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Chapter 1 Introduction

This guide provides optimization information and recommendations for AMD Zen5
microarchitecture. In this guide, processor refers to AMD Zen5 processors.

AMD Zen5 microarchitecture is present in Family 1Ah processors with Models 00h-4Fh and
Models 60h-6Fh.

1.1 Intended Audience

This book is intended for compiler and assembler designers, as well as C, C++, and assembly
language programmers writing performance-sensitive code sequences. This guide assumes that
you are familiar with the AMD®64 instruction set and the AMDG64 architecture (registers and
programming modes).

8 Introduction Chapter 1
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1.2 Related Documents

For complete information on the AMDG64 architecture and instruction set, see the multi-volume
AMDG64 Architecture Programmer’s Manual available from AMD.com. Individual volumes and

their order numbers are provided below:

Table 1. Related Documents

Title Order Number
Volume 1: Application Programming 24592
\Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
\Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

The following documents provide a set of guidelines for writing efficient code that have general
applicability to the AMD Zen5 microarchitecture:

e Software Optimization Guide for AMD Family 10h and 12h Processors, order# 40546
e Software Optimization Guide for AMD Family 15h Processors, order# 47414
e Software Optimization Guide for AMD Family 17h Processors, order# 55723
e Software Optimization Guide for AMD Family 19h Processors, order# 56665

Refer to the following document for more information about machine-specific registers, debug,

and performance profiling tools:

e Processor Programming Reference (PPR) for AMD Family 19h Models 10h-1Fh, order#

55901

Chapter 1

Introduction
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1.3 Specialized Terminology

The following specialized terminology is used in this document:

Term Definition
CPU Complex A CPU complex is a group of cores that share one
L3 cache.
Dispatching Dispatching refers to the act of transferring macro-

ops from the front end of the processor to the out-
of-order backend.

Issuing Issuing refers to the act of picking from the
scheduler to send a micro-op into an execution
pipeline. Some macro-ops may be issued as
multiple micro-ops into different execution
pipelines.

10 Introduction Chapter 1



[Public]

AMDZ1

58455 Rev.1.00 August 2024 Software Optimization Guide for the AMD Zen5
Microarchitecture

Chapter 2 Z.en5 Processor Microarchitecture

An understanding of the term’s architecture, microarchitecture, and design implementation is
important when discussing processor design.

The architecture consists of the instruction set and processor features visible to software programs
running on the processor. The architecture determines what software the processor can run. The
AMDG64 architecture of the AMD Zen5 processor is compatible with the industry-standard x86
instruction set.

Microarchitecture refers to the design features used to reach the target cost, performance, and
functionality goals of the processor.

Design implementation refers to a particular combination of physical logic and circuit elements
that comprise a processor that meets the microarchitecture specifications.

The processor employs a reduced instruction set execution core with a preprocessor that decodes
and decomposes most of the simpler AMD®64 instructions into a sequence of one or two macro-ops.
More complex instructions are implemented using microcode routines.

Decode is decoupled from execution, and the execution core employs a super-scalar organization
in which multiple execution units operate essentially independently. The execution core design
allows it to implement a small number of simple instructions that can be executed in a single
processor cycle. This design simplifies circuit design, achieving lower power consumption and
fast execution at optimized processor clock frequencies.

Chapter 2 Zen5 Processor Microarchitecture 11
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2.1 Key Microarchitecture Features

The processor implements a specific subset of AMDG64 instruction set architecture defined by the
APM.

The following major classes of instructions are supported:

e General-purpose instructions, including support for 64-bit operands

e x87 Floating-point instructions

e 64-bit Multi-media (MMXT™) instructions

e 128-bit and 256-bit single-instruction / multiple-data (SIMD) instructions.
e AMD Virtualization™ technology (AMD-VT™™)

The following Streaming SIMD Extensions subsets are supported:

e Streaming SIMD Extensions 1 (SSE1)
e Streaming SIMD Extensions 2 (SSE2)
e Streaming SIMD Extensions 3 (SSE3)
e Supplemental Streaming SIMD Extensions 3 (SSSE3)
e Streaming SIMD Extensions 4a (SSE4a)
e Streaming SIMD Extensions 4.1 (SSE4.1)
e Streaming SIMD Extensions 4.2 (SSE4.2)
e Advanced Vector Extensions (AVX)
— AVX_VNNI - AVX/VEX variants of Vector Neural Network Instructions
e Advanced Vector Extensions 2 (AVX2)
— AVX2 variants of VAES / VPCLMULQDQ
e Advanced Encryption Standard (AES) acceleration instructions
e AVX-512 Advanced Vector Extensions, including the following extensions
— AVX-512F - Foundation
— AVX-512DQ - Packed Integer Instructions
— AVX-512 IFMA - Integer fused multiply-add instructions
— AVX-512CD - Conflict Detection for vectorizing loops
— AVX-512BW - Byte and word instructions (packed integer instructions)

— AVX-512VL - Allows most AVX-512 instructions to also operate on XMM and YMM
registers

— AVX-512 VBMI - Vector Byte Manipulation Instructions

12 Zen5 Processor Microarchitecture Chapter 2
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— AVX-512 VNNI - Vector Neural Network Instructions
— AVX-512_BITALG - Bit Algorithm Instructions
— AVX-512 VPOPCNTDQ - Vector POPCNT instructions
— AVX-512_4FMAPS - Fused Multiply Accumulation Packed Single precision
— AVX-512_BF16 - bfloat16 support (dot-product and convert instructions)
e GFNI - Galois Field New Instructions

The following miscellaneous instruction subsets are supported:

e SHA, RDRAND

e Read and write FS.base and GS.base instructions

e Half-precision floating-point conversion (F16C)

e Carry-less Multiply (CLMUL) instructions

e Move Big-Endian instruction (MOVBE)

e XSAVE/XSAVEOPT

e LZCNT/POPCNT

e WBNOINVD

e RDPRU

e UMIP

e CLWB

e INVLPGB (support varies by model number, refer to the PPR for individual model support)
e TLBSYNC (support varies by model number, refer to the PPR for individual model support)
e INVPCID (support varies by model number, refer to the PPR for individual model support)
e RDPKRU

e WRPKRU

The following Bit Manipulation Instruction subsets are supported:

e BMI1
e BMI2

The processor does not support the following instructions/instruction subsets:

e Four operand Fused Multiply/Add instructions (FMA4)

Chapter 2 Zen5 Processor Microarchitecture 13
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e XOP instructions
e Trailing bit manipulation (TBM) instructions
e Light-weight profiling (LWP) instructions

The processor also has support for shadow stack protection:

e [INCSSP

e RDSSP

e SAVEPREVSSP
e RSTORSSP

e WRSS

e WRUSS

o SETSSBSY

e CLRSSBSY

The processor also has support for Secure Nested Paging (support varies by model number, refer to
the PPR for individual model support):

e RMPUPDATE
e PVALIDATE

e PSMASH

e RMPADJUST
e RMPQUERY
e RMPREAD

The processor includes many features designed to improve software performance. These include
the following key features:

e Simultaneous multi-threading

e Unified 1 Mbyte L2 cache per core.

e Up to 96-Mbyte shared, victim L3, depending on configuration.
e Integrated memory controller

e 32-Kbyte L1 instruction cache (IC) per core

e 48-Kbyte L1 data cache (DC) per core

e 6.75 K Op Cache (OC)

14 Zen5 Processor Microarchitecture Chapter 2
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e Prefetchers for L2 cache, L1 data cache, and L1 instruction cache

e Advanced dynamic branch prediction

e 32-byte instruction cache fetch

e 4-way x86 instruction decoding with sideband stack optimizer

e Dynamic out-of-order scheduling and speculative execution

e Six-way integer execution; Four-way address generation (loads or stores)

e Four-way 512-bit wide floating-point and packed integer execution plus dedicated floating-
point store data movement unit and floating-point to integer data movement unit

e Integer hardware divider
e LlandL2 Instruction TLB and L1 and L2 Data TLB
e Six fully symmetric core performance counters per thread

Chapter 2 Zen5 Processor Microarchitecture 15
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2.2 Cache Line, Fetch, and Data Type Widths

The following tables diagram the cache line size, the widths of various data pipes, and registers:

Table 2. Cache Line Size, Fetch, and Decode Widths in Bytes

Fetch Width

OC Fetch

128

128

Cacheline

64

64

64

IC Fetch 32

32

32

32 32 32

Decode 16

16

16 | 16

16 | 16

16 16| 16 | 16 | 16 | 16

Table 3. Data Pipe Widths in Bytes

Data

Cacheline

64

Data Pipe

64

Store Commit

64

Table 4. Data Type Widths in Bytes

Data Types

ZMMWORD

64

YMMWORD

32

32

XMMWORD

QWORD

DWORD

4lalalalalalalala)a

16 Zen5 Processor Microarchitecture Chapter 2
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Instruction Decomposition

Microarchitecture

The processor implements AMD64 instruction set by means of macro-ops (the primary units of
work managed by the processor) and micro-ops (the primitive operations executed in the
processor's execution units). These operations are designed to include direct support for AMD64
instructions and adhere to the high-performance principles of fixed-length encoding, regularized
instruction fields, and a large register set. This enhanced microarchitecture enables higher
processor core performance and promotes straightforward extensibility for future designs.

Instructions are marked as fast path single (one macro-op), fast path double (two macro-ops), or
microcode (greater than two macro-ops). Macro ops can normally contain up to two micro-ops.
The table below lists some examples showing how instructions are mapped to macro-ops and how
these macro-ops are mapped into one or more micro-ops.

