
e LlinstructionTLB and L1 DataTLB

»  Six fully-symmetric core performance counters per thread

2.2 Cache Line, Fetch and Data Type Widths

The following figures diagram the cache line size and the widths of various data pipes and registers.

Instruction

Cacheline 64

OC Fetch 64

IC Fetch 32 32
Decode 16 | 16 16 | 16

Figure 1. Cache Line Size, Fetch and Decode Widths in Bytes

Data

Cacheline 64

Data Pipe 32 32

Store 16 | 16 16 16

Figure 2. Data Pipe Widths in Bytes

Data Types

YMMWORD 32 32
XMMWORD 16 16 16 16
QWORD 8 | 8| 8| 8| 8|8 s8] s
DWORD alalalalalalalalalalalalalala]a

Figure 3. Data Type Widths in Bytes

2.3 Instruction Decomposition

The AMD Family 17h processor implements the AMD64 instruction set by means of macro ops (the
primary units of work managed by the processor) and micro ops (the primitive operations executed in
the processor's execution units). These operations are designed to include direct support for AMD64
instructions and adhere to the high-performance principles of fixed-length encoding, regularized
instruction fields, and alarge register set. This enhanced microarchitecture enables higher processor
core performance and promotes straightforward extensibility for future designs.

14 Microarchitecture of AMD Family 17h Processor Chapter 2
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Instructions are marked as fastpath single (one macro-op), fastpath double (two macro ops), or
microcode (greater than two (2) macro ops). Macro ops can normally contain up to two (2) micro ops.
The table below lists some examples showing how instructions are mapped to macro ops and how
these macro ops are mapped into one or more micro ops.

Table 1.  Typical Instruction Mappings

Instruction Macro ops | Micro ops Comments

MOV reg,[mem] 1 1: load Fastpath single
MOV [mem],reg 1 1: store Fastpath single
MOV [mem],imm 1 2: move-imm, store Fastpath single
REP MOVS [mem],[mem] | Many Many Microcode

ADD reg,reg 1 1: add Fastpath single
ADD reg,[mem] 1 2: load, add Fastpath single
ADD [mem],reg 1 2: load/store, add Fastpath single
MOVAPD [mem],xmm 1 2: store, FP-store-data Fastpath single
VMOVAPD [mem],ymm 2 4: 2 x {store, FP-store-data} 256b AVX | Fastpath double
ADDPD xmm,xmm 1 1: addpd Fastpath single
ADDPD xmm,[mem] 1 2: load, addpd Fastpath single
VADDPD ymm,ymm 2 2: 2 x {addpd} 256b AVX Fastpath double
VADDPD ymm,[mem] 2 4: 2 x {load, addpd} 256b AVX Fastpath double

2.4 Superscalar Organization

The AMD Family 17h processor is an out-of-order, two thread superscalar AMDG64 processor. The
processor uses decoupled execution units to process instructions through fetch/branch-predict,
decode, schedule/execute, and retirement pipelines.

The processor uses decoupled independent schedulers, consisting of four integer ALU schedulers,
two AGU schedulers, and a unified floating-point scheduler servicing the four FP pipelines. These
schedulers can simultaneously issue up to ten micro ops to the four integer ALU pipes, two AGU
pipes, and the four FPU pipes.

Chapter 2 Microarchitecture of AMD Family 17h Processor 15
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2.5 Processor Block Diagram

A block diagram of the AMD Family 17h processor is shown in Figure 4 below.

(— _ BRANCH
PREDICTION

4 instructions/cycle 8 macro-opsicycle

Micro-op Queue
6 ops dispatched

FLOATING
POINT

Floating Point Rename

\ 4

Scheduler

FEE]

MUL ADD MUL ADD

2 loads + 1
store per cycle

Figure 4. Block Diagram—AMD Family 17h Processor, Models 00h—0Fh
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2.6 Processor Cache Operation

The AMD Family 17h processor uses five caches at three hierarchy levelsto accelerate instruction
execution and data processing:

» Dedicated L1 instruction cache

» Dedicated L1 data cache

* Dedicated L1 op cache

» Unified (instruction and data) L2 cache per core

* 4-Mbyte or 8-Mbyte L3 cache (depending on configuration)

2.6.1 L1 Instruction Cache

The AMD Family 17h processor contains a 64-Kbyte, 4-way set associative L1 instruction cache.
Cacheline size is 64 bytes; 32 bytes are fetched in a cycle. Functions associated with the L1
instruction cache are fetching cache lines from the L2 cache, providing instruction bytes to the
decoder, and prefetching instructions. Requests that missin the L1 instruction cache are fetched from
the L2 cacheor, if not resident in the L2 cache, from the L3 cache, if present. Requests that missin all
levels of cache are fetched from system memory.

On misses, the L1 instruction cache generatesfill requestsfor the naturally-aligned 64-byte block that
includes the miss address and up to thirteen additional blocks. These blocks are prefetched from
addresses generated by the Branch Predict unit. Because code typically exhibits spatial locality,
prefetching is an effective technique for avoiding decode stalls. Cache-line replacement is based on a
least recently-used replacement algorithm. The L1 instruction cache is protected from error through
the use of parity.

2.6.2 L1 Data Cache

The AMD Family 17h processor contains a 32-Kbyte, 8-way set associative L1 data cache. Thisisa
write-back cache that supports two 128-hit loads and one 128-hit store per cycle. In addition, the L1
cache is protected from bit errors through the use of ECC. There is ahardware prefetcher that brings
datainto the L1 data cache to avoid misses. The L1 data cache has a4- or 5-cycle integer load-to-use
latency, and a 7- or 8-cycle FPU load-to-use latency. See section 2.12, "L oad Store Unit", for more
information on load-to-use latency.

The data cache natural alignment boundary is 32 bytes for loads. A misaligned load operation suffers,
at minimum, a one cycle penalty in the load-store pipelineif it spans a 32-byte boundary. Stores have
two different alignment boundaries. The alignment boundary for accessing TLB and tags is 64 bytes,
and the alignment boundary for writing data to the cache or memory system is 16 bytes. Throughput
for misaligned loads and storesis half that of aligned |oads and stores since a misaligned load or store
requires two cycles to access the data cache (versus asingle cycle for aligned loads and stores).

Chapter 2 Microarchitecture of AMD Family 17h Processor 17
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For aligned memory accesses, the aligned and unaligned load and store instructions (for example,
MOV UPSMOVAPS) provide identical performance.

