
Xilinx Adaptive Compute Acceleration Platform: Versal™
Architecture

Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer
bgaide@xilinx.com,dineshg@xilinx.com,chiragr@xilinx.com,trevor@xilinx.com

Xilinx Inc.

ABSTRACT
In this paper we describe Xilinx’s Versal™ Adaptive Compute Accel-
eration Platform (ACAP). ACAP is a hybrid compute platform that
tightly integrates traditional FPGA programmable fabric, software
programmable processors and software programmable accelerator
engines. ACAP improves over the programmability of traditional
reconfigurable platforms by introducing newer compute models in
the form of software programmable accelerators and by separating
out the data movement architecture from the compute architecture.
The Versal architecture includes a host of new capabilities, includ-
ing a chip-pervasive programmable Network-on-Chip (NoC), Imux
Registers, compute shell, more advanced SSIT, adaptive deskew of
global clocks, faster configuration, and other new programmable
elements as well as enhancements to the CLB and interconnect.
We discuss these architectural developments and highlight their
key motivations and differences in relation to traditional FPGA
architectures.

KEYWORDS
ACAP, Versal, FPGA, Stacked Silicon, SSIT, Adaptable Compute Ac-
celeration Platform, Math Engine, NoC, FPGA Architecture, FPGA
CAD, Xilinx
ACM Reference Format:
Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer. 2019.
Xilinx Adaptive Compute Acceleration Platform: Versal™ Architecture.
In Proceedings of The 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3289602.3293906

1 INTRODUCTION
It is well known that the benefits of process technology scaling are
reducing [1]. The benefits of a new technology node alone are often
insufficient to justify the development costs of a next generation
device, forcing more aggressive innovations at the architectural and
system levels [2, 3]. With the recent explosion of data and surge
of machine learning and AI applications, the needs for compute
have also been increasing. Due to the high costs of sub-16nm tech-
nology nodes and the continually changing requirements of these
applications, developing ASICs for these markets is challenging. By

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293906

Figure 1: Metal and Transistor Delays For a Quad Routing
ResourceAcrossDifferent TechnologyNodes (normalized to
total delay at 28nm)

virtue of their configurable nature, field-programmable gate arrays
excel in applications with varying workloads and requirements,
circumventing the economic challenges of heterogeneous compute
platforms with reconfigurable hardware [4]. FPGA platforms have
recently been deployed on the cloud to democratize these systems
at a larger scale [5–8].

Many compute intensive solutions today operate in a thermal
envelope and are thus power limited. Although power and delay
per operation drop with technology scaling, they no longer drop
at a rate that satisfies exponentially increasing compute demands.
Metal resistance is another critical challenge that has worsened
with technology scaling [9]. Although wire distances shrink with
lithography, wire cross-sectional area shrinks quadratically, result-
ing in a net increase in resistance each generation. Hence, even
though transistor delays continue to decrease with smaller transis-
tors, total path delays may not. In Figure 1, we show the minimum
wire pitch delay of an interconnect routing resource over several
technology nodes assuming that the physical distance of a given
logical span also scales. Despite the physical distance shrink and
transistor delay speed up, total delay actually increases with more
advanced process nodes. Hence, we are forced to use thicker metal
with lower resistance to reduce wire delays. As technology scales,
metal resources therefore become more expensive and architectural
changes need to be made to use them more efficiently.

One of the hurdles to greater adoption of traditional FPGA ar-
chitectures is ease of use. Recently, there has been a drive towards
software solutions to improve the user abstraction level to inter-
act with FPGAs [10]. However, wide-spread use of re-configurable
hardware without the requirement for expertise remains elusive.

https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/3289602.3293906

 Fabric

AI Engines

NoC

NoC

Processor
&

Platform
Management

Memory Controllers

High Speed IOs

H
ar

d
en

ed
 F

ea
tu

re
s

H
ar

d
en

ed
 F

ea
tu

re
s

G
ig

ab
it

T
ra

n
sc

ei
ve

rs

G
ig

ab
it

T
ra

n
sc

ei
ve

rs

Figure 2: Versal Representative Device Floorplan

In this paper, we present a new class of re-configurable devices
called the Adaptive Compute Acceleration Platform (ACAP), in-
vented by Xilinx to provide a solution for the compute and commu-
nication needs of modern applications. We describe the 7nm based
Versal™ Architecture, which is a new re-configurable platform ar-
chitecture that solves the economic, technological, and ease of use
challenges mentioned above. We provide a general overview of the
architectural changes with some experimental results. We limit the
scope of this paper to the re-configurable fabric and the related
subsystems. In Section 2, we describe the features of the Versal Ar-
chitecture at a high level and distinguish it from a traditional FPGA.
In Section 3, we describe the programmable fabric and the vari-
ous enhancements made to tackle the economic and technological
challenges. Section 4 describes a 4th generation stacked silicon in-
terposer technology with new capabilities for multi-die devices. We
briefly describe the clocking structure, hardened Network-On-Chip
(NoC) and the Configuration system in Section 5.

2 FLOORPLAN
In Figure 2, we show a representative device floorplan for Ver-
sal architecture based ACAP. The fabric portion of the device is
similar to a traditional FPGA, including resources such as LUTs,
flip-flops, DSPs, BRAMs, and the relatively recently introduced
UltraRAMs [11], all arranged in a columnar topology. Changes to
these blocks are described in Section 3.

What makes ACAP unique is that it hardens all the necessary
platformmanagement functions and separates them from the FPGA
core logic. The processor and platform management controller
occupy the lower left region of the chip. The adjacency of the
Processor Subsystem (PS) to Gigabit Transceivers (GTs), memory
controllers, and the NoC enables those blocks to be used together
without any of the fabric being programmed.

GTs can occupy the left and right edges of the fabric regions.
Note that high speed IOs in Versal now run along the bottom and,
optionally, top edges of the die. Integrated with those IOs are hard-
ened memory controllers to interface with off-chip memory such
as DDR and HBM.

Across the top of this example Versal architecture based floorplan
is an array of AI Engines designed to accelerate math intensive
functions for applications including machine learning and wireless.

Finally, the chip pervasive hardened network-on-chip (NoC)
augments the traditional fabric interconnect and enables a new class
of high speed, system level communication between the various
heterogeneous features, including the PS, DDR, AI Engines and
FPGA fabric.