Table 5. Typical Instruction Mappings

Instruction Macro-ops Micro-ops Comments

MOV reg,[mem] 1 1: load Fastpath single
MOV [mem],reg 1 2: store data, store Fastpath single
MOV [mem],imm 1 2: store data, store Fastpath single
REP MOVS [mem],[mem] Many Many Microcode
ADD reg,reg 1 1: add Fastpath single
ADD reg,[mem] 1 2: load, add Fastpath single
ADD [mem],reg 1 2: load/store, add Fastpath single
MOVAPD [mem],xmm 1 2: store, FP-store-data 128b Fastpath single
VMOVAPD [mem],ymm 1 2: store, FP-store-data 256b Fastpath single
VMOVAPD [mem],zmm 2 2: store 512b, FP-store- data 512b [Fastpath double
ADDPD xmm,xmm 1 1: addpd 128b Fastpath single
ADDPD xmm,[mem] 1 2: load, addpd 128b Fastpath single
VADDPD ymm,ymm 1 1: addpd 256b Fastpath single
VADDPD ymm,[mem] 1 2: load, addpd256b Fastpath single
VADDPD zmm, zmm 1 1: addpd 512b Fastpath single
VADDPC zmm, [mem] 1 2: load 512b, addpd 512b Fastpath single

Chapter 2

Zenb Processor Microarchitecture
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2.4 Superscalar Organization

The processor is an out-of-order, two thread superscalar AMDG64 processor. The processor uses
decoupled execution units to process instructions through fetch/branch-predict, decode,
schedule/execute, and retirement pipelines.

The processor uses an independent, banked integer scheduler queue, servicing six ALU pipelines;
an independent, banked address generation queue, servicing four AGU pipelines; two decoupled
independent floating point schedulers each servicing two FP pipelines; and one independent
floating point scheduler servicing store data or FP-to-integer pipelines. These schedulers can
simultaneously issue up to sixteen micro-ops to the six ALU pipes, four Address Generation Unit
(AGU) pipes, and six FPU pipes.

2.5 Processor Block Diagram

L1l Cache PUS— Branch Prediction
32KiB 8-way, 32B fetch x2 2-taken/cycle
¥ 4
Decode Op Cache
4-wide x2 6Ki inst, 6-wide x2

1T: 4 Instructions/cycle l l 12 Instructions/cycle
2T: 8 Instructions/cycle

UOPQ
Dispatch, 8-wide
l 8 macro ops/cycle dispatched

Floating Point
NSQ
¥
Vector Rename, 6-wide Integer Rename, 8-wide
& & W
Sch Scheduler Scheduler
i u u il it u u i u u
Vector Registers, 512b General-Purpose Registers, 64b
v W@ 3 * 5 W@ | I + % @ © % @ b “ w &

Integer

FMUL FMUL StD  StD ALU ALU ALU ALU ALU ALU
FADD FADD Mol Ml Mal Be CBr. UBr AGU AGU AGU AGU

FMA FMA IntD IntD
v - +«+ 4 3 3 3 +«» 4 3 »
Load/Store Queues
¢
L1D Cache
48KiB 12-way L2 Cache

4 read, 2 write 1MiB 16-way
64B fill, 64B victim

Figure 1. AMD Zen5 CPU Core Block Diagram

18 Zen5 Processor Microarchitecture Chapter 2
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2.6 Processor Cache Operation

The AMD Zen5 microarchitecture uses five caches at three hierarchy levels to accelerate
instruction execution and data processing:

e Dedicated L1 instruction cache

e Dedicated L1 data cache

e Dedicated L1 Op Cache

e Unified (instruction and data) L2 cache per core

e Up to 96-Mbyte L3 cache (depending on configuration)

2.6.1 L1 Instruction Cache

The AMD Zen5 microarchitecture contains a 32-Kbyte, 8-way set associative L1 instruction
cache. Cache line size is 64 bytes; 64 bytes (up to two 32-byte aligned blocks from within a cache
line) can be fetched in a cycle to feed two decode pipelines. Functions associated with the L1
instruction cache are fetching cache lines from the L2 cache, providing instruction bytes to the
decoder, and prefetching instructions. Requests that miss in the L1 instruction cache are fetched
from the L2 cache or, if not resident in the L2 cache, from the L3 cache, if present. Requests that
miss in all levels of cache are fetched from system memory.

On misses, the L1 instruction cache generates fill requests for the naturally aligned 64-byte cache
line that includes the miss address. These cache lines are prefetched from addresses generated by
the Branch Predict unit. For never-before-seen cache lines, the branch predictor typically predicts
sequential accesses, thus acting like a line prefetcher for avoiding downstream cache miss stalls.

Because code typically exhibits spatial locality, prefetching is an effective technique for avoiding
cache miss stalls. Cache line replacement is based on a least recently used replacement algorithm.
The L1 instruction cache is protected from error using parity.

Chapter 2 Zen5 Processor Microarchitecture 19
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2.6.2 L1 Data Cache

The processor contains a 48-Kbyte, 12-way set associative L1 data cache. This is a write-back
cache that supports up to four memory operations per cycle. All four may be loads, but at most two
may be 512-bit, 256-bit, or 128-bit loads. Up to two may be stores of sizes 8b to 256b, but at most
one may be a 512-bit store. In addition, the L1 cache is protected from bit errors using ECC. There
is a hardware prefetcher that brings data into the L1 data cache to avoid misses. The L1 data cache
has a 4- or 5- cycle integer load-to-use latency, and a 7- or 8-cycle FPU load-to-use latency. See
Section 2.12, "Load-Store Unit" on page 39, for more information on load-to-use latency. See
Section 2.6.2.2 on page 18 for more information on the handling of 512-bit load and store
operations.

The data cache natural alignment boundary is 64 bytes for loads. A misaligned load operation
suffers, at minimum, a one cycle penalty in the load-store pipeline if it spans a 64-byte boundary.
The store alignment boundary is also 64 bytes for accessing the TLB and tag as well as for writing
data to the cache. Throughput for misaligned loads and stores is half that of aligned loads and stores
since a misaligned load or store requires two cycles to access the data cache (versus a single cycle
for aligned loads and stores).

Notes:

Operations that are misaligned across a 4Kbyte boundary will in some cases incur additional
significant penalties.

For aligned memory accesses, the aligned and unaligned load and store instructions (for example,
MOVUPS/MOVAPS) provide identical performance.

Natural alignment for a 256-bit vector is 32 bytes and aligning them to a 32-byte boundary
provides a performance advantage.

20 Zen5 Processor Microarchitecture Chapter 2
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26.21 Bank Conflicts

The L1 DC provides multiple access ports using a banked structure. The read ports are shared by
four load pipes and victim reads. Store commits utilize separate write ports. Address bits 5:3 and
the size of an access along with its DC way determine which DC banks are needed for that access.
DC way is determined using the linear-address-based utag/way-predictor (see section below). Port
or bank conflicts can result in performance degradation due to the need to re-flow one of the
conflicting loads, which will appear as a longer-latency load.

When port or bank conflicts are suspected, they can be reduced by the following methods:

e Use aligned memory accesses. Misaligned memory accesses may use more banks or ports.

e Consolidate smaller (i.e. byte) consecutive loads or stores into larger (i.e. doubleword or
qguadword) loads or stores when possible.

e Stores that are misaligned or less than doubleword size use banks and ports least efficiently.

e Aligned loads to consecutive addresses will never have bank conflicts with each other. In a
loop that streams through multiple regions, consider unrolling the loop and placing up to four
loads (two if vector/floating point) from each stream together to reduce bank conflicts. Due to
out-of-order execution, placing loads together does not guarantee that they will be executed
together.

2.6.2.2 512-Bit Load and Store Operations
The processor supports 512-bit load and store operations that behave as follows:

e 512-bit load operations utilize two 256-bit load pipelines as a pair, for a single cycle. When a
512-bit load executes, an integer load cannot use the paired pipe.

e 512-bit store operations execute as a single store address micro-op and single FP store data
micro-op, but require use of two dispatch slots and two store queue entries.

2.6.2.3 Linear Address UTAG/Way-Predictor

The L1 data cache tags contain a linear-address-based microtag (utag) that tags each cache line
with the linear address that was used to access the cache line initially. Loads use this utag to
determine which way of the cache to read using their linear address, which is available before the
load's physical address has been determined via the TLB. The utag is a hash of the load's linear
address. This linear address-based lookup enables a very accurate prediction of the way the cache
line is located in prior to a read of the cache data. This allows a load to read just a single cache way
instead of all 12, saving power and reducing bank conflicts.

It is possible for the utag to be wrong in both directions: it can predict hit when the access will
miss, and it can predict miss when the access could have hit. In either case, a fill request to the L2
cache is initiated and the utag is updated when L2 responds to the fill request.

Chapter 2 Zen5 Processor Microarchitecture 21



[Public]

AMDZ1

Software Optimization Guide for the AMD Zen5 58455 Rev.1.00 August 2024
Microarchitecture

Linear aliasing occurs when two different linear addresses are mapped to the same physical
address. This can cause performance penalties for loads and stores to the aliased cache lines. A
load to an address that is valid in the L1 DC but under a different linear alias will see an L1 DC
miss, which requires an L2 cache request to be made. The latency will generally be no larger than
that of an L2 cache hit. However, if multiple aliased loads or stores are in-flight simultaneously,
they each may experience L1 DC misses as they update the utag with a particular linear address
and remove another linear address from being able to access the cache line.

It is also possible for two different linear addresses that are NOT aliased to the same physical
address to conflict in the utag, if they have the same linear hash. At a given L1 DC index (bits
[11:6] of the linear address), only one cache line with a given linear hash is accessible at any time;
any cache lines with matching linear hashes are marked invalid in the utag and are not accessible.
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2.6.3 L2 Cache

The AMD Zen5 microarchitecture implements a unified 16-way set associative write-back L2
cache per core. This on-die L2 cache is inclusive of the L1 caches in the core. The L2 cache size is
1 Mbyte with a variable load-to-use latency of no less than 14 cycles. The L2 to L1 data path is 64
bytes wide.

