

Agenda

- 1. AMD Cost-Optimized Portfolio Overview
- 2. AMD Spartan™ UltraScale+™ FPGA Family
- 3. Simplify Your Design with Vivado
- 4. Design Once with Long Lifecycle
- 5. Application Examples
- 6. Timelines & Next Steps

AMD Cost-Optimized Portfolio Applications

Al-Enabled ADAS

LiDAR Platforms

Medical Imaging

Robotics

Video Collaboration

BROAD AMD PORTFOLIO TO ADDRESS DIVERSE NEEDS

AMD Spartan™ Ultrascale+™ FPGA

AMD SPARTAN™ ULTRASCALE+™ FPGA

High I/O, Low Power & State-of-the-Art Security Features

- Industry's highest I/O to logic cell ratio ≤28nm, enabling cost reduction for I/O-intensive applications
- Up to 30% power reduction¹ with 16 nm FinFET & power efficiency via hardened DDR and PCIe®
- Most security features in AMD Cost-Optimized Portfolio, NIST approved Post-Quantum Cryptography

Accelerate Time to Market with Proven Design Tools

- Tools leadership since 2012 with AMD Vivado™ Design Suite
- One tool covering simulation to verification for entire FPGA portfolio²

Design Once with a Trusted Supplier

- Nearly 40 years in the FPGA market & billions of devices shipped
- >15 years product lifecycle and in-field upgradeability for maximum design longevity

AMD SPARTAN™ ULTRASCALE+™ FPGA: OPTIMIZED FOR THE EDGE

Proven 16 nm Technology

Low Power

• 16 nm FinFET & hard DDR, PCle®

Block RAM and UltraRAM

Up to 26 Mb of on-chip memory

Transceivers and PCle®

- Up to 8 GTH with 16.3 Gb/s
- PCIe® Gen4 x8

Digital Signal Processing

- Up to 384 DSP48E2 blocks
- Floating / fixed point support

Future-Ready Capabilities

Flexible I/O Interfaces

- Up to 572 I/Os, 3.3V support
- 3.2G MIPI D-PHY

State-of-the-Art Security

- Post-Quantum Crypto (PQC) ready
- PPK/SPK, TRNG, PUF

Hard Memory Controller

- LPDDR4x/5 up to 4266 Mb/s
- First UltraScale+ with LPDDR5

Small Form Factor

- CSP and BGA packages
- As small as 10x10 mm

AMD SPARTAN™ ULTRASCALE+™ FAMILY PRODUCT TABLE

Edge Sensing and Control

Board Management Controller

I/O Expansion

Device	SU10P	SU25P	SU35P	SU50P	SU55P	SU65P	SU100P	SU150P	SU200P
LUTs (K)	5	10	16	24	24	30	46	63	100
Logic Cells (K)	11	22	36	52	52	65	100	137	218
Max. Total I/O	304	304	304	388	352	478	478	572	572
I/O to LC Ratio	27	13	8	7	6	7	4	4	2
Total On-chip Memory (Mb)	1.77	1.84	1.93	2.91	2.91	4.31	5.89	11.65	26.79
Hard IP (DDRMC / PCIe®)	-	-	-	-	2/-	2/1	2/1	2/2	2/2
# GTH Transceiver	-	-	-	-	-	4	4	8	8
Smallest Package	10x10	10x10	10x10	12x12	12x12	12x12	12x12	23x23	23x23

DESIGNED TO FACILITATE EFFECTIVE INTERFACING

Highest I/O to Logic Cell Ratio

I/O Expansion & Baseboard Management Controller (BMC)

