
TUNING GUIDE

Amazon EC2 Instances Powered by
1st-4th Gen AMD EPYC™ Processors

Publication 63841
Revision 1.0
Issue Date October, 2024

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

ii 63841 – 1.0

© 2024 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution
has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and
AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations
or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel,
to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s
products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product
names and links to external sites used in this publication are for identification purposes only and may be trademarks of their
respective companies.

* Links to third party sites are provided for convenience and unless explicitly stated, AMD is not responsible for the contents of such
linked sites and no endorsement is implied.

Audience
This document is intended for a technical audience such IT professionals, cloud administrators, and developers who
have:

• Admin access to the AWS instances.

• Knowledge and experience selecting and configuring AWS instances for various workloads.

• Admin OS access.

Author
Akshay Raj

Date Version Changes

Oct, 2024 1.0 Initial public release

63841 – 1.0 iii

Chapter 1 Introduction - 1

1.1 Amazon EC2 Instance Families ... 2
1.1.1 General Purpose (M-Series) .. 3
1.1.2 Memory Optimized (R-Series) .. 4
1.1.3 Compute Optimized (C-Series) ... 5
1.1.4 High Performance Computing (HPC-Series) ... 6

Chapter 2 Instance Selection, Optimization, and Sizing -7

2.1 Workload Considerations ...7
2.1.1 Compute-Intensive ..7
2.1.2 Big Data and Analytics ... 8
2.1.3 Databases ... 8
2.1.4 Web and Application Servers ... 9
2.1.5 AI/ML Workloads ... 9
2.1.6 High Performance Computing (HPC) ...10

2.2 Performance Considerations ..10
2.2.1 CPU Optimizations ..10
2.2.2 Memory Optimizations .. 12
2.2.3 Storage Optimizations .. 13
2.2.4 Latency Sensitive Optimizations ..14
2.2.5 Operating System Optimizations .. 16

2.2.5.1 Sysctl ... 16
2.2.5.2 TuneD Profiles ... 17

2.3 Cost Considerations ... 17
2.3.1 Instance Right-Sizing .. 17
2.3.2 Reserved Instances and Savings Plan ...18
2.3.3 EPYC Instance Advisor Tool ...18
2.3.4 Cloud Cost Advisor ..18

Chapter 3 Monitoring and Observability - 19

3.1 AWS CloudWatch ... 19
3.2 Resource Monitoring Tools ... 20
3.3 Instance Profiling Tools ... 20

Chapter 4 Troubleshooting and Support - 23

4.1 Noisy Neighbor Mitigation .. 23
4.2 Instance Placement Verification ... 23
4.3 Auto Scaling and Load Balancing .. 24
4.4 AWS Support Resources ... 25
4.5 AMD Support Resources ... 25

Table of Contents

Deploying Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

iv 63841 – 1.0

This page intentionally left blank.

63841 – 1.0 1

This guide describes best practices for IT professionals, cloud architects, and developers to deploy and optimize Amazon
EC2 instances powered by AMD EPYC processors. The guidelines contained herein will help drive informed decisions
about instance selection and configuration.

Amazon offers a wide range of instances powered by AMD EPYC processors that deliver excellent price-performance
across general-purpose, compute-optimized, memory-optimized, and high-performance computing (HPC) use cases.
These instances include:

Chapter

1 Introduction

AMD EPYC Generation Instance Types

4th Gen (AMD EPYC 9004 Series)

Please see AMD EPYC™ 9004 Series Architecture Overview (available from the
AMD Documentation Hub) to learn more about 4th Gen AMD EPYC
processors.

• M7a
• R7a
• C7a
• Hpc7a

3rd Gen (AMD EPYC 7003 Series)

Please see Overview of AMD EPYC™ 7003 Series Processors Microarchitecture
(available from the AMD Documentation Hub) to learn more about 3rd Gen
AMD EPYC processors.

• M6a
• R6a
• C6a
• Hpc6a

2nd Gen (AMD EPYC 7002 Series) • C5a
1st Gen (AMD EPYC 7001 Series) • M5a

• R5a

Table 1-1: Amazon EC2 instance types by processor generation

https://www.amd.com/en/search/documentation/hub.html
https://www.amd.com/en/search/documentation/hub.html

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

2 63841 – 1.0

1.1 Amazon EC2 Instance Families
Table 1-2 compares the Amazon EC2 instance families listed in Table 1-1, above, and helps inform instance family
selection by highlighting the specialized nature of each instance type.

Feature M-Series
(General Purpose)

R-Series
(Memory Optimized)

C-Series
(Compute

Optimized)

HPC-Series
(High Performance

Computing)

Latest Gen M7a R7a C7a Hpc7a
CPU Generation 4th Gen AMD EPYC 9R14
Max vCPUs 192
SMT OFF (1vCPU = 1 CPU core)

Note: SMT=ON (2 vCPU = 1 CPU core) for all other instance types

Max Memory 768 GiB 1,536 GiB 384 GiB 768 GiB
Memory::vCPU
Ratio

4 to 1 8 to 1 2 to 1 4 to 1

Max Network BW 50 Gbps 300 Gbps
Max EBS BW 40 Gbps 25 Gbps
Instance Storage EBS-Only
Use Cases • Web servers

• Small-medium
databases

• Dev
environments

• Traditional
databases

• In-memory
databases

• Distributed
caches

• Big Data
analytics

• Batch processing
• Ad serving
• Media and

Entertainment
• Financial Services

• HPC workloads
• AI/ML
• Financial Services

SAP-Certified Yes Yes No No
Elastic Fabric
Adapter Support

No No Yes (48xlarge) Yes

AVX-512 Support Yes Yes Yes No
Comments The M-series offers a

balance of compute,
memory, and network
resources that is
suitable for a wide
range of workloads.