2.6.4 L3 Cache

The AMD Zen5 microarchitecture implements an up to 96-MB L3 cache (depending on SOC
configuration) that is 16-way set associative and shared by the cores inside a CPU complex. The L3
is a write-back cache populated by L2 victims. On L3 hits, lines are invalidated from the L3 if the
hit was from a store, or the line was read by just one core. Lines remain in the L3 for L3 code
fetch hits or if the line has been read by multiple cores. The L3 maintains shadow tags for each L2
cache in the complex. If a core misses in its local L2 and in the L3, the shadow tags are consulted. If
the shadow tags indicate that the data resides in another L2 within the complex, a cache-to-cache
transfer is initiated within the complex. The L3 has an average load-to-use latency of 46 cycles.
The non-temporal cache fill hint, indicated with PREFETCHNTA, reduces cache pollution for
data that will only be used once. Lines filled into the L2 cache with PREFETCHNTA are marked
for quicker eviction from the L2, and when evicted from the L2 are not inserted into the L3.
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2.7 Memory Address Translation

A translation lookaside buffer (TLB) holds the most-recently-used page mapping information. It
assists and accelerates the translation of virtual addresses to physical addresses. A hardware table
walker loads page table information into the TLBs.

The AMD Zen5 microarchitecture utilizes a two-level TLB structure.
2.7.1 L1 Translation Lookaside Buffers

The processor contains a fully associative L1 instruction TLB (ITLB) with 64 entries that can hold
4-Kbyte, 2-Mbyte, or 1-Ghyte page entries.

The fully associative L1 data TLB (DTLB) provides 96 entries that hold 4-Kbyte, 16-Kbyte, 2-
Mbyte, or 1-Gbyte page entries.

If a 16-Kbyte aligned block of four consecutive 4-Kbyte pages are also consecutive and 16-Kbyte
aligned in physical address space and have identical page attributes, the processor may
opportunistically store them in a single TLB entry resulting in increased effective capacity for both
L1 and L2 DTLB and ITLB. This is only done when the processor is operating in long mode.

2.7.2 L2 Translation Lookaside Buffers

The processor provides an 8-way set associative L2 ITLB with 2048 entries capable of holding 4-
Kbyte pages, and 2-Mbyte pages. 1-Gbyte pages are only cached in the L1 ITLB and are not held in
the L2 ITLB.

The L2 DTLB provides a unified 16-way set-associative L2 DTLB with 4096 entries capable of
holding 4-Kbyte pages, 16-Kbyte, 2-Mbyte pages, and an additional 4-way set-associative 1G page
L2 DTLB with 1024 entries.
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2.7.3 Hardware Page Table Walkers

The AMD Zen5 microarchitecture has six hardware page table walkers to handle L2 TLB misses.
Misses can start speculatively from either the instruction or the data side. A dedicated Page Walker
Cache (PWC) structure holds PDPEs and PDEs, which are used to speed up tablewalks by
skipping two or three levels of page table reads, respectively. In addition to the PDPE and PDE
storage in the PWC, the table walker includes a 64-entry Page Directory Cache (PDC) which holds
page-map-level-4 entries (PMLA4ESs) and page-map-level-5 entries (PML5ES) to speed up table
walks. The PDC entries and the PDPE and PDE entries in the PWC are usable by all tablewalk
requests, including instruction-side table walks.

The table walker natively supports the architecturally defined 4-Kbyte, 2-Mbyte, and 1-Gbyte
pages. In legacy mode, 4-Mbyte entries are also supported by returning a smashed 2-Mbyte TLB
entry. Page smashing is a feature where the processor creates a TLB entry whose page size is
smaller than the page size specified by the page tables for that linear address. In addition to
supporting 4 Mbyte page sizes, Zen5 also uses page smashing if it encounters a larger page in the
guest page tables which is backed by a smaller page in the host page tables. In this case, it smashes
translations of the larger guest page size into the smaller page size found in the host page tables.

Inthe L1 TLBs, INVLPG, INVPCID, INVLPGB, and INVLPGA instructions cause a flush of all
smashed entries corresponding to the same 1-Gbyte guest linear address page. In the L2TLBs,
INVLPG, INVPCID, INVLPGB, and INVLPGA cause a flush of all smashed entries in the same
context.

Chapter 2 Zen5 Processor Microarchitecture 25



[Public]

AMDZ1

Software Optimization Guide for the AMD Zen5 58455 Rev.1.00 August 2024
Microarchitecture

2.8 Optimizing Branching

Branching can reduce throughput when instruction execution must wait on the completion of the
instructions that determine whether the branch is taken. The AMD Zen5 processor includes branch
prediction logic that predicts the outcome of branches.

This prediction is used to speculatively fetch, decode, and execute instructions on the predicted
path. When the prediction is correct, waiting is avoided, and the instruction throughput is
increased. The branch misprediction penalty is in the range from 12 to 18 cycles, depending on the
type of mispredicted branch and whether the instructions are being fed from the Op Cache. The
common case penalty is 15 cycles.

2.8.1 Branch Prediction
To predict and accelerate branches, the processor employs:

e next-address logic

e Dbranch target buffer

e return address stack (RAS)

e indirect target predictor

e advanced conditional branch direction predictor
e fetch window tracking structure

The following sections discuss these features.

2.8.1.1 Next-Address Logic

The next-address logic determines addresses for instruction fetch. When no branches are identified
in the current fetch block, the next-address logic calculates the starting address of the next
sequential naturally aligned 64-byte fetch block. This calculation is performed every cycle to
support the bandwidth of the Op Cache. Branching to the end of a 64-byte cacheline results in a
shortened fetch block and a loss of fetch bandwidth. When branches are identified, the next-
address logic is redirected by the branch target and branch direction prediction hardware to
generate a non-sequential fetch block address. The processor facilities that are designed to predict
branch targets are detailed in the following sections.
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2.8.1.2 Branch Target Buffer

The branch target buffer (BTB) is a two-level structure accessed using a previous fetch block’s
fetch address. Each BTB entry includes information for branches and their targets. Each BTB entry
can hold up to two branches, and two pair cases are supported:

e A conditional branch followed by another branch with both branches having their last byte in
the same 64 byte aligned cacheline.

e Adirect branch (excluding CALLS) followed by a branch ending within the 64-byte aligned
cacheline containing the target of the first branch.

Predicting with BTB pairs allows two fetches to be predicted in one prediction cycle. Each BTB
entry has a limited number of bits for target addresses that are shared between up to two branches.
Branches with branch targets that differ from their fetch address in a large number of bits may limit
a BTB entry to storing only one branch.

Each level of BTB holds additional entries and prediction from higher level BTBs have longer
latencies. When possible, keep the critical working set of branches in the code as small as
possible. (In some cases, replacing known hard-to-predict branches with conditional mov
instructions can improve performance.) The L1 BTB has 16K entries and predicts with zero
prediction bubbles for direct calls, same-target indirect branches, conditional, and unconditional
direct branches, and a two-cycle bubble for returns and multiple-target indirect branches. The L2
BTB has 8k entries and creates eight prediction bubbles if a prediction misses in LIBTB and hits
in L2BTB.
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28.1.3 Return Address Stack

The processor implements a 52-entry return address stack (RAS) per thread to predict return
addresses from a near call. As calls are fetched, the address of the following instruction is pushed
onto the return address stack. Typically, the return address is correctly predicted by the address
popped off the top of the return address stack. However, mispredictions sometimes arise during
speculative execution that can cause incorrect pushes and/or pops to the return address stack. The
processor implements mechanisms that correctly recover the return address stack in most cases. If
the return address stack cannot be recovered, it is invalidated and restored to a consistent state.

The following sections discuss common coding practices used to optimize subroutine calls and
returns.

2.8.1.3.1 CALLOh

When the CALL instruction is used with a displacement of zero, it is recognized and treated
specially; the RAS remains consistent even if there is not a corresponding RET instruction.

Instead of using CALL Oh, 64-bit software can load the RIP into a register using the LEA
instruction with RIP-relative addressing, as in the following example:

LEA RAX, [RIP+0] ;RAX contains the value of RIP

2.8.1.3.2 REPRET

For prior processor families, such as Family 10h and 12h, a three-byte return-immediate RET
instruction had been recommended as an optimization to improve performance over a single-byte
near-return. For the AMD Zen5 microarchitecture, this is no longer recommended, and a single-
byte near-return (opcode C3h) can be used with no negative performance impact. This will result
in smaller code size over the three-byte method. For the former recommendation’s rational see
section, see section 6.2 in the Software Optimization Guide for AMD Family 10h and 12h
Processors.

2.8.1.3.3 Function Inlining

Returns incur a two cycle bubble for an L1 BTB prediction. Therefore, function calls within hot
loops should be inlined for better performance if there are few callers to the function or if the
function is small (See section 8.3 of Software Optimization Guide for AMD Family 15h
Processor).

2.8.1.4 Indirect Target Predictor

The processor implements a 3072-entry indirect target array used to predict the target of some non-
RET indirect branches. If a branch has had multiple different targets, the indirect target predictor
chooses among them using global history.
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Indirect branches that have always had the same target are predicted using the static target from
the branch's BTB entry. For this reason, code should attempt to reduce the number of different
targets per indirect branch.

2.8.1.5 Advanced Conditional Branch Direction Predictor

The conditional branch predictor is used for predicting the direction of conditional near branches.
Only branches that have been previously discovered to have both taken and non-taken behavior
will use the conditional predictor. The conditional branch predictor uses a global history scheme
that keeps track of previously executed branches. Global history is not updated for never-taken
branches. For this reason, dynamic branches which are biased towards not taken are preferred.

Branch behavior that depends on deep history or that does not correlate well with global history is
more likely mispredicted.