2.1 Hardened Features
A key benefit of FPGAs is adaptability provided by configurable
fabric and other on-chip compute and memory blocks. One recent
trend has been the use of FPGAs for accelerating various functions
that were traditionally implemented on CPUs. In these environ-
ments, most of the peripherals are standardized. These standard
application components like memory controllers and PCIE gener-
ally don’t benefit from that adaptability enough to justify their cost
in soft fabric.

A substantial portion of the FPGA fabric can be spent on this
functionality as illustrated in Figure 3, which shows the placement
of shell logic that performs static platform level functionality when
an instance of AWS F1 FPGA [5] is invoked. Moreover, design effort
is spent in ensuring that these platforms meet timing and do not
interfere with the place and route of the actual accelerator cores.
This logic implements memory controllers, PCIE connectivity and
provides ports for rest of the compute to interface with the memory
controller. Additionally, this solution requires loading a minimal
state configuration prior to loading any user specific functionality.

In contrast, the memory controllers, PCIE and associated in-
terfaces are all hardened and directly connectable in the Versal
architecture. As a result, once powered up, the FPGA boots up in
a state ready for use without the need to bootstrap any soft logic
first. This reserves the FPGA fabric purely for user functionality

Figure 3: Static Platform Logic for AWS F1 Instance based on
UltraScale™Architecture

and also helps non-traditional FPGA users productively use the
ACAP without detailed device knowledge.

Some features are ubiquitous enough to include on all devices,
such as hardened memory controllers and NoC infrastructure. How-
ever, other blocks are market specific and not always necessary.
Therefore, Versal architecture comprises a framework that enables
swapping different features in and out of different devices. For ex-
ample, some devices have AIEs along their top edge. Other devices
may have IO or fabric along their top edge. Similarly, some devices
have HBM interfaces in place of DDR IO and controllers. A-to-D
converters can replace GTs, and a variety of smaller hard IP blocks
(forward error correction, MAC blocks, Interlaken, PCIE, etc.) can
occupy slots within the fabric array. In this respect, the Versal
architecture enables a platform that continues the trend towards
enabling families of domain specific devices [12, 13].

2.2 Perimeter IO
Since Virtex-4, Xilinx FPGAs have had columnar IOs. There are
several advantages to columnar IOs, including tight integration
with the fabric and area efficiency. However, multiple technology
trends have led to perimeter IO being more appropriate for the
Versal architecture. IO cells don’t tend to shrink with Moore’s Law.
Similarly, as noted, the cost of using long metal wires has increased.
As a result, over the past generations of FPGAs, the increasing
interconnect delays and clock skew incurred by metal crossing over
large IO columns have led to software tools partitioning designs
across these boundaries. Additionally, IO package trace breakouts
from the die interior can be challenging and performance limiting.
As a result, the implementation of perimeter IOs enables higher
performance IOs and less fabric disruption.

2.3 Regularity
Overlays have become more powerful and popular among FPGA
users [14–16]. Use of a domain specific overlay has substantial
productivity benefits. Since overlays are very structured designs,
using analytical techniques to implement them lets tools extract
more performance from FPGAs rather than traditional generic RTL
based implementation tools. One way to make overlays easier to
implement is to have very regular patterns of fabric columns. How-
ever, in a traditional FPGA architecture, even perfectly repeated
columns of fabric don’t enable a perfect “stamp and repeat” of user
IP, because communication interfaces to those blocks would not be
identical. Each repeated IP would need to be uniquely configured
to enable routing connections to the external environment.

Versal architecture based devices are the first class of modern
devices from Xilinx that offer a high level of fabric regularity. The
composition of clock regions repeats at regular intervals across each
device. This permits two significant productivity improvements. It
permits relocatability of IP in both the X and Y directions without
having to do complete reimplementation. Moreover, if each IP com-
municates with the rest of the design over the NoC (discussed in
Section 5.2), even global communication interfaces do not have to
be reimplemented when an IP is relocated. Thus, Versal enables
the possibility of importing pre-implemented placed and routed
IP and replicating the same IP at different locations. Utilizing this

H_L

G_L

F_L

E_L

D_L

C_L

B_L

A_L

Lo
ok

ah
ea

d
Lo

gi
c

(8
-b

it
)

H_M

G_M

F_M

E_M

D_M

C_M

B_M

A_M

Lo
ok

ah
ea

d
Lo

gi
c

(8
-b

it
)

L
oc

al
 I

n
te

rc
on

n
ec

t
(C

on
tr

ol
s,

 In
te

rn
al

 R
ou

ti
ng

, S
LL

 M
ux

in
g,

 e
tc

)

H_L

G_L

F_L

E_L

D_L

C_L

B_L

A_L

Lo
ok

ah
ea

d
Lo

gi
c

(8
-b

it
)

H_M

G_M

F_M

E_M

D_M

C_M

B_M

A_M

Lo
ok

ah
ea

d
Lo

gi
c

(8
-b

it
)

Register LUT LUTRAM/ SRL Capable
LUT

Imux Registers

Figure 4: Versal CLB Block Diagram

regularity also can enable hierarchical place and route run times to
be several times faster than flat implementation flows.

3 PROGRAMMABLE FABRIC
Compared to UltraScale™, the Versal architecture has some signifi-
cant differences to its fabric (i.e. CLB, Interconnect, DSP, BRAMs,
URAMs, etc.). Various design choices were made to increase device
capacity and facilitate more complex designs in a technology with
metal resistance and cost challenges. We briefly describe the design
choices and present some experimental results in this section.

3.1 CLB
The CLB in the Versal architecture contains 4 times the number of
LUTs and registers (32 LUTs and 64 registers) as the UltraScale CLB
(8 LUTs and 16 registers). The components are noted in figure 4.
Internals of the CLB, such as wide function muxes, carry chain,
and internal connectivity were redesigned to increase total device
capacity by reducing area per utilized logic function. A dedicated
local interconnect structure resides within each CLB to support
more versatile intra-CLB connectivity. By enlarging the CLB to
include 4X the number of logical elements, we subsume a signifi-
cant fraction of local nets internally, thereby reducing global track
demand. Each of these enhancements are discussed in detail below.