The R-series offers
the highest memory-
to-vCPU ratio,
making it ideal for
memory-intensive
workloads.

The C-series provides
the lowest memory-
to-vCPU ratio,
optimized for
compute-intensive
tasks.

The HPC-series offers
the highest network
bandwidth and
includes local NVMe
SSD storage, tailored
for high-performance
computing
workloads.

Generational
Comparisons

See “General Purpose
(M-Series)” on
page 3.

See “Memory
Optimized (R-Series)”
on page 4.

See “Compute
Optimized (C-Series)”
on page 5.

See “High
Performance
Computing (HPC-
Series)” on page 6.

Table 1-2: Amazon instance family comparison

363841 – 1.0

Chapter 1: Introduction

1.1.1 General Purpose (M-Series)
Table 1-3 highlights some of the differences between generations of general purpose Amazon EC2 M-series instances.

Feature 4th Gen AMD EPYC 3rd Gen AMD EPYC 1st Gen AMD EPYC

Instance Name M7a* M6a* M5a*
Processor AMD EPYC 9R14 AMD EPYC 7R13 AMD EPYC 7571
Max Frequency 3.7 GHz 3.6 GHz 2.5 GHz
Max vCPUs 192 192 96
Max Memory 768 GiB 768 GiB 384 GiB
Max Network BW 50 Gbps 50 Gbps 20 Gbps
Max Elastic Block
Store* (EBS) BW

40 Gbps 40 Gbps 19 Gbps

SAP Certified? Yes Yes No
SIMD Processor
Capabilities

• AVX-512
• VNNI
• bloat16

AVX2 • SSE3
• AVX

Memory Encryption AMD Secure Memory
Encryption (AMD SME)

AMD Transparent Single Key
Memory Encryption (TSME)

Built on the AWS Nitro System*, a combination of dedicated hardware and lightweight hypervisor

Table 1-3: Generational comparison of Amazon EC2 M-series instances

https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/instance-types/m7a/
https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m6a/

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

4 63841 – 1.0

1.1.2 Memory Optimized (R-Series)
Table 1-4 highlights some of the differences between generations of memory optimized Amazon EC2 R-series instances.

Feature 4th Gen AMD EPYC 3rd Gen AMD EPYC 1st Gen AMD EPYC

Instance Name R7a* R6a* R5a*
Processor AMD EPYC 9R14 AMD EPYC 7R13 AMD EPY 7571
Max Frequency 3.7 GHz 3.6 GHz 2.5 GHz
Max vCPUs 192 192 96
Max Memory 1,568 GiB 1,568 GiB 768 GiB
Max Network BW 50 Gbps 50 Gbps 25 Gbps
Max Elastic Block
Store* (EBS) BW

40 Gbps 40 Gbps 19 Gbps

SAP Certified? Yes Yes No
SIMD Processor
Capabilities

• AVX-512
• VNNI
• bloat16

AVX2 • SSE3
• AVX

Memory Encryption AMD Secure Memory
Encryption (AMD SME)

AMD Transparent Single Key
Memory Encryption (TSME)

Built on the AWS Nitro System*, a combination of dedicated hardware and lightweight hypervisor

Table 1-4: Generational comparison of Amazon EC2 R-series instances

https://aws.amazon.com/ec2/instance-types/r7a/
https://aws.amazon.com/ec2/instance-types/r6a/
https://aws.amazon.com/ec2/instance-types/r5/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/nitro/

563841 – 1.0

Chapter 1: Introduction

1.1.3 Compute Optimized (C-Series)
Table 1-5 highlights some of the differences between generations of compute optimized Amazon EC2 C-series instances.

Feature 4th Gen AMD EPYC 3rd Gen AMD EPYC 1st Gen AMD EPYC

Instance Name C7a* C6a* C5a*
Processor AMD EPYC 9R14 AMD EPYC 7R13 AMD EPY 7571
Max Frequency 3.7 GHz 3.6 GHz 2.5 GHz
Max vCPUs 192 192 96
Max Memory 384 GiB 384 GiB 768 GiB
Max Network BW 50 Gbps 50 Gbps 25 Gbps
Max Elastic Block
Store* (EBS) BW

40 Gbps 40 Gbps 19 Gbps

SAP Certified? No Yes Yes
SIMD Processor
Capabilities

• AVX-512
• VNNI
• bloat16

AVX2 • SSE3
• AVX

Memory Encryption AMD Secure Memory
Encryption (AMD SME)

AMD Transparent Single Key
Memory Encryption (TSME)

Built on the AWS Nitro System*, a combination of dedicated hardware and lightweight hypervisor
Table 1-5: Generational comparison of Amazon EC2 C-series instances

https://aws.amazon.com/ec2/instance-types/c7a/
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c6a/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/nitro/

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

6 63841 – 1.0

1.1.4 High Performance Computing (HPC-Series)
Table 1-6 highlights some of the differences between generations of compute optimized Amazon EC2 HPC-series
instances. This instance family is designed for tightly coupled, compute-intensive high-performance computing (HPC)
workloads such as computational fluid dynamics (CFD), weather forecasting, and multiphysics simulations. They are
also designed for workloads that can take advantage of improved network throughput and packet-rate performance.