Natural alignment for both 128-bit and 256-bit vectorsis 16 bytes. There is no advantage in aligning
256-bit vectorsto a 32-byte boundary on the Family 17h processor because 256-bit vectors are loaded
and stored as two 128-bit halves.

2.6.2.1 Bank Conflicts

The L1 DCisabanked structure. Two loads per cycle can access the DC if they are to different
banks. The DC banks that are accessed by aload are determined by address bits 5:2, the size of the
load, and the DC way. DC way is determined using the linear-address-based utag/way-predictor (see
section below). A bank conflict will result in areflow of one of the loads, which will appear as a
longer-latency load.

2.6.2.2 Linear address utag/way-predictor

The L1 data cache tags contain alinear-address-based microtag (utag) that tags each cacheline with
the linear address that was used to access the cachelineinitially. Loads use this utag to determine
which way of the cache to read using their linear address, which is avail able before the load's physical
address has been determined viathe TLB. The utag isahash of theload'slinear address. Thislinear
address based |ookup enables avery accurate prediction of in which way the cachelineislocated prior
to aread of the cache data. Thisallowsaload to read just a single cache way, instead of all 8. This
saves power and reduces bank conflicts.

It is possible for the utag to be wrong in both directions: it can predict hit when the access will miss,
and it can predict miss when the access could have hit. In either case, afill request to the L2 cacheis
initiated and the utag is updated when L2 responds to the fill request.

Linear aliasing occurs when two different linear addresses are mapped to the same physical address.
This can cause performance penalties for loads and stores to the aliased cachelines. A load to an
addressthat isvalid in the L1 DC but under a different linear aliaswill see an L1 DC miss, which
requires an L2 cache request to be made. The latency will generally be no larger than that of an L2
cache hit. However, if multiple aliased loads or stores are in-flight simultaneously, they each may
experience L1 DC misses as they update the utag with a particular linear address and remove another
linear address from being able to access the cacheline.

Itisalso possible for two different linear addresses that are NOT aliased to the same physical address
to conflict in the utag, if they have the same linear hash. At agiven L1 DC index (11:6), only one
cacheline with a given linear hash is accessible at any time; any cachelines with matching linear
hashes are marked invalid in the utag and are not accessible.

18 Microarchitecture of AMD Family 17h Processor Chapter 2
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2.6.3 L2 Cache

The AMD Family 17h processor implements a unified 8-way set associative write-back L2 cache per
core. Thison-die L2 cacheisinclusive of the L1 cachesin the core. The L2 cache sizeis 512 Kbytes
with avariable load-to-use latency of no lessthan 12 cycles. The L2 to L1 data path is 32 bytes wide.

2.6.4 L3 Cache

The AMD Family 17h processor implementsa4 MB or 8-MB L3 cache (depending on SOC
configuration) that is 16-way set associative and shared by four coresinside a CPU complex. TheL3
isawrite-back cache populated by L2 victims. When thereisan L3 hit, the lineisinvalidated from
the L3 if the accesswas astore. Itisinvalidated from the L3 if the access was aload and the line was
read by just one core. It staysvalidinthe L3 if it wasacode fetch. It staysvalidintheL3if itwasa
load and the line has been read by more than one core. The L3 maintains shadow tags for each L2
cache in the complex. If acore missesinitslocal L2 and also in the L3, the shadow tags are
consulted. If the shadow tags indicate that the data resides in another L2 within the complex, a cache-
to-cache transfer isinitiated within the complex. The L3 has an average |load-to-use latency of 35
cycles. The non-temporal cachefill hint, indicated with PREFETCHNTA, reduces cache pollution for
data that will only be used once. It isnot suitable for cache blocking of small data sets. Linesfilled
into the L2 cache with PREFETCHNTA are marked for quicker eviction from the L2, and when
evicted from the L2 are not inserted into the L3.

2.7 Memory Address Translation

A trandlation-lookaside buffer (TLB) holds the most-recently-used page mapping information. It
assists and accelerates the trandlation of virtual addresses to physical addresses. A hardware table
walker loads page table information into the TLBs.

The AMD Family 17h processor utilizes atwo-level TLB structure.

2.7.1 L1 Translation Lookaside Buffers

The processor contains a fully-associative L1 instruction TLB (ITLB) with 64 entries that can hold 4-
Kbyte, 2-Mbyte, or 1-Gbyte page entries.

The fully-associative L1 data TLB (DTLB) provides 64 entries that hold 4-Kbyte, 2-Mbyte, or 1-
Gbyte page entries.

2.7.2 L2 Translation Lookaside Buffers

The processor provides an 8-way set associative L2 instruction TLB with 512 entries capable of
holding 4-Kbyte pages, and 2-Mbyte pages. 1-Gbyte pages are not held in the L2 instruction TLB;
they are smashed into 2-Mbyte pagesinthe L2 ITLB.

Chapter 2 Microarchitecture of AMD Family 17h Processor 19



AMDAQ

Software Optimization Guide for AMD Family 17h Processors 55723 Rev.3.01 February 2021

The L2 dataTLB providesaunified 12-way set-associative L2 data TL B with 1536 entries capabl e of
holding 4-K byte pages, 2-Mbyte pages, and page-directory entries (PDES) used to speed up table
walks, and 1-Gbyte are not held in the L2 data TLB; they are only held inthe L1 data TLB.

2.7.3 Hardware Page Table Walkers

The AMD Family 17h processor has two hardware page table walkersto handle L2 TLB misses.
Misses can start speculatively from either the instruction or the data side. As was described in section
2.6.2, theL2 data TLB holds PDEs, which are used to speed up tablewalks by skipping three levels of
page table reads. In addition to the PDE storage in the L2 data TLB, the table walker includes a
64-entry Page Directory Cache (PDC) which holds page-map-level-4 entries (PML4ES) and page-
directory-pointer entries (PDPES) to speed up table walks. The PDC entries and the PDE entriesin the
L2 dataTLB are usable by al tablewalk requests, including instruction-side table walks.

Thetable walker natively supports the architecturally-defined 4-Kbyte, 2-Mbyte, and 1-Gbyte pages.
In legacy mode, 4-Mbyte entries are also supported by returning a smashed 2-Mbyte TLB entry.

Inthe L1TLBs, INVLPG and INVLPGA instructions cause aflush of all smashed entries
corresponding to the same 1-Gbyte guest linear address page. Inthe L2TLBs, INVLPG and
INVLPGA cause aflush of all smashed entries.

See the definition of the terms smashing and smashed in the Section 1.2 on page 10.

