
Map workloads and functions to programmable logic and
Versal AI Engines

Functions that move and reorder data run efficiently in programmable logic.

Filtering and Fourier transformations have inherent parallelism that can be

vectorized, so they map efficiently to the Versal AI Engines.

1

PROGRAMMABLE LOGIC
(PROGRAMMABLE GATE ARRAY)

VERSAL AI ENGINES
(PROGRAMMABLE VECTOR ARRAY)

DMA stream

Output permute

Input permute

Cyclic shift

DMA stream

Filter bank

Discrete Fourier
transformation (DFT)

Develop and simulate in the Vitis platform2

Implement and instantiate Versal AI Engine kernels3

Integrate and interconnect via Graph C code4

Compile, simulate, and debug5

Export package for use in the AMD Vivado™ Design Suite6

Compile
hybrid design

Run export to
Vivado Design Suite

from the
Vitis platform

NO

YES

EVALUATE AI ENGINES
IN AMD VERSAL ADAPTIVE SoCs

Versal AI Engines are available as options in several Versal adaptive SoCs:

Versal™ AI Core Series | Versal™ AI Edge Series | Versal™ Premium Series

//call filter bank function

polyphase_fir(TT_COEFF (&taps0_i)[NUM_POLY*TAPS_PER_PHASE],

TT_COEFF (&taps1_i)[NUM_POLY*TAPS_PER_PHASE]);

//implement discrete fourier transform

template<class TT_DATA,class TT_COEFF,class TT_ACC,unsigned NSAMP>

dft_1xN_input<TT_DATA,TT_COEFF,TT_ACC,NSAMP>::dft_1xN_input(TT_COEFF
(&coeff0_i)[8], TT_COEFF (&coeff1_i)[8])

 : coeff0(coeff0_i), coeff1(coeff1_i)

{

 aie::set_rounding(aie::rounding_mode::positive_inf);

 aie::set_saturation(aie::saturation_mode::saturate);

}

polyphase_fir_graph(std::vector<typename TT_KERNEL::COEFF> tapsA_i,

			 std::vector<typename TT_KERNEL::COEFF> tapsB_i)

{

k_fir = kernel::create_object<TT_KERNEL>(tapsA_i, tapsB_i);

source(k_fir) = ″polyphase_fir.cpp″;

runtime<ratio>(k_fir) = 0.9;

connect<stream,stream>(sig_i[0], k_fir.in[0]);

connect<stream,stream>(k_fir.out[0], sig_o[0]);

}

Build with Vitis
C/C++ libraries,

APIs, and intrinsics

Simulate
and debug

Performing
as expected?

Dive Deeper

START DESIGNING
Learn more about programming Versal adaptive SoCs, then experiment
with shifting DSP algorithms and functions to Versal AI Engines for

acceleration of your high-performance signal processing system.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Versal, Vitis, Vivado, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

in the United States and other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective owners.

A quick guide for FPGA architects and engineers

AMD Versal™ AI Engines are programmable arrays of vector processors
that are ideal for compute-intensive workloads. Programming AI Engines
requires a different methodology than traditional FPGAs, but the AMD Vitis™
development platform makes programming easy.

When the AI Engine design is completed within the Vitis platform, the design
can be exported and integrated into a larger system using AMD Vivado™
design tools.

Let’s see how it works by exploring how to program a polyphase channelizer.

HOW TO PROGRAM
AMD VERSAL™ AI ENGINES

IN SIX STEPS

https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal/ai-core-series.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal/ai-edge-series.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal/premium-series.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis/vitis-aie.html?utm_source=infographic&utm_medium=referral&utm_campaign=aie-dsp&utm_content=landing