Feature 4th Gen AMD EPYC 3rd Gen AMD EPYC

Instance Name Hpc7a* Hpc6a*
Processor AMD EPYC 9R14* AMD EPYC 7R13
Max Frequency 3.7 GHz 3.6 GHz
Max vCPUs 192 96
Max Memory 768 GiB 384 GiB
Max Network BW 25 Gbps 25 Gbps
Max Elastic Block
Store* (EBS) BW

300 Gbps 100 Gbps

SAP Certified? Yes Yes
SIMD Processor
Capabilities

• AVX-512
• VNNI
• bloat16

AVX2

Built on the AWS Nitro System*, a combination of dedicated hardware and lightweight hypervisor
Table 1-6: Generational comparison of Amazon EC2 HPC-series instances

https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/instance-types/hpc7a/
https://aws.amazon.com/ec2/instance-types/hpc6/

63841 – 1.0 7

Selecting the right AMD EPYC Amazon EC2 instance type and size is crucial for optimal performance, cost-efficiency, and
resource utilization. The selection process involves carefully considering your workload characteristics, performance
requirements, and budget constraints to ensure that your applications run efficiently while controlling costs.

2.1 Workload Considerations
Understanding the nature of your workload is the first step in selecting the ideal AMD EPYC instance. Different types of
applications have varying compute, memory, storage and network demands. Analyzing your workload profile helps you
match your workload to the most suitable Amazon EC2 instance type and size for optimal performance and cost-
effectiveness. This section explores various workloads and their corresponding instance recommendations. You can also
use the EPYC Instance Advisor tool.

2.1.1 Compute-Intensive
Compute-intensive workloads involve complex calculations, simulations, or algorithms that place heavy demands on
CPU processing power. They typically have high CPU utilization and benefit from processors with high clock speeds,
multiple cores, and advanced instruction set capabilities. Some examples include:

• Scientific computing (e.g., weather modeling, physics simulations)

• Financial modeling and risk analysis

• Video encoding, transcoding, and/or rendering

• Cryptography and encryption

• Machine learning training and inference

Suggested Amazon EC2 instance types:

• C7a (4th Gen AMD EPYC)

• HPC7a (4th Gen AMD EPYC)

• C6a (3rd Gen AMD EPYC)

• HPC6a (3rd Gen AMD EPYC)

Chapter

2
Instance Selection,
Optimization, and Sizing

https://eia-prod.amd.com/

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

8 63841 – 1.0

2.1.2 Big Data and Analytics
Big data and analytics workloads involve processing and manipulating large datasets that often require significant
memory resources. These applications typically have high memory usage and CPU utilization with frequent data
ingestion and transformation operations. Some examples include:

• Data processing and analysis

• Real-time data processing

• Stream processing

• In-memory databases and caching systems

• Business intelligence tools

Suggested Amazon EC2 instance types:

• R7a (4th Gen AMD EPYC)

• M7a (4th Gen AMD EPYC)

• R6a (3rd Gen AMD EPYC)

• M6a (3rd Gen AMD EPYC)

2.1.3 Databases
Database workloads involve frequent disk read/write operations and can be both memory and I/O intensive. These
applications constantly read and write data to disk for queries, transactions, and logging, often requiring a balance of
compute, memory, and storage resources. Some examples include:

• Relational databases (MySQL, PostgreSQL, Oracle)

• NoSQL databases (MongoDB, Cassandra)

• In-memory databases (Redis, Memcached)

Suggested Amazon EC2 instance types:

• R7a (4th Gen AMD EPYC)

• M7a (4th Gen AMD EPYC)

• R6a (3rd Gen AMD EPYC)

• M6a (3rd Gen AMD EPYC)

963841 – 1.0

Chapter 2: Instance Selection, Optimization, and Sizing

2.1.4 Web and Application Servers
Web and application server workloads typically require a balance of compute, memory, and network resources. These
applications handle multiple concurrent connections and may experience varying loads throughout the day. SOme
examples include:

• Web servers (Apache, NGINX)

• Ecommerce platforms

• Cloud-native applications (containerized microservices)

Suggested Amazon EC2 instance types:

• C7a (4th Gen AMD EPYC)

• M7a (4th Gen AMD EPYC)

• C6a (3rd Gen AMD EPYC)

• M6a (3rd Gen AMD EPYC)

2.1.5 AI/ML Workloads
AI/ML workloads can be both compute and memory-intensive, depending on the specific task. These applications often
involve processing large datasets and performing complex mathematical operations. Some examples include:

• Machine learning model training

• Deep learning and neural networks

• Natural Language Processing (NLP)

• Computer vision and image recognition

• Recommendation systems

Suggested Amazon EC2 instance types:

• HPC7a (4th Gen AMD EPYC)

• R7a (4th Gen AMD EPYC)

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

10 63841 – 1.0

2.1.6 High Performance Computing (HPC)
HPC workloads require massive parallel processing capabilities and low-latency networking. These applications typically
involve solving complex computational problems that demand high levels of processing power and memory bandwidth.
Some examples include:

• Computational fluid dynamics (CFD)

• Molecular dynamics simulations

• Genomics and bioinformatics

• Financial risk modeling

• Seismic analysis in oil and gas exploration

Suggested Amazon EC2 instance types:

• HPC7a (4th Gen AMD EPYC)

• HPC6a (3rd Gen AMD EPYC)

2.2 Performance Considerations
Optimizing the performance of Amazon EC2 instances powered by AMD EPYC processors requires a deep understanding
of the processor architecture and carefully tuning various system components. This section explores key performance
considerations that can help you maximize the efficiency and throughput of Amazon EC2 instances powered by AMD
EPYC processors, including strategies for optimizing the CPU, memory, I/O, storage, network, and operating system.
Implementing the best practices described in this section helps your applications fully leverage the advanced features of
AMD EPYC processors such as their high core counts, large L3 cache sizes, and ample memory bandwidth. Performance
optimization is an iterative process that requires ongoing benchmarking to determine the best configuration for your
application.