Conditional branches that have not yet been discovered to be taken are not marked in the BTBs.
These branches are implicitly predicted not taken. Conditional branches are predicted as always-
taken after they are first discovered to be taken. Conditional branches that are in the always-taken
state are subsequently changed to the dynamic state if they are subsequently discovered to be not-
taken, at which point they are eligible for prediction with the dynamic conditional predictor.
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2.8.1.6 Fetch Window Tracking Structure

Fetch windows are tracked in a 128-entry (64 entries in SMT mode) FIFO from fetch until
retirement. Each entry holds branch prediction information for up to a full 64-byte cache line. If a
single BTB entry is not sufficient to allow prediction to the end of the cache line, the fetch
window tracking structure uses additional entries for this particular cache line. If no branches are
identified in a cache line, the fetch window tracking structure will use a single entry to track the
entire cache line.

If the fetch window tracking structure becomes full, instruction fetch stalls until instructions retire
from the retire control unit or a branch misprediction flushes some entries. Both mispredicting and
retiring branches use information from this structure to update the prediction structures as needed.

2.8.2 Boundary Crossing Branches

Branches whose target crosses a sixteen-megabyte aligned boundary are unable to share BTB
entries with other branches. Excessive occurrences of this scenario can reduce effective BTB
capacity and bandwidth if the BTB entry could have otherwise been shared.

2.8.3 Loop Alignment

For the processor, loop alignment is not usually a significant issue. However, for hot loops, some
further knowledge of trade-offs can be helpful. Because the processor can read an aligned 64-byte
fetch block every cycle, it is suggested to either align the start of the loop to the beginning of a 64-
byte cache line or align the end of the loop to the last byte of a cache line. Aligning the end of the
loop to the end of a cache line is slightly more optimal for performance.

For very hot loops, it may be useful to further consider branch placement. The branch predictor
can process the first two branches after the cache line entry point with a single BTB entry. For best
performance, keep the number of predicted branches in the same cache line following a branch
target at two or below. Since BTB entries can hold up to two branches, predicting a third branch
requires an additional BTB entry and additional cycles of prediction latency.

This should not be confused with branches per cache line. For example, it is still optimal to have
three or four branches per cache line if the second branch is unconditional or if the first or second
branch is taken so frequently that the third and fourth branches are seldom executed.
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28.3.1 Encoding Padding for Loop Alignment

Aligning loops is typically accomplished by adding NOP instructions ahead of the loop. This
section provides guidance on the proper way to encode NOP padding to minimize its cost.
Generally, it is beneficial to code fewer and longer NOP instructions rather than many short NOP
instructions, because while NOP instructions do not consume execution unit resources, they still
must be forwarded from the Decoder and tracked by the Retire Control Unit.

The table below lists encodings for NOP instructions of lengths from 1 to 15. Beyond length 8,
longer NOP instructions are encoded by adding one or more operand size override prefixes (66h)
to the beginning of the instruction.

Table 6. Encodings for NOP Instructions 1 to 15

Length Encoding
1 90
2 66 90
3 OF 1F 00
4 OF 1F 40 00
5 OF 1F 44 00 00
6 66 OF 1F 44 00 00
7 OF 1F 80 00 00 00 00
3 OF 1F 84 00 00 00 00 00
¢) 66 OF 1F 84 00 00 00 00 00
10 66 66 OF 1F 84 00 00 00 00 00
11 66 66 66 OF 1F 84 00 00 00 00 00
12 66 66 66 66 OF 1F 84 00 00 00 00 00
13 66 66 66 66 66 OF 1F 84 00 00 00 00 00
14 66 66 66 66 66 66 OF 1F 84 00 00 00 00 00
15 66 66 66 66 66 66 66 OF 1F 84 00 00 00 00 00

The recommendation above is optimized for this processor.

Some earlier AMD processors, such as the Family 15h processor, suffer a performance penalty
when decoding any instruction with more than 3 operand-size override prefixes. While this penalty
is not present in the AMD Zen5 microarchitecture, it may be desirable to choose an encoding that
avoids this penalty in case the code is run on a processor that does have the penalty.

The 11-byte NOP is the longest of the above encodings that uses no more than 3 operand size
override prefixes (byte 66h). Beyond 11 bytes, the best single solution applicable to all AMD
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processors is to encode multiple NOP instructions. Except for very long sequences, this is superior
to encoding a JMP around the padding.

The table below shows encodings for NOP instructions of length 12—15 formed from two NOP
instructions (a NOP of length 4 followed by a NOP of length 8-11).

Table 7. Encodings for NOP Instructions 12-15

Length Encoding
12 OF 1F 40 00 OF 1F 84 00 00 00 00 00
13 OF 1F 40 00 66 OF 1F 84 00 00 00 00 00
14 OF 1F 40 00 66 66 OF 1F 84 00 00 00 00 00
15 OF 1F 40 00 66 66 66 OF 1F 84 00 00 00 00 00

The AMDG64 ISA specifies that the maximum length of any single instruction is 15 bytes. To
achieve padding longer than that it is necessary to use multiple NOP instructions. For this
processor, use a series of 15-byte NOP instructions followed by a shorter NOP instruction. If
taking earlier AMD processor families into account, use a series of 11-byte NOPs followed by a
shorter NOP instruction. Software should avoid instructions (including NOPs) longer than 10
bytes if code footprint is large and unlikely to be fetched from Op Cache. Only the first of the four
instruction decoders in the AMD Zen5 microarchitecture can decode instructions longer than 10
bytes.

As a slightly more efficient alternative to inserting NOPs for padding, redundant prefixes can be
used to pad existing instructions without affecting their function. This has the advantage of fewer
instructions being kept in the Op Cache and maintained throughout the machine pipeline. For
example, operand overrides (byte 66h) can be added to an instruction that already has operand
overrides without changing its function. Whereas padding with NOPs is always possible, this
method of using redundant prefixes is only practical when there are already useful instructions
present that use prefixes.
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2.9 Instruction Fetch and Decode

The processor fetches instructions from the instruction cache in 32-byte blocks that are 32-byte
aligned. Up to two of these blocks can be independently fetched every cycle to feed the decode
unit’s two decode pipes. Instruction bytes from different basic blocks can be fetched and sent out-
of-order to the 2 decode pipes, enabling instruction fetch-ahead which can hide latencies for TLB
misses, lcache misses, and instruction decode.

Each decode pipe has a 20-entry structure called the IBQ which acts as a decoupling queue
between the fetch/branch-predict unit and the decode unit. IBQ entries hold 16 byte-aligned fetch
windows of the instruction byte stream.

The decode pipes each scan two IBQ entries and output up to four instructions per cycle. In single-
thread mode the maximum throughput is 4 instructions per cycle. In SMT mode decode pipe 0 is
dedicated to Thread 0 and decode pipe 1 is dedicated to Thread 1, supporting a maximum
throughput of eight instructions per cycle.

The instruction decode window is 32 bytes, aligned on a 16-byte boundary. Having 16 byte aligned
branch targets gets maximum instruction decode throughput.

Only the first decode slot (of four) can decode instructions greater than 10 bytes in length. Avoid
having more than one instruction in a sequence of four that is greater than 10 bytes in length.
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2.9.1 Op Cache

The Op Cache (OC) is a cache of previously decoded instructions. When instructions are being
fetched from the Op Cache, normal instruction fetch and decode are bypassed. This improves
pipeline latency because the Op Cache pipeline is shorter than the traditional fetch and decode
pipeline. It improves bandwidth because the maximum throughput from the Op Cache is 12
instructions per cycle, whereas the maximum throughput from the traditional fetch and decode
pipeline is 4 instructions per cycle per thread. Finally, it improves power because there is no need
to re-decode instructions.

The Op Cache is organized as an associative cache with 64 sets and 16 ways. At each set-way
intersection is an entry containing up to 6 instructions or fused instructions. This differs from Zen3
and Zen4 opcache entries, which stored macro-ops, and can improve effective Op Cache storage
density. The maximum capacity of the Op Cache is 6 K instructions or fused instructions. The
actual limit may be less due to efficiency considerations. Avoid hot code regions that approach this
size when only one thread is running on a physical core, or half this size when two threads share a
physical core. The Op Cache is physically tagged, which allows Op Cache entries to be shared
between both threads when fetching shared code.

When instruction fetch misses in the Op Cache, and instructions are decoded after being read from
the instruction cache (IC), they are also built into the Op Cache. Multiple instructions are built
together into an Op Cache entry. Up to 6 sequential instructions or fused instructions may be
cached together in an entry.

Op Cache entry limits:

e 6 instructions or fused instructions

e 6 32-bit immediate or displacement operand storage slots which can be used by any
instruction. Further instructions which contain immediate, or displacement operands are not
able to be included after all six slots have been used. 64-bit operands occupy 2 slots each while
8/16/32-bit operands occupy 1 slot each.

e 6 AVX-512instructions with EVEX prefixes.

e The normal macro-op restriction does not apply when microcoded instructions are present.
Instead, a limit of 4 is applied on the sum of microcoded and non-microcoded instructions.

e An Op Cache entry can only contain ops for instructions from up to two adjacent 64B cache
lines.

The Op Cache is modal, and the processor can only transition between instruction cache mode (IC
mode) and Op Cache mode (OC mode) at certain points. Instruction cache to Op Cache transitions
can only happen at taken branches. The processor remains in Op Cache mode until an Op Cache
miss is detected.

Excessive transitions between instruction cache and Op Cache mode may impact performance
negatively. The size of hot code regions should be limited to the capacity of the Op Cache to
minimize these transitions. This should be considered when unrolling loops.
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Use of the Op Cache requires a flat memory model (64-bit or 32-bit with CS.Base = Oh and
CS.Limit = FFFFFFFFh).

2.9.2 Idioms for Dependency removal

Several instructions can be used to clear a register and break the dependency without the need to
load an immediate value of zero. These are referred to as Zeroing Idioms.