3.1.1 Versal-based Look-Up Table. Compared to UltraScale, the
look-up table (LUT) in Versal is enhanced to increase effective
packing density and functionality. The UltraScale 6-input LUT has
two outputs and it can implement either any 6-input function or
two independent functions of up to 5 unique inputs. As shown in
Figure 5, the 6-input LUT in Versal has an additional output, O5_2,
and some circuitry on the second fastest input. This enables us to
pack two independent functions of up to 6 unique inputs.

One goal of implementation tools is to maximize device utiliza-
tion by packing logic into fewer logic elements. If two LUTs are
placed close by, merging them into one physical LUT frees up addi-
tional resources while minimally perturbing the natural placement
of the design. Figure 6a shows packing density improvements on
a design suite of customer designs. It illustrates the number of
legal LUT merging candidates within a given radius for Versal, nor-
malized to UltraScale. For example, if we permit merging of LUTs

separated in placement by less than or equal to a distance of 5, in
Versal we find 21.5% more candidates to merge than in UltraScale,
thus increasing logic per unit area accordingly.

4-LUT

4-LUT

4-LUT

4-LUT

A1 A2 A3 A4 A5 A6

O5

O6

(a) UltraScale 6LUT

4-LUT

4-LUT

4-LUT

4-LUT

A1 A2 A3 A4

A5

A6

O5_1

O6

O5_2

PROP

cascade_in

cascade_in

A5

(b) Versal 6LUT

Figure 5: 6LUT Comparison between UltraScale and Versal

Also new to Versal is a dedicated, fast LUT to LUT cascade
path which improves timing for paths with multiple levels of logic.
The vertical cascade path daisy chains adjacent LUTs together by
muxing into the second fastest LUT pin. Synthesis, placement, and
packing tools can take advantage of the cascade connectivity to
create fast and efficient macros implemented with the LUT and
cascade path.

An additional output named “prop”, in Figure 5b is added to
implement carry lookahead functionality, which we describe in
section 3.1.3

3.1.2 Wide Functions. We chose to remove the dedicated wide
function muxes that existed in UltraScale, in favor of targeting
more versatile LUTs for this function. Although dedicated wide
function muxes enable fast, efficient, and compact implementations,
they lack placement and routing flexibility. For designs with many
wide functions, a synthesis tool has two options. It could use the
dedicated wide function logic in the CLB or synthesize the same
logic using regular LUTs. Wide functions implemented using dedi-
cated logic result in large objects which have far more pins than a
typical LUT - a hard 32 input mux will have around 37 inputs and
one output. Placement algorithms do not perform well when they
are asked to place instances with widely varying pin counts. As a
result, it was observed that using the hardened wide function often
features resulted in worse overall performance, worse wirelength,
and tougher to route designs. By implementing wide functions in
LUTs, tools can build muxes that span multiple slices, spread the
mux out if necessary, and support a greater variety of topologies
(priority muxes, unbalanced or sparse trees, etc.). The global speed
advantages of a more flexible architecture offset the local speed
advantages of the prior hardened solution. The effect of this modifi-
cation on the worst case critical path of a suite of customer designs
is shown in Figure 6b. The normalized geomean on this suite of
designs does not change, with some outliers showing an increase
in critical path up to 14%. We find that this is an acceptable tradeoff
for reduced area usage in all designs

0 5 10 15 20 25 30
Merge Radius (Slice Grid Distance)

1.14

1.16

1.18

1.20

1.22

V
er

sa
l/U

ltr
as

ca
le

 D
ua

l L
U

T
 M

er
ge

 C
an

di
da

te
s

(a) Dual LUT Packing (b) Soft vs HardWide FunctionMux

Figure 6: Comparison between UltraScale and Versal

3.1.3 Carry Chains. A significant portion of UltraScale’s dedicated
carry logic is removed in Versal and absorbed into the LUT using
the new cascade paths (see Figure 7). Dedicated carry logic area
as a result reduced by a factor of 5 while keeping long carry chain
speeds constant (comparing both at 7nm). Elimination of these
dedicated carry signals also led to a reduction in CLB output muxing
costs, since LUT outputs double as both generic LUT function and
arithmetic function outputs.

3.1.4 Other CLB Changes. The Versal-based CLB has 25% fewer
outputs per LUT compared to the UltraScale CLB. We converted
that into additional connectivity for each CLB output at roughly
cost parity and increased routabilty.

Each register in the CLB can be individually bypassed without
affecting packing density. This also provides more output pin op-
tions for internal nets in the CLB to drive the interconnect, which
improves routing flexibility.

Half of the LUTs in each CLE are capable of functioning as
distributed memories or shift registers. Our analysis showed that
deeper LUTRAM modes (128, 256 and 512 bit) were used in less
than 1% of all instances, hence hardened support for these modes
were removed in favor of a soft decoder based solution.

The combination of these changes make for a more streamlined
and efficient CLB in the Versal architecture. Hard functions that
were rarely used or whose use could be detrimental were removed
and replaced by enhanced LUT connectivity.

6-LUT O5

B1
B2
B3
B4
B5
B6

BX

O6
PROP<1>

6-LUT O5

A1
A2
A3
A4
A5
A6

AX

O6
PROP<0>

CIN

Lo
ok

ah
ea

d
Lo

gi
c

COUT<0>

COUT<1>

SUM<1>

SUM<0>

(a) UltraScale

6-LUT O5

B1
B2
B3
B4
B5
B6

O6

PROP<1>

6-LUT O5

A1
A2
A3
A4
A5
A6

O6

PROP<0>

CIN

Lo
ok

ah
ea

d
Lo

gi
c

COUT<0>

COUT<1>

SUM<0>PROP

B5

casc_in

casc_in

SUM<1>PROP

CASCADE<1>

CASCADE<0>

CASCADE<2>

(b) Versal

Figure 7: UltraScale vs Versal Carry Logic (8-bit structure,
only 2 bits shown. Grayed inputs not used in carry mode.)