2.2.1 CPU Optimizations
Optimizing CPU performance is crucial for compute-intensive workloads. Some key strategies and techniques for
maximizing CPU performance include:

1. Identify CPU-bound workloads:

- Use htop to monitor CPU usage. Consistently high utilization (near 100%) indicates CPU-bound processes.

- Check load averages in htop. If they significantly exceed the number of CPU cores/threads, then the system is
struggling with CPU demand.

1163841 – 1.0

Chapter 2: Instance Selection, Optimization, and Sizing

2. Download and install the AMD Optimizing CPU Libraries (AOCL):

- Set the AOCL_ROOT environment variable to point to the AOCL installation directory.

- Include relevant header files and link against AOCL libraries during compilation:
$ gcc -I$AOCL_ROOT/include -L$AOCL_ROOT/lib -lamdlibm -lm your_program.c -o
your_program

- Use specific flags for different optimizations:

> Vector math: -lamdlibm -fveclib=AMDLIBM -lm

> Faster math: -lamdlibm -fsclrlib=AMDLIBM -lamdlibmfast -lm

3. Maximize L3 cache usage:

- Use Amazon EC2 instances of .2xlarge for 4thg AMD EPYC instances and .4xlarge size or larger in older-
generation instances for exclusive L3 cache access.

- Group or pin threads that share data to the same L3 cache domain using CPU affinity techniques:
$ taskset -c 0-3 your_application

- Use CPU pinning to avoid OS process migration away from hot L3 cache data.

4. Optimize Docker container performance:

- Identify CPU topology using lscpu or lstopo.

- Set CPU affinity for Docker in /etc/docker/daemon.json:
{
 "cpu-rt-runtime": 950000,
 "cpu-rt-period": 1000000,
 "default-cpu-rt-runtime": 950000
}

- Pin containers to specific CPUs:
$ docker run --cpuset-cpus="1,3" my-container

5. Use the Performance CPU governor:
$ sudo cpupower frequency-set -g performance

6. Enable profiling for performance analysis:
$ export AOCL_PROFILE=1

7. Run your application and analyze the generated aocl_profile_report.txt.

8. Leverage advanced instruction sets by using compiler flags to enable AVX2 and AVX-512 instructions:
$ gcc -mavx2 -mavx512f your_program.c -o your_program

9. Optimize for specific AMD EPYC generations:

- Use -march=znver4 for Amazon EC2 instances powered by 4th Gen EPYC processors.

- Use -march=znver3 for Amazon EC2 instances powered by 3rd Gen EPYC processors.

- Use -march=znver2 for Amazon EC2 instances powered by 2nd Gen AMD EPYC processors.

https://www.amd.com/en/developer/aocl.html

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

12 63841 – 1.0

2.2.2 Memory Optimizations
Memory-intensive workloads involve processing and manipulating large datasets that must be loaded into memory for
efficient access. These workloads thus require systems with large amounts of RAM to avoid excessive paging or
swapping to disk, which can significantly degrade performance. Examples of memory-intensive workloads include:

• In-memory databases and caching systems

• Big data analytics and data mining

• Machine learning inference (e.g., recommendation systems)

• Real-time data processing and stream processing

• High-performance computing (HPC) applications

Some key memory optimization strategies include:

1. Maximize memory bandwidth.

- Resize the VM to utilize all memory channels or full socket:

> Each AMD EPYC processor Core Compute Die (CCD) has roughly 80 GB/s peak usable bandwidth to the I/O die
and an exclusive 32MB L3 cache.

> The peak read bandwidth is approximately twice the write bandwidth, with a total peak usable bandwidth of
around 10 GB/s per core.

> Use larger instance sizes (e.g., c6a.48xlarge with 96 cores) to fully utilize the socket capacity.

- Spread applications across multiple CCDs by distributing memory allocations across all NUMA nodes to
maximize bandwidth utilization:
$ numactl --interleave=all your_application

This is best for applications that need high memory bandwidth but that don’t heavily use shared memory across
the cores. There can be trade-offs to consider if you need both high memory bandwidth and ample shared
memory.

- Leverage Amazon EC2 instances powered by latest available generation AMD EPYC generations. For example,
4th Gen AMD EPYC processors offer up to 12 DDR5-4800 memory channels per socket for a peak raw memory
bandwidth of up to 460 GB/s per socket.

2. Enable and configure large pages (hugepages) to reduce TLB misses:
$ echo 1024 > /proc/sys/vm/nr_hugepages
$ mount -t hugetlbfs nodev /mnt/huge

3. Use numactl to optimize for the AMD EPYC NUMA architecture by controlling NUMA policy:
$ numactl --membind=0 your_application # Bind to NUMA node 0

4. Adjust vm.swappiness to control swap behavior:
$ sysctl -w vm.swappiness=10

5. Monitor and manage memory usage.

- Use tools like free, vmstat, and sar to monitor memory usage and swap activity.

- Implement proper memory management in your applications to avoid memory leaks and inefficient usage.

