Creating and Simulating
AMD Vitis™ Model
Composer Designs

AMD 1

together we advance_

Agenda

Introduction
AMD Toolbox — Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an Al Engine Design

Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

What is AMD Vitis™ Model Composer?

AMD Vitis™ Model Composer accelerates development by offering
a productive environment within MathWorks Simulink® for
simulation, analysis, code generation, and hardware validation

AMDZ1

together we advance_

[Public]

AMD Vitis™ Model Composer

Model-based Design Tool

Enables rapid design Provides a library of Accelerates the path Transforms your
exploration performance- to production design through
optimized HDL, HLS, automatic
and Al Engine blocks optimizations

AMDZ1

4 together we advance_

[Public]

Design Flows Using AMD Vitis™ Model Composer

Algorithm Exploration Implementing as Part of a Implementing a Complete Design
Larger Design

» Get a feel for likely design For sophisticated external » Everything needed for a design is
problems interfaces: available inside

Estimate the performance and * Implement parts of the design » Validate button instructs Model

resource utilization in hardware using Vitis™ Model Composer Composer to translate the design
into HDL/HLS/AI Engine sources

Implement other parts outside and write the files needed to

. _ process the design using
Combine the parts into a downstream tools

working whole

AMDZ1

together we advance_

[Public]

AMD Vitis™ Model Composer in a Nutshell

HARDWARE FLOW

Move your design into hardware with
the click of a button

CODE GENERATION

Generate HLS, RTL, and data flow graphs
as well as testbenches

PL- AIE SIMULATION

Co-simulate designs with PL and
Al Engine blocks

LIBRARY BLOCKS

Drag-and-drop Al Engine and PL-optimized
blocks from the Simulink® Library Browser

AMDZ1

6 together we advance_

[Public]

Anatomy of a Design

64k iIFFT using Al Engine and PL

Vit Maotel Camposes 1as

1 U sk } +sig_0_i sig 0 o M s ghdpas T *1 1
2 ¥ scghsk }~ +sig_1 i sig 1_of wi = Sl 2
B a b | sig 2 ‘HLS Kernesl‘(J 20 P | 3
L — (IP) L —
i
Seprent o a a— bk } »sig_3_i sig_3 o s gl ae | a4 4
i

front_ifft_with_twid

Built on top of MathWorks Simulink®, AMD Vitis™ Model Composer enables the rapid

design exploration of algorithms and accelerates the path to hardware

AMDZ1

together we advance_

Agenda

Introduction

AMD Toolbox — Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an Al Engine Design

Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

AMD Vitis™ Model Composer Library Blocks

L=

I simulink Library Browser |

Gl
counter v Qv

AMD Toolbox

»

L AMD olbox |

v v wwrww

- Utilitigs

Simulink
» Al Engine
» HDL
» HLS

— e —
Communications Toolbox

Communications Toolbox HDL Support

Computer Vision Toolbox

Control System Toolbox

DSP System Toolbox

DSP System Toolbox HDL Support
Fixed-Point Designer

Fixed-Point Designer HDL Support
HDL Coder

HDL Verifier

Image Acquisition Toolbox

Motor Control Blockset

Motor Control Blockset HDL Support
Report Generator

Simulink 3D Animation

Simulink Coder

Simulink Extras

Stateflow

Recently Used

&l ~

= N -

Al Engine

HDL

HLS

Utilities

Highly optimized blocks, targeting:

Al Engines

Programmable Logic

AMDZ1

together we advance_

[Public]

Al Engine Library Blocks

Simulink Library Browser via) (X
& counter oy @ =@
AMD Toolbox/Al Engine

¥ Simulink 3info) out(0]
~ AMD Toolbox DDS Stream out[o] b Nin0] DET Sweam outfo] FET Dynamic Point Stream
Yinfa] outf1]

g
» DSP DDS Stream DFT Stream FFT Dynamic Point Stream
Interfaces
Signal Routing Hino) outfo]
Sinks DsP Interfaces FET Stream Ninl0] FIR Asymmetric Decimation Stream 0ut{0] Ninl0] FIR Asymmevic Sweam out{o] b
Sources Ninf) ourf1]

Tools . . FFT Stream FIR Asymmetric Decimation Stream FIR Asymmetric Stream
User-Defined Functions
» HDL
» HLS Jinlo] FIR Halfband Decimator Sream outfo]p Ninl0] FIR Halfboand interpolator Stream out(o] [Hinlo] FIR Interpolation Stream out[0]

> Utilities Signal Routing Sinks

Al Engine->DSP->Stream 1/O Blocks

» Communications Toolbox ; .
» Communications Toolbox HDL Support FIR Halfband Decimator Stream FIR Halfband Interpolator Stream FIR Interpolation Stream
» Computer Vision Toolbox
» Control System Toolbox Hin[0] FIR Resampler Filter Stream out(0] Ainl0] FiR Symmetric Decimation Stream out{0] Ain(0] FIR Symmetric Sream out{o] b
» DSP System Toolbox
» DSP System Toolbox HDL Support ler Fil ; L)

Fixed-Point Designer Sources Tools FIR Resampler Filter Stream FIR Symmetric Decimation Stream FIR Symmetric Stream
» Fixed-Point Designer HDL Support
 HDL Coder °r ol ool p ol

i Ainl0] 1DF T Stream outfo] p IFFT Stream Mixed-Radix FFT Stream

» HDL Verifier Ninf1] out[1] p Ninf1) out[1]