Datacenter BMC

2.4X I/O to LC ratio vs. AMD Artix™ 7 FPGA

3.5X I/O to LC ratio vs. AMD Spartan™ 7 FPGA

Increased Connectivity and Flexibility

Any-to-Any Connectivity for Edge Sensing and Control

2.5X Transceiver Bandwidth vs. AMD Artix 7 FPGA

4X MIPI Bandwidth vs. AMD Spartan 7 / Artix 7 FPGAs

Industry's highest I/O to Logic Cell Ratio for 28nm and newer FPGAs

AMD SPARTAN™ ULTRASCALE+™ FPGA INTERFACES ARE THE FASTEST IN COP

Feature	AMD Spartan™ 6 Spartan 7 FPGA FPGA		AMD Artix™ 7 FPGA	Artix UltraScale+™ FPGA	Spartan UltraScale+ FPGA	
MIPI (Mbps)	Mbps) 800 800		800	1500	3200	
MIPI DPHY	Re	quires external resistor net	Native	Native		
DDR*	DDR2-800 (Hard MC)	DDR3-800 (Soft MC)	DDR3-800 (Soft MC)	DDR4-1866 (Soft MC)	DDR4-2400 (Soft MC) and LPDDR4x/5-4266 (Hard MC)	
Transceiver Speed (Gbps)	3.2	3.2 -		16.3	16.3	
PCI Express®	Gen1 x1 (Soft IP with external PHY)	Gen1 x1 (Soft IP with external PHY)	Gen2 x4 (Hard IP)	Gen4 x8 (Hard IP)	Gen4 x8 (Hard IP)	

^{*} DDR and LVDS are based on -2 speed grades

COMPREHENSIVE VO CAPABILITIES

	HDIO	HPIO	XPIO	XP5IO
AMD Spartan™ US+ FPGA	✓	✓	Х	✓
AMD UltraScale+™ FPGA	✓	✓	Х	X
AMD Versal™ Adaptive SoC	✓	X	✓	X
Bank Size	42/84 pin	52 pin	54 pin	66 pin
Total IO Pin Count	100 – 336	52 - 104	30 - 2064 (SSIT)	0 - 132
Voltages	1.2v – 3.3v	1.2v – 1.8v	0.6v – 1.5v	0.5v – 1.5v
Max Data Rate*	250 Mb/s	1600 Mb/s	1800 Mb/s	1800 Mb/s
		High speed IO features (e.g.	High speed IO features (e.g. High speed IO features (e.g.	
Key Features	Higher Voltage Range	Delay, serialization,	Delay, serialization,	Delay, serialization,
		termination)	termination)	termination)

LOW POWER: 16 NM FINFET AND HARDENED INTERFACE IP

See Endnotes SUS-003, SUS-004, SUS-005, SUS-006, SUS-007, SUS-008 1: AMD Projection

ADVANTAGES FOR EXISTING SPARTAN 6 CUSTOMERS

See Endnotes SUS-012, SUS-013 1: AMD Projection

MINIMIZING FOOTPRINT WITH ADVANCED PACKAGING

Small Form Factor Up to 70% less PCB area

Improved Thermal Dissipation
Low power and simplified mechanicals

Device	Ch	Chip Scale Package		Integrated Fan Out Package		
Size (mm)	9x9	10x10	12x12	11.5x9.5	9.5x15	9.5x16
AU7P	✓					
AU10P				✓		
AU15P				✓		
SU10P		✓	✓			
SU25P		✓	✓			
SU35P		✓	✓			
ZU1					✓	
ZU2						✓
ZU3						✓

Standard BGA Package

Chip Scale Package

InFO Package

OPTIMIZING FOR COST BY SIZING DOWN

Cost Reduction for I/O Intensive Applications

AMD Spartan[™] 7 FPGA Design 210 GPIO

Spartan UltraScale+™
FPGA Design
220 GPIO

Cost Reduction via Hardened Memory Controllers

AMD Artix™ 7
FPGA Design
50K LC User Logic
+
30K LC Soft DDR
Memory Controller

Spartan UltraScale+
FPGA Design
50K LC User Logic
+
Hardened LPDDR5
Memory Controller

STATE-OF-THE-ART SECURITY FEATURES

Protect Your IP

- PQC with NIST-approved algorithms
- AES-GCM for secure configuration
- PUF for unique device identification and improved physical security

Prevent Tampering

- Customizable Tamper Responses incl. permanent penalty to protect the device against misuse
- DPA countermeasures for sidechannel attacks

Maximize Uptime

- Enhanced SEU performance for increased reliability
- In-field temperature and voltage monitoring