1363841 – 1.0

Chapter 2: Instance Selection, Optimization, and Sizing

6. Consider disabling Transparent Huge Pages (THP) for certain latency-sensitive workloads, which can improve
performance:
$ echo never > /sys/kernel/mm/transparent_hugepage/enabled

7. Optimize application-specific settings.

- For databases, adjust buffer pool sizes and caching mechanisms.

- For big data frameworks like Apache Spark, tune executor memory and other memory-related parameters.

8. Use memory-optimized instance types. For extremely memory-intensive workloads, consider using Amazon EC2 R-
series instances (e.g., R7a) which offer higher memory-to-vCPU ratios.

2.2.3 Storage Optimizations
IO-intensive workloads are characterized by frequent disk read/write operations that result in high disk I/O activity.
These workloads can cause performance bottlenecks because of the relatively slower speed of disk operations compared
to CPU and memory operations. Optimizing storage performance is crucial for these workloads. Some examples include:

• Databases (MySQL, PostgreSQL, Oracle)

• Data processing applications

To optimize I/O performance on AMD EPYC instances:

1. Ensure that your selected Amazon EC2 instance is EBS-optimized for dedicated throughput between Amazon EBS
and EC2.

2. Choose the right EBS volume type.

- For high-performance workloads, use Provisioned IOPS SSD (io1/io2) volumes.

- For general-purpose workloads, use General Purpose SSD (gp2/gp3) volumes.

3. Consider using RAID 0 (striping) across multiple EBS volumes for increased I/O performance:
$ mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/xvdf /dev/xvdg

4. For workloads with high I/O requirements, utilize the local NVMe instance store volumes that are available on
certain Amazon EC2 instance types.

5. Optimize the I/O scheduler. For example, for SSDs, use the noop or deadline scheduler:
$ echo noop > /sys/block/nvme0n1/queue/scheduler

6. Utilize RAM disks for extremely I/O-intensive operations:

- Create a tmpfs RAM disk:
$ sudo mount -t tmpfs -o size=4G tmpfs /mnt/ramdisk

- Move frequently accessed data to the RAM disk:
$ sudo mv /var/lib/mysql /mnt/ramdisk/
$ sudo ln -s /mnt/ramdisk/mysql /var/lib/mysql

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

14 63841 – 1.0

7. Monitor I/O performance by using the following tools to identify I/O bottlenecks:

- iotop: Monitor real-time I/O usage of processes.

- pidstat: Print per-process I/O statistics.

- iostat: Monitor system I/O device loading.

- vmstat: Report virtual memory statistics.

8. Tune application-specific settings

- For databases, adjust buffer pool sizes and I/O-related parameters.

- For file servers, optimize caching mechanisms and network-related settings.

9. Consider using Amazon EFS for shared file systems

- For workloads requiring shared access across multiple instances, use Amazon EFS with the Max I/O performance
mode.

10. Implement proper I/O patterns in your application”

- Use asynchronous I/O operations where possible.

- Implement buffering and caching mechanisms to reduce disk access.

- Optimize data access patterns to minimize random I/O operations.

2.2.4 Latency Sensitive Optimizations
Latency-sensitive workloads are applications that require low and predictable response times that typically range from
microseconds to tens of microseconds. These workloads are often found in areas such as financial trading, online
gaming, real-time analytics, and high-performance computing. Optimizing for such workloads involves minimizing
sources of latency and variability in the system. Some examples of latency-sensitive workloads include:

• High-frequency trading systems

• Real-time bidding platforms

• Online gaming servers

To optimize latency:

1. Prioritize tasks using chrt to identify latency-sensitive tasks and set higher priorities:
Set SCHED_FIFO policy for process with PID 1234 and priority 90
$ sudo chrt -f -p 90 1234
Start a new process with SCHED_RR policy and priority 50
$ sudo chrt -r -p 50 /path/to/my_latency_sensitive_app

1563841 – 1.0

Chapter 2: Instance Selection, Optimization, and Sizing

2. Disable deeper CPU C-states:

- Install the cpupower tool:
$ sudo apt install linux-tools-common

- Disable C2 state on all cores:
$ sudo cpupower idle-set -d 2

3. Disable Simultaneous Multi-threading (SMT)

- Check SMT support:
$ ls /sys/devices/system/cpu/smt

- Disable SMT:
$ sudo echo off > /sys/devices/system/cpu/smt/control

- Verify SMT is disabled:
$ cat /sys/devices/system/cpu/smt/active

4. Set the maximum core frequency:

- Check available CPU frequency scaling options:
$ cpupower frequency-info

- Set the performance governor:
$ sudo cpupower frequency-set -g performance

- Verify the maximum frequency:
$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

- Make the settings persistent:
$ sudo systemctl enable cpupower
$ sudo systemctl start cpupower

5. Disable Transparent Huge Pages (THP):

- Disable THP at runtime:
$ echo never > /sys/kernel/mm/transparent_hugepage/enabled
$ echo never > /sys/kernel/mm/transparent_hugepage/defrag

- For permanent disabling, add transparent_hugepage=never to the kernel boot parameters in the GRUB
configuration file.

6. Optimize the network:

- Use Elastic Network Adapter (ENA) for improved network performance

- Consider using Elastic Fabric Adapter (EFA) for ultra-low latency networking in HPC and machine learning
applications

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

16 63841 – 1.0

7. Tune the OS:

- Use a real-time kernel for critical low-latency applications

- Adjust kernel parameters for network and I/O performance:
bash
sysctl -w net.core.rmem_max=16777216
sysctl -w net.core.wmem_max=16777216
sysctl -w vm.swappiness=0

8. Apply application-level optimizations:

- Use lock-free data structures and algorithms where possible.