Image Acquisition Toolbox - -
» Motor Control Blockset IDFT Stream IFFT Stream Mixed-Radix FFT Stream
» Motor Control Blockset HDL Support User-Dafined Foncti N b N

ser-Defined Functions

Report Generator Mixed-Radix IF FT Stream NAinlfo] Mixer Sream outlo] p Vectorized Sample Delay Stream out
» Simulink 3D Animation Nin(1) outf) p NnumSampleDelay
» Simulink Coder
» Simulink Extras Mixed-Radix IFFT Stream Mixer Stream Vectorized Sample Delay Stream

Stateflow

Recently Used Aintol out(0lp

Window Function Stream
Ninfa) out[1] p

Window Function Stream

Bit accurate

AIE and AIE-ML devices AMDZU

together we advance_

[Public]

HDL Library Blocks HDL library is from

Xilinx System

Generator

Simulink Library Browser ¥) (») (x
<@ counter v Byroy @ = @ HDL%DSP%'\»
AMD Toolbox/HDL
» Simulink
~ AMD Toolbox
» Al Engine
Basic Elements
»
ﬂizrfaces Basic Elements DSP
Logic and Bit Operations Je {carmynsel
» Memory
3!923' SEE Digital FIR Filter DSP Macro 1.0 DSP48E
inks
Sources % Ja s
Tools Interfaces Logic and Bit Operations b X
User-Defined Functions 2o 3
» SSR Mopmode Nopmode
y HLS DSP4SE1 (3 DSP4BE2 ph Nalumode DSPSE 13
. Jalumode Nawmode
» Utilities Jcarryn
» Communications Toolbox Yeamyn Neamyn 3 ol
» Communications Toolbox HDL Support Hcamynsel
» Computer Vision Toolbox Memory Signal Routing e
» Control System Toolbox DSP48E1 DSP48E2 DSP58
» DSP System Toolbox
» DSP System Toolbox HDL Support 2 Ja
Fixed-Point Designer pa 8 omouh
» Fixed-Point Designer HDL Support e o in_re op_rep
» HDL Coder = pesta %
» HDL Verifier Sinks Sources ey oarre
Image Acquisition Toolbox o pnace in_im op_imp
» Motor Control Blockset e | fpa_out
» Motor Control Blockset HDL Support ey Ytpinmode
Report Generator
» Simulink 3D Animation DSPCPLX DSPFP32 FFT
» Simulink Coder .
» simulink Extras Tools User-Defined Functions b
Stateflow '
p_re
Recently Used aim s P X
bre X
bim P-mp
SSR -

Inverse FFT Product Sine Wave

Cycle accurate and bit accurate Uses C model for fast simulation Generates RTL (Verilog/VHDL)

AMDZ1

11 together we advance_

[Public]

< counter

AMD Toolbox/HLS

HLS Library Blocks

Simulink Library Browser

A Bro- e =@

» Simulink
~ AMD Toolbox

» Al Engine

» HDL

HLS

Logic and Bit Operations
Lookup Tables
Math Functions
Ports & Subsystems
Relational Operations
Signal Attributes
Signal Operations
Signal Routing
Sinks
Sources
Tools
User-Defined Functions

v Utilities
Communications Toolbox
Communications Toolbox HDL Support
Computer Vision Toolbox
Control System Toolbox
DSP System Toolbox
DSP System Toolbox HDL Support
Fixed-Point Designer
Fixed-Point Designer HDL Support
HDL Coder
HDL Verifier
Image Acquisition Toolbox
Motor Control Blockset
Motor Control Blockset HDL Support
Report Generator
Simulink 3D Animation
Simulink Coder
Simulink Extras
Stateflow
Recently Used

Bit accurate

Logic and Bit Operations

Math Functions

Relational Operations

Signal Operations

Sinks

Tools

19

okup Tables

Ports & Subsystems

si

gnal Attributes

Signal Routing

Sources

User-Defined Functions

S->Math Functions->Math Operations

Lub

Abs atan
ORI
Complex to Real-imag Conjugate
Cumulative
Sum
Cumulative Sum Divide
B)
Log Log10
x
Modulus P

=
™
Q
[
-3
™

z [*
9
a
s
c
@

> T

Complex to Polar

atan2(y.x)
atan2

cosh Cosine
>
Exp Gain

Polar to Complex

rE
N
N
- EEEH
= -]

Product Product of Elements Real-Imag to Complex Reciprocal

x
Remainder P
i

i1
i

Reciprocal Sqrt Remainder

E]
]

Sine sinh

o
[£]

Sum Sum of Elements

Uses C model for fast simulation

Reshape Row-Major Signum

.

Sqrt Subtract

]

Tangent

Generates C++ HLS code

AMDZ1

together we advance_

Utilities Library Blocks

AMD Toolbox/Utilities

b Simulink

= AMD Toolbox
b Al Engine
» HDL
r HLS

Code Generation
Connectors
Ports & Subsystems

Simulink Library Browser

< Enter search term - -‘%LL - @ * ™ v B

=

= @

Signal Routing b
Sinks
Tools

Ports

Code Genera

tion

& Subsystems

Sinks

Connector

Signal Routi

Tools

Utilities>Code Generation

&

Witis Model Composer Hub

Utilities> Connectors

tdata >
J|data AEfo HOL tvalid P
tready K
AIE to HDL
) tolata
Mevalid HEOL to AIE daa [
£tready
HDL to AlE

W AIE to HLS Kemel [P

AlE to HLS

N HLS Kemelto AE [

HLS to AlE

AMDZ1

together we advance_

Agenda

Introduction

AMD Toolbox — Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an Al Engine Design

Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

Homogeneous Design Flow — HDL Design

Through AMD
Vitis™ Model
Composer Hub
block

Create Simulate Analvze Validate on
Design i y HW

__

AMDZ1

together we advance_

[Public]

Creating an AMD Vitis™ Model Composer HDL Design

Drag-and-drop blocks onto a new sheet to build a design

Right-click a block to format the block or double click the block to configure

Connect the blocks with signal lines

[Fafuntitled Block Parameters: DSP Macro

Simulink Library Browser DSP Macro 1.0

<& Enter search term | mpEyor @ = @ Provides a device-independent abstraction of the DSP48E1, DSP48E2, and DSP58 slices.