3.2 Local Interconnect
3.2.1 CLB Internal Routing. A significant fraction of nets have very
localized sources and destinations. An additional layer of routing
muxes exists within the Versal-based CLB to achieve more success
connecting local internal nets without requiring the general inter-
connect. Since local routes are shorter and can be squeezed with
tighter pitches onto fewer, lower level metal layers, the implemen-
tation cost of local routes is substantially less than global routes.
With the internal CLB routing structure in Versal, almost every
CLB output pin can drive every input pin on the same CLB using
local routes.

We placed and routed a set of customer designs on both the
UltraScale CLB and the Versal-based CLB and report the number of
pin to pin connections contained within a single CLB. On average,
we found that 18% of all pin to pin connections are theoretically
intra-CLB connections for a CLB in Versal, contrasted to 7% within
the smaller UltraScale CLB. In Figure 8a, this is captured as "Total
Internal Connections."

In practice, not all theoretical connections are achievable. How-
ever, we demonstrate that roughly 83% of those theoretical con-
nections are actually routed in Versal, compared to only about 28%
of UltraScale theoretical connections. Figure 8a illustrates this. As
the "Internally Satisfied Connections" shows, only 2% of all nets in
UltraScale are successfully routed within a CLB compared to 15%
in Versal, increasing internal net routing by a factor of almost 8X
while only modestly increasing the cost of the CLB.

Total Internal
Connections

Internally Satisfied
Connections

0%

2%

5%

8%

10%

12%

15%

18%

%
 O

f A
ll

C
on

ne
ct

io
ns

UltraScale+
Versal

(a) Internal Routing Structure
in Coarse CLB

20% 40% 60% 80% 100%
Pin Utilization

0

10

20

30

40

50

N
o

rm
a

liz
e

d
 W

ir
e

le
n

g
th Baseline HardIP Interface

Interface Enhancement

(b) Enhanced Interface to Hard
Macro Blocks

Figure 8: Benefit of Local Interconnect Enhancements

3.2.2 Interface Enhancement for Hard Macro Blocks. Similar to
the Versal-based CLB, a local interconnect structure was added to
the interface of every hard macro block (BRAM, DSP, PCIe, etc.) to
enhance routability for highly utilized and congested designs. Every
path from the general interconnect to a hard block goes through a
layer of local interconnect muxing structures which reduces stress
on the general interconnect.

To illustrate this, we experimented with a simple design con-
sisting of registers driving the input pins of a hard macro block
at various utilizations. We constrained the registers to be some
distance away horizontally and let the placer choose their destina-
tions within the constrained region. We routed the designs with
and without the interface enhancements and report the normalized
wirelength in Figure 8b. We saw decreased wirelength with the in-
terface enhancements and the wirelength gap widens at higher pin
utilizations, which indicates that the stress on global interconnect
is reduced.

In
te

rc
on

ne
ct

FF

FF

FF

FF
CLB

FF

FF

clk

Hold Fixing

In
te

rc
on

ne
ct

FF

FF

FF

FF
CLB

FF

FF

clk

Time Borrowing

In
te

rc
on

ne
ct

FF

FF

FF

FF
CLB

FF

FF

clk

Pipelining

In
te

rc
on

ne
ct

FF

FF

FF

FF
CLB

FF

FF

clk

Pipelining + Time Borrowing

x

x

x

Figure 9: Imux Registers

3.3 Imux Registers
In order to facilitate easier implementation of high performance
designs, we introduce a new feature to the fabric called the Imux
Register Interface (IRI). Imuxes are the traditional name of input
muxing to each block; Imux Registers are registers placed in-line
with the Imuxes. These are flexible, bypassable registers on the
input side of all blocks. Compared to an approach where registers
exist on every interconnect resource [17] (“registers-everywhere
approach”), Imux Registers are a more cost effective solution to
increasing design speed while requiring far less design adaptation.

In the “registers-everywhere approach”, there is a significant
negative “up front performance tax” - a sea of interconnect regis-
ters increase the delay of every routing resource when not used in
every route. Secondly, cost mandates that the resulting registers
be a simple flop with no enable, reset or initialization functionality.
Adding control sets increases the cost of registers themselves, plus
the infrastructure necessary to connect control signals would be
prohibitive. Thirdly, structural constraints such as the presence of
sequential loops, pipeline balancing, and hold requirements typi-
cally constrain how aggressively one can use pipelining. Registers
on every mux can simply not be used due to those constraints.

With IRI, the Versal architecture adds a substantial amount of
registers but not beyond what are useable, and each register is far
more capable. Each register is fully featured and supports clock
enable, reset, and initialization, as well as time shifting capabilities.
As with any added resource, the registers have a a cost in terms
of area and delay. However, as we demonstrate, even without any
user design modification, IRI delivers a performance increase (not
decrease) for most designs.

The Versal architecture supports aggressive time borrowing tech-
niques described in [18]. We support time borrowing at a much
finer level than in [18]. UltraScale+™ enabled time shifting only for
a clock shared by 30 CLB slices, whereas Versal has per CLB slice
time shifting capabilities. The programmable delay lines per CLB
can be used by itself or in concert with pipelining. Figure 9 shows
the different cycle time reduction modes supported. Time borrow-
ing enables the register to act as if it existed out in the interconnect

and still effectively bisect timing paths. Figure 12 illustrates this
effect and other modes and how each one reduces cycle time.

Additionally, the IRIs support a "hold fixing" mode. Each Imux
Register can be optionally clocked on the opposite clock edge,
stalling data for half a cycle. Time borrowing is often limited in
practice by how many registers share the same delay. Borrowing
time on one register may cause hold violations for the other reg-
isters within the same cluster. By selectively using "hold fixing"
mode, thus, more aggressive time borrowing is available. Figure 10
demonstrates how hold fixing mode works by shifting the data eye
away from the clock edge to avoid indeterminacy.