2.8 Optimizing Branching

Branching can reduce throughput when instruction execution must wait on the completion of the
instructions prior to the branch that determine whether the branch is taken. The processor integrates
logic that is designed to reduce the average cost of conditional branching by attempting to predict the
outcome of a branch decision prior to the resolution of the condition upon which the decision is
based.

This prediction is used to speculatively fetch, decode, and execute instructions on the predicted path.
When the prediction is correct, waiting is avoided and the instruction throughput is increased. The
branch misprediction penalty isin the range from 12 to 18 cycles, depending on the type of
mispredicted branch and whether or not the instructions are being fed from the op cache. The
common case penalty is 16 cycles.

2.8.1 Branch Prediction

To predict and accelerate branches, the processor employs:
e next-addresslogic

» branch target buffer

e return address stack (RAS)

* indirect target predictor

20 Microarchitecture of AMD Family 17h Processor Chapter 2
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» advanced conditional branch direction predictor
« fetch window tracking structure

The following sections discuss these features.

2.8.1.1 Next Address Logic

The next-address logic determines addresses for instruction fetch. When no branches areidentified in
the current fetch block, the next-address |ogic cal cul ates the starting address of the next sequential 64-
byte fetch block. This calculation is performed every cycle to support the 64 byte per cycle fetch
bandwidth of the op cache. When branches are identified, the next-address logic is redirected by the
branch target and branch direction prediction hardware to generate a non-sequential fetch block
address. The processor facilities that are designed to predict the next instruction to be executed
following a branch are detailed in the following sections.

2.8.1.2 Branch Target Buffer

The branch target buffer (BTB) is athree-level structure accessed using the fetch address of the
current fetch block. Each BTB entry includes information for branches and their targets. Each BTB
entry can hold up to two branches if the branches reside in the same 64-byte aligned cache line and
the first branch is a conditional branch.

Each level of BTB holds an increasing number of entries, and prediction from the larger BTBs have
higher latencies. When possible, keep the critical working set of branches in the code as small as
possible (see Software Optimization Guide for AMD Family 15h, Section 7.6). LOBTB holds 4
forward taken branches and 4 backward taken branches, and predicts with zero bubbles. L1BTB has
256 entries and creates one bubble if prediction differsfrom LOBTB. L2BTB has 4096 entries and
creates four bubbles if its prediction differs from L1BTB.

2.8.1.3 Return Address Stack

The processor implements a 32-entry return address stack (RAS) to predict return addresses from a
near call. One of the entriesis unusable for pointer logic simplification. In dua-threaded mode, each
thread is allocated 15 entries. As calls are fetched, the address of the following instruction is pushed
onto the return address stack. Typically, the return address is correctly predicted by the address
popped off the top of the return address stack. However, mispredictions sometimes arise during
specul ative execution that can cause incorrect pushes and/or pops to the return address stack. The
processor implements mechanismsthat correctly recover the return address stack in most cases. If the
return address stack cannot be recovered, it isinvalidated and the execution hardware restoresit to a
consistent state.

The following sections discuss some common coding practices used to optimize subroutine calls and
returns.

Chapter 2 Microarchitecture of AMD Family 17h Processor 21
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2.8.1.3.1 CALL Oh

When the CALL instruction is used with adisplacement of zero, it isrecognized and treated specialy;
the RAS remains consistent even if there is not a corresponding RET instruction.

To get the value in the RIP register into a general-purpose register in 64-bit software, you can use
RIP-relative addressing, as in the following example:

LEA RAX, [RIP+0] ; RAX contains the value of RIP

28.1.3.2 REP RET

For prior processor families, such as Family 10h and 12h, athree-byte return-immediate RET
instruction had been recommended as an optimization to improve performance over a single-byte
near-return. For processor Families 15h, 16h, and 17h thisis no longer recommended and a single-
byte near-return (opcode C3h) can be used with no negative performance impact. Thiswill result in
smaller code size over the three-byte method. For the rationale for the former recommendation, see
section 6.2 in the Software Optimization Guide for AMD Family 10h and 12h Processors.

2.8.1.3.3 Function Inlining

Calls and returns are not eligible to be stored in the zero-bubble predictor (LO BTB). Therefore,
function calls within hot loops can be inlined for better performance if there are few callersto the
function or if the function is small (See section 8.3 of Software Optimization Guide for AMD Family
15h Processor).

2.8.14 Indirect Target Predictor

The processor implements a 512-entry indirect target array used to predict the target of some non-
RET indirect branches. If a branch has had multiple different targets, the indirect target predictor
chooses among them using global history at L2 BTB correction latency.

Branches that have so far always had the same target are predicted using the static target from the
branch's BTB entry. This means the prediction latency for correctly predicted indirect branchesis
roughly 5-(3/N), where N is the number of different targets of the indirect branch. For these reasons,
code should attempt to reduce the number of different targets per indirect branch.

2.8.1.5 Advanced Conditional Branch Direction Predictor

The conditional branch predictor is used for predicting the direction of conditional near branches.
Only branches that have been previously discovered to have both taken and fall-through behavior will
use the conditional predictor. The conditional branch predictor uses a global history scheme that
keepstrack of the previously executed branches. Global history isnot updated for not-taken branches.
For this reason, dynamic branches which are biased towards not-taken are preferred. Branch behavior
which depends on deep history or which does not correlate well with global history will be
mispredicted often.
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When possible, avoid branches which alternate between taken and not-taken. If aloop is executed
twiceand it isasmall loop, it may be beneficial to unrall it.

Conditional branches that have not yet been discovered to be taken are not marked in the BTBs.
These branches are implicitly predicted not-taken. Conditional branches are predicted as always-
taken after they are first discovered to be taken. Conditional branches that are in the aways-taken
state are subsequently changed to the dynamic state if they are subsequently discovered to be not-
taken, at which point they are eligible for prediction with the dynamic conditional predictor.

2.8.1.6 Fetch Window Tracking Structure

Fetch windows are tracked in a 64-entry (32 entriesin SMT mode) FIFO from fetch until retirement.
Each entry holds branch and cacheline information for up to afull 64-byte cacheline. If asingle BTB
entry is not sufficient to allow prediction to the end of the cache line, additional entriesare used. If no
branches are identified in a cacheline, the fetch window tracking structure will use asingle entry to
track the entire cacheline.

If the fetch window tracking structure becomes full, instruction fetch stalls until instructions retire
from the retire control unit or a branch misprediction flushes some entries.