AMD Toolbox/HDL/DSP/Non AXI-S . o . ’
Instructions Pipeline Options Implementation

b Simulink
¥ AMD Toolbox P Output Port Properties
» Al Engine b

¥ HDL apmode
Basic Elements alumpde

- DSZXI—S)?5"-::3:«"..." () User_Defined

Interfaces Digital FIR Filter DSP Macro 1.0 DSP48E .
Logic and Bit Operations 0 A Width
Memory
Signal Routing
Sinks - B or
_?_gz"'sces mode Additional ports
. cayin
, UserDefined Functions : s Use ACOUT Use BCOUT Use PCOUT
b HLS H DSP48E2
» Utilities TSP Macro L0
Communications Toolbox e |
Communications Toolbox HDL Support = in_re op_re
Computer Vision Toolbex
Control System Toolbox
DSP System Toelbox
DSP System Toelbox HDL Support - o
Fixed-Point Designer Global A M SEL/CARRYIN
Fixed-Point Designer HDL Support DSPFP32
HDL Coder)
HDL Verifier e Implementation

Image Acquisition Teolbox in_re op_re . p_re
Report Generator ¥ b v Use XtremeDSP Slice

Requirements Toolbox . L b re X
Simulink 3D Animation i bim P-m
Simulink Coder _

DspasE o (® Full_Precision

b
Binary Point

Use CARRYOUT Use CARRYCASCOUT

Control ports

in_im _op_im Global A M SEL/CARRYIN

1pa_out

AMDZ1

together we advance_

SSR Library

Parameter that determines how many Widely applicable to all AMD devices, especially
parallel samples to accept for every clock cycle AMD Zyng™ UltraScale+™ RFSoC devices

Simulink Library Browser Simulink Library Browser
<a| |- | [addsub 7Sy p————— & [+ |[Entersearcn tem | ~| (| B v v @) = @
AMD Toolbox/HDL/SSR AMD Toolbox/HDL/55R/Basic Elements
. . ¥ Simulink -
¥ Simulink = v AMD Toolbox b E)
~ AMD Toolbox » Al Engine A= 2wl zt arbp Ay i
» Al Engine v HDL Ao
¥ HDL Basic Elements Vector Absolute Vector AddSub Fabric Vector Assert
Basic Elements » DsSP
» DSP Interfaces . . h
f; Basic Elements DSP Interfaces Logic and Bit Operations } y b I 2 b
Interfaces . . b Memory [2
Logic and Bit Operations signal Routing
¥ Memory Sinks Vector Concat Vector Convert Vector Down Sample
Signal Routing Sources Jir
Sinks Tools - b U
Sources User-Defined Functions pouth o= 2axnlp
Tools Memo Sources S - T L
User-Defined Functions ry Basic Elements Vector Logical Vector Mux Vector Real Mult
SSR ~ DsP
. AXI-5 Ma
Basic Elements Non AXI-5 3 reinterpret | £ out|fy m'
b DSP Interfaces b [3
Interfaces Memory .
Memory Sources Vector Reinterpret Vector Relational Vector Slice
Sources b HLS
» HLS b Utilities N
b Utilities » Communications Toolbox J %2 b
» Communications Toolbox » Communica!:i{lms Toolllt:t)x HDL Support
L ¥ Computer Vision Toolbox Vector Up Sample
¥ Communications Toolbox HOL Support b Control System Toolbox
b Computer Vision Toolbox » DSP System Toolbox
» Control System Toolbox - » DSP System Toolbox HDL Support =

AMDZ1

17 together we advance_

AMD Vitis™ Model Composer HDL Design - Example

Simulink® Software Vitis™ Model Composer HDL Blocks
Sources

A

Ramp

~

Rampl

Step

Gateway In

In
Gateway Inl

In
Gateway In2

&

Vitis Model Composer Hub

a

rst

DSP Macro 1.0

Y

Out

cast

Convert

Gateway Out

Out
Gateway Outl

Out
Gateway Out2

Gateway blocks used to interface between the Simulink

software and Vitis Model Composer blocks

Simulink Software Sinks

]

Scope

Scopel

Scope2

AMDZ1

together we advance_

[Public]
Running Simulink Simulation

Define the inputs of the design using
any Simulink® tool source blocks and
analyze the output

Compile and execute the design to produce the

outputs

I SIMULATION DEBUG MODELING FORMAT SUBSYSTEM BLOCK
] Open ~ e[~ Stop Time | 32%128- 1
EO o = = , . L7
S &l save ~ Library] | Signal * | Normal v | Data M
~ = Print « Browser : Table mg Fast Restart Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS A
Tools

Review results by connecting any of the Simulink tool sink blocks to appropriate

points in the design

AMDZ1

19 together we advance_

[Public]