- Implement efficient memory management to avoid garbage collection pauses.

- Use asynchronous I/O operations to prevent blocking on I/O.

9. Monitor and profile your application:

- Use tools like perf and ftrace to identify sources of latency in your application.

- Monitor system-wide latency using cyclictest or the rt-tests suite.

2.2.5 Operating System Optimizations
Optimizing the operating system is crucial for maximizing the performance of Amazon EC2 instances powered by AMD
EPYC processors. This section covers general OS tuning techniques, with a focus on sysctl parameters and tuned profiles.

2.2.5.1 Sysctl

Sysctl allows you to modify kernel parameters at runtime. Here are some recommended sysctl settings for
optimizing AMD EPYC instances:

1. Network optimizations:
Increase the maximum number of open file descriptors
sysctl -w fs.file-max=2097152
Increase network buffer sizes
sysctl -w net.core.rmem_max=16777216
sysctl -w net.core.wmem_max=16777216
sysctl -w net.ipv4.tcp_rmem="4096 87380 16777216"
sysctl -w net.ipv4.tcp_wmem="4096 65536 16777216"
Enable TCP Fast Open
sysctl -w net.ipv4.tcp_fastopen=3
Increase the maximum number of incoming connections
sysctl -w net.core.somaxconn=65535

1763841 – 1.0

Chapter 2: Instance Selection, Optimization, and Sizing

2. Virtual memory optimizations:
Reduce swappiness
sysctl -w vm.swappiness=10
Increase the amount of dirty data before writing to disk
sysctl -w vm.dirty_ratio=60
sysctl -w vm.dirty_background_ratio=2
Optimize for database workloads
sysctl -w vm.overcommit_memory=2
sysctl -w vm.overcommit_ratio=95

3. File system and I/O optimizations:
Increase the maximum number of asynchronous I/O requests
sysctl -w fs.aio-max-nr=1048576
Optimize for high I/O workloads
sysctl -w vm.dirty_bytes=1073741824
sysctl -w vm.dirty_background_bytes=536870912

4. NUMA-specific optimizations:
Enable automatic NUMA balancing
sysctl -w kernel.numa_balancing=1

You can make these changes persistent across reboots by either adding them to /etc/sysctl.conf or by creating a
new file in /etc/sysctl.d/.

2.2.5.2 TuneD Profiles

TuneD is a daemon that monitors your system and optimizes its performance under certain workloads and can benefit
users who simply want the best “out of the box” optimizations. TuneD includes several profiles (with a few listed below)
that optimize your OS for particular applications. You can also create a custom profile for your specific needs.

• General purpose: balanced

• Compute intensive: throughput-performance

• Latency sensitive: latency-performance

Implementing these optimization strategies can significantly enhance the performance of your workloads on Amazon
EC2 instances powered by AMD EPYC processors. Remember to benchmark your specific applications to find the optimal
configuration for your use case.

2.3 Cost Considerations
Optimizing costs is a crucial aspect of running workloads on Amazon EC2 instances. This section presents several
strategies for optimizing your costs when running Amazon EC2 instances powered by AMD EPYC processors.

2.3.1 Instance Right-Sizing
Instance right-sizing is the process of matching instance types and sizes to your workload performance and capacity
requirements at the lowest possible cost. Consider the following for Amazon EC2 instances powered by AMD EPYC
processors:

1. Analyze current usage: Use AWS CloudWatch* to monitor the CPU, memory, network, and disk usage metrics of
your current instances.

2. Identify underutilized resources: Look for instances with consistently low utilization (e.g., below 40% CPU usage)
as candidates for downsizing.

https://aws.amazon.com/cloudwatch/

Tuning Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

18 63841 – 1.0

3. Consider workload patterns: Understand your application's performance requirements and usage patterns over
time.

4. Leverage AMD EPYC advantages: Amazon EC2 instances powered by AMD EPYC processors provide optimal price-
performance ratios. Learn more at Amazon EC2 Instances Powered by AMD EPYC™ Processors.

5. Regular review: Set up a process to regularly review and adjust your instance choices, ideally every 3-6 months or
after significant application changes.

2.3.2 Reserved Instances and Savings Plan
You may be able to further optimize the cost of running Amazon EC2 instances powered by AMD EPYC processors as
follows:

• Reserved Instances: Reserving instances can reduce costs compared to on-demand pricing in exchange for a time
commitment, such as one or three year(s).

• EC2 Instance Savings Plans: Committing to use individual Amazon EC2 instance families in a given region can
optimize costs.

• Compute Savings Plans: These can significantly optimize costs and can be automatically applied to Amazon EC2,
Fargate, or Lambda usage regardless of instance family, size, AZ, region, OS, or tenancy.

• Spot Instances: Take advantage of unused Amazon EC2 capacity at a potentially significant discount compared to
On-Demand prices. This may be ideal for fault-tolerant or flexible applications.

Note: AMD does not control the amount and/or applicability of any program and/or cost savings. Please consult Amazon
directly for details.

2.3.3 EPYC Instance Advisor Tool
The AMD EPYC Instance Advisor (EIA) tool, helps optimize instance selection by helping you:

• Understand performance and cost across your current deployments.

• Make workload-specific recommendations by identifying the most suitable instance type based on your workload
characteristics.

• Calculate potential cost savings by switching to Amazon EC2 instances powered by AMD EPYC processors.