2.8.2 Boundary Crossing Branches

Branches whose target crosses a half-megabyte aligned boundary are unableto be installed inthe LO
BTB or to share BTB entries with other branches. Excessive occurrences of this scenario can reduce
effective BTB capacity if the BTB entry could have otherwise been shared.

2.8.3 Loop Alignment

For the Family 17h processor loop alignment is not usually a significant issue. However, for hot
loops, some further knowledge of trade-offs can be helpful. Since the processor can read an aligned
64-byte fetch block every cycle, aligning the end of the loop to the last byte of a 64-byte cachelineis
the best thing to do, if possible.

For very hot loops, it may be useful to further consider branch placement. The branch predictor can
process the first two branches after the cache line entry point with asingle BTB entry. For best
performance, keep the number of predicted branches per cache line entry point at two or below. Since
BTB entries can hold up to two branches, predicting a third branch will require an additional BTB
entry and additional cycles of prediction latency.

This should not be confused with branches per cache line. For example, it isstill optimal to have three
or four branches per cache line if the second branch is unconditional or if thefirst or second branchis
taken so frequently that the third and fourth branches are seldom executed.

2.8.3.1 Encoding Padding for Loop Alignment

Aligning loops is typically accomplished by adding NOP instructions ahead of the loop. This section
provides guidance on the proper way to encode NOP padding to minimize its cost. Generaly, it is
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beneficial to code fewer and longer NOP instructions rather than many short NOP instructions,
because while NOP instructions do not consume execution unit resources, they still must be
forwarded from the Decoder and tracked by the Retire Control Unit.

The table below lists encodings for NOP instructions of lengthsfrom 1 to 15. Beyond length 8, longer
NOP instructions are encoded by adding one or more operand size override prefixes (66h) to the
beginning of the instruction.

Length | Encoding

90

66 90

OF 1F 00

OF 1F 40 00

OF 1F 44 00 00

66 OF 1F 44 00 00

OF 1F 80 00 00 00 00

OF 1F 84 00 00 00 00 00

66 OF 1F 84 00 00 00 00 00

66 66 OF 1F 84 00 00 00 00 00

66 66 66 OF 1F 84 00 00 00 00 00

66 66 66 66 OF 1F 84 00 00 00 00 00

66 66 66 66 66 OF 1F 84 00 00 00 00 00
66 66 66 66 66 66 OF 1F 84 00 00 00 00 00
66 66 66 66 66 66 66 OF 1F 84 00 00 00 00 00
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The recommendation above is optimized for the AMD Family 17h processor.

Some earlier AMD processors, such as the Family 15h processor, suffer a performance penalty when
decoding any instruction with more than 3 operand-size override prefixes. While this penalty is not
present in Family 16h and 17h processors, it may be desirable to choose an encoding that avoids this
penalty in case the codeis run on a processor that does have the penalty.

The 11-byte NOPisthe longest of the above encodings that uses no more than 3 operand size override
prefixes (byte 66h). Beyond 11 bytes, the best single solution applicable to all AMD processorsis to
encode multiple NOP instructions. Except for very long sequences, thisis superior to encoding a JMP
around the padding.

The table below shows encodings for NOP instructions of length 12—15 formed from two NOP
instructions (a NOP of length 4 followed by a NOP of length 8-11).

Length | Encoding

12 OF 1F 40 00 OF 1F 84 00 00 00 00 00
13 OF 1F 40 00 66 OF 1F 84 00 00 00 00 00
14 OF 1F 40 00 66 66 OF 1F 84 00 00 00 00 00
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Length | Encoding
15 OF 1F 40 00 66 66 66 OF 1F 84 00 00 00 00 00

The AMDG64 | SA specifies that the maximum length of any single instruction is 15 bytes. To achieve
padding longer than that it is necessary to use multiple NOP instructions. For the Family 17h
processor use a series of 15-byte NOP instructions followed by a shorter NOP instruction. If taking
earlier AMD processor families into account, use a series of 11-byte NOPs followed by a shorter
NOP instruction.

Asadlightly more efficient alternative to inserting NOPs for padding, redundant prefixes can be used
to pad existing instructions without affecting function. This has the advantage of fewer instructions
being kept in the op cache and maintained throughout the machine pipeline. For example, operand
overrides (byte 66h) can be added to an instruction that already has operand overrides without
changing function. Whereas padding with NOPs is always possible, this method of using redundant
prefixesis only practical when there are already useful instructions present that use prefixes.

2.9 Instruction Fetch and Decode

The AMD Family 17h processor fetches instructions from the instruction cache in 32-byte naturally
aligned blocks. The processor can perform an instruction block fetch every cycle.

The fetch unit sends these bytes to the decode unit through a 20 entry Instruction Byte Queue (IBQ),
each entry holding 16 instruction bytes. In SMT mode each thread has 10 dedicated IBQ entries. The
IBQ acts as a decoupling queue between the fetch/branch-predict unit and the decode unit.

The decode unit scans two of these windows in a given cycle, decoding a maximum of four
instructions. The decode unit also contains a sideband stack optimizer, which tracks the stack-pointer
value. This optimization removes the dependencies that arise during chains of PUSH and POP
operations on the rSP register, and thereby improves the efficiency of the PUSH and POP
instructions.

The pick window is 32 bytes, aligned on a 16-byte boundary. Having 16 byte aligned branch targets
gets maximum picker throughput and avoids end-of-cacheline short op cache (OC) entries.

Only thefirst pick slot (of 4) can pick instructions greater than eight bytesin length. Avoid having
more than one instruction in a sequence of four that is greater than eight bytes in length.

2.9.1 Op Cache

The op cache (OC) isacache of previously decoded instructions. When instructions are being served
from the op cache, normal instruction fetch and decode are bypassed. Thisimproves pipeline latency
because the op cache pipeline is shorter than the traditional fetch and decode pipeline. It improves
bandwidth because the maximum throughput from the op cache is 8 instructions per cycle whereas
the maximum throughput from the traditional fetch and decode pipeline is 4 instructions per cycle.
Finally, it improves power because there is no need to re-decode instructions.
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The op cache is organized as an associative cache with 32 sets and 8 ways. At each set-way
intersection is an entry containing up to 8 instructions, so the maximum capacity of the op cacheis
then 2K instructions. The actual limit may be less due to efficiency considerations. Avoid hot code
regions that approach this size for a single thread or half this size for two SMT threads.

When instructions are decoded, they are also built into the op cache. Multiple instructions are built
together into an op cache "entry”. Up to 8 sequential instructions ending in the same 64-byte aligned
memory region may be cached together in an entry.