20

Importing an HDL Module Using the Black Box Block

Create and use your own HDL modules

Simulink Library Browser

a Enter search term v B~y @ = 32

AMD Toolbox/HDL/User-Defined Functions

b Simulink -

* AMD Toolbox Jx
b Al Engine
* HDL

slmax 7
¥

Basic Elements Black Box MCode
* DSP
AXI-S
Non AXI-S
Interfaces
Logic and Bit Operations
b Memory
Signal Routing
Sinks
Sources
Tools
P S5R
P HLS
b Utilities
Communications Toolbox
Communications Toolbox HDL Support
Computer Vision Toolbox
Control System Toolbox

Vitis HLS

Allows HDL logic components in the HDL library
Behaves like other Vitis™ Model Composer HDL blocks

Ports can be connected to the rest of the design

Can be configured to support either synchronous clock
designs or multiple hardware clock designs

AMDZ1

together we advance_

HDL Import Flow

[Top-level HDL file to be imported]

!

Does HDL have clk,
ce, and ports that match
requirements?

Create HDL wrapper for the top-level
HDL that satisfies black-box
requirements

Import top-level HDL as Vitis™ Model
Composer black box

Add the HDL, netlist, and MIF files
required by the HDL for simulation and
implementation to the black-box
configuration M-Function

I

Co-simulate black box using
Vivado™ simulator or Questa
simulation software Black Box

AMDZ1

together we advance_

22

HDL Co-Simulation

Why HDL Co-Simulation?

Simulink® software does not have the capability to perform HDL simulation

During HDL co-simulation, the black-box portion of the design is simulated by
an HDL simulator

Supported Simulators

Vivado™ Questa

Simulator simulation
software

AMDZ1

together we advance_

[Public]

HDL Co-Simulation

AMD Vitis™ Model Composer simulates black
boxes by:
Launching an HDL simulator
Generating additional HDL

Compiling the HDL

Scheduling simulation events

Handling the exchange of data between
the Simulink® tool and the HDL simulator

AMDZ1

23 together we advance_

Hardware Co-Simulation

Accelerated simulation for HDL designs

Allows a design running on the device to be directly executed in a Simulink® simulation

Automatically creates a hardware simulation hub

This hardware will co-simulate with the rest of the Simulink system

Perform hardware verification without knowing

HDL languages

I I How to run the hardware verification tools
Details about the device architecture I I Third-party board APIs

Device driver details
AMD

24 together we advance_

25

Agenda

Introduction
AMD Toolbox — Library Blocks

Create and Simulate an HDL Design

Create and simulate an HLS Design

Create and Simulate an Al Engine Design

Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

Homogeneous Design Flow — HLS Design

Through AMD
Vitis™ Model
Composer Hub
block

Create Simulate Analvze Validate on
Design i y HW

__

26

AMDZ1

together we advance_

[Public]

Elements of an AMD Vitis™ Model Composer Design with HLS Blocks

Vitis™ Model Composer Hub Block

!

Simulink software Simulink software
blocks, sources, and/or blocks, sinks, and/or
pre-processing k post-processing

Vitis Madel Composer Hub

Input signal from
Simulink® blocks,

Output signals or sinks
| § (process the output in
sources, and/or pre- Pre-processing / Sources " B the Simulink
. P Post processing / Sinks .
processing blocks environment)

P In1

Y

Top-level subsystem block (encapsulates the algorithm) with:
 Blocks from the HLS library
» Custom imported functions

* Interface Spec block

AMDZ1

27 together we advance_

[Public]

Creating an AMD Vitis™ Model Composer Design with HLS Blocks

| :
Adding Blocks .-.I. Connecting Creating a Top-

to a Model T_. the Blocks LeveLASlijb?yStem
odule

1 2 3

Create a new model by adding Connect these blocks with signal Add hierarchy to the model by
blocks from the Library Browser lines to establish relationships encapsulating a group of blocks
to the Simulink® Editor among blocks and signals as a subsystem

within a single block

AMDZ1

28 together we advance_

[Public]

Importing C/C++ Code as Custom Blocks

AMD Vitis™ Model Composer lets you import C or C++ code to create new blocks that can be
added to a library

xmcImportFunction:

» Let's you specify the required source files and automatically creates an associated block that
can be added into a model in the Simulink® environment

Requirements:

* Function source can be defined in a header file (.h) or in a C or C++ source file (.c, .cpp), but
the header file must include the function signature

* Function arguments can be real or complex types of scalar, vectors, matrices, or fixed-point
data types

Can change the source code without the need to re-import the block

AMDZ1

together we advance_

[Public]

Using the xmclimportFunction Command

xmcImportFunction('libName', {'funcNames'}, 'hdrFile’, {'srcFiles’}, {'srchPaths'}, 'options')

Specifies the name of the Vitis™ Model Composer HLS library that the new
block is added to

Specifies a list of one or more function names defined in the source or header
files to import as a Vitis Model Composer block

Specifies a header file (.h) that contains the function declarations or definitions

srcFiles Specifies a list of one or more source files to search for the function definitions

AMDZ1

30 together we advance_

Using the xmcimportFunction Command — Example

// simple.h

volid simple add(const double inl, const double 1in2, double *out)

{

*out = inl + 1in2;

To import the simple add function as a block:

xmcImportFunction ('SimplelLib', {'simple add'}, 'simple.h', {}, {})

* SimpleLib is the name of the Vitis™ Model Composer HLS library to add the block to
 simple add is the function name to import