The processor supports the following Zeroing Idioms:
GPR Zeroing ldioms:

* XOR reg, reg (clearsregand the flags, 0-cycle operation)
* SUB reg, reg (clearsregand the flags, 0-cycle operation)
* CMP reg, reg (setsZ flagand clears other flags, 0-cycle operation)

* SBB reg, reg (copies the zero extended value of the carry flag into reg without a
dependency on the previous value of reg, 1-cycle operation)

SIMD Zeroing Idioms (all clear destination register as a 0-cycle operation):

* VXORP(S/D) zmm/ymm/xmm, zmm/ymm/xmm, zmm/ymm, xmm

* VANDNP (S/D) zmm/ymm/xmm, zmm/ymm/xmm, zmm/ ymm/ xmm

* VPCMPGT (B/W/D/Q) zmm/ymm/xmm, zmm/ymm/xmm, zmm/ymm,/xmm
e VPANDN zmm/ymm/xmm, zmm/ymm/xmm, zmm/ymm/xmm

e VPXOR zmm/ymm/xmm, zmm/ymm/xmm, zmm/ymm/xmm

* VPSUB(B/W/D/Q) zmm/ymm/xmm, zmm/ymm/xmm, zmm/ymm/xmm

A number of instructions can be used to set a register to all ones and break input dependencies.
These are referred to as Ones Idioms.

The processor supports the following Ones Idioms:

e PCMPEQ (B/W/D/Q) xmm, xmm
* VPCMPEQ (B/W/D/Q) zmm/ymm/xmm, zmm/ ymm/xmm, zmm/ ymm/Xmm
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2.9.3

Branch Fusion

The processor’s decode unit is able to fuse conditional branch instructions with certain flag writing
instructions into one fused instruction. A fused instruction only consumes one slot of an Op Cache
entry and eliminates one macro-op flowing through the machine, which increases dispatch, issue,
and retire bandwidth.

The following conditions need to be met for fusion to happen:

e The conditional branch needs to follow the flag writing instruction.

e The following flag writing instructions support branch fusion with their reg/reg, reg/imm and
reg/mem forms. They are also supported when the instruction has an immediate and
displacement that meets the criteria of 4 byte displacement and 2 byte immediate or the case of
2 byte displacement and 4 byte immediate.

29.4

CMP
TEST
SuUB
ADD
INC
DEC
OR
AND
XOR

MOV + ALU Fusion

The Zen5 microarchitecture adds support to fuse reg-reg MOV Instructions with certain ALU
instructions. The following conditions need to be met for fusion to happen:

e The MOV should be reg-reg mov with Opcode 0x89 or 0x8B

e The MOV is followed by an ALU instruction where the MOV and ALU destination register
match.

e The ALU instruction may source only registers or immediate data. There cannot be any
memory source.

e The ALU instruction sources either the source or dest of MOV instruction.
e If ALU instruction has 2 reg sources, they should be different.
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The following ALU instructions can fuse with an older qualified MOV instruction:

ADD
ADC
AND
XOR
OoP
SuUB
SBB
INC
DEC
NOT
SAL /SHL
SHR
SAR

2.9.5 Zero Cycle Move

The processor can execute certain register-to-register mov operations with zero cycle delay. The
following instructions perform the mov operation with zero cycle delay:

MOV r32/r64, r32/r64

MOVSXD r32, r32

XCHG EAX/RAX, r32/r64

XCHG r32/r64, r32/r64

(V)MOVAP(D/S) zmml/ymml/xmml, zmm2/ymmz2/xmm2

(V)MOVDQ(U/A) zmm1/ymml/xmm1, zmm2/ymmz2/xmm2
(V)MOVUP(D/S) zmml/ymml/xmml, zmm2/ymm2/xmm2
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2.9.6 Stack Pointer Tracking for Dependency Removal

The integer rename unit provides a mechanism to optimize the execution of certain implicit
operations on the stack pointer and certain references to the stack pointer. The term stack pointer
refers to the rSP register. When the stack pointer is tracked, supported instructions no longer have
an execution dependency on older instructions which perform implicit updates of the stack pointer.

The following instructions with implicit stack pointer update support Stack Pointer Tracking:

PUSH reg/mem/imm (excluding PUSH rSP)
POP reg/mem (excluding POP rSP)

CALL near rel

CALL near abs reg

RET near

RET near imm

The following instructions referencing the stack pointer can take advantage of Stack Pointer
Tracking:

Memory references for load and store using rSP as base or index register.
MOV reg, rSP

Add/Sub RSP instructions with immediates of 12 bits (bits 31:13 are sign extensions in 32 bit
instruction). Instructions supported are ADD (81 /0, 83 /0) and SUB (81 /5, 83 /5).

This feature takes precedence over the capability to fuse the ADD or SUB if
DECFG.StackEngineAddSubDisable is set to 0.

LEA with the following memory addressing forms: [rSP + displacement], [rSP], [rSP + index x
scale + displacement]

Instructions updating rSP, not mentioned as supporting Stack Pointer Tracking, and
instructions referencing rSP, not listed as using Stack Pointer Tracking, incur a penalty of an
additional op and reset the tracking. Once tracking is reset there is no additional penalty until a
supported update of rSP starts tracking again.
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2.9.7 Dispatch

The processor may dispatch up to 8 macro-ops per cycle into the execution engine. For some
instruction mixes, the processor may be limited by internal restrictions to less than 8 macro-ops of
dispatch. However, software may optimize dispatch bandwidth by balancing the operations in any
rolling window of 8 macro-ops. If the set of operations in such a window are a mix of operation
types that can be executed concurrently in the execution engine, they may also be dispatched
concurrently.

To optimize dispatch bandwidth, consider the following rules for groups of ops dispatched by the
decoder:

e up to 2 Taken branches.
e up to 8 immediates or displacements.
e the 8th op cannot be a load or a store.

2.9.8 Using Pause Instruction to Optimize Spin Loops

Software may use the PAUSE instruction to reduce power consumption and other resource usage in
a spin loop while waiting after failing to acquire a contended lock. The exact effect of the PAUSE
instruction is implementation dependent, but in the AMD Zen5 microarchitecture the PAUSE
instruction causes the executing thread to stop dispatch of macro-ops for a period of approximately
64 cycles.

299 Other Decode Considerations

Some versions of the AMD Zen5 microarchitecture include a false dependency on the destination
operand of TZCNT, BLSI, BLSR, BLSMSK instructions which can prevent their out-of-order
execution. Software can include a workaround (“xor dest, dest” prior to the instruction) to satisfy
this dependency.
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2.10  Integer Execution Unit
Figure 2 shows a diagram of the integer execution unit.
The integer execution unit for the processor consists of the following major components:

e schedulers
e execution units
e retire control

8 macro ops per cycle dispatch
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V

Integer Rename
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Figure 2. Integer Execution Unit Block Diagram
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2.10.1 Schedulers

The schedulers can receive up to eight macro-ops per cycle, and track operand availability and
dependency execution requirements of the contained micro-ops.

Micro-ops can be issued and executed out-of-order, but the scheduler ensures that older micro-ops
which have been waiting for operands are issued in a timely manner. The ALU scheduler can issue
six micro-ops per cycle and the AGU scheduler can issue four micro-ops per cycle.

2.10.2 Execution Units

The processor contains 6 general purpose integer execution pipes. Each pipe has an ALU capable
of general-purpose integer operations. ALUO/ALU1/ALU2 additionally have multiply/CRC
capability; ALU3/ALU4/ALUS have PDEP/PEXT/shift/branch execution capability; and ALU3
additionally has divide capability. There are four Address Generation Units (AGUs) for all load
and store address generation. All ALU pipelines can issue store data movement operations, with a
bandwidth of two integer stores per cycle to the store queue. Many simple ALU operations,
including most simple integer arithmetic, logical, branch, and conditional move instructions can be
executed in a single cycle.

Shift instructions SHLD and SHRD have a three-cycle latency.

The AMD Zen5 microarchitecture has native ALU support for PDEP/PEXT, three such
instructions can be sustained per cycle, with a three-cycle latency for producing the result.
Software that uses different codepaths for processors with fast and slow PDEP/PEXT instructions
should choose the fast PDEP/PEXT codepath for the AMD Zen5 microarchitecture.

While two-operand LEA instructions are executed as a single-cycle macro-op in the ALUs, three-
operand LEA instructions are executed as two macro-ops in the ALUSs.

The three integer multiply units can handle multiplies of up to 64 bits x 64 bits with 3 cycle
latency, fully pipelined. If the multiply instruction has 2 destination registers, an additional one-
cycle latency for the second result is required.

The hardware integer divider unit has a typical latency of 8 cycles plus 1 cycle for every 9 bits of
quotient. The divider allows limited overlap between two consecutive independent divide
operations. “Typical” 64-bit divides allow a throughput of one divide per 8 cycles (where the actual
throughput is data dependent). For further information on instruction latencies and throughput, see
Appendix A.
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2.10.3 Retire Control Unit

The retire control unit (RCU) tracks the completion status of all outstanding operations (integer,
load/store, and floating-point) and is the final arbiter for exception processing and recovery. The
unit can receive up to 8 macro ops dispatched per cycle and track up to 448 macro ops in-flight in
non- SMT mode or 224 per thread in SMT mode. In some cases, a single retire queue entry can
track two macro-ops from adjacent instructions. This results in an increase of the effective retire
queue capacity.

A macro-op is eligible to be committed by the retire unit when all corresponding micro-ops have
finished execution. For most cases of fastpath double macro-ops, it is further required that both
macro-ops have finished execution before commitment can occur. The retire unit handles in-order
commit of up to eight retire queue entries, which may represent more than eight macro-ops, per
cycle.

The retire unit also manages integer register mapping and renaming. The integer physical register
file (PRF) consists of 240 registers, with up to 40 per thread mapped to architectural state or micro-
architectural temporary state. The remaining registers are available for out-of-order renames.

