
Creating and Simulating

AMD Vitis Model

Composer Designs

2 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

3 |

What is AMD Vitis Model Composer?

AMD Vitis Model Composer accelerates development by offering

a productive environment within MathWorks Simulink® for

simulation, analysis, code generation, and hardware validation

4 |

AMD Vitis Model Composer
Model-based Design Tool

Provides a library of

performance-

optimized HDL, HLS,

and AI Engine blocks

Accelerates the path

to production

Enables rapid design

exploration

Transforms your

design through

automatic

optimizations

5 |

Design Flows Using AMD Vitis Model Composer

• Get a feel for likely design

problems

• Estimate the performance and

resource utilization in hardware

For sophisticated external

interfaces:

• Implement parts of the design

using Vitis Model Composer

• Implement other parts outside

• Combine the parts into a

working whole

Algorithm Exploration Implementing as Part of a

Larger Design
Implementing a Complete Design

• Everything needed for a design is

available inside

• Validate button instructs Model

Composer to translate the design

into HDL/HLS/AI Engine sources

and write the files needed to

process the design using

downstream tools

6 |

PL- AIE SIMULATION

LIBRARY BLOCKS

Co-simulate designs with PL and

AI Engine blocks

Drag-and-drop AI Engine and PL-optimized

blocks from the Simulink® Library Browser

HARDWARE FLOW
Move your design into hardware with

the click of a button

CODE GENERATION
Generate HLS, RTL, and data flow graphs

as well as testbenches

AMD Vitis Model Composer in a Nutshell

7 |

Anatomy of a Design

Built on top of MathWorks Simulink®, AMD Vitis Model Composer enables the rapid

design exploration of algorithms and accelerates the path to hardware

Input

AI Engine Subsystem PL Block

Output

8 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

9 |

AMD Vitis Model Composer Library Blocks

Highly optimized blocks, targeting:

• AI Engines

• Programmable Logic

10 |

AI Engine Library Blocks

Bit accurate

AI Engine→DSP→Stream I/O Blocks

AIE and AIE-ML devices

11 |

HDL Library Blocks

Cycle accurate and bit accurate Uses C model for fast simulation Generates RTL (Verilog/VHDL)

HDL→DSP→Non AXI-S

HDL library is from

Xilinx System

Generator

12 |

HLS Library Blocks

Bit accurate Uses C model for fast simulation Generates C++ HLS code

HLS→Math Functions→Math Operations

13 |

Utilities Library Blocks

Utilities→Connectors

Utilities→Code Generation

14 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

15 |

Homogeneous Design Flow – HDL Design

Through AMD

Vitis Model

Composer Hub

block

Create

Design
Analyze

Validate on

HW
ExportSimulate

1 52 3 4

16 |

Creating an AMD Vitis Model Composer HDL Design

• Drag-and-drop blocks onto a new sheet to build a design

• Right-click a block to format the block or double click the block to configure

• Connect the blocks with signal lines

17 |

SSR Library
Access the 25 vector blocks supported by Vitis Model Composer from the Simulink® Library Browser

SSR: Parameter that determines how many

parallel samples to accept for every clock cycle

Widely applicable to all AMD devices, especially

AMD Zynq UltraScale+ RFSoC devices

18 |

AMD Vitis Model Composer HDL Design - Example

Simulink® Software

Sources

Gateway blocks used to interface between the Simulink

software and Vitis Model Composer blocks

Simulink Software Sinks
Vitis Model Composer HDL Blocks

19 |

Running Simulink Simulation

Compile and execute the design to produce the

outputs

Define the inputs of the design using

any Simulink® tool source blocks and

analyze the output

Review results by connecting any of the Simulink tool sink blocks to appropriate

points in the design

20 |

Importing an HDL Module Using the Black Box Block
Create and use your own HDL modules

• Allows HDL logic components in the HDL library

• Behaves like other Vitis Model Composer HDL blocks

• Ports can be connected to the rest of the design

• Can be configured to support either synchronous clock

designs or multiple hardware clock designs

21 |

HDL Import Flow

Top-level HDL file to be imported

Import top-level HDL as Vitis Model

Composer black box

Add the HDL, netlist, and MIF files

required by the HDL for simulation and

implementation to the black-box

configuration M-Function

Co-simulate black box using

Vivado simulator or Questa

simulation software

Create HDL wrapper for the top-level

HDL that satisfies black-box

requirements

Does HDL have clk,

ce, and ports that match

requirements?

Yes

No

22 |

HDL Co-Simulation

Why HDL Co-Simulation?