« simple.h is the header file to look in

31

AMDZ1

together we advance_

Using the xmclimportFunction Command — Example

Block Parameters: simple_add X

Import Function

Function declaration

void simple_add(const double inl, const double in2, double *
} out);
Jin1

Function General

Interfaces
5|mp|e_add L'IIJT b Direction Name Type Dimension
Input inl double 1
) II"IE Input in2 double 1
Output out double * 1
SImDIE_add Cancel Help

simple_add Block
simple_add Block Parameters

AMDZ1

together we advance_

Defining Blocks Using Function Templates

If you want to create a block that:

Accepts inputs of Supports different
different sizes data types

lets you create a block that accepts:
- Variable signal size, data type, or data dimensions

33

Accepts signals with different
fixed-point lengths and
fractional lengths

of your block library

AMDZ1

together we advance_

34

Defining Blocks Using Function Templates — Example

Defining Blocks Using Function Templates

#include <stdint.h>

template <int ROWS, int COLS>

void simple matrix add(const intl6 t inl[ROWS] [COLS],
const intl6 t in2[ROWS] [COLS],

intl6 t out[ROWS] [COLS]) {
for (int i1 = 0; i<ROWS; i++) {
for (int j = 0; J<COLS; j++) {
out[1][J] = inl[1][J] + 1inZ2[1]([]J]’

xmcImportFunction ('SimplelLib', {'simple matrix add'}, ...

'template example.h',{}, {}, 'unlock’)

AMDZ1

together we advance_

[Public]

Running Simulink Simulation

Define the inputs of the design using
Compiling and executing the design any Simulink® tool source blocks and
analyze the output

SIMULATION MODELING ORMA APPS SUBSYSTEM BLOCK
1 Open = pei] Stop Time -32*123—1 —]
EE:I &l save i N = = (Normal | lﬂ C-)' h
New e Library L ! signal T [Normal v Step Run Data M
-~ = Print - Browser ¢ Table mg Fast Restart Back ~ -~ Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS Y

Tools

Results can be analyzed with MATLAB® scripts and visualization tools like the Simulation Data Inspector

AMDZ1

35 together we advance_

36

Agenda

Introduction
AMD Toolbox — Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design
Create and simulate an Al Engine Design
Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

Homogeneous Design Flow — Al Engine Design

Through AMD
Vitis™ Model
Composer Hub
block

Create Simulate Analvze Validate on
Design i y HW

__

37

AMDZ1

together we advance_

Al Engine DSP Library (DSPLib)

Library of commonly used DSP functions optimized for Al Engines

Different DSPLib
functions as blocks are
provided in the AMD
Toolbox > Al Engine >
DSP library

Synchronized DSP

functions in
Vitis_Libraries GitHub

38

O Product

=

<> Code

Solutions

/ Vitis_Libraries ' public

() Issues 70

¥ main -

11 Pull requests

¥ 14 branches

Open Source

Pricing

10) Discussions

© 21 tags

* create main branch from next branch

blas

codec
data_analytics
data_compression
data_mover

database

dsp

graph

hpc

Squashed '
Squashed '
Squashed '
Squashed '
Squashed '
Squashed '
Squashed '
Squashed '

Squashed '

(® Actions

blas' changes frt
codec' changes
data_analytics' ¢
data_compressic
data_mover' che
database’ chang
dsp' changes fre
graph’ changes

hpc' changes frc

in[0] FFT Dynamic Paint out[0]

FFT Dynamic Point

inldl FIR Haltband Gecimator outfo]

FIR Halfband Decimator

DFT

+"[0] FIR Asymmetric out[0]

FIR Asymmetric

in[0] FIR Asymmetric Decimation out[0]

in[0] FIR Halfband Interpolator out[0]

in0] FIR Resampler Filter out(0]

FIR Resampler Filter

+n[0] FIR TDM out[0]

FIR TDM

in[0] Mixed-Radix FFT out[0]

Mixed-Radix FFT

in
“ectorized Sample Delay out
numSampleDelay

Vectorized Sample Delay

FIR Halfband Interpolator

in[o] FIR Symmetric out[0]

FIR Symmetric

in[0] pET oul[D]

IDFT

Hinlo] Mixed-Radix IFFT out(o]

Mixed-Radix IFFT

inf0] Window Function outD]

Window Function

FIR Asymmetric Decimation

in[0] FIR Interpolation out[o]

FIR Interpolation

in[0] FIR Symmetric Decimation out(0]

FIR Symmetric Decimation

o] T outo]

IFFT

Al Engine > DSP > Buffer I/O Blocks

AMDZ1

together we advance_

[Public]

Creating an Al Engine Design Using AMD Vitis™ Model Composer

Al Engine kernels are functions that form the fundamental building blocks of the data flow graph

AMD Vitis™ Model Composer supports generating the Al Engine data flow graph by importing
the Al Engine kernel or sub-graph

Steps for Creating Al Engine Design

: Importing the
Preparing the Al FI)Engin?e Code

Al Engine Kernels as a Block

AMDZ1

39 together we advance_

Preparing the Al Engine Kernels

Al Engine » Declared as C/C++ functions that return void and can use special data types for arguments

Kernels » Should be defined each in their own source file

» Source files should include all relevant header files to allow for independent compilation

Data-accessing Mechanisms

Buffer-based Access Stream-based Access

* Kernels can process the data in blocks * Kernels can access data streams in a
called buffers sample-by-sample fashion

* Requires synchronization of input/output « Each access to these streams is
buffers before entering the kernel synchronized

* No synchronization required within the * Direct stream communication channel
kernel to read or write the individual between one Al Engine and the adjacent
elements of data Al Engine—called a cascade

input buffer<cintl6> myInputBuffer; input stream<cintl6> * myInputStream;

output buffer<int32> myOutputBuffer; output stream<cintl6> * myOutputStream;

AMDZ1

40 together we advance_

Importing the Al Engine Code as a Block

Al Engine library blocks to import kernel functions and graphs

Al Engine Kernel Al Engine Class Kernel Al Engine Graph

Input: Kernel or a data flow sub-graph

!