Figure 10: Hold Fixing Mode Timing Waveforms

Figure 11 illustrates the average timing impacts of the various
modes across a suite of customer designs, limiting design modifi-
cations to pipeline insertion (no redesign of feedback loops). We
used the same set of customer designs to also compare with our
own “registers-everywhere approach”. Adding Imux Registers to
the architecture incurs an initial penalty of about 4% due to (a)
growth of block widths, which stretches horizontal routing re-
sources, and (b) additional delay of bypassing the new register.
However, the additional benefits to time borrowing more than off-
set the initial penalty. Note that these benefits do not require any
design modification and has improved performance. Unlike our
approach, a “registers-everywhere approach” incurs a larger ini-
tial penalty that cannot be recovered without pipeline insertion
or retiming. If one assumes that designs were indeed allowed to
be pipelined, and pipelining was the only technique applied, then
the “registers-everywhere approach” has better performance than

-5.0% 0.0% 5.0% 10.0% 15.0% 20.0%
Relative Performance

Initial Delay Penalty

Post Time Borrow

Pipelining

Pipelining + Time Borrow

Figure 11: Imux Register Performance Gains

the IRI flops approach. However, when we use pipelining in con-
junction with time-borrowing simultaneously - a feature that for
all practical purposes can only exist in the IRI implementation, we
are able to minimize the gap on the high end. In short, IRI register
approach can deliver performance very close to that achieved by
the “registers-everywhere approach” but at a fraction of the cost in
area and power. Moreover, this approach also benefits traditional
designs where design modification in the form of adding pipeline
stages is not permitted.

Figure 12: Cycle Time Reductions fromPipelining and Time
Borrowng

4 SSIT
Versal uses a 4th generation stacked silicon interposer technol-
ogy (SSIT) to construct ultra-large and heterogenous devices at
reasonable costs. Multiple active silicon dice called Super Logic
Regions (SLRs) are stacked on a passive interposer and connected
together through microbumps and metal traces on the interposer.
Prior works show that the total number of inter-SLR routing tracks
(or SLLs) is about 25% of the routing tracks observed in an arbitrary
horizontal cut within an SLR, therefore the place-and-route tools
need to have awareness of the multi-SLR architecture and inter-
die interfaces [19]. The design may be partitioned with a minimal
number of connections between SLRs to reduce delays and routing
congestion at the SLR boundaries.

4.1 SLL Interface Architecture

(a) Routing based (b) Tile based

Figure 13: SLL Channel Architecture

We classify the SLL interface architectures in previous SSIT
based devices as "routing based" and "logic tile based". In 28nm
based 7-series Xilinx FPGAs, the interfaces were "routing based."
Connections to microbumps from the FPGA fabric were made di-
rectly on the routing channels. Tri-stated wires on each individual
SLR were shorted on the interposer, which allowed the router to
treat the SLLs just as another routing resource with drivers and

6-LUT

LU
T

In
pu

ts

FF Input

FF

SL
L

M
ux

in
g

Lo
ca

l
In

te
rc

on
ne

ct

SLL
Microbump

To Global
Interconnect

Figure 14: Access to/from FFs within the CLB from/to SLLs

loads in different SLRs. Since routing channels are ubiquitous on
the FPGA fabric relative to logical tiles, this had the software effect
of simply extending the existing routing infrastructure.

20/16nm based UltraScale FPGAs introduced the "Laguna" tiles,
which were specialized logic tiles that displaced CLB tiles at each
SLR boundary. Laguna tiles contain optional registers to create
fast synchronous SLL connections across the SLR boundaries. This
achieved inter-SLR frequencies of more than 500MHz in the -2
speedgrade [20]. However, to minimize total Laguna cost, each
column of Laguna tiles appears relatively infrequently compared
routing based approach and has much greater inter-SLR connec-
tions per channel. [19] showed that the concentration of inter-SLR
connections at Laguna tile channels could result in routability hot
spots.

The Versal SSIT architecture connecting SLRs includes a hybrid
approach that maximizes the benefits of both routing based and
logic tile based SLL interfaces. Instead of a standalone Laguna tile,
we distribute and embed the SLL interface into each CLB. Costs
are kept at a minimum by leveraging the CLB’s interconnect and
internal routing. We take advantage of the larger 4X CLB’s inter-
nal routing structure as described in Section 3 to provide local
access to each SLL. The internal routing structure also provides fast
connectivity to and from registers within the CLB. As shown in
Figure 14, the registers have optional bypass capability, which al-
lows the SLL interface to operate synchronously or asynchronously.
In addition, the same register type and control set granularity is
used for intra-SLR and inter-SLR connections, giving more options
on the placement of a given register. Similar to the routing based
SLL interface, there are significantly more SLL channels and fewer
tracks per channel.

Laguna
Tile-Based
 Interfaces

In
te

r-
D

ie
 C

o
n

n
ec

ti
o

n
s

UltraScale Architecture

(a) Laguna Tile Interface

Distributed SLL Interfaces

In
te

r-
D

ie
 C

o
n

n
ec

ti
o

n
s

Versal Architecture

Intra-Die Connections

(b) Distributed SLL Interface

Figure 15: SLL Interface

10 20 30 40 50 60
Num SLL Channels

2

4

6

8

10

12

14

16

N
or

m
al

iz
ed

 H
or

iz
on

ta
l T

ra
ck

 D
em

an
d

Inter-SLR Demand
16%
48%
80%

Figure 16: Horizontal Estimated Channel Demand. The sam-
ple UltraScale device contains 11 SLL channels while Versal
contains 33.

Near the SLR edge, the pattern connects CLBs in one SLR to
another. Towards the center of the SLR, the pattern creates a full
mesh connecting CLBs within the same SLR. We discuss intra-SLR
routing in the following section.

In Figure 16, we use the evaluationmethodology described in [19]
to implement multi-SLR synthetic designs with controlled inter-
SLR connectivity. We compute the horizontal estimated channel
demand as the number of SLL channels per device increases while
keeping the total number of SLLs constant. We observe a decline in
horizontal track demand as we increase the number of SLL channels.
As the inter-SLR demand grows, the incremental benefit of adding
more SLL channels is greater. When 80% of the SLLs are used, the
horizontal congestion reduces by 50% in the Versal (hybrid) vs.
UltraScale (tile-based) approach.

The reduction in horizontal congestion directly translates to
better routability. We also observed a 40% reduction in horizontal
wirelength and a 5% improvement in routability with the Versal
hybrid SLL interface vs. UltraScale’s tile-based Laguna interface.