Op cache entry limits:

* 8instructions

e 8 32-bit immediates/displacements (64-bit immediates/di splacements take two slots)
* 4 microcode instructions

The op cache is modal and the machine can only transition between instruction cache mode (1C
mode) and op cache mode (OC mode) at certain points. The machine can only transition from IC
mode to OC mode at a branch target. Once in OC mode, the machine will generally remain in this
mode until there is afetch address for which there is no corresponding OC entry (a miss).

If there are an excess of mode transitions, IPC can be negatively impacted. Limiting hot regions of
code to fit in the capacity of the op cache will minimize the possibility of mode transitions, and it is
particularly important when unrolling loops to avoid exceeding the capacity of the op cache.

An OC entry terminates at the end of a 64-byte aligned memory region, so branching to one of the last
few instructionsin aregion will result in an inefficient OC entry being built (that isless than the
maximum 8 instructions that could be stored in that entry).

Use of the OC requires aflat memory model (64-bit or 32-bit with CS base of 0 and CS limit at max).

2.10 Integer Execution Unit

Figure 5 on page 27 diagrams the integer execution unit.

The integer execution unit for the AMD Family 17h processor consists of the following major
components:

* schedulers
e execution units
¢ retire control
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Figure 5. Integer Execution Unit Block Diagram

2.10.1 Schedulers

The schedulers can receive up to six macro ops per cycle, where they are broken down into micro ops.
ALU micro ops are sent to one of four 14-entry ALU schedulers. Load and Store micro ops are sent to
one of two 14-entry address generation units (AGUs) Each scheduler can issue one micro op per
cycle. The scheduler tracks operand availability and dependency information as part of its task of
issuing micro ops to be executed. It also ensures that older micro ops which have been waiting for
operands are executed in atimely manner. Micro ops can be issued and executed out-of-order.
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2.10.2 Execution Units

The processor contains 4 integer execution pipes. There are four ALUs capable of al integer
operations with the exception of multiplies, divides, and CRC which are dedicated to one ALU each.
There are 2 AGUs for all load and store address generation.

While two-operand LEA instructions are mapped as a single-cycle micro-op in the ALUS, three-
operand LEA instructions are mapped to an AGU and have 2 cycle latency, with resultsinserted back
in to either the ALU2 or ALU3 pipeline.

The integer multiply unit can handle multiplies of up to 64 bits x 64 bits with 3 cycle latency, fully
pipelined. If the multiply instruction has 2 destination registers, an additional one-cycle latency for
the second result is required with areduction in throughput to one every two cycles.

The radix-4 hardware integer divider unit can compute 2 bits of results per cycle.

2.10.3 Retire Control Unit

Theretire control unit (RCU) tracks the completion status of all outstanding operations (integer,
load/store, and floating-point) and is the final arbiter for exception processing and recovery. The unit
can receive up to 6 macro ops dispatched per cycle and track up to 192 macro ops in-flight. A macro-
op is eligible to be committed by the retire unit when all corresponding micro ops have finished
execution. For most cases of fastpath double macro ops (like when an AV X 256-bit instruction is
broken into two 128-bit macro ops), it isfurther required that both macro ops have finished execution
before commitment can occur. The retire unit handles in-order commit of up to eight macro ops per
cycle.

The retire control unit also manages internal integer register mapping and renaming. The integer
physical register file (PRF) consists of 168 registers, with up to 38 per thread mapped to architectural
state or microarchitectural temporary state. The remaining registers are available for out-of-order
renames.

2.11 Floating-Point Unit

The AMD Family 17h processor provides native support for 32 bit single precision 64 bit double
precision and 80 hit extended precision primary floating-point data types as well as 128 bit packed
integer, single and double precision vector floating-point data types. The 256 bit packed single and
double precision vector floating-point data types are fully supported through the use of two 128 bit
micro ops per instruction. The floating-point load and store paths are 128 bits wide.

The floating-point unit (FPU) utilizes a coprocessor model for all operations that use X87, MMX ™,
XMM, YMM, or floating point control/status registers. As such, it contains its own scheduler, register
file, and renamer; it does not share them with the integer units. It can handle dispatch and renaming of
4 floating point micro ops per cycle and the scheduler can issue 1 micro op per cycle for each pipe.
The floating-point scheduler has a 36 entry micro-op capacity. The floating-point unit sharestheretire
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gueue with the integer unit. The retire queue can hold up to 192 micro ops or 96 per thread in SMT
mode. Micro ops can be dispatched to the Execution unit even if floating-point scheduler isfull to
allow loads and stores to be accelerated.

Figure 6 below shows a basic diagram of the floating point unit and how it interfaces with the other
unitsin the processor. Notice that there are 4 execution pipes which can execute an operation every
cycle. The FP unit receives 2 loads from the |oad/store unit every cycle that are up to 128b each.
There are dedicated busses to enable fast moves between the floating point registers and the general
registersin the EX unit. Stores are serviced out of execution pipe 2.

4 fp micro-op dispatch
E E - 8 ricro-op
retire

Z Loads Per Cycle

Figure 6. Floating-Point Unit Block Diagram

Pipes 0 and 1 support operations that require three operands. When three operands are required for an
operation, it uses ones of the source busses normally allocated to pipe3, which can block any
execution in pipe3. If datafor pipe3 or the 3rd operand can be bypassed from aresult generated that
same cycle, then pipe3 can execute an operation even when either pipe0 or pipel require athird
source.
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2111 Floating Point Execution Resources
Unit Pipe Domain® | Ops Supported
112 |3
FMUL X | X F (VFMUL*, (v)FM A*, Floating Point Compares, Blendv(DQ)
FADD X | X |F (V)FADD*
FCVT X |F All convert operations except pack/unpack
FDIV? X |F All Divide and Square Root except Reciprocal Approximation
FMISC X | X X |F M oves and L ogical operations on Floating Point Data Types
STORE X S Stores and M ove to General Register (EX) Operations
VADD? X | X X |1 Integer Adds, Subtracts, and Compares
VMUL X I Integer M ultiplies, SAD, Blendvb
VSHUF® X | X I Data Shuffles, Packs, Unpacks, Permute
VSHIFT X I Bit Shift Left/Right operations
VMISC XX [ X | X ]I Moves and L ogical operations on Packed Integer Data Types
AES X | X | *AES*
CLM S *CLM*
Notes:
1. FDIV unit can support 2 simultaneous operations in flight even though it occupies a single pipe.
2. Some complex VADD operations are not available in all pipes.
3. Some complex shuffle operations are only available in pipel.
4. Thereis1 cycle of added latency for aresult to crossfrom Fto | or | to F domain.
2.11.2 Code recommendations
1. Usethe SIMD nature of the SSE or AV X instruction sets to achieve significantly higher

throughput. The AMD Family 17h processor supports SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
SSE4a, F16C, FMA, AV X, and AV X 2. The datapath is 128 bits across all operations, so optimal
code will operate on 128b (XMM registers) or 256b (Y MM registers) with every operation using
the SIMD instructions.
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2. Do full width loads and stores. For example, use movapd instead of movlpd/movhpd. Loading or
storing asingle register in multiple chunks is slower than doing it with a single operation. If one
has no choice but to use multiple loads, try to make sure they are back to back in the code.