AMD Spartan™ UltraScale+™ FPGAs have the most security features in the Cost-Optimized Portfolio

See Endnotes SUS-002

MAINTAINING SECURITY PRIOR TO OPERATION

PASSIVE FEATURES	AMD Spartan™ 6 FPGA	AMD 7 Series FPGAs and Adaptive SoCs	AMD UltraScale+™ FPGAs and Adaptive SoCs	AMD Spartan UltraScale+ FPGA
Confidentiality w/ AES-256 (eFUSE)	✓	✓	✓ GCM	✓ GCM
Secure Configuration of PL – RISC V Root of Trust	✓	✓	✓	✓
Hardened Readback Disable	✓	✓	✓	✓
Symmetric Key Authentication		✓	✓	✓
Public Key (Asymmetric) Authentication			✓	✓
DPA Resistant			✓	✓
Black / Obfuscated Key Load				✓
Post-Quantum Cryptography (PQC)				✓
Primary/Secondary Public Key Cryptography				✓

Upgraded Pre-configuration Security Features (Before Booting Bitstream)

MAINTAINING SECURITY DURING OPERATION

ACTIVE FEATURES	AMD Spartan™ 6 FPGA	AMD 7 Series FPGAs and Adaptive SoCs	AMD UltraScale+™ FPGAs and Adaptive SoCs	AMD Spartan UltraScale+ FPGA
Single Event Upset (SEU) Checking	✓	✓	✓	✓
JTAG Disable/Monitor (BSCAN)	✓	✓	✓	✓
Unique Identifier (Device DNA)	✓	✓	✓	✓
Unique Identifier (User eFUSE)		✓	✓	✓
On-chip Temperature/Voltage Monitors		✓	✓	✓
PROGRAM_B Intercept		✓	✓	✓
Tamper Event Logging			✓	✓
Permanent JTAG Disable			✓	✓
Permanent Decryptor Disable			✓	✓
Permanent Tamper Penalty			✓	✓
Physical Unclonable Function (PUF)				✓
True Random Number Generator (TRNG)				✓

Upgraded Post-configuration Security Features (After Booting Bitstream)

IMPROVED CONFIGURATION WITH AMD SPARTAN™ ULTRASCALE+™ FPGA

Design Priority	Configuration Mode	AMD Spartan™ 6 FPGAs	AMD 7 Series FPGAs	AMD Kintex™ & Virtex™ UltraScale™ FPGAs Artix™, Kintex, & Virtex UltraScale+™ FPGAs	Spartan UltraScale+ FPGAs
	Slave Serial (x1)	Yes	Yes	Yes	Yes
Minimum Cost with no flash	Slave SelectMAP (x8, x16, x32)	Yes (x8, x16)	Yes	Yes	Yes
nach	JTAG (x1)	Yes	Yes	Yes	Yes
Increasing	Master SPI/QSPI (x1, x2, x4)	Yes	Yes	Yes	Yes
Performance with serial	Master Dual QSPI (x8)	No	No	Yes	No
NOR flash	Master OSPI (x8)	No	No	No	Yes

AMD SPARTAN™ ULTRASCALE+™ FPGA VS. ARTIX™ ULTRASCALE+ FPGA

AMD Artix™ UltraScale+™ FPGA

Device	SU10P	SU25P	SU35P	SU50P	SU55P	SU65P	SU100P	SU150P	SU200P
Logic Cells (K)	11	22	36	52	52	65	100	137	218
Max. Total I/O	304	304	304	388	352	478	478	572	572
I/O to LC Ratio	27	13	8	7	6	7	4	4	2
Total On-chip Memory (Mb)	1.77	1.84	1.93	2.91	2.91	4.31	5.89	11.65	26.79
Hard IP (DDRMC / PCIe®)	-	-	-	-	2/-	2/1	2/1	2/2	2/2
# GTH Transceiver	-	-	-	-	-	4	4	8	8
Smallest Package	10x10	10x10	10x10	12x12	12x12	12x12	12x12	23x23	23x23