AMD Vitis™ Model Composer: Generates a block with
interfaces that match the function arguments of a kernel or a
graph

AMDZ1

41 together we advance_

Importing the Al Engine Code as a Block

Al Engine library blocks to import kernel functions and graphs

Al Engine Kernel Al Engine Class Kernel Al Engine Graph

AIE Kernel

Import an Al Engine kernel or an Al Engine kernel template as a
block.

General Constraints

Parameters

|
Y

Kernel header file: ‘

Kernel function: KernelFunction

Kernel init function:
Kernel source file: = V4
Kernel search paths: [{} H Add

Preprocessor options: |{}

Import

Block Parameters: AIE Kernel X |

Use an Al Engine Kernel block from the Al
Engine library to import this kernel

AMD Vitis™ Model Composer supports:

Importing both buffer-based and stream-based
kernels

Cascade stream connections between two Al
Engine processors

Importing Al Engine kernels with runtime
parameters and function templates

AlE Kernel

AMDZ1

together we advance_

Importing the Al Engine Code as a Block

Al Engine library blocks to import kernel functions and graphs

Al Engine Kernel Al Engine Class Kernel Al Engine Graph

Block Parameters: AIE Class Kernel

AIE Class Kernel

kernel as a block.

General Constraints

Parameters
Kernel header file:
Kernel class: namespace::KernelClass

Kernel function: KernelFunction

Kernel source file:
Kernel search paths: |{}

Preprocessor options: |[{}

Import

Import an Al Engine class kernel or an Al Engine class template

Add

43

* Use an Al Engine Class Kernel block from the Al Engine library to import
the C++ kernel class to have constructor parameters for specifying

parameter values
AMD Vitis™ Model Composer supports:

* Kernels with default constructors and
parameterized constructors

* Importing the kernels with class templates
using the Al Engine Class Kernel block using
template specialization

AIE Class Kernel

AMDZ1

together we advance_

Importing the Al Engine Code as a Block

Al Engine library blocks to import kernel functions and graphs

Al Engine Kernel Al Engine Class Kernel

Block Parameters: AIE Graph

Al Engine Graph

AIE Graph

« Graph is a connection of different compute
kernel functions

Impert an Al Engine graph class or an Al Engine graph class
template as a block.

General

Parameters

* Graph code is imported as a block by
selecting the Al Engine Graph block from

Graph header file(*.h):

Graph search paths: () : the Al Engine library AlE Graph
Preprocessor options: |{} 8
import « Connect the Al Engine Graph block and the
Al Engine Kernel block to the simulate
ST whole design in the Simulink® environment
Using the header file (*.h)
AMDZ1

44 together we advance_

Running Simulink Simulation

After a high-level graphical design is created, simulate it interactively in the Simulink® environment

Ensures the functional correctness of the design and displays the results

Simulink model defines input and output signals

45

Compiling and executing the design

AMD Vitis™ Model Composer provides two MATLAB® environment utilities to directly read/write data from/to the files:

SIMULATION

xmcVitisRead xmcVitisWrite

MODELING SUBSYSTEM BLOCK

] Open =
Save

New E
~ = Print
FILE

-

Tools

Progress window displays only when you are

compiling a design for the first time; other times, it
uses cached entry for faster simulation

A
EE

Library
Browser

LIBRARY

Stop Time 4&

~ | Normal
m@ Fast Restart

Data
Inspector

h | Step
Back «

SIMULATE

-

PREPARE REVIEW RESULTS

Results can be reviewed by connecting any of

the Simulink tool sink blocks to appropriate
points in the design

AMDZ1

together we advance_

46

Agenda

Introduction
AMD Toolbox — Library Blocks

Create and Simulate an HDL Design
Create and Simulate an HLS Design

Create and Simulate an Al Engine Design

Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

AMD Vitis™ Model Composer for Al Engine Development

Enables rapid simulation, exploration, and code generation of algorithms targeted for Al Engines from within
the Simulink environment Typical Heterogeneous Design Flow

MATLAB® & Simulink®

Import Al Engine kernels and data flow
graphs as blocks Al Engine Subsystem

AIE Graph

Control the behavior of the kernels Configurable Al
Engine Functions
and graphs AIE Kemel -

Write PL kernels using RTL or HLS

C/C++ functions it

. . . . c Dataflow Graph
Visualize the simulation results via the

Simulink® software source and sink

b I OCkS Werification Environment
Al Engine Simulation

Supports AIE and AIE-ML

AMDZ1

47 together we advance_

[Public]

Connectivity Between Domains

AMD Vitis™ Model Composer takes advantage of the versatility of a heterogeneous system by
interconnecting the various domains of the AMD Versal™ adaptive SoC, including the Al Engine, HDL, and