• Deploy quickly and get 1:1 instance recommendations with cost saving estimates.

2.3.4 Cloud Cost Advisor
The AMD Cloud Cost Advisor (CCA) tool offers comprehensive cost optimization estimations:

• Receive suggestions for cost-optimized AMD EPYC instances that are comparable to your existing deployments.

• Estimate potential savings by migrating to instances powered by AMD EPYC processors.

• Generate comprehensive reports to help inform decision-making.

• Analyze and optimize costs across multiple cloud providers.

https://eia-prod.amd.com/
https://cca-prod.amd.com/
https://www.amd.com/en/products/processors/server/epyc/aws.html

63841 – 1.0 19

‘‘‘

Monitoring and observability are crucial aspects of managing Amazon EC2 instances powered by AMD EPYC processors.
These practices help ensure optimal performance, identify bottlenecks, and effective troubleshooting.

3.1 AWS CloudWatch
AWS CloudWatch* is the primary monitoring service for AWS resources, including Amazon EC2 instances powered by
AMD EPYC processors. It collects and tracks metrics, which are variables you can measure for your resources and
applications. Some key features of AWS CloudWatch Metrics include:

• Basic and Detailed monitoring:

- Basic monitoring provides data at 5-minute intervals at no charge.

- Detailed monitoring offers data at 1-minute intervals for an additional cost.

• Available metrics that (among others) include:

- CPU utilization

- Disk read/write operations

- Network in/out

- Status check failed

- EBS volume read/write bytes

• You can publish your own custom metrics to CloudWatch using the AWS CLI or API.

• Metric Math can perform mathematical operations on metrics to derive new insights.

• CloudWatch retains metric data for 15 months.

• The CloudWatch console includes graphs that help you visualize metrics.

• You can also set alarms on metrics to trigger notifications or automated actions.

Chapter

3 Monitoring and Observability

https://aws.amazon.com/cloudwatch/

Deploying Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

20 63841 – 1.0

To view metrics for Amazon EC2 instances powered by AMD EPYC processors:

1. Open the AWS CloudWatch console.

2. In the navigation pane, select Metrics > All metrics.

3. Select the EC2 namespace.

4. Choose a metric dimension (e.g., Per-Instance Metrics).

3.2 Resource Monitoring Tools
Several tools can help monitor the performance of AMD EPYC instances:

• Amazon EC2 Dashboard: Provides a high-level overview of your EC2 instances, including those powered by AMD
EPYC processors.

• AWS Systems Manager: Offers a unified user interface to view operational data from multiple AWS services and
automate tasks across your AWS resources.

• AWS X-Ray: Helps developers analyze and debug distributed applications, providing insights into application
performance and behavior.

• Third-party monitoring solutions:

- Datadog: Offers comprehensive monitoring for cloud environments, including specific features for AMD EPYC
instances. Learn more here*.

- Dynatrace: Offers AI-powered, full-stack monitoring with specific integrations for AWS services. Lean more
here*.

• Open-source tools:

- Prometheus: A popular open-source monitoring and alerting toolkit. Learn more here*.

- Grafana: An open-source platform for monitoring and observability, often used in conjunction with Prometheus.
Learn more here*.

3.3 Instance Profiling Tools
Profiling tools help identify performance bottlenecks and optimize code execution on AMD EPYC instances:

• Virtual Memory Statistics (vmstat) provides information about system processes, memory, paging, block I/O, traps,
and CPU activity.

• Input/Output Statistics (iostat) reports CPU statistics and input/output statistics for devices and partitions.

• Network Statistics (netstat) provides information about network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships.

• Linux profiling with performance counters (perf) is a powerful Linux profiling tool that provides detailed CPU
performance analysis.

https://www.datadoghq.com/
https://www.dynatrace.com/
https://prometheus.io/
https://grafana.com/
https://grafana.com/

2163841 – 1.0

Chapter 3: Monitoring and Observability

• Valgrind is an instrumentation framework for building dynamic analysis tools, useful for memory debugging and
profiling.

• AMD uProf is AMD's proprietary profiling tool for detailed performance analysis of AMD processors.

• eBPF (extended Berkeley Packet Filter) is a powerful and flexible Linux kernel technology that can be used for
performance analysis and monitoring.

Consider the following best practices when using these tools:

• Profile in production-like environments to get accurate results.

• Focus on hot paths and frequently executed code.

• Use a combination of tools to get a comprehensive view of performance.

• Regularly profile your applications to catch performance regressions early.

https://www.amd.com/en/developer/uprof.html

Deploying Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

22 63841 – 1.0

This page intentionally left blank.

63841 – 1.0 23

Leveraging the support resources and best practices described in this chapter will help you effectively troubleshoot and
resolve issues with Amazon EC2 instances powered by AMD EPYC processors, thereby ensuring optimal workload
performance and reliability.

4.1 Noisy Neighbor Mitigation
The “noisy neighbor” is a common issue with cloud instances where running multiple VMs on the same physical host can
impact the performance of other instances on the same physical host. To check if you're experiencing noisy neighbor
effects on memory bandwidth:

1. Run the STREAM benchmark to measure memory bandwidth.

2. Compare your results to the expected bandwidth for your instance type.

If your bandwidth is significantly lower, you may be experiencing noisy neighbor effects. To resolve this issue:

• Request a new instance and test again. Keep requesting new instances until you get one with expected
performance.

• Consider using dedicated or bare metal instances for consistent performance.