AMD SPARTAN™ ULTRASCALE+™ FPGA VS. ARTIX™ ULTRASCALE+ FPGA

AMD T SPARTAN

UltraScale+

Lower Densities

Overlapping Logic Density							
60-80K LC	100K LC	150K LC	200K LC				
SU65P	SU100P	SU150P SU200P					
	Hard Memory Con	troller LPDDR4x/5	5				
	Security (Upgrades					
1x PCIe®	Gen4x4	2x PCle® Gen4x4 or 1x Gen4x8					
3.2G MIPI							
	Higher 3.3V to	Logic Cell Ratio					

AU7P	AU10P	AU15P	AU20P		
	> 8 0	ivers			
9x9mm Pkg	InFO for Best The				
1x PCle® Gen3x4	1x PCle®	1x PCIe® Gen3x8			
Higher DSP to Logic Cell Ratio					

LEADERSHIP IN TOOLS WITH AMD VIVADO™ Design TOOLS

ACCELERATE TTM WITH PROVEN VIVADO™ DESIGN TOOLS

Industry Challenges

Developer Efficiency

AMD Approach

- Single tool supporting entire portfolio¹
- >100 Soft IPs in catalog
- Example designs and trainings

- Single tool for the entire design cycle
- Fast design iterations
- Worldwide technical support

- Proven performance over PVT
- Advanced design analysis
- Functional safety certified

ONE TOOL: LESS COMPLEXITY FROM SIMULATION TO DEBUG

STATUS QUO - FRAGMENTED FLOW Third Party 2 FPGA Vendor Synthesis Place & Route Third Party Optimization Simulation Debug Scattered 3rd Requires support Each tool, a party tools for from multiple separate training one design vendors

AMD APPROACH - UNIFIED FLOW

TRUSTED COP FPGA PROVIDER WITH PROVEN PRODUCT LIFECYCLES

LONG-TERM INVESTMENT IN COST-OPTIMIZED PORTFOLIO

APPLICATION EXAMPLES

AMD SPARTAN™ ULTRASCALE+™ FPGA APPLICATION EXAMPLES

Industrial

- Factory Automation, Robotics
- IIoT Gateways & Edge Appliances
- Smart City, Smart Grid
- HMI and Machine Vision

Data Center

- Board Management Controller
- Compute Acceleration
- Network Acceleration
- Hyperscale Storage

Medical

- Smart Patient Monitor
- Ultrasound, CT/MRI Scan
- Multi-Stream Endoscopy
- Robot-Assisted Surgery

AV and Broadcast

- Professional AV (Streaming, LED Walls, KVM, and Pro Audio)
- Broadcast (Switchers/Routers, Video Processing, Cameras)

Comms

- 4G and 5G Wireless Infrastructure
- Board Controller
- Access Network and Connectivity

Test and Measurement

- Semiconductor ATE
- T&M Instrumentation
- Wired & Wireless Testers

VERSATILE DATA ACQUISITION AND EDGE PROCESSING

Data Acquisition Application Requirements

Spartan™ UltraScale+™ FPGA Capabilities

- Parallelization and independent real-time monitoring for sensor aggregation
- Efficient processing at the edge
- Interface to the host processing system
- Maintain low power profile and protect data

- PL Architecture with up to 572 flexible I/Os supporting LVDS for ADC interface.
- Combination of 26.79Mb on-chip memory and DSP slices for FFT
- Rich AMD IP portfolio including PCIe and Ethernet scalable networking
- Its low-power consumption, and advanced security features

MACHINE VISION AND VIDEO CAPTURE CARDS

Machine Vision Application Requirements	S	partan™ UltraScale+™ FPGA Capabilities
High-performance I/O for >20 MP image sensor		HPIO, XP5IO and 3.3V I/O with SLVS-EC high-speed sensor support (40G bandwidth), LVDS, and 3.2G MIPI
Real-time transfer and high-efficiency storage		PCIe® Gen4 and hard memory controllers LPDDR4x/5 to transfer and store high-quality baseband video.
Standards for 10GigE Vision, CoaXpress 2.0 and PCIe		AMD and partner soft IP for many vision standards.