The integer physical register file does not store flag information. Flag information is kept in a
separate flag physical register file which provides 192 free registers that are available for out- of-
order renames of flag writing instructions.
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2.11  Floating-Point Unit

The processor provides native support for 32-bit single precision, 64-bit double precision and
80-bit extended precision primary floating-point data types as well as 128-, 256-, and 512-bit
packed integer, single, double, and bfloat16 precision vector floating-point data types. The
floating-point load and store paths are 512 bits wide.

The floating-point unit (FPU) utilizes a co-processor model for all operations that use X87,
MMX™ XMM, YMM, ZMM, or floating-point control/status registers. As such, it contains its
own scheduler, register file, and renamer; it does not share them with the integer units. It can
handle dispatch of eight and renaming of six floating point macro-ops per cycle. When the
floating-point scheduler is full or there are more than 6 floating point macro-ops dispatched in
a cycle, overflow macro-ops are dispatched into the 96 entry Non-Scheduling Queue(NSQ) to
allow for acceleration of load and store address calculation and support the full 8 macro-op per
cycle dispatch bandwidth.

The floating-point scheduler has a 3*38 entry macro-op capacity and can issue 1 micro-op per
cycle for each pipe. The floating-point unit shares the retire queue with the integer unit which
holds up to 448 macro-ops or 224 per thread in SMT mode.

Figure 6 below shows a basic diagram of the floating-point unit and how it interfaces with the
other units in the processor. Notice that there are four execution pipes (0 through 3) that can
execute an operation every cycle. The FP unit receives up to two 512-bit loads every cycle
from the load/store unit. There are also dedicated buses to enable fast moves between the
floating-point registers and the general registers in the EX-unit. Store data and floating point to
general purpose register transfer have two dedicated pipelines (pipe 5 and 6). FP stores are
supported on two pipelines, but throughput is limited to one per cycle. For further information
on instruction latencies and throughput, see Appendix A, “Understanding and Using Instruction
Latency Tables,”.

The floating-point unit supports AVX-512 with full 512-bit data paths and operations.
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Figure 3. Floating-Point Unit Block Diagram

Pipes 0, 1, 2, and 3 support operations that require three operands. The third operand for pipes 0 and
2 contends for the source bus normally allocated to pipe 4, and the third operand for pipes 1 and 3

contend for the source bus normally allocated to pipe 5. This contention stalls the operation that
loses the arbitration.

If the data for the third operand, or the pipe 4/5 source, can be bypassed from a result that same
cycle, then there is no contention. AVX-512 operations with merge masking require an additional

source operand, and the potential source bus contention may affect latency and throughput of these
operations.
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2.11.1  Floating Point Execution Resources

Pipe
Unit |y h p 3 k4 |5 |Domain® Ops Supported
FMUL XX F (V)FMUL*, (v)FMA*, Floating Point Compares, Blendv(DQ)
FADD X | X F (v)FADD*
Signature
FCVT XX F All convert operations except pack/unpack
FDIV: X F All Divide and Square Root except Reciprocal Approximation
FMISC X[ X[ X|X F Moves and Logical operations on Floating Point Data Types
STORE X | X S Stores and Move to General Register (EX) Operations
\VVADD? X[ X| XX I Integer Adds, Subtracts, and Compares
VMUL XX X I Integer Multiplies, SAD
\VVSHUF3 X | X I Data Shuffles, Packs, Unpacks, Permute, Blendvb
VSHIFT XX I Bit Shift Left/Right operations
VMISC X[ X| XX I Moves and Logical operations on Packed Integer Data Types
AES X| X | *AES*
CLM X | X *CLM*
Notes:

1. FDIV unit can support two simultaneous operations in flight, even though it occupies a
single pipe.

2. Some complex VADD operations are not available in all pipes.

3. Some simple shuffles are also available in pipes 0 and 3
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2.11.2 Code recommendations

1.

Use the SIMD nature of the SSE or AV X instruction sets to achieve significantly higher
throughput. The AMD Zen5 microarchitecture supports SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, SSE4a, F16C, FMA, AVX, AVX2, and AVX-512. In the AMD Zen5
microarchitecture, the datapath is 512 bits across all operations, so optimal code operates on
512-bit (ZMM registers) with every operation using the SIMD instructions. Due to the reduced
instruction and macro-op overhead, expect software to have reduced power and increased
performance when using 512-bit operations, compared to narrower operations.

Do full width loads and stores. For example, use vmovapd instead of movapd or
movlpd/movhpd. Loading or storing a single register in multiple chunks is slower than doing it
with a single operation. If multiple loads must be used, they should be placed back-to-back in
the code.

Clear floating-point registers using one of the zeroing idioms listed in Section 2.9.2, "Idioms
for Dependency removal™ on page 27 when done using them. This allows the physical register
to be freed up for speculative results and enables the machine to break merging dependencies
for ops that do not write the entire result width such as scalar operations.

If possible, set MXCSR.DAZ (Denorm As Zero) or MXCSR.FTZ (Flush denorm To Zero) to
1. The hardware supports denormal inputs and outputs with no latency impact on most
operations. A few operations execute assuming normal floating-point inputs or outputs. When
the ops discover a denormal input or output, they may be re-executed with a longer latency.
These ops include multiply, divide, and square root. Re-executing with the longer latency is
avoided if the DAZ and FTZ flags are set.

Avoid branches/jumps in the calculation of values. For example, if one needs to do

if (a > 1.1) then b = 4 else b = 6,thenuse VCMPGTSD followed by a
predicated mov into b.

XMM/Y MM/ZMM register-to-register moves have no latency; these instructions may be used
without penalty.

Try to use consistent data types for instructions operating on the same data. For example, use
VANDPS, VMAXPS, and other packed single precision operations when consuming the
output of VMULPS.

Avoid GATHER instructions when the indices are known ahead of time. Vector loads followed
by shuffles result in a higher load bandwidth.

2.11.3  FP performance on x87 code

1.
2.

Use FXCH instead of push/pop if possible as it is much faster at swapping register values.
Avoid instructions between FCOM and FSTSW in floating point compares.
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2.11.4 Denormals

Denormal floating-point values (also called subnormals) can be created by a program either by
explicitly specifying a denormal value in the source code or by calculations on normal floating-
point values. In some instances, (MUL/DIV/SQRT) a small penalty may be incurred when these
values are encountered. For SSE/AV X instructions, the denormal penalties are a function of the
configuration of MXCSR and the instruction sequences that are executed in the presence of a
denormal value.

If denormal precision is not required, it is recommended that software set both MXCSR.DAZ and
MXCSR.FTZ. Setting MXCSR.DAZ or MXCSR.FTZ will cause the processor to produce results
that are not compliant with the IEEE-754 standard when operating on or producing denormal
values.

The x87 FCW does not provide functionality equivalent to MXCSR.DAZ or MXCSR.FTZ, so it is
not possible to avoid these denormal penalties when using x87 instructions that encounter or
produce denormal values.
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2.11.5 XMM Register Merge Optimization

The processor implements an XMM register merge optimization. The processor keeps track of
XMM registers whose upper portions have been cleared to zeros. This information can be followed
through multiple operations and register destinations until non-zero data is written into a register.
For certain instructions, this information can be used to bypass the usual result merging for the
upper parts of the register. For instance, SQRTSS does not change the upper 96 bits of the
destination register. If some instruction clears the upper 96 bits of its destination register and any
arbitrary following sequence of instructions fails to write non-zero data in these upper 96 bits, then
the SQRTSS instruction can proceed without waiting for any instructions that wrote to that
destination register.

The instructions that benefit from this merge optimization are:

e CVTPI2PS

e CVTSI2SS(32-/64-bit)

¢ MOVSS xmml,xmma2

e CVTSD2SS

e CVTSS2SD

e MOVLPS xmml,[mem]
e CVTSI2SD (32-/64-bit)
e MOVSD xmml,xmm2
e MOVLPD xmm1,[mem]

e RCPSS

e ROUNDSS
e ROUNDSD
e RSQRTSS
e SQRTSD

e SQRTSS

48 Zen5 Processor Microarchitecture Chapter 2



[Public]

AMDZ1

58455 Rev.1.00 August 2024 Software Optimization Guide for the AMD Zen5
Microarchitecture

2.11.6  Mixing AVX and SSE

There is a penalty for mixing SSE and AV X instructions when the upper 384 bits of the ZMM
registers contain non-zero data. The SSE operations get promoted to 256-bit or 512-bit operations
to merge the data to the result. Instructions that do not naturally depend on the result operand gain
an additional dependency.

2.11.7 When to use FMA instead of FMUL / FADD

Software will sometimes need to choose between using FMA (multiply accumulate) or separate
FMUL / FADD operations. In those cases, the following guidelines are offered.

Do not use FMA if:

e The critical dependency is through the addend input of an FMA instruction. In this case, an
FADD provides a shorter latency. However, when in a loop, unrolling to remove the
dependency can result in the highest performance.

Use FMAif;

e The critical dependency is through an FMUL instruction that feeds its result as an input to an
FADD instruction. In this case, FMA provides a shorter latency than the combined FMUL +
FADD latency.

e None of the operands are in the critical dependency chain. In this case, an FMA instruction
provides more efficient use of processor resources, reduces code footprint, and in most cases
reduces power consumption.
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2.12 Load-Store Unit

The load-store (LS) unit handles data accesses. The LS unit contains four largely independent
pipelines enabling the execution of four memory operations per cycle. All four memory operations
can be loads, with a separate maximum of two 128-, 256-, or 512-bit loads. A maximum of two of
the memory operations can be stores, with a maximum of one store if the store is a 512-bit store.

The LS unit includes a load queue (LDQ). The LDQ receives load operations at dispatch. Loads
leave the LDQ when the load has completed and delivered data to the integer unit or the floating-
point unit. The LS can track up to 64 uncompleted loads and has no specific limit on the number
of completed loads.

The LS unit utilizes a 104-entry store queue (STQ) which holds stores from dispatch until the store
data can be written to the data cache.