Simulink® software does not have the capability to perform HDL simulation

During HDL co-simulation, the black-box portion of the design is simulated by

an HDL simulator

Supported Simulators

Vivado

Simulator

Questa

simulation

software

23 |

HDL Co-Simulation

AMD Vitis Model Composer simulates black

boxes by:

Launching an HDL simulator

Generating additional HDL

Compiling the HDL

Scheduling simulation events

Handling the exchange of data between

the Simulink® tool and the HDL simulator

24 |

Hardware Co-Simulation

• Accelerated simulation for HDL designs

• Allows a design running on the device to be directly executed in a Simulink® simulation

• Automatically creates a hardware simulation hub

• This hardware will co-simulate with the rest of the Simulink system

Perform hardware verification without knowing

HDL languages How to run the hardware verification tools

Details about the device architecture Third-party board APIs

Device driver details

25 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and simulate an HLS Design

Create and Simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

26 |

Homogeneous Design Flow – HLS Design

Through AMD

Vitis Model

Composer Hub

block

Create

Design
Analyze

Validate on

HW
ExportSimulate

1 52 3 4

27 |

Elements of an AMD Vitis Model Composer Design with HLS Blocks

Input signal from

Simulink® blocks,

sources, and/or pre-

processing blocks

Output signals or sinks

(process the output in

the Simulink

environment)

Top-level subsystem block (encapsulates the algorithm) with:

• Blocks from the HLS library

• Custom imported functions

• Interface Spec block

Vitis Model Composer Hub Block

Simulink software

blocks, sinks, and/or

post-processing

Simulink software

blocks, sources, and/or

pre-processing

Top-level subsystem

comprised of Vitis Model

Composer blocks

28 |

Creating an AMD Vitis Model Composer Design with HLS Blocks

Adding Blocks

to a Model

Connecting

the Blocks

Creating a Top-

Level Subsystem

Module

Add hierarchy to the model by

encapsulating a group of blocks

and signals as a subsystem

within a single block

3
Connect these blocks with signal

lines to establish relationships

among blocks

2
Create a new model by adding

blocks from the Library Browser

to the Simulink® Editor

1

29 |

Importing C/C++ Code as Custom Blocks

AMD Vitis Model Composer lets you import C or C++ code to create new blocks that can be
added to a library

xmcImportFunction:

• Let's you specify the required source files and automatically creates an associated block that

can be added into a model in the Simulink® environment

Requirements:

• Function source can be defined in a header file (.h) or in a C or C++ source file (.c, .cpp), but
the header file must include the function signature

• Function arguments can be real or complex types of scalar, vectors, matrices, or fixed-point
data types

Can change the source code without the need to re-import the block

30 |

Using the xmcImportFunction Command

xmcImportFunction('libName',{'funcNames'},'hdrFile’,{'srcFiles’},{'srchPaths'},'options')

funcNames
Specifies a list of one or more function names defined in the source or header

files to import as a Vitis Model Composer block

hdrFile Specifies a header file (.h) that contains the function declarations or definitions

srcFiles Specifies a list of one or more source files to search for the function definitions

srchPaths Specifies a list of one or more search paths for header and source files

libName
Specifies the name of the Vitis Model Composer HLS library that the new

block is added to

31 |

Using the xmcImportFunction Command – Example

// simple.h

void simple_add(const double in1, const double in2, double *out)

{

 *out = in1 + in2;

}

To import the simple_add function as a block:

xmcImportFunction('SimpleLib',{'simple_add'},'simple.h',{},{})

• SimpleLib is the name of the Vitis Model Composer HLS library to add the block to

• simple_add is the function name to import

• simple.h is the header file to look in

32 |

Using the xmcImportFunction Command – Example

simple_add Block
simple_add Block Parameters

33 |

Defining Blocks Using Function Templates

If you want to create a block that:

Accepts inputs of

different sizes

Supports different

data types

Accepts signals with different

fixed-point lengths and

fractional lengths

Function template lets you create a block that accepts:

• Variable signal size, data type, or data dimensions
Increase the re-usability of your block library

34 |

Defining Blocks Using Function Templates – Example

#include <stdint.h>

template <int ROWS, int COLS>

void simple_matrix_add(const int16_t in1[ROWS][COLS],

 const int16_t in2[ROWS][COLS],

 int16_t out[ROWS][COLS]) {

 for (int i = 0; i<ROWS; i++) {

 for (int j = 0; j<COLS; j++) {

 out[i][j] = in1[i][j] + in2[i][j];

 }

 }

}

Defining Blocks Using Function Templates

xmcImportFunction('SimpleLib',{'simple_matrix_add'},...