3. Clear floating point registers when done using them. This allows the physical register to be freed
up for speculative results and enables the machine to break merging dependencies for ops that do
not write the entire result width such as scalar operations.

4. If possible, set MXCSR.DAZ (Denorm as Zero) or MXCSR.FTZ (Flush Denorm to Zero) to 1.
The hardware supports denormal inputs and outputs with no latency impact on most operations. A
few operations execute assuming normal floating point inputs or outputs. When the ops discover a
denormal input or output, they may be re-executed with alonger latency. These opsinclude
multiply, divide, and square root. Re-executing with the longer latency is avoided if the DAZ and
FTZ flags are s&t.

5. Avoid branches/jumpsin the calculation of values. For example, if one needsto do if(a> 1.1) then
b = 4 else b=6, then use vempgtsd followed by a predicated mov into b.

6. XMM register-to-register moves have no latency; These instructions may be used without penalty.

7. Try to use consistent data types for instructions operating on the same data. For example, use
VANDPS, VMAXPS, and so on when consuming the output of MULPS.

2.11.3 FP performance on x87 code

1. Usefxchinstead of push/pop if possible asit is much faster at swapping register values.
2. Avoid instructions between FCOMand FSTSWin floating point compares.

2.11.4 Denormals

Denormal floating-point values (also called subnormals) can be created by a program either by
explicitly specifying a denormal value in the source code or by calculations on normal floating-point
values. In some instances, (MUL/DIV/SQRT) a small penalty may be incurred when these values are
encountered. For SSE/AV X instructions, the denormal penalties are afunction of the configuration of
MXCSR and the instruction sequences that are executed in the presence of a denormal value.

If denormal precision is not required, it is recommended that software set both MXCSR.DAZ and
MXCSR.FTZ. Note that setting MXCSR.DAZ or MXCSR.FTZ will cause the processor to produce
results that are not compliant with the |EEE-754 standard when operating on or producing denormal
values.

The x87 FCW does not provide functionality equivalent to MXCSR.DAZ or MXCSR.FTZ, soiitis
not possible to avoid these denormal penalties when using x87 instructions that encounter or produce
denormal values.
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2.11.5 XMM Register Merge Optimization

The AMD Family 17h processor implements an XMM register merge optimization. The processor
keepstrack of XMM registers whose upper portions have been cleared to zeros. Thisinformation can
be followed through multiple operations and register destinations until non-zero datais written into a
register. For certain instructions, this information can be used to bypass the usual result merging for
the upper parts of the register. For instance, SQRTSS does not change the upper 96 bits of the
destination register. If some instruction clears the upper 96 bits of its destination register and any
arbitrary following sequence of instructions fails to write non-zero datain these upper 96 bits, then
the SQRTSS instruction can proceed without waiting for any instructions that wrote to that
destination register.

The instructions that benefit from this merge optimization are:
e CVTPI 2PS

» CVTSI 2SS (32-/64-BIT)
e MOVSS xmmil, xnmP

e CVTSD2SS
 CVTISS2SD

e MOVLPS xmmi, [ neni

« CVTSI 2SD (32-/64-BIT)
e MOWSD xmmil, xnm?

e MOLPD xnmmi, [ nenj

« RCPSS

* ROUNDSS

«  ROUNDSD

« RSQRTSS

e SQRTSD

* SQRTSS

2.12 Load-Store Unit

The AMD family 17h processor load-store (LS) unit handles data accesses. The LS unit contains
three largely independent pipelines enabling the execution of two 128-bit load memory operations
and one 128-bit store memory operation per cycle.

The LS unit includes a 44-entry load queue (LDQ). The LDQ receives load operations at dispatch.
L oads leave the LDQ when the load has completed and delivered data to the integer unit or the float-
Ing-point unit.

32 Microarchitecture of AMD Family 17h Processor Chapter 2



AMDA

55723 Rev.3.01 February 2021 Software Optimization Guide for AMD Family 17h Processors

The LS unit utilizes a 44-entry store queue which holds stores from dispatch until the store data can
be written to the data cache.

The LS unit dynamically reorders operations, supporting both load operations bypassing older |oads
and loads bypassing older non-conflicting stores. The LS unit ensures that the processor adheres to
the architectural load and store ordering rules as defined by the AMDG64 architecture.

The LS unit supports store-to-load forwarding (STLF) when thereis an older store that contains all of
the load's bytes, and the store's data has been produced and is available in the store queue. The load

does not require any particular alignment relative to the store or to the 32B load alignment boundary
aslong asit isfully contained within the store.

The AMD Family 17h processor uses address bits 11:0 to determine STLF eligiblity. Avoid having
multiple stores with the same 11:0 address bits, but to different addresses (different 47:12 bits) in-
flight ssimultaneously where aload may need STLF from one of them. Loads that follow storesto ssim-
ilar address space should use the same registers and accesses should be grouped closely together,
avoiding intervening modifications or writes to the base or index register used by the store and load
when possible. Also, minimize displacement values such that the range will fit within 8 bits when
possible.

The LS unit can track up to 22 outstanding in-flight cache misses.

The AGU and L S pipelines are optimized for simple address generation modes. Base+displacement,
base+index, and displacement-only addressing modes (regardless of displacement size) are consid-
ered simple addressing modes and can achieve 4-cycle load-to-use integer load latency and 7-cycle
load-to-use FP load latency. Addressing modes where both an index and displacement are present
(most commonly 3-source addressing modes with base+index+displacement), and any addressing
mode utilizing a scaled index (*2, *4, or *8 scales) are considered complex addressing modes and
require an additional cycle of latency to compute the address. Complex addressing modes can
achieve a 5-cycle (integer)/8-cycle (FP) load-to-use latency. It isrecommended that compilers avoid
complex (scaled-index, or index+displacement) addressing modes in latency-sensitive code.