HLS kernels

Connectivity Between Domains

A AIE o HLS Kemel

* A OHLS Kermel fo AIE L

(=5 ¢
el HOL 10 AIE dana @

ARy

AMDZ1

together we advance_

48

49

Connecting Al Engine and Non-Al Engine Blocks

Al Engine - Programmable Logic Integration

Al Engine kernel imported into AMD Vitis™ Model Composer can be used as part of a larger Versal™ adaptive
SoC system design

Support for specifying kernels to run on the programmable logic (PL) region
PL kernels can be written using RTL or HLS C/C++ functions
Connection between Al Engine and PL block is routed through a physical channel interface tile

Connecting an Al Engine kernel to an HLS PL kernel is allowed only if the data types and complexities of these
ports match

Interface blocks should be used to reconcile discrepancies

Interconnecting Al Engine and HDL Blocks

Interconnecting Al Engine and HLS Kernels

AMDZ1

together we advance_

Interconnecting Al Engine and HDL Blocks

Helps to manage the sampling times across two domains and simulates a heterogeneous system with PL and
Al Engines

Interface blocks are available in the Ultilities library from AMD Toolbox > Utilities > Connectors
» AIE to HDL block: Connects Al Engine to HDL blocks using an AXl4-Stream-like interface
« HDL to AIE block: Connects HDL to Al Engine blocks using an AXI4-Stream-like interface

AlE to HDL and HDL to AIE blocks have tvalid and tready ports

tdata

Domain E Domain 2 Domain
tready b

Connector Blocks

« Gateway from the Al Engine to the HDL domain can accept a vector input but generates a scalar output
* In the Simulink® environment, the HDL domain will run at a different rate than the Al Engine domain

AMDZ1

50 together we advance_

Al Engine to HDL Block

Connects the output of an Al Engine block/subsystem with the input of an HDL block/subsystem

« Accepts variable-sized signals from Al Engine blocks along with the tready signal, tdata
which indicates whether the HDL domain can accept the data AEtoHDL tvalid

+ Bit width of the tdata output of the Al Engine to HDL signal is limited to 32, 64, or 128 ready

AIE to HDL

Engine block,

port_tdata

Can be any Al ’7 _,| In }_

including DSP and tdata Includes all HDL

Graph import blocks HIE Ko > PLID I AIEto HDL tvakd '[:‘“ ’_ blocks, including
AIE Kemel PLIO weady [4 port_tvalid RTL black box
AlE to HDL
port_tready
PLIO width should match the input bit Converts the data to match the input _EP‘_

width of the HDL design. This block data type of the HDL gateways. Since
only impacts the generated graph the output is always a scaler, this block
code, not simulation is a multirate block

Topology of Connections Between Al Engine and HDL AMDZ

51 together we advance_

[Public]

HDL to AIE Block

Connects the output of an HDL block/subsystem with the input of an Al Engine block/subsystem

» Accepts tdata, which is the primary input for the data, and the tvalid signal, which indicates

tdata

the producer has valid data walid HOL to AIE

 Bit width of the tdata output is limited to 32, 64, or 128, according to hardware functionality geady

HDL to AlE

™
Converts the data to match the
Output from the HDL to input data type of the Al Engine
Al Engine block is a variable- HE—_— Kernel
. . . port_idata
sized signal along with tready
signal » ouw
pecst_ buralacd
Transfer takes place when both Sy
tvalid and tready are asserted I: n Je
PLIO width should match the output bit width of the This can be any Al Engine
J HDL tdata line. This block only impacts the generated block, including DSP and
o graph code and does not impact simulation Graph import blocks
Topology of Connections Between HDL and Al Engine AMD

52 together we advance_

[Public]

Interconnecting Al Engine and HLS Kernel Blocks

Al Engine to HLS Kernel block: Connects HLS Kernel to Al Engine block: Connects
output port of an Al Engine kernel and an input output port of an HLS kernel and an input port of
port of an HLS kernel an Al Engine kernel

Data reformatted to match the data type of the sink port

No data (information) is lost
Blocks are adjusting the data type and the number of samples

Example: Interface block can reformat a signal carrying 64 INT8 values to a signal carrying 16 INT32
values

Use of these blocks is not mandatory if the data types between the HLS kernel block and the Al
Engine block match

Available from the AMD Toolbox > Utilities > Connectors library

AMDZ1

together we advance_

[Public]

Al Engine to HLS Kernel Block

Reformats a signal driven by an Al Engine Kernel block or an Al Engine subsystem

* Double-click the block symbol to see the parameters
of the Al Engine to HLS Kernel block — e I SRR S E— T

w

A

ASE Keened PLIO

AIE to HLS

» Refer to the Graph block so that the resulting signal
matches the data type and complexity required by the

input of the HLS kernel block
> Topology of Connections Between Al Engine and HLS Kernel

Block Parameters: AIE to HLS X

OUtPUt Type Bridge from AIE to HLS Kernel .
Possible values are: The i o0 K s ket SR
ap_axis<32>, ap_axis<64>, ap_axis<128> rches e e and Complesty e b Output port is a variable-sized signal whose
ap_axiu<32>, ap_axiu<64>, ap_axiu<128> parameters maximum size is specified by the Output Size
ap_int<32>, ap_int<64> Output Data Type | int32 -] parameter

ap_UInt<32>, ap_U|nt<64> Outputsize |1 ":'
int, long long, unsigned, unsigned long long

Default output size is 1

AMDZ1

54 together we advance_

[Public]

HLS Kernel to Al Engine Block

Reformats a signal driven by a port of an HLS Kernel block

Resulting signal will match with the data type and
complexity required by:

« Al Engine kernel or

* Input of an Al Engine Graph block — G b lisKemelpAE AR e
Output port of this block is a variable-sized signal HRRA

Double-click the HLS Kernel to Al Engine block Topology of Connections Between HLS Kernel and Al Engine

symbol to see the parameters

&) Block Parameters: HLS to AIE (OREES)
Bridge from HLS to AIE
OUt Ut T e e 0 ridge block reformats a signal driven a po =
. put-1yp e e Output Size
POSS] b | e Val ues are: zges'::::hcgmsll:xity required by an AIE Kernel or an input of a
. int8, int16, int32, int64 e Output port is a variable-sized signal whose
: : : : | outputType ints -] maximum size is specified by the Output Size
e uint8, uint16, uint32, uint64 Output size P y P

parameter

1 I

e cint16, cint32

. sfix128, ufix128, float, cfloat DEEU @IS |

OK Cancel | Help | Apply |

AMDZ1

55 together we advance_

56

Agenda

Introduction

AMD Toolbox — Library Blocks

Create and Simulate an HDL Design
Create and Simulate an HLS Design
Create and Simulate an Al Engine Design

Create a Heterogeneous (Al Engine + PL) Design

Summary

AMDZ1

together we advance_

57

Summary

AMD Vitis™ Model Composer is a model-based design tool that enables rapid design exploration within the
MATLAB® MathWorks Simulink® environment

Vits Model Composer provides features such as:
* Analysis, debugging, and visualization

» Co-simulation of Al Engines and PL

» Code generation

» Validation of the design in hardware

Creating a Vitis Model Composer design consists of three steps:
« Adding blocks to a model

« Connecting the blocks

* Creating a top-level subsystem module

Run Simulink simulation for functional verification of the design

H H HB

58

GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT

The information contained herein is for informational purposes only and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or
fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.
Terms and limitations applicable to the purchase or use of AMD products are as set forth in a sighed agreement between
the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, UltraScale+, Versal, Vitis, Vivado,
Zynq, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective owners. Certain AMD
technologies may require third-party enablement or activation. Supported features may vary by operating system. Please
confirm with the system manufacturer for specific features. No technology or product can be completely secure.

AMDZ1

together we advance_

	Slide 1: Creating and Simulating AMD Vitis™ Model Composer Designs
	Slide 2: Agenda
	Slide 3: What is AMD Vitis™ Model Composer?
	Slide 4: AMD Vitis™ Model Composer
	Slide 5: Design Flows Using AMD Vitis™ Model Composer
	Slide 6: AMD Vitis™ Model Composer in a Nutshell
	Slide 7: Anatomy of a Design
	Slide 8: Agenda
	Slide 9: AMD Vitis™ Model Composer Library Blocks
	Slide 10: AI Engine Library Blocks
	Slide 11: HDL Library Blocks
	Slide 12: HLS Library Blocks
	Slide 13: Utilities Library Blocks
	Slide 14: Agenda
	Slide 15: Homogeneous Design Flow – HDL Design
	Slide 16: Creating an AMD Vitis™ Model Composer HDL Design
	Slide 17: SSR Library
	Slide 18: AMD Vitis™ Model Composer HDL Design - Example
	Slide 19: Running Simulink Simulation
	Slide 20: Importing an HDL Module Using the Black Box Block
	Slide 21: HDL Import Flow
	Slide 22: HDL Co-Simulation
	Slide 23: HDL Co-Simulation
	Slide 24: Hardware Co-Simulation
	Slide 25: Agenda
	Slide 26: Homogeneous Design Flow – HLS Design
	Slide 27: Elements of an AMD Vitis™ Model Composer Design with HLS Blocks
	Slide 28: Creating an AMD Vitis™ Model Composer Design with HLS Blocks
	Slide 29: Importing C/C++ Code as Custom Blocks
	Slide 30: Using the xmcImportFunction Command
	Slide 31: Using the xmcImportFunction Command – Example
	Slide 32: Using the xmcImportFunction Command – Example
	Slide 33: Defining Blocks Using Function Templates
	Slide 34: Defining Blocks Using Function Templates – Example
	Slide 35: Running Simulink Simulation
	Slide 36: Agenda
	Slide 37: Homogeneous Design Flow – AI Engine Design
	Slide 38: AI Engine DSP Library (DSPLib)
	Slide 39: Creating an AI Engine Design Using AMD Vitis™ Model Composer
	Slide 40: Preparing the AI Engine Kernels
	Slide 41: Importing the AI Engine Code as a Block
	Slide 42: Importing the AI Engine Code as a Block
	Slide 43: Importing the AI Engine Code as a Block
	Slide 44: Importing the AI Engine Code as a Block
	Slide 45: Running Simulink Simulation
	Slide 46: Agenda
	Slide 47: AMD Vitis™ Model Composer for AI Engine Development
	Slide 48: Connectivity Between Domains
	Slide 49: Connecting AI Engine and Non-AI Engine Blocks
	Slide 50: Interconnecting AI Engine and HDL Blocks
	Slide 51: AI Engine to HDL Block
	Slide 52: HDL to AIE Block
	Slide 53: Interconnecting AI Engine and HLS Kernel Blocks
	Slide 54: AI Engine to HLS Kernel Block
	Slide 55: HLS Kernel to AI Engine Block
	Slide 56: Agenda
	Slide 57: Summary
	Slide 58: GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT
	Slide 59