4.2 Instance Placement Verification
The instance vCPUs might not be ideally placed across CCDs, which can impact performance for some workloads. To
verify your instance placement:

1. Use the core-to-core latency tool*.

2. Analyze the output. You should see lower latencies between cores on the same CCD.

If you see unexpectedly high latencies between cores that should be on the same CCD, then your instance may be poorly
placed. To resolve this issue:

• Request a new instance and test again until you get one with optimal core placement.

• For critical workloads, consider using dedicated hosts or bare metal instances to ensure consistent placement.

Chapter

4 Troubleshooting and Support

https://github.com/nviennot/core-to-core-latency.git

Deploying Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

24 63841 – 1.0

4.3 Auto Scaling and Load Balancing
Issues with auto scaling and load balancing can lead to performance problems and increased costs. Common issues
include:

• Scaling too slowly or quickly in response to demand.

• Uneven load distribution across instances.

• Scaling based on inappropriate metrics.

Some solutions and best practices include:

• Use appropriate scaling metrics: Choose metrics that directly correlate with your application's performance, such as
request latency or queue length, rather than just CPU utilization.

• Set appropriate scaling thresholds: Configure scaling policies to react quickly enough to demand changes without
causing oscillation.

• Implement proper health checks: Ensure your load balancer and auto scaling group use appropriate health checks to
detect and replace unhealthy instances.

• Use target tracking scaling policies: These policies automatically adjust capacity to maintain a specific metric at a
target value.

• Implement gradual scaling: Use step scaling policies to add or remove capacity in increments based on alarm breach
size.

• Optimize instance warm-up: Set appropriate cooldown periods and health check grace periods to allow new
instances to warm up before receiving traffic.

• Use multiple Availability Zones: Distribute your Auto Scaling group across multiple AZs for better fault tolerance
and performance.

• Consider using Spot Instances: For flexible workloads, use a mix of On-Demand and Spot Instances to optimize
costs.

• Implement proper application-level load balancing: Ensure your application can distribute work evenly across
instances, especially for stateful workloads.

• Monitor and adjust: Regularly review your auto scaling and load balancing performance using AWS CloudWatch and
adjust settings as needed.

2563841 – 1.0

Chapter 4: Troubleshooting and Support

4.4 AWS Support Resources
• AWS Documentation*

• AWS Support Center*

• AWS re:Post*

• AWS Trusted Advisor*

• AWS Health Dashboard*

• AWS Support API*

4.5 AMD Support Resources
In addition to AWS support, AMD provides resources specifically for EPYC processors:

• AMD Developer Central offers optimization guides, technical documentation, and best practices for AMD EPYC
processors.

• AMD Enterprise Support provides direct support channels for hardware-specific issues to enterprise customers.

• AMD Support Forum is a platform where developers and system administrators can discuss AMD-specific topics and
share solutions.

• AMD works with various software vendors across the AMD Data Center Partner Ecosystem to ensure compatibility
and optimization. Check with your software provider for AMD-specific support.

AMD recommends using Amazon support channels first when troubleshooting issues with Amazon EC2 instances
powered by AMD EPYC processors. If the issue is determined to be specific to the AMD processor architecture, then you
may need to engage AMD's support resources.

Remember to provide detailed information when seeking support, including:

• Instance type and AMI used

• Exact error messages or symptoms

• Steps to reproduce the issue

• Any recent changes to your environment

• Relevant AWS CloudWatch metrics or logs

https://docs.aws.amazon.com/
https://signin.aws.amazon.com/
https://repost.aws/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://health.aws.amazon.com/health/status
https://docs.aws.amazon.com/awssupport/latest/user/about-support-api.html
https://www.amd.com/en/developer.html
https://www.amd.com/en/support.html
https://community.amd.com/t5/support-forums/ct-p/supprtforums
https://www.amd.com/en/where-to-buy/processors/epyc/ecosystem-partners.html

Deploying Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors

26 63841 – 1.0

This page intentionally left blank.

	Amazon EC2 Instances Powered by 1st-4th Gen AMD EPYC™ Processors
	Introduction
	1.1 Amazon EC2 Instance Families
	1.1.1 General Purpose (M-Series)
	1.1.2 Memory Optimized (R-Series)
	1.1.3 Compute Optimized (C-Series)
	1.1.4 High Performance Computing (HPC-Series)

	Instance Selection, Optimization, and Sizing
	2.1 Workload Considerations
	2.1.1 Compute-Intensive
	2.1.2 Big Data and Analytics
	2.1.3 Databases
	2.1.4 Web and Application Servers
	2.1.5 AI/ML Workloads
	2.1.6 High Performance Computing (HPC)

	2.2 Performance Considerations
	2.2.1 CPU Optimizations
	2.2.2 Memory Optimizations
	2.2.3 Storage Optimizations
	2.2.4 Latency Sensitive Optimizations
	2.2.5 Operating System Optimizations
	2.2.5.1 Sysctl
	2.2.5.2 TuneD Profiles

	2.3 Cost Considerations
	2.3.1 Instance Right-Sizing
	2.3.2 Reserved Instances and Savings Plan
	2.3.3 EPYC Instance Advisor Tool
	2.3.4 Cloud Cost Advisor

	Monitoring and Observability
	3.1 AWS CloudWatch
	3.2 Resource Monitoring Tools
	3.3 Instance Profiling Tools

	Troubleshooting and Support
	4.1 Noisy Neighbor Mitigation
	4.2 Instance Placement Verification
	4.3 Auto Scaling and Load Balancing
	4.4 AWS Support Resources
	4.5 AMD Support Resources