4.2 Intra-SLR Routing
As shown in Figure 15, the Versal Architecture also takes advantage
of the interposer to create a full mesh of long distance wires both
between and within SLRs. This results in a more scalable routing
architecture, since larger SSIT devices (which typically are targeted
for designs of higher routing complexity) have an extra layer of
routing that smaller devices do not have to pay for. This feature
did not exist in any prior SSIT architectures. The long wires on
the interposer are also about 30% faster than regular interconnect
routes for similar logical distances. Long SLLwires on the interposer
alleviate both horizontal and vertical routing congestion by freeing
up local routing resources. Across our suite of designs, we observe
an 8% reduction in horizontal wirelength and a 6% reduction in
vertical wirelength within each SLR due to the interposer routing
structure. The reduction is greater for designs that span a higher
number of SLRs.

5 GLOBAL SUBSYSTEMS
5.1 Global Clocking
FPGA architectures have the unique problem of supporting many
clock networks in spatially variable locations. Metal resistance
is not scaling well, so as transistor delays continue to improve,
clock delays associated with long wires do not. CPUs or ASICs
often use thick metal layers to distribute clocks. FPGAs cannot
afford this without sacrificing clocking capacity. Since clock load
locations are not pre-defined, many clocks must run throughout
the chip in parallel. In addition, FPGA architectures cannot afford
to have per-device fully customized clocking solutions. The Versal
architecture needed to be scaleable in order to support several
device variants that span an order of magnitude in size. At the same
time, clock frequencies continue to increase to keep upwith external
bandwidth demands. Clock skew as a percentage of cycle overhead
thus increases too. We used a 3-prong approach to reduce clocking
overhead: 1) adaptive clock deskew, 2) isolated clock supplies, and
3) local clock dividers.

Figure 17: Skew as a fraction of clock period as a function of
frequency

Even the most perfectly balanced clock tree incurs skew penal-
ties primarily due to process mismatch along nominally matched
paths. In order to reduce clock skew without sacrificing clocking
capacity, we implemented an adaptive clock deskew scheme that
actively modulates delays within the clock tree so that the process
variation and even topological variations are tuned out. Tradition-
ally, skew is computed based on a min/max spread of possible
arrival times set by the range that the process can vary for a given
speed grade, which becomes untenable for higher speed designs.
Adaptive deskew tunes propagation delays so that process variation
becomes a non-factor, increasing Fmax of all designs but especially
the higher performance ones. Figure 17 shows a suite of UltraScale
based customer designs that illustrate the trend of higher frequency
designs incurring greater clock skew penalties.

Versal devices are broken into a grid of fabric regions, where each
fabric region denotes clocking segmentation at its boundaries. The
number of fabric regions varies based on device from less than 10 to
over 100. The Versal adaptive deskew scheme has phase detectors
at each fabric region boundary. These phase detectors send phase
mismatch information back to a delay line and state machine within
each fabric region. Based on the phase detector feedbacks, each
fabric region auto-negotiates its own delay until the phasemismatch
at all adjacent boundaries are minimized. Figure 18b shows one

simulation result, a relative magnitude comparison where each
line represents the delay to a given fabric region over time before
and after adapative deskew is enabled. Each deskew state machine
is initially programmed by software to nominally equalize delay
from the clock source to each fabric region. Then, the adaptive
deskew system is enabled to match actual silicon delays at the fabric
region boundaries. To make the process transparent to the user, the
entire deskew process occurs as a step during configuration, using
a configuration clock, so that user clocks need not be active and
continously running.

(a) Skew improvement due to
adaptive deskew

(b) Clock injection delays per
region as adaptive deskew is
enabled

Figure 18: Impact Of Adaptive Deskew

Adaptive deskew directly minimizes region to region clock skew,
but in turn also reduces global skew. The same scheme is also
used across SSIT boundaries, so that the historically higher clock
skew between SLRs is also critically reduced. We expect to enable
registering of inter-die paths on both source and destination sides in
a system synchronous environment without causing hold violations
and needing special software support [20]. As shown in Figure 18a,
global clock skew measured in terms of setup, hold, intra or inter
die, are all expected to reduce by 60% or more.

In order to reduce clock jitter, the fabric region to region clock
spines are implemented on a more isolated supply, where decou-
pling capacitors could be added more liberally. Although clock and
data jitter are largely uncorrelated over long distances, we found
at the local level that data and clock jitter are more correlated and
thus kept the leaf level clocks on the local common supply.

Timing closure between related clocks generated from the same
source can be challenging, since in most architectures the nearest
common node from a timing perspective is at the PLL or DLL, which
can be nanoseconds away from clock loads. Designs that operate
different portions of the same logical design at frequencies which
are divided from a master frequency is now very common. We
added clock dividers to every clock leaf, which allows a single clock
to be distributed through the clock network and then multiple
frequencies generated locally at the leaf level. Inter clock skew
reduces as a result by an order of magnitude assuming the related
clock is a divided version (divide by 2,4, or 8) of the base clock.
This not only improves clock skew for paths with related clock
frequencies, but it also results in reduced global clock track demand.
In previous architectures, every variant of the master clock had to
be routed in parallel across the entire device. In Versal architecture,

we route only the single master clock and derive divided frequencies
as demanded by the placement.

To reduce clocking power, we enable designs to use dual-edge
clocking in a way that is transparent to the user. Each clock leaf
can opportunistically use its clock divider to send the clock at
half rate and then each fabric block multiplies the clock back to
its original frequency. Dual edge clocking introduces a duty cycle
distortion timing penalty overhead, so software would enable only
clock leaves that have sufficient slack to use dual-edge. Since leaf
clocks are further down the clock tree than clocks spines, there are
many more of them, and thus they consume the bulk of global clock
power (roughly 80%). Even though the clock spines send the clock
at full rate and not all clock leaves use dual-edge, total clock power
can still reduce substantially. For example, if 80% of clock leaves
can take advantage of this feature, global clock power reduces by
40%.

5.2 Network on Chip
FPGAs have been very successful in providing users with a bit level
configurable interconnect. This interconnect emulates the routing
done during the design of an ASIC in the configurable fabric of
an FPGA. The semantics that each routing resource presents to
the user are very similar to that of a routing track in ASIC design.
Such a model provides tremendous flexibility in the way users
can map their designs. But this fine level of granularity suffers
from significant loss of efficiency [21]. Secondly, increasingly larger
portions of the device resources are now being spent in managing
this communication. As was described in Section 1 this problem is
worsened by interconnect technology trends as well.