DATA CENTER SERVER I/O AND BOARD MANAGEMENT CONTROLLER

BMC Application Requirements

- Space constrained and low power requirement
- Monitor voltages and temperature, adjust fans and thermal solutions, emergency shut down if necessary
- Allow fast reporting back to the data center
- Enable remote upgrade the firmware

Spartan™ UltraScale+™ FPGA Capabilities

- FPGA can provide power management solutions and small form factor for entire BMC on a single chip
- Flexible I/Os, diverse peripherals and internal Sysmon allow the FPGA to monitor external and internal events
- Reference design as a general board-management controller supporting various communication standard protocols
- Sophisticated configuration methods allows fail safe upgrade

AMD together we advance_

GETTING STARTED AND NEXT STEPS

GETTING STARTED MILESTONES AND AVAILABLE ASSETS

Product Launch (March'24)	Early Access Program (NOW)	Production (Mid'25)
Adaptive Computing Blog	Overview Datasheet	Silicon Production Shipping
Infographic & Listicle	Architecture Manuals	Tools Production Support
COP Portfolio <u>eBook</u>	Mechanical Drawings and Pinouts	Evaluation Kits Shipping
Product & Solution Briefs	 AC/DC Switching Characteristics 	
Product <u>Webpage</u>	Power Delivery Solution	
UltraScale Architecture & Product <u>Data Sheet</u>	Tools Early Access	

START WORKING ON POWER DELIVERY SOLUTIONS

Strategic Power Partnerships

- Power reference designs to springboard your solution
- Design for low cost, low BOM & high channel integration
- High frequency switching regulators to reduce inductor size
- Single PMIC solutions
- Telemetry enabled power management for battery power applications

PDM Power Design Tab Support

- Dynamic decoupling capacitor calculations and recommended P/Ns
- Power rail consolidation images & power sequencing diagrams
- Simplified power specification details based on user requirement
- Step load estimations calculated on dynamic currents

Power Rail Characteristics	s						
Supply	Voltage	Min Voltage	Max Voltage	Static (A)	Dynamic (A)	Total (A)	Powerup (A)
System Auxiliary							
VCCAUX	1.800	1.746	1.854	0.016	0.118	0.134	
VCCAUX_IO	1.800	1.746	1.854	0.011	0.162	0.173	
VCCAUX_IO_HP	1.800	1.746	1.854	0.011	0.000	0.011	
System Core							
VCCINT_IO	0.850	0.825	0.875	0.013	0.216	0.229	
Programmable Logic Core							
VCCINT	0.850	0.825	0.875	0.035	2.043	2.079	
VCCBRAM	0.850	0.825	0.875	0.001	0.000	0.001	0.065
Programmable Logic IO							
VCC0 1.5V	1.500	1.455	1.545	0.000	0.000	0.000	
VCC0 1.35V	1.350	1.310	1.391	0.000	0.000	0.000	
VCC0 1.2V	1.200	1.164	1.236	0.000	0.166	0.166	
VCCO 1.0V	1.000	0.970	1.030	0.000	0.000	0.000	
VCC0 3.3V	3.300	3.201	3.399	0.000	0.000	0.000	
VCC0 2.5V	2.500	2.425	2.575	0.000	0.000	0.000	
VCC0 1.8V	1.800	1.746	1.854	0.000	0.022	0.022	
Other							
VCCADC	1.800	1.746	1.854	0.008	0.000	0.008	

START PROTOTYPING WITH ULTASCALE+ BOARDS TODAY

Avnet AUBoard 15P Development Kit

Featuring the AMD Artix™ UltraScale+™ AU15P device

Feature List

- Targets XCAU15P-2FFVB676E device
- 170K logic cells, 10/100/1000 Ethernet, as well as 2 GB DDR4 RAM
- GPIO switches and LEDs
- Click I/O expansion
- 64 MB QSPI flash
- FMC LPC with 4 transceivers
- HDMI™ 2.0 Rx & Tx, SFP+ 10 GbE interface