'template_example.h',{},{},'unlock’)

35 |

Running Simulink Simulation

Compiling and executing the design

Define the inputs of the design using

any Simulink® tool source blocks and

analyze the output

Results can be analyzed with MATLAB® scripts and visualization tools like the Simulation Data Inspector

36 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

37 |

Homogeneous Design Flow – AI Engine Design

Through AMD

Vitis Model

Composer Hub

block

Create

Design
Analyze

Validate on

HW
ExportSimulate

1 52 3 4

38 |

Library of commonly used DSP functions optimized for AI Engines

Different DSPLib

functions as blocks are

provided in the AMD

Toolbox > AI Engine >

DSP library

AI Engine DSP Library (DSPLib)

AI Engine > DSP > Buffer I/O Blocks

Synchronized DSP

functions in

Vitis_Libraries GitHub

39 |

Creating an AI Engine Design Using AMD Vitis Model Composer

AI Engine kernels are functions that form the fundamental building blocks of the data flow graph

AMD Vitis Model Composer supports generating the AI Engine data flow graph by importing

the AI Engine kernel or sub-graph

Preparing the

AI Engine Kernels

Importing the

AI Engine Code

as a Block

Steps for Creating AI Engine Design

40 |

Preparing the AI Engine Kernels

AI Engine

Kernels
• Declared as C/C++ functions that return void and can use special data types for arguments

• Should be defined each in their own source file

• Source files should include all relevant header files to allow for independent compilation

Data-accessing Mechanisms

Buffer-based Access Stream-based Access

input_buffer<cint16> myInputBuffer;

output_buffer<int32> myOutputBuffer;

• Kernels can process the data in blocks

called buffers

• Requires synchronization of input/output

buffers before entering the kernel

• No synchronization required within the

kernel to read or write the individual

elements of data

• Kernels can access data streams in a

sample-by-sample fashion

• Each access to these streams is

synchronized

• Direct stream communication channel

between one AI Engine and the adjacent

AI Engine—called a cascade

input_stream<cint16> * myInputStream;

output_stream<cint16> * myOutputStream;

41 |

Importing the AI Engine Code as a Block
AI Engine library blocks to import kernel functions and graphs

AI Engine Kernel AI Engine Class Kernel AI Engine Graph

Input: Kernel or a data flow sub-graph

AMD Vitis Model Composer: Generates a block with

interfaces that match the function arguments of a kernel or a

graph

42 |

Importing the AI Engine Code as a Block
AI Engine library blocks to import kernel functions and graphs

AI Engine Kernel AI Engine Class Kernel AI Engine Graph

• Use an AI Engine Kernel block from the AI

Engine library to import this kernel

AMD Vitis Model Composer supports:

• Importing both buffer-based and stream-based

kernels

• Cascade stream connections between two AI

Engine processors

• Importing AI Engine kernels with runtime

parameters and function templates

43 |

Importing the AI Engine Code as a Block
AI Engine library blocks to import kernel functions and graphs

AI Engine Kernel AI Engine Class Kernel AI Engine Graph

• Use an AI Engine Class Kernel block from the AI Engine library to import

the C++ kernel class to have constructor parameters for specifying

parameter values

AMD Vitis Model Composer supports:

• Kernels with default constructors and

parameterized constructors

• Importing the kernels with class templates

using the AI Engine Class Kernel block using

template specialization

44 |

Importing the AI Engine Code as a Block
AI Engine library blocks to import kernel functions and graphs

AI Engine Kernel AI Engine Class Kernel AI Engine Graph

• Graph is a connection of different compute

kernel functions

• Graph code is imported as a block by

selecting the AI Engine Graph block from

the AI Engine library

• Connect the AI Engine Graph block and the

AI Engine Kernel block to the simulate

whole design in the Simulink® environment

Using the header file (*.h)

8

45 |

Running Simulink Simulation

Progress window displays only when you are

compiling a design for the first time; other times, it

uses cached entry for faster simulation

Results can be reviewed by connecting any of

the Simulink tool sink blocks to appropriate

points in the design

xmcVitisRead xmcVitisWrite

AMD Vitis Model Composer provides two MATLAB® environment utilities to directly read/write data from/to the files:

Compiling and executing the design Simulink model defines input and output signals

• After a high-level graphical design is created, simulate it interactively in the Simulink® environment