To address the issue of bit level management it makes sense to
organize data movement into wide standardized bussed interfaces.
ASICs and SoCs faced a similar problem of moving many high
bandwidth datastreams. These were initially addressed by busses.
A next step was to increase bus pipelining. This was followed by
a move to point-to-point interconnects with many independent
parallel paths. An addition to these was to fully packetize the data
and control information tomore efficiently use the wires and buffers
in the network [22]. These networks are now commonly referred to
as NoC. In packet switched NoCs, the same physical resource is used
to route communication between multiple ports, thus increasing
area efficiency.

For FPGAs, researchers have similarly proposed various tech-
niques to improve on the efficiency of bit level interconnect. These
include requiring users to reason at the word level rather than
at bit level [23], to implementing NoCs as hardened interconnect
resources on the FPGA [24–26]. In the Versal architecture, we im-
plement a hardened NoC as a separate level of interconnect aug-
menting the traditional FPGA interconnect. The traditional FPGA
interconnect continues to provide bit level flexibility, but as more
and more of the system level communication occurs in a structured
fashion, the NoC is able to absorb muchmore of the interconnect de-
mand. This separates system level communication implementation
from compute implementation. In traditional FPGA implementa-
tions, since both communication and compute were implemented
on the programmable fabric, designs with demanding interconnect
resulted in reduced compute and vice versa. Moreover, it is now not

important to co-locate where compute occurs with where commu-
nication needs of the compute are satisfied. Consider the concrete
case of a compute IP requiring access to some memory controller.
In order to close timing at high frequencies (required to support
high bandwidths), the compute would have to be placed close to the
memory controller. Alternately, the physical implementation tools
would have to be smart enough to insert on-demand pipelining.
On the other hand, with NoC, it is possible for the compute to be
implemented anywhere on the FPGA. All it needs to do is hook up
to the nearest NoC port for communication to occur at a guaranteed
bandwidth.

Figure 19 shows the topology of the NoC in relation to rest of
the device resources. The NoC topology is a compromise between
increased routing flexibility and minimal perturbation to the rest of
the fabric. Most academic NoC topologies focus on implementing a
mesh. There are several advantages of a mesh topology in terms of
routing flexibility. However, a pure mesh topology is expensive and
would be underutilized. In Versal, NoCs appear in the main fabric
as columns. In a columnar architecture, the NoC columns integrate
with the rest of the fabric just like any other block - DSP, BRAM etc
would. Each column is sized sufficiently to be able to saturate the
bandwidth of a DDR4/LPDDR4 memory controller operating at the
maximum supported speeds. At the bottom and top of the device
there are a greater number of NoC channels that interface with
the processor and the memory controllers. The reason for higher
bandwidth topologies at the top and bottom edges is to provide
some flexibility to resources that demand memory bandwidth from
more than one controller. Topologies with higher cross sectional
bandwidths at the top and bottom make compute kernel placement
an easier problem than it otherwise would have been.

Figure 19: NoC Conceptual Diagram

Figure 19 shows the blocks that make up a NoC topology. The
primary block is a four ported switch which routes traffic from
any of the four ports to any of the other ports. Peripherals such as
masters, slaves or memory controllers form the endpoints in this
topology. Masters perform either a read or a write request address-
ing any of the slaves or memory controller which in turn fulfill
these requests. Fabric ports can serve both as masters and slaves.
The physical transport is managed by the routing tables within
each switch which tell it how to route each packet. It is the task
of the NoC software layer to ensure that bandwidth demands are
met without deadlock. The NoC supports standard AXI4 memory
mapped and streaming semantics and different classes of Quality of
Service. It also supports multiple virtual channels to alleviate head
of line blocking of traffic and to aid deadlock free routing.

Within the device, the NoC provides ports that permit communi-
cation from the processor to all the peripherals. There are also NoC
ports at regular intervals in the fabric for soft implementations of

ehabm
Highlight

ehabm
Highlight

ehabm
Highlight

ehabm
Highlight

some compute to communicate either with each other or with the
peripherals. The NoC integrates the entire memory address space
of the device. Any master attached anywhere in the device, whether
via the fabric or the processor subsystem can address any other
slave in the device whether it is a port on the NoC or whether it
is a memory controller. This level of integration is extended to SSI
devices as well. All masters can address any slave in any die using
a uniform address space.

5.3 Configuration
The configuration system in Versal architecture has increased both
in terms of capabilities as well as configuration speed. By pipelin-
ing the configuration infrastructure and increasing the config bus
width, we were able to achieve an 8X speedup in terms of config-
uration time per bit. Any design that reconfigures frequently will
have less configuration overhead and more time for computation.
Readback speedups are even more pronounced at 56-300X relative
to UltraScale. This is due to a combination of configuration infras-
tructure speedup, concentrating flop state readback memory into
fewer address frames, read pipeline efficiency gains, and enabling
parallel readback of multiple dice in a device. For designs with
lower Fmax (50Mhz or less), it is possible to take snapshots of the
design state without stopping the clock.

The platform management controller (PMC) is a dedicated pro-
cessor that handles device management control functions such
as power sequencing, initialization, boot, configuration, security,
power management, and health monitoring. It consists of a hard-
ened microblaze core, boot ROM, peripheral interfaces, security
accelerators, and power management units. Similar to UltraScale de-
vices, fabric blocks are configured via a distributed array of memory
cells controlled by a grid of address and data lines. Relying on the
same system to program peripheral blocks however is problematic,
primarily because these blocks have no fixed physical relationship
with the interior fabric. An additional configuration mecahnism
was added to service these blocks that runs in tandemwith the NoC,
known as the NoC Peripheral Interface (NPI). NPI is a streamlined
packet based switch network that routes in a tree structure to the
peripheral blocks, and is seamlessly integrated into the configura-
tion sequencing. The PMC can selectively write to and poll status
registers on specific endpoints.

From a partial reconfiguration standpoint, reconfigurable region
granularity has become finer. Most reconfiguration regions are now
the size of single blocks, and blocks that share common physical
space are seperated logically to minimize loss in functionality when
requiring specific regions to reconfigure.