PCIe® Gen4 x4 card edge interface

Target Applications

- Embedded vision
- Wired communications
- Industrial networking

Product Page

Avnet ZUBoard 1CG MPSoC Development Kit

Featuring the AMD Zynq™ UltraScale+ ZU1CG device

Feature List

- Targets XCZU1CG-1SBVA484E device
- Dual-core Arm® Cortex®-A53 MPCore and Dual-core Arm Cortex-R5F MPCore
- 81.9K logic cells, USB 2.0 Host, 10/100/1000 Ethernet, as well as cache and on-chip memory
- 1 GB of LPDDR4 with nonvolatile boot options in the 256 Mb QSPI flash or a microSD card slot
- A microUSB port provides onboard JTAG/UART access

Three high-speed expansion ports and one Click Board

Target Applications

Artificial intelligence and Machine learning

- Embedded processing
- Robotics

Product Page

\$159

NEXT STEPS

Check the AMD Webpages for More Information

- Visit the AMD Spartan UltraScale+ FPGA webpage: <u>https://www.amd.com/spartan-ultrascale-plus.html</u>
- Learn how AMD stacks on top of the competition: https://www.amd.com/en/products/adaptive-socs-and-fpgas/cost-optimized-portfolio/scale-above-the-rest.html

Engage in our AMD Spartan™ UltraScale+™ EA Program

- Set up NDA agreement to receive our roadmap updates
- Talk to your FAE about AMD Spartan™ UltraScale+™ FPGA Designs

Experiment with Cost-Optimized Evaluation Kits

- Avnet ZUBoard 1CG: www.avnet.me/zuboard-1cg
- Avnet AUBoard 15P: www.avnet.me/auboard-15p

AMD SPARTAN™ ULTRASCALE+™ FPGA

High I/O, Low Power & State-of-the-Art Security Features

- Industry's highest I/O to logic cell ratio ≤28nm, enabling cost reduction for I/O-intensive applications
- Up to 30% power reduction¹ with 16 nm FinFET & power efficiency via hardened DDR and PCIe®
- Most security features in AMD Cost-Optimized Portfolio, NIST approved Post-Quantum Cryptography

Accelerate Time to Market with Proven Design Tools

- Tools leadership since 2012 with AMD Vivado™ Design Suite
- One tool covering simulation to verification for entire FPGA portfolio²

Design Once with a Trusted Supplier

- Nearly 40 years in the FPGA market & billions of devices shipped
- >15 years product lifecycle and in-field upgradeability for maximum design longevity

Available H1'25

AMDI

ENDNOTES

- Based on AMD internal analysis December 2023, comparing the total I/O to logic cell ratios in the AMD product data sheets for AMD Spartan™ UltraScale+™ FPGAs to previous generations of AMD Cost-Optimized FPGAs. (SUS-01)
- Based on AMD internal analysis in December 2023, using the product data sheets to compare the number of security features in Spartan UltraScale+ FPGAs to previous generation AMD Cost-Optimized FPGAs. (SUS-02)
- Projection is based on AMD labs internal analysis in January 2024, using Total Power calculation (Static plus Dynamic power) based on the difference in logic cell count of an AMD Artix™ UltraScale+ AU7P FPGA, to estimate the power of a 16 nm AMD Spartan UltraScale+ SU35P FPGA versus a 28 nm AMD Artix 7 7A35T FPGA, using Xilinx Power Estimator (XPE) tool version 2023.1.2. Actual Total Power will vary when final products are released in market, based on configuration, design, usage, and other factors. (SUS-03)
- Projection is based on AMD labs internal analysis in January 2024, using nine different designs on two devices Artix UltraScale+ AU10P FPGA as a scale to Spartan UltraScale+ FPGA versus a 28 nm Artix 7 7A100T FPGA that were run at different clocks for F_{max} calculation. The constraints were set so that the device runs at its max performance. Performance results may vary based on configuration, design, usage, and other factors. (SUS-04)
- Based on AMD internal analysis of the product datasheets for a 16 nm AMD Spartan UltraScale+ SU35P FPGA versus a 28 nm Artix 7 7A35T. Actual I/O performance will vary based on configuration, design, usage, and other factors. (SUS-05)
- Projection is based on AMD internal analysis, as of January 2024, using a Total Power calculation (Static plus Dynamic power) based on the logic scale count of an Artix UltraScale AU7P FPGA to estimate the total power of Spartan UltraScale+ SU200P FPGA versus Artix 7 7A200T FPGA, using Xilinx Power Estimator (XPE) tool version 2023.1.2. Actual Total power interfacing may vary when products are released in market based on configuration, design, usages, and other factors. (SUS-06)