The LS unit dynamically reorders operations, supporting both loads bypassing older loads and
loads bypassing older non-conflicting stores. The LS unit ensures that the processor adheres to the
architectural load and store ordering rules as defined by the AMD64 architecture.

The LS unit supports store-to-load forwarding (STLF) when there is an older store that contains all
of the load's bytes, and the store's data has been produced and is available in the store queue. The
load does not require any particular alignment relative to the store or to the 64B load alignment
boundary as long as it is fully contained within the store.

The processor uses linear address bits 11:0 to determine STLF eligibility. Avoid having multiple
stores with the same 11:0 address bits, but to different addresses (different 56:12 bits) in-flight
simultaneously where a load may need STLF from one of them. Loads that follow stores to similar
address space should be grouped closely together, when possible.
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Figure 4. Load-Store Unit
The LS unit can track up to 124 outstanding in-flight cache misses.

The AGU and LS pipelines are optimized for simple address generation modes.
Base+displacement, base+index, unscaled index+displacement, and displacement-only addressing
modes (regardless of displacement size) are considered simple addressing modes and can achieve
4-cycle load-to-use integer load latency and 7-cycle load-to-use FP load latency. Addressing
modes with base+index+displacement, and any addressing mode utilizing a scaled index (*2, *4, or
*8 scales) are considered complex addressing modes and require an additional cycle of latency to
compute the address. Complex addressing modes can achieve a 5-cycle (integer)/8-cycle (FP) load-
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to-use latency. It is recommended that compilers avoid complex addressing modes in latency-
sensitive code.

The load store pipelines are optimized for zero-segment-base operations. A load or store that has a
non-zero segment base suffers a one-cycle penalty in the load-store pipeline. Most modern
operating systems use zero segment bases while running user processes and thus applications will
not normally experience this penalty.

This segment-base latency penalty is not additive with the above-mentioned complex addressing-
mode penalty. If an LS operation has both a non-zero base and a complex addressing mode, it
requires just a single additional cycle of latency and can still achieve 5-cycle (integer)/8-cycle (FP)
load-to- use latency.
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2.12.1  Prefetching of Data

The AMD Zen5 microarchitecture implements data prefetch logic for its L1 data cache and L2
cache. In general, the L1 data prefetchers fetch lines into both the L1 data cache and the L2 cache,
while the L2 data prefetchers fetch lines into the L2 cache.

The following prefetchers are included:

L1 Stream: Uses history of memory access patterns to fetch additional sequential lines in
ascending or descending order.

L1 Stride: Uses memory access history of individual instructions to fetch additional lines when
each access is a constant distance from the previous. The stride prefetcher can also recognize
a "jump” in the stride pattern if the jump distance is a constant and the jump occurs at a regular
interval. This pattern is commonly used when performing 2-dimensional array accesses.

L1 Region: Uses memory access history to fetch additional lines when the data access for a
given instruction tends to be followed by a consistent pattern of other accesses within a
localized region.

L2 Stream: Uses history of memory access patterns to fetch additional sequential lines in
ascending or descending order.

L2 Up/Down: Uses memory access history to determine whether to fetch the next or previous
line for all memory accesses.

For workloads that miss in the L1 or L2 caches, software may get improved performance if data
structures are designed such that data access patterns match one of the above listed behaviors.

While prefetcher logic has been tuned to improve performance in most cases, for some programs
the access patterns may be hard to predict. This can lead to prefetching data that will not
eventually be used, causing excess cache and memory bandwidth usage. This can be the case for
workloads with random access patterns or less regular access patterns such as some database
applications, etc. For this reason, some server variants of the AMD Zen5 microarchitecture
support a Prefetch Control MSR that can individually disable or enable the prefetchers. See
Processor Programming Reference for details on CPUID enumeration and MSR details.
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2.13  Optimizing Writing Data

Write-combining is the merging of multiple memory write cycles that target locations within the
address range of a write buffer. AMD Zen5 processors support the memory type range register
(MTRR) and the page attribute table (PAT) extensions, which allow software to define ranges of
memory as either writeback (WB), write-protected (WP), writethrough (WT), uncacheable (UC),
or write-combining (WC).

Defining the memory type for a range of memory as WC allows the processor to conditionally
combine data from multiple write cycles that are addressed within this range into a merge buffer.
Merging multiple write cycles into a single write cycle reduces processor bus utilization and
processor stalls. Write combining buffers are also used for streaming store instructions such as
MOVNTQ and MOVNTI.

2.13.1  Software Prefetching of Data or Instructions

The AMD Zen5 microarchitecture implements improved software prefetch control allowing the
PREFETCH instructions to load either data or instructions into targeted levels of the Cache
Hierarchy.

Two new locality reference types (ITO and IT1) are added to the PREFETCHlIevel instruction to
specify instruction prefetch operation. The following table shows the behavior of PREFETCH
instructions on the Zen5 microarchitecture.

Table 8. Behavior of the PREFETCH Instructions.

Instruction Description
PREFETCH mem8, IAll Data Cache Levels—Move the specified data into all data cache levels.
PREFETCHTO mem8

except Oth level (L1) cache.

PREFETCHT1mem8 |Level 2 Data Cache and Higher—Move the specified data into all data cache levels

except Oth level (L1) and 1st level (L2) caches

PREFETCHT2 mem8 |Level 3 Data Cache and Higher—Move the specified data into all data cache levels

PREFETCHW mem8 Moves the specified cacheline into the L1 data cache with a hint that its written.
'The processor attempts to get the line in an exclusive coherency state.

PREFETCHNTA mem8 |Non-Temporal Access - Move the specified data into the processor with minimum
cache pollution. This is intended for data that will be used only once, rather than
repeatedly.

PREFETCHITO mem8  |All Instruction Cache Levels—Move the specified instructions into all instruction
cache levels

PREFETCHIT1 mem8 |Level 2 instruction Cache and Higher—Move the specified instructions into all

instruction cache levels except Oth level (L1) cache.
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2.13.2  Write-Combining Definitions and Abbreviations

This section uses the following definitions and abbreviations:

MTRR—Memory type range register
PAT—Page attribute table
UC—Un-cacheable memory type
WC—Write-combining memory type
WT—Writethrough memory type
WP—Write-protected memory type
WB—Writeback memory type

2.13.3  Programming Details

Write-combining regions are controlled by the MTRRs and PAT extensions. Write-combining
should be enabled for the appropriate memory ranges.

For more information on the MTRRs and the PAT extensions, see the following documents:

AMDG64 Architecture Programmer’s Manual, Volume 2, order# 24593

Processor Programming Reference (PPR) for AMD Family 19h Models 00h-OFh Processors,
order# 55898
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2.13.4  Write-Combining Operations

To improve system performance, AMD Zen5 processors include a Write Combining Buffer
(WCB) that consists of multiple 64-byte write buffers that are aligned to cache-line boundaries.
The write buffers aggressively combine multiple memory-write cycles of any data size that
address locations within 64-byte aligned regions. The processor continues to combine writes to
this buffer without writing the data to the system, if certain rules apply (see Table 9 for more
information). The data sizes can be bytes, words, doublewords, quadwords, xmmword, ymmword,
or zmmword.

e WC memory type writes can be combined in any order up to a full 64-byte write buffer.

e All other memory types for stores that go through the write buffer (UC, WP, WT and WB)
cannot be combined except when the WB memory type is over-ridden for streaming store
instructions such as the MOVNTQ and MOVNTI instructions, etc. These instructions use the
write buffers and will be write-combined in the same way as address spaces mapped by the
MTRR registers and PAT extensions. When WCB is used for streaming store instructions, the
buffers are subject to the same flushing events as write-combined address spaces.

The processor may combine writes that do not store all bytes of a 64-byte write buffer. These
partially filled buffers may not be closed for significant periods of time and may affect the
bandwidth of remaining writes in a stream. Aligning write-combining operations to 64-byte cache
line boundaries avoids having partially full buffers. When software starts a long write-combining
operation on a non- cache line boundary, it may be beneficial to place a write-combining
completion event (listed in Table 9) to ensure that the first partially filled buffer is closed and
available to the remaining stores.

Combining continues until interrupted by one of the conditions listed in Table 9. When combining
is interrupted, one or more bus commands are issued to the system for that write buffer and all
older write buffers, even if not full, as described in section “Sending Write-Buffer Data to the
System”.
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Table 9. Write-Combining Completion Events

Event

Comment

No Write Buffers Available

If a write needs to allocate in the write buffer when no entries are
available, the oldest write buffer is closed.

1/0 Read or Write

Any IN/INS or OUT/OUTS instruction closes combining. The implied
memory type for all IN/OUT instructions is UC, which cannot be
combined.

Serializing instructions

/Any serializing instruction closes combining. These instructions include:
MOVCRx, MOVDRx, WRMSR, INVD, INVLPG, WBINVD, LGDT,
LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT, and HALT.

Flushing instructions

CLFLUSH will only close the WCB if it is for WC or UC memory type.

Locks

Any instruction or processor operation that requires a cache or bus lock
closes write-combining before starting the lock. Writes within a lock can
be combined.

Uncacheable Reads and Writes

A UC read or write closes write-combining. A WC read closes combining
only if a cache block address match occurs between the WC read and a
write in the write buffer.

Different memory type

When a store hits on a write buffer that has been written to earlier with a
different memory type than that store, the buffer is closed and flushed.

Buffer full

Write-combining is closed if all 64 bytes of the write buffer are valid.

TLB AD bit set

Write-combining is closed whenever a TLB reload sets the accessed [A]
or dirty [D] bits of a PDE or PTE.

Executing SFENCE (Store Fence)
and MFENCE (Memory Fence)
instructions.

These instructions force the completion of pending stores, including those
within the WC memory type, making these globally visible and emptying
the store buffer and all write-combining buffers.

An interrupt or exception occurs.