6 CONCLUSION
Xilinx addresses current semiconductor technological, economical,
and scalability challenges with the new 7nm ACAP heterogeneous
compute platform. The Versal™ architecture tightly integrates pro-
grammable fabric, CPUs, and software-programmable acceleration
engines into a single device that enables higher levels of software
abstraction, enabling more rapid development of hardware acceler-
ators that solve next generation problems.

REFERENCES
[1] E. Track, N. Forbes, and G. Strawn, “The End of Moore’s Law,” Computing in

Science Engineering, vol. 19, no. 2, pp. 4–6, Mar 2017.
[2] D. Patterson. The Past is Prologue: A New Golden Age For Computer

Architecture. [Online]. Available: https://cra.org/wp-content/uploads/2018/07/
2018_CRA_Snowbird_Keynote_Patterson.pdf

[3] J. Hennessy. (2018, 03) The end of road for general purpose processors
& the future of computing. [Accessed: 2018-09-12]. [Online]. Available:
https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf

[4] Y. Li, X. Zhao, and T. Cheng, “Heterogeneous computing platform based on
cpu+fpga and working modes,” in 2016 12th International Conference on Compu-
tational Intelligence and Security (CIS), Dec 2016, pp. 669–672.

[5] Xilinx, “Xilinx FPGAs to be deployed in new Amazon EC2 F1 Instances,” Xilinx
Press Releases, 2016.

[6] ——, “Baidu deploys Xilinx FPGAs in new public cloud acceleration services,”
Xilinx Press Releases, 2017.

[7] ——, “Xilinx selected by Alibaba cloud for next-gen FPGA cloud acceleration,”
Xilinx Press Releases, 2017.

[8] A. M. Caulfield, E. S. Chung, A. Putnam et al., “A cloud-scale acceleration architec-
ture,” in 2016 49th Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO), Oct 2016, pp. 1–13.

[9] L.-C. Lu, “Physical Design Challenges and Innovations to Meet Power, Speed,
and Area Scaling Trend,” in Proceedings of the 2017 ACM on ISPD. New York,
NY, USA: ACM, 2017, pp. 63–63.

[10] SDAccel development environment. [Online]. Available: https://www.xilinx.
com/products/design-tools/software-zone/sdaccel.html

[11] UltraRAM: Breakthrough Embedded Memory Integration on Ultrascale+ Devices,
Xilinx.

[12] G. Singh and S. Ahmad, “Xilinx 16nm datacenter device family with in-package
HBM and CCIX interconnect,” 2017, HotChips,.

[13] B. Farley, J. McGrath, and C. Erdmann, “An all-programmable 16-nm RFSoC for
Digital-RF communications,” IEEE Micro, vol. 38, no. 2, pp. 61–71, Mar 2018.

[14] R. Nimaiyar et al., “Xilinx DNNProcessor An Inference Engine, Network Compiler
+ Runtime for Xilinx FPGAs,” 2018, HotChips.

[15] A. K. Jain, D. L. Maskell et al., “Throughput oriented FPGA overlays using DSP
blocks,” in 2016 DATE Conference Exhibition, March 2016, pp. 1628–1633.

[16] “GRVI Phalanx on Xilinx Virtex Ultrascale+: A 1,680-core, 26 mb risc-v parallel
processor overlay,” in 3rd International Workshop on Overlay Architectures For
FPGAs, 2016.

[17] D. Lewis, G. Chiu, J. Chromczak et al., “The Stratix™10 highly pipelined FPGA
architecture,” in Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016,
pp. 159–168. [Online]. Available: http://doi.acm.org/10.1145/2847263.2847267

[18] I. Ganusov and B. Devlin, “Time-borrowing platform in the Xilinx Ultrascale+
family of FPGAs and MPSoCs,” in 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), Aug 2016, pp. 1–9.

[19] C. Ravishankar, D. Gaitonde, and T. Bauer, “Placement strategies for 2.5D FPGA
fabric architectures,” in 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), Sept 2018.

[20] C. Ravishankar, H. Fraisse, and D. Gaitonde, “SAT based Place-And-Route for
High-Speed Designs on 2.5D FPGAs,” in 2018 International Conference on Field-
Programmable Technology, Dec 2018.

[21] I. Kuon and J. Rose, “Measuring the gap between FPGAs andASICs,” in Proceedings
of the 2006 ACM/SIGDA 14th International Symposium on FPGAs, ser. FPGA ’06.
New York, NY, USA: ACM, 2006, pp. 21–30.

[22] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inteconnection
networks,” in Proceedings of the 38th Annual DAC, ser. DAC ’01. New York, NY,
USA: ACM, 2001, pp. 684–689.

[23] A. Ye and J. Rose, “Using Bus-based Connections to Improve Field-Programmable
Gate-Array Density for Implementing Datapath Circuits,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 14, no. 5, pp. 462–473, May 2006.

[24] R. Gindin, I. Cidon, and I. Keidar, “NoC-based FPGA: Architecture and routing,”
in First International Symposium on Networks-on-Chip (NOCS’07), May 2007, pp.
253–264.

[25] G. Schelle and D. Grunwald, “Exploring FPGA network on chip implementations
across various application and network loads,” in 2008 International Conference
on Field Programmable Logic and Applications, Sept 2008, pp. 41–46.

[26] M. S. Abdelfattah and V. Betz, “Design tradeoffs for hard and soft FPGA-based
networks-on-chip,” in 2012 International Conference on Field-Programmable Tech-
nology, Dec 2012, pp. 95–103.

https://cra.org/wp-content/uploads/2018/07/2018_CRA_Snowbird_Keynote_Patterson.pdf
https://cra.org/wp-content/uploads/2018/07/2018_CRA_Snowbird_Keynote_Patterson.pdf
https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://doi.acm.org/10.1145/2847263.2847267

	Abstract
	1 Introduction
	2 Floorplan
	2.1 Hardened Features
	2.2 Perimeter IO
	2.3 Regularity

	3 Programmable Fabric
	3.1 CLB
	3.2 Local Interconnect
	3.3 Imux Registers

	4 SSIT
	4.1 SLL Interface Architecture
	4.2 Intra-SLR Routing

	5 Global Subsystems
	5.1 Global Clocking
	5.2 Network on Chip
	5.3 Configuration

	6 Conclusion
	References