ENDNOTES

- AMD Spartan™ UltraScale+™ FPGA SU200P FPGA memory controller bandwidth based on the data sheet against 28 nm AMD Artix™ 7 7A200T FPGA. (SUS-07)
- Spartan UltraScale+ FPGA SU200P PCIe® bandwidth based on the data sheet against 28nm Artix 7 7A200T FPGA. (SUS-08)
- Based on data sheet comparison of the AMD Spartan UltraScale+ SU10P FPGA to the Spartan 7 7S50 FPGA and calculating cost savings per I/O based on AMD list prices as of February 2024, for user designs requiring at least 200 GPIO. Prices subject to change, results may vary. (SUS-09)
- Based on data sheet comparison of the Spartan UltraScale+ SU55P FPGA versus the Artix 7 7A100T FPGA, calculating a reduction in programmable logic requirements of the Spartan UltraScale+ SU55P FPGA and the resulting cost savings using AMD list prices as of February 2024. Prices are subject to change, results may vary. (SUS-10)
- Based on product datasheets for AMD Spartan UltraScale+ FPGAs versus Efinix, Intel, Lattice, and Microchip, as of February 2024, comparing the total I/O to logic cell ratios of comparable 28 nm and lower node size FPGAs. (SUS-11)
- Projection is based on AMD labs internal analysis in March 2024, using total power calculation (static plus dynamic power) based on the difference in logic cell count of an AMD Artix UltraScale+ AU7P FPGA, to estimate the power of a 16nm AMD Spartan™ UltraScale+™ SU35P FPGA versus a 45nm AMD Spartan 6 6SLX45 FPGA, using Xilinx Power Estimator (XPE) tool version 2023.1.2. Actual Total power will vary when final products are released in market, based on configuration, usage, and other factors. (SUS-12)
- Projection is based on AMD labs internal analysis in January 2024, using 9 different designs on two devices Artix UltraScale+ AU10P FPGA as a scale to Spartan UltraScale+ FPGA versus a 28nm Artix 7 7A100T FPGA. that were run at different clocks for fmax calculation. The constraints were set so that the device runs at its max performance. Performance results may vary based on configuration, usage, and other factors. (SUS-13)

together we advance_

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, **Artix, Kria, Kintex, Microscale, Spartan, UltraScale, Versal, Vitis, Virtex, Vivado, Zynq,**, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Appendix: Product Table