The load store pipelines are optimized for zero-segment-base operations. A load or store that has a
non-zero segment base suffers a one-cycle penalty in the load-store pipeline. Most modern operating
systems use zero segment bases while running user processes and thus applications will not normally
experience this penalty.

This segment-base latency penalty is not additive with the above-mentioned complex addressing-
mode penalty. If an LS operation has both a non-zero base and a complex addressing mode, it
requires just asingle additional cycle of latency and can still achieve 5-cycle (integer)/8-cycle (FP)
load-to-use latency.
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32 bytes to/from L2

Figure 7. Load-Store Unit

2.13 Optimizing Writing Data

Write-combining is the merging of multiple memory write cycles that target locations within the
address range of awrite buffer. AMD Family 17h processor supports the memory type range register
(MTRR) and the page attribute table (PAT) extensions, which allow software to define ranges of
memory as either writeback (WB), write-protected (WP), writethrough (WT), uncacheable (UC), or
write-combining (WC).

Defining the memory type for arange of memory as WC allows the processor to conditionally
combine data from multiple write cycles that are addressed within this range into a merge buffer.
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Merging multiple write cycles into a single write cycle reduces processor bus utilization and
processor stalls. Write combining buffers are al'so used for streaming store instructions such as
MOVNTQ and MOV NTI.

2.13.1 Write-Combining Definitions and Abbreviations

This appendix uses the following definitions and abbreviations:
*  MTRR—Memory type range register

* PAT—Page attribute table

*  UC—Uncacheable memory type

*  WC—Write-combining memory type

e WT—Writethrough memory type

*  WP—Write-protected memory type

*  WB—Writeback memory type

2.13.2 Programming Details

Write-combining regions are controlled by the MTRRs and PAT extensions. Write-combining should
be enabled for the appropriate memory ranges.

For more information on the MTRRs and the PAT extensions, see the following documents:
*  AMDG64 Architecture Programmer’s Manual, Volume 2, order# 24593

* Preliminary Processor Programming Reference (PPR) for AMD Family 17h Models 00h-OFh
Processors, order# 54945

2.13.3 Write-Combining Operations

To improve system performance, AMD Family 17h processor aggressively combines multiple
memory-write cycles of any data size that address locations within a 64-byte write buffer that is
aligned to a cache-line boundary. The processor continues to combine writes to this buffer without
writing the data to the system, as long as certain rules apply (see Table 2 for more information). The
data sizes can be bytes, words, doublewords, or quadwords.

WC memory type writes can be combined in any order up to afull 64-byte write buffer.

* All other memory typesfor stores that go through the write buffer (UC, WP, WT and WB) cannot
be combined except when the WB memory type is over-ridden for streaming store instructions
such asthe MOVNTQ and MOVNTI instructions, etc. These instructions use the write buffers
and will be write-combined in the same way as address spaces mapped by the MTTR registers
and PAT extensions. When WCB is used for streaming store instructions, the buffers are subject to
the same flushing events as write-combined address spaces.
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The processor may combine writesthat do not store all bytes of a 64-byte write buffer. These partially
filled buffers may not be closed for significant periods of time and may affect the bandwidth of the
remaining writes in a stream. Aligning write-combining operations to 64-byte cache line boundaries
avoids having partialy full buffers. When software starts a long write-combining operation on a non-
cache line boundary, it may be beneficial to place awrite-combining completion event (listed in
Table 2 below) to ensure that the first partially filled buffer is closed and available to the remaining
stores.

Combining continues until interrupted by one of the conditions listed in Table 2. When combining is
interrupted, one or more bus commands are issued to the system for that write buffer and all older
write buffers, even if they are not full, as described in “ Sending Write-Buffer Data to the System” on

page 37.

Table 2. Write-Combining Completion Events

Event Comment

I/O Read or Write Any IN/INS or OUT/OUTS instruction closes combining. The
implied memory type for all IN/OUT instructions is UC, which
cannot be combined.

Serializing instructions Any serializing instruction closes combining. These
instructions include: MOVCRx, MOVDRx, WRMSR, INVD,
INVLPG, WBINVD, LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM,

INIT, and HALT.

Flushing instructions CLFLUSH will only close the WCB if it is for WC or UC memory
type.

Locks Any instruction or processor operation that requires a cache or

bus lock closes write-combining before starting the lock. Writes
within a lock can be combined.

Uncacheable Reads and Writes A UC read or write closes write-combining. A WC read closes
combining only if a cache block address match occurs between
the WC read and a write in the write buffer.

Different memory type When a store hits on a write buffer that has been written to
earlier with a different memory type than that store, the buffer is
closed and flushed.

Buffer full Write-combining is closed if all 64 bytes of the write buffer are
valid.
TLB AD bit set Write-combining is closed whenever a TLB reload sets the

accessed [A] or dirty [D] bits of a PDE or PTE.
Executing SFENCE (Store Fence) | These instructions force the completion of pending stores,

and MFENCE (Memory Fence) including those within the WC memory type, making these

instructions. globally visible and emptying the store buffer and all write-
combining buffers.

An interrupt or exception occurs. Interrupts and exceptions are serializing events that force the

processor to write all results to memory before fetching the first
instruction from the interrupt or exception service routine

Note: See Section 2.15 on page 39 for more info on locks and memory barriers.
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2.13.4 Sending Write-Buffer Data to the System

Maximum throughput is achieved by write combining when all quadwords or doublewords are valid
and the processor can use one efficient 64-byte memory write instead of multiple 16-byte memory
writes. The processor can gather writes from 8 different 64B cache lines (up to 7 from one thread).
Throughput will be best when the number of simultaneous write-combining streamsis low.

2.14 Simultaneous Multi-Threading

In order to improve instruction throughput, the AMD family 17h processor implements Simultaneous
Multi-Threading (SMT). Single-threaded applications do not always occupy all resources of the
processor at all times. The processor can take advantage of the unused resources to execute a second
thread concurrently.

Resources such as queue entries, caches, pipelines, and execution units can be competitively shared,
watermarked, or statically partitioned in two-threaded mode (see Figure 8 below).
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Competitively - Statically
ICACHE X

ITLB
Micro-op Cache

Dispatch Interface
Microcode ROM
DCACHE

DTLB

L2 Cache

L3 Cache
Scheduler tokens
Physical Registers
Load Queue

X X X X X X X X X X X X

Floating Point Physical Registers
Floating Point Scheduler X
Memory Request Buffers X
Micro-op Queue X
Store Queue X
Retire Queue X

Figure 8. Resource Sharing

For partitioned resources, arbitration between threads is generally round-robin unless a given thread
isstalled.