Interrupts and exceptions are serializing events that force the processor to
write all results to memory before fetching the first instruction from the

interrupt or exception service routine

Note: See section LOCKSs for more information on locks and memory barriers.

2.13.5  Sending Write-Buffer Data to the System

Maximum throughput is achieved by write combining when all quadwords or doublewords are
valid and the processor can use one efficient 64-byte memory write instead of multiple 16-byte
memory writes. The processor can gather writes from twelve different 64B cache lines (up to
eleven from one thread when SMT is active). Throughput is best when the number of
simultaneous write-combining streams is low.
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2.13.6  String Store Optimizations

The AMD Zenb5 architecture includes several optimizations to improve the performance of stores
produced by rep movs and rep stos instructions (string instructions).

At very large string sizes, sizes that are greater than or equal to the L3 size of the processor, Zen5
performs string stores using streaming-store operations. Streaming stores are non-cacheable stores
that bypass the cache hierarchy of the processor and write data directly to the destination after
aggregation in Write Combining Buffer. This optimization avoids replacing all cachelines in the
cache hierarchy with the string data.

At smaller string sizes, in some system configurations, the AMD Zen5 architecture includes an
optimization to eliminate the Read For Ownership (RFO) cache-coherence action for the
destination cachelines that are fully overwritten by the string instruction. The destination
cachelines are allocated into the cache hierarchy without being read, and are fully overwritten by
the stores of the string instruction. The size threshold at which this optimization is active is
implementation dependent. The optimization does not require that the size of the string instruction
be a multiple of the cacheline size; the processor handles cachelines that are not fully-overwritten
using a read-for-ownership.

In both optimizations, the stores produced by the string instruction may become visible to other
processors out-of-order with respect to other stores in the string instruction. However, the
processor ensures that stores older than the string instruction are visible before any stores in the
string instruction, and that all stores from the string instruction are visible before stores younger
than the string instruction.
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2.14  Simultaneous Multi-Threading

To improve instruction throughput, the processor implements Simultaneous Multi-Threading
(SMT). Single-threaded applications do not always occupy all resources of the processor at all
times. The processor can take advantage of the unused resources to execute a second thread
concurrently.

Resources such as queue entries, caches, pipelines, and execution units can be competitively
shared, watermarked, or statically partitioned in two-threaded mode (see Table 10 below).

These categories are defined as:

e Competitively Shared: Resource entries are assigned on demand. A thread may use all resource
entries.

e Watermarked: Resource entries are assigned on demand. When in two-threaded mode a thread
may not use more resource entries than are specified by a watermark threshold.

e Statically Partitioned: Resource entries are partitioned when entering two-threaded mode. A
thread may not use more resource entries than are available in its partition.

Competitively Shared is the L3 cache default protocol, but sharing policy can be configured using
the AMDG64 Technology Platform Quality of Service Extensions. For more detail, see the
following:

e AMDG64 Technology Platform Quality of Service Extensions, order# 56375

e Processor Programming Reference (PPR) for AMD Family 17h Models AOh-AFh Processors,
order# 57243

e Processor Programming Reference (PPR) for AMD Family 19h Models 10h-1Fh Processors,
order# 55901
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Table 10. Resource Sharing
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Resource

Competitively Shared

Watermarked

Statically Partitioned

L1 Instruction Cache

X

ITLB

Op Cache

Dispatch Interface

L1 Data Cache

DTLB

L2 Cache

L3 Cache

XXX | X[ X|X|X

Integer Scheduler

Integer Register File

Load Queue

Floating Point Physical Register

Floating Point Scheduler

Memory Request Buffers

XX | X | X |X|X

Op Queue

X

Store Queue

Write Combining Buffer

Retire Queue

X

To reduce BTB collisions, if the two threads are running different code, they should run in
different linear pages. If BTB and Op Cache sharing is desired, such as for two threads running the
same code, the code should run at the same linear and physical addresses. Operating system

features which randomize the address layout such as Windows® ASLR should be configured

appropriately.

2.15 LOCKSs

The processor implements logic to improve the performance of LOCKed instructions. In order to
benefit from this logic, the following guidelines are recommended:

e Ensure that LOCKed memory accesses do not cross 64-byte aligned boundaries.
e Following a LOCKed instruction, refrain from using floating point instructions as long as

possible.

e Ensure that Last Branch Record is disabled (DBG_CTL_MSR.LBR = 0h)
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Appendix A Understanding and Using
Instruction Latency Tables

The companion file, Zen5 Instruction Latencies version 1-00.x1sx, distributed
with this Software Optimization Guide, provides additional information for the processor. This
appendix explains the columns and definitions used in the table of latencies. Information in the
spreadsheet is based on estimates and is subject to change.

Al Instruction Latency Assumptions

The term instruction latency refers to the number of processor clock cycles required to complete
the execution of a particular instruction from the time that it is issued until a dependent instruction
can be issued. Throughput refers to the number of results that can be generated in a unit of time
given the repeated execution of a given instruction, assuming that all dependencies are resolved.

Many factors affect instruction execution time. For instance, when a source operand must be
loaded from a memory location, the time required to read the operand from system memory adds
to the execution time. Furthermore, latency is highly variable since a memory operand may or may
not be found in one of the levels of data cache. In some cases, the target memory location may not
even be resident in system memory due to being paged out to backing storage.

In estimating the instruction latency and reciprocal throughput, the following assumptions are
necessary:

e Theinstruction isan L1 I-cache hit that has already been fetched and decoded, with the
operations loaded into the scheduler.

e Memory operands are in the L1 data cache.
e There is no contention for execution resources or load-store unit resources.

Each latency value in the spreadsheet denotes the typical execution time of the instruction when
run in isolation on a processor. For real programs executed on this highly aggressive super-scalar
processor, multiple instructions can execute simultaneously; therefore, the effective latency for
any given instruction's execution may be overlapped with the latency of other instructions
executing in parallel.

Latencies in the spreadsheet reflect the number of cycles from instruction issuance to instruction
retirement. This includes the time to write results to registers or the write buffer, but not the time
for results to be written from the write buffer to L1 D-cache, which may not occur until after the
instruction is retired.
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For most instructions, the latency shown refers to the shortest latency version of the instruction
which in most cases is its register-to-register version. To calculate the latency for instructions that
load from memory the following additional latencies need to be added:

e Simple addressing mode ([base], [base + index], [base + displacement] or [displacement]) and
zero segment base with aligned memory operand
— GPR destination register.
e L1 Data Cache hit: add 4 cycles
e L2 Cache hit: add 14 cycles (may vary by product)
e L3 Cache hit: add an average of 46 cycles (may vary by product)
— FP/SIMD destination register.
e L1 Data Cache hit: add 7 cycles
e L2 Cache hit: add 17 cycles (may vary by product)
e L3 Cache hit: add an average of 53 cycles (may vary by product)

e Complex addressing mode ([base + index + displacement] or any scaled index register) or non-
zero segment base: add an additional cycle

e Misaligned memory operands: add an additional cycle

AV X-512 instructions using merge masking may encounter higher latency and/or lower throughput
than listed in the spreadsheet.

To measure the latency of an instruction that stores data to memory, it is necessary to define an
end- point at which the instruction is said to be complete. This guide uses the availability of the
store data as the end point, and under that definition, writes add no additional latency. Choosing
another end point, such as the point at which the data has been written to the L1 cache, would
result in variable latencies and would not be meaningful without considering the context in which
the instruction is executed.

There are cases where additional latencies may be incurred in a real program that are not described
in the spreadsheet, such as delays caused by L1 cache misses or contention for execution or load-
store unit resources.
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Spreadsheet Column Descriptions

The following table describes the information provided in each column of the spreadsheet:

Table 11. Spreadsheet Column Descriptions

Cols Label Description
A Instruction  |Instruction mnemonic
B Instruction  [The following notations are used in this column:
operands

| —an immediate operand(value range left unspecified)
X —any XMM register
y —any YMM register
z —any ZMM register
m — a memory operand (value range left unspecified)
M — any 64-bit MMX register
r/g — any general purpose(integer) register
k —any AVX-512 mask register
s — any 80-bit x87 stack register
/A slash denotes an alternative. For example:
X,x/m,l —operand 1 is XMM, while operand 2 is either XMM or memory.
Xyz, Xyz, Xyz/m — operands 1, 2 is either XMM or YMM or ZMM, operand 3 is either
XMM/mem or YMM/mem or ZMM/mem

C-F |Operandl-  [These are the operands divided further into individual operands

Operand4

G Opmask Opmask values - Lists whether the instructions use {k}/{kz} opmasks

H APM Vol IAMD64 Programmer’s Manual Volume that describes the instruction

I Cpuid Flag  [CPUID feature flag for this instruction

J Macro Ops  [Number of macro-ops for the instruction
Any number greater than implies that the instruction is microcoded with the given
number of macro—ops in the micro-program If the entry in this column is simply
‘ucode’ then the instruction is microcoded but the exact number of macro ops is
variable. Note that stores and integer instructions using a memory operand that are
listed as 1 op in the spreadsheet will require 2 ops when using an addressing mode with
two register sources.
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Table 11. Spreadsheet Column Descriptions (continued)

Cols

Label

Description

K

Unit

Execution Units. The following abbreviations are used.

Ucode — Instruction is implemented using a variable number of macro-ops
FPn — Instruction can only execute in FP pipe n

FPn/FPm — Instruction can execute either in FP pipe n or m

FPn, FPm — Instruction execution uses FP pipe n followed by FP pipe m
IALU — Instruction can flow in any of 6 ALU pipes

ALU n/m — Instruction can flow in either ALU pipe n or m

BRN — Instruction can flow in any of 2 BRN pipes

MUL — Integer multiply functional element within the integer unit

DIV — Integer divide functional element within the integer unit

NA — Instruction is not supported

Latency

Instruction latency in processor cycles

Throughput

Throughout of the instruction

Notes

Additional information about the instruction
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