AMD Spartan™ UltraScale+™ FPGA Product Table

		SU10P	SU25P	SU35P	SU50P	SU55P	SU65P	SU100P	SU150P	SU200P
Logic CLB	ogic Cells (K)	11	22	36	52	52	65	100	137	218
	Flip-Flops (K)	10	20	32	48	48	60	92	126	200
	\ /								63	100
Max. Distribu	ted RAM (Mb)									1.99
Total Blo	ock RAM (Mb)	1.7	1.7	1.7	2.5	2.5	3.8	5.1	5.9	6.8
36K Bloc	k RAM Blocks	48	48	48	72	72	108	144	168	192
Total L	JltraRAM (Mb)	0	0	0	0	0	0	0	4.5	18.0
288K Ultı	aRAM Blocks	0	0	0	0	0	0	0	16	64
Integrated Mem	ory Controller	0	0	0	0	2	2	2	2	2
Clock Mgm				2	2	4	5	5	6	6
	DSP Slices	24	36	48	96	96	144	144	384	384
PC	IE4CE Blocks	0	0	0	0	0	1x Gen4x4	1x Gen4x4		1x Gen4x8 or 2x Gen4x4
Max. Single-	Ended HD I/O	252	252	252	336	168	294	294	336	336
		52	52	52	52	52	52	52	104	104
		0	0	0	0	132	132	132	132	132
GTH Transceive	rs (16.3 Gb/s)	0	0	0	0	0	4	4	8	8
Platform		✓	✓	✓	✓	✓	✓	✓	✓	✓
	Extended					-1, -2			!	
·										
Dimensions (mm)										
10x10	0.5	168, 52, 0, 0	168, 52, 0, 0	168, 52, 0, 0						
		252, 52, 0, 0	252, 52, 0, 0	252, 52, 0, 0	280, 52, 0, 0					
12x12										
19x19						120, 52, 132, 0	120, 52, 132, 0	120, 52, 132, 0		
21x21	0.8	252, 52, 0, 0	252, 52, 0, 0	252, 52, 0, 0	336, 52, 0, 0					
23x23	0.8					168, 52, 132, 0	224, 52, 132, 4	224, 52, 132, 4	224, 52, 132, 4	224, 52, 132, 4
23x23	0.8						120, 52, 132, 4	120, 52, 132, 4	120, 104, 132, 8	120, 104, 132, 8
27x27	0.8						294, 52, 132, 4	294, 52, 132, 4	294, 104, 132, 8	294, 104, 132, 8
35x35	1.0						294, 52, 132, 4	294, 52, 132, 4	336, 104, 132, 8	336, 104, 132, 8
	System L CLB Max. Distribut Total Blo 36K Bloc Total L 288K Ulti Integrated Mem Clock Mgm PC Max. Single-	Integrated Memory Controller Clock Mgmt Tiles (CMTs) DSP Slices PCIE4CE Blocks Max. Single-Ended HD I/O Max. Single-Ended HP I/O Max. Single-Ended XP5IO GTH Transceivers (16.3 Gb/s) Platform Management Controller Extended Industrial Dimensions (mm) Ball Pitch (mm) 10x10 0.5 12x12 0.5 12x12 0.5 19x19 0.8 21x21 0.8 23x23 0.8 23x23 0.8 27x27 0.8	System Logic Cells (K) 11 CLB Flip-Flops (K) 10 CLB LUTs (K) 5 Max. Distributed RAM (Mb) 0.07 Total Block RAM (Mb) 1.7 36K Block RAM Blocks 48 Total UltraRAM (Mb) 0 288K UltraRAM Blocks 0 Integrated Memory Controller 0 Clock Mgmt Tiles (CMTs) 2 DSP Slices 24 PCIE4CE Blocks 0 Max. Single-Ended HD I/O 252 Max. Single-Ended XP5IO 0 GTH Transceivers (16.3 Gb/s) 0 Platform Management Controller √ Extended Industrial √ Dimensions (mm) Ball Pitch (mm) 10x10 0.5 168, 52, 0, 0 12x12 0.5 252, 52, 0, 0 12x12 0.5 252, 52, 0, 0 19x19 0.8 21x21 0.8 23x23 0.8 23x23 0.8 27x27 0.8 252, 52, 0, 0	System Logic Cells (K) 11 22 CLB Flip-Flops (K) 10 20 CLB LUTS (K) 5 10 Max. Distributed RAM (Mb) 0.07 0.14 Total Block RAM (Mb) 1.7 1.7 36K Block RAM Blocks 48 48 Total UltraRAM (Mb) 0 0 288K UltraRAM Blocks 0 0 Integrated Memory Controller 0 0 Clock Mgmt Tiles (CMTs) 2 2 DSP Slices 24 36 PCIE4CE Blocks 0 0 Max. Single-Ended HD I/O 252 252 Max. Single-Ended XP5IO 0 0 GTH Transceivers (16.3 Gb/s) 0 0 Platform Management Controller √ √ Extended Industrial √ √ Dimensions (mm) Ball Pitch (mm) √ 10x10 0.5 168, 52, 0, 0 252, 52, 0, 0 12x12 0.5 252, 52, 0, 0 252, 52, 0, 0 19x19 0.8 252, 52, 0, 0 252, 52, 0, 0	System Logic Cells (K)					