It is expensive to transition between single-threaded (1T) mode and dual-threaded (2T) mode and
vice versa, so software should restrict the number of transitions. If running in 2T mode, and one
thread finishes execution, it may be beneficia to avoid transitioning to 1T mode if the second thread
Is also about to finish execution.

If the two threads are running different code, they should run in different linear pagesto reduce BTB
collisions.
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Two threads which concurrently run the same code should run at the same linear and physical
addresses. Operating system features which randomize the address layout such as Wi ndows® ASLR
should be configured appropriately. Thisisto facilitate BTB sharing between threads.

2.15 LOCKs

The AMD family 17h processor implements logic to improve the performance of LOCKed
instructions. In order to benefit from thislogic, the following guidelines are recommended:

* Ensurethat LOCKed memory accesses do not cross 16-byte aligned boundaries.

* Following a LOCKed instruction, refrain from using floating point instructions as long as
possible.

» Ensurethat the Last Branch Record isdisabled (DBG_CTL_MSR.LBR)
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Appendix A Understanding and Using
Instruction Latency Tables

The companion file Family 17h Instruction Latencies version_1-00.xIsx distributed with this
Software Optimization Guide provides additional detailed information for the AMD Family 17h
processor. This appendix explains the columns and definitions used in the table of latencies.
Information in the spreadsheet is based on estimates and is subject to change.

A.1  Instruction Latency Assumptions

The term instruction latency refers to the number of processor clock cycles required to complete the
execution of a particular instruction from the time that it isissued. Throughput refersto the number of
results that can be generated in a unit of time given the repeated execution of a given instruction.

Many factors affect instruction execution time. For instance, when a source operand must be loaded
from amemory location, the time required to read the operand from system memory adds to the
execution time. Furthermore, latency is highly variable due to the fact that a memory operand may or
may not be found in one of the levels of data cache. In some cases, the target memory location may
not even be resident in system memory due to being paged out to backing storage.

In estimating the instruction latency and reciprocal throughput, the following assumptions are
necessary:

* Theinstructionisan L1 I-cache hit that has already been fetched and decoded, with the operations
loaded into the scheduler.

* Memory operands are in the L1 data cache.

* Thereisno contention for execution resources or |oad-store unit resources.

Each latency valuelisted in the spreadsheet denotes the typical execution time of the instruction when
run in isolation on a processor. For real programs executed on this highly aggressive super-scalar
processor, multiple instructions can execute simultaneously; therefore, the effective latency for any
given instruction's execution may be overlapped with the latency of other instructions executing in
paralel.

The latenciesin the spreadsheet reflect the number of cycles from instruction issuance to instruction
retirement. Thisincludes the time to write results to registers or the write buffer, but not the time for
results to be written from the write buffer to L1 D-cache, which may not occur until after the
instruction is retired.

For most instructions, the only forms listed are the ones without memory operands. The latency for
instruction forms that load from memory can be calculated by adding the load latencies listed on the
overview worksheet to the latency for the register-only form. To measure the latency of an instruction
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which stores data to memory, it is necessary to define an end-point at which the instruction is said to
be complete. This guide has chosen instruction retirement as the end point, and under that definition
writes add no additional latency. Choosing another end point, such as the point at which the data has
been written to the L1 cache, would result in variable latencies and would not be meaningful without
taking into account the context in which the instruction is executed.

There are cases where additional |atencies may beincurred in areal program that are not described in
the spreadsheet, such as delays caused by L1 cache misses or contention for execution or load-store

unit resources.
A.2  Spreadsheet Column Descriptions
The following table describes the information provided in each column of the spreadsheet:
Cols |Label Description
A Instruction | Instruction mnemonic
B-E |Instruction |The following notations are used in these columns:
operands « imm—an immediate operand (value range left unspecified)
¢ imm8—an 8-bit immediate operand
e m—an 8, 16, 32 or 64-bit memory operand (128 and 256 bit memory
operands are always explicitly specified as m128 or m256)
« mm—any 64-bit MMX register
« mN—an N-bit memory operand
e r—any general purpose (integer) register
« N—an N-bit general purpose register
« xmmN—any xmm register, the N distinguishes among multiple
operands of the same type
« ymmN—any ymm register, the N distinguishes among multiple
operands of the same type
A slash denotes an alternative, for example m64/m32 is a 32-bit or 64-bit
memory operand. The notation "<xmmO0>" denotes that the register xmmO
is an implicit operand of the instruction.
F APM Vol AMDG64 Programmer’s Manual Volume that describes the instruction.
G Cpuid flag CPUID feature flag for the instruction.
H Macro Ops | Number of macro ops for the instruction.
Any number greater than 2 implies that the instruction is microcoded,
with the given number of macro ops in the micro-program. If the entry in
this column is simply ‘ucode’ then the instruction is microcoded but the
exact number of macro ops is variable.
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Cols |Label Description
I Unit Execution units. The following abbreviations are used:

» ucode—instruction is implemented using a variable number of macro
ops.

ucode(n)—instruction is implemented using exactly n macro ops.
ALU—instruction can execute in any of the 4 ALU pipes.
ALUn—instruction can only execute in ALU pipe n.

FPU—instruction can execute in any of the 4 FPU pipes.
FPn—instruction can only execute in FP pipe n.

FPn+m—instruction requires both FP pipes nand m.
FPn/FPmM—instruction can execute in either FP pipe nor m.
FPn,FPmM—instruction execution uses FP pipe nfollowed by FP pipe m.
DIV—Integer divide functional element within the integer unit
MUL—Integer multiply functional element within the integer unit.
ST—instruction utilizes the LD/ST unit to execute a store.
LD—instruction utilizes the LD/ST unit to execute a load.
LD/ST—Load/Store unit.

(dash)—instruction does not utilize an execution pipe.
NA—instruction is not supported.

Latency

Instruction latency in processor cycles.

Refer to the section "Instruction Latency Assumptions" above for more
information about this column.

Throughput

Throughput of the instruction.

A value of 2 indicates that two such instructions can be retired in the
same clock cycle. This value is subject to the same assumptions as the
latency values.

Refer to the section "Instruction Latency Assumptions" above for more
information.

Notes

Additional information about the entry.
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