• Ensures the functional correctness of the design and displays the results

46 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

47 |

AMD Vitis Model Composer for AI Engine Development
Enables rapid simulation, exploration, and code generation of algorithms targeted for AI Engines from within

the Simulink environment

• Import AI Engine kernels and data flow

graphs as blocks

• Control the behavior of the kernels

and graphs

• Write PL kernels using RTL or HLS

C/C++ functions

• Visualize the simulation results via the

Simulink® software source and sink

blocks

Typical Heterogeneous Design Flow

PL PLAI Engine Subsystem

Supports AIE and AIE-ML

48 |

Connectivity Between Domains

AMD Vitis Model Composer takes advantage of the versatility of a heterogeneous system by

interconnecting the various domains of the AMD Versal adaptive SoC, including the AI Engine, HDL, and

HLS kernels

49 |

Connecting AI Engine and Non-AI Engine Blocks

• AI Engine kernel imported into AMD Vitis Model Composer can be used as part of a larger Versal adaptive

SoC system design

• Support for specifying kernels to run on the programmable logic (PL) region

• PL kernels can be written using RTL or HLS C/C++ functions

• Connection between AI Engine and PL block is routed through a physical channel interface tile

• Connecting an AI Engine kernel to an HLS PL kernel is allowed only if the data types and complexities of these

ports match

• Interface blocks should be used to reconcile discrepancies

Interconnecting AI Engine and HDL Blocks Interconnecting AI Engine and HLS Kernels

AI Engine - Programmable Logic Integration

50 |

Interconnecting AI Engine and HDL Blocks

Connector Blocks

Helps to manage the sampling times across two domains and simulates a heterogeneous system with PL and

AI Engines

Interface blocks are available in the Utilities library from AMD Toolbox > Utilities > Connectors

• AIE to HDL block: Connects AI Engine to HDL blocks using an AXI4-Stream-like interface

• HDL to AIE block: Connects HDL to AI Engine blocks using an AXI4-Stream-like interface

AIE to HDL and HDL to AIE blocks have tvalid and tready ports

• Gateway from the AI Engine to the HDL domain can accept a vector input but generates a scalar output

• In the Simulink® environment, the HDL domain will run at a different rate than the AI Engine domain

AI Engine

Domain

HDL

Domain
AI Engine

Domain
AIE to HDL HDL to AIE

51 |

AI Engine to HDL Block

• Accepts variable-sized signals from AI Engine blocks along with the tready signal,

which indicates whether the HDL domain can accept the data

• Bit width of the tdata output of the AI Engine to HDL signal is limited to 32, 64, or 128

Connects the output of an AI Engine block/subsystem with the input of an HDL block/subsystem

Topology of Connections Between AI Engine and HDL

Includes all HDL

blocks, including

RTL black box

Can be any AI

Engine block,

including DSP and

Graph import blocks

PLIO width should match the input bit

width of the HDL design. This block

only impacts the generated graph

code, not simulation

Converts the data to match the input

data type of the HDL gateways. Since

the output is always a scaler, this block

is a multirate block

52 |

HDL to AIE Block

• Accepts tdata, which is the primary input for the data, and the tvalid signal, which indicates

the producer has valid data

• Bit width of the tdata output is limited to 32, 64, or 128, according to hardware functionality

Connects the output of an HDL block/subsystem with the input of an AI Engine block/subsystem

Topology of Connections Between HDL and AI Engine

Output from the HDL to

AI Engine block is a variable-

sized signal along with tready

signal

Transfer takes place when both

tvalid and tready are asserted
This can be any AI Engine

block, including DSP and

Graph import blocks

PLIO width should match the output bit width of the

HDL tdata line. This block only impacts the generated

graph code and does not impact simulation

Converts the data to match the

input data type of the AI Engine

kernel

53 |

• Example: Interface block can reformat a signal carrying 64 INT8 values to a signal carrying 16 INT32

values

• Use of these blocks is not mandatory if the data types between the HLS kernel block and the AI

Engine block match

• Available from the AMD Toolbox > Utilities > Connectors library

Interconnecting AI Engine and HLS Kernel Blocks

AI Engine to HLS Kernel block: Connects

output port of an AI Engine kernel and an input

port of an HLS kernel

HLS Kernel to AI Engine block: Connects

output port of an HLS kernel and an input port of

an AI Engine kernel

Data reformatted to match the data type of the sink port

No data (information) is lost

Blocks are adjusting the data type and the number of samples

54 |

AI Engine to HLS Kernel Block

• Double-click the block symbol to see the parameters

of the AI Engine to HLS Kernel block

• Refer to the Graph block so that the resulting signal

matches the data type and complexity required by the

input of the HLS kernel block

Reformats a signal driven by an AI Engine Kernel block or an AI Engine subsystem

Topology of Connections Between AI Engine and HLS Kernel

Output Type

Possible values are:

• ap_axis<32>, ap_axis<64>, ap_axis<128>

• ap_axiu<32>, ap_axiu<64>, ap_axiu<128>

• ap_int<32>, ap_int<64>

• ap_uint<32>, ap_uint<64>

• int, long long, unsigned, unsigned long long

Output Size

• Output port is a variable-sized signal whose

maximum size is specified by the Output Size

parameter

• Default output size is 1

55 |

HLS Kernel to AI Engine Block

• Resulting signal will match with the data type and

complexity required by:

• AI Engine kernel or

• Input of an AI Engine Graph block

• Output port of this block is a variable-sized signal

• Double-click the HLS Kernel to AI Engine block

symbol to see the parameters

Reformats a signal driven by a port of an HLS Kernel block

Topology of Connections Between HLS Kernel and AI Engine

Output Type

Possible values are:

• int8, int16, int32, int64

• uint8, uint16, uint32, uint64

• cint16, cint32

• sfix128, ufix128, float, cfloat

Output Size

• Output port is a variable-sized signal whose

maximum size is specified by the Output Size

parameter

• Default output size is 1

56 |

Agenda Introduction

AMD Toolbox – Library Blocks

Create and Simulate an HDL Design

Create and Simulate an HLS Design

Create and Simulate an AI Engine Design

Create a Heterogeneous (AI Engine + PL) Design

Summary

57 |

Summary

02 Vits Model Composer provides features such as:

• Analysis, debugging, and visualization

• Co-simulation of AI Engines and PL

• Code generation

• Validation of the design in hardware

03 Creating a Vitis Model Composer design consists of three steps:

• Adding blocks to a model

• Connecting the blocks

• Creating a top-level subsystem module

04 Run Simulink simulation for functional verification of the design

01 AMD Vitis Model Composer is a model-based design tool that enables rapid design exploration within the

MATLAB® MathWorks Simulink® environment

58 |

GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT

The information contained herein is for informational purposes only and is subject to change without notice. While every

precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and

typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro

Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this

document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or

fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described

herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.

Terms and limitations applicable to the purchase or use of AMD products are as set forth in a signed agreement between

the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, UltraScale+, Versal, Vitis, Vivado,

Zynq, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective owners. Certain AMD

technologies may require third-party enablement or activation. Supported features may vary by operating system. Please

confirm with the system manufacturer for specific features. No technology or product can be completely secure.

	Slide 1: Creating and Simulating AMD Vitis™ Model Composer Designs
	Slide 2: Agenda
	Slide 3: What is AMD Vitis™ Model Composer?
	Slide 4: AMD Vitis™ Model Composer
	Slide 5: Design Flows Using AMD Vitis™ Model Composer
	Slide 6: AMD Vitis™ Model Composer in a Nutshell
	Slide 7: Anatomy of a Design
	Slide 8: Agenda
	Slide 9: AMD Vitis™ Model Composer Library Blocks
	Slide 10: AI Engine Library Blocks
	Slide 11: HDL Library Blocks
	Slide 12: HLS Library Blocks
	Slide 13: Utilities Library Blocks
	Slide 14: Agenda
	Slide 15: Homogeneous Design Flow – HDL Design
	Slide 16: Creating an AMD Vitis™ Model Composer HDL Design
	Slide 17: SSR Library
	Slide 18: AMD Vitis™ Model Composer HDL Design - Example
	Slide 19: Running Simulink Simulation
	Slide 20: Importing an HDL Module Using the Black Box Block
	Slide 21: HDL Import Flow
	Slide 22: HDL Co-Simulation
	Slide 23: HDL Co-Simulation
	Slide 24: Hardware Co-Simulation
	Slide 25: Agenda
	Slide 26: Homogeneous Design Flow – HLS Design
	Slide 27: Elements of an AMD Vitis™ Model Composer Design with HLS Blocks
	Slide 28: Creating an AMD Vitis™ Model Composer Design with HLS Blocks
	Slide 29: Importing C/C++ Code as Custom Blocks
	Slide 30: Using the xmcImportFunction Command
	Slide 31: Using the xmcImportFunction Command – Example
	Slide 32: Using the xmcImportFunction Command – Example
	Slide 33: Defining Blocks Using Function Templates
	Slide 34: Defining Blocks Using Function Templates – Example
	Slide 35: Running Simulink Simulation
	Slide 36: Agenda
	Slide 37: Homogeneous Design Flow – AI Engine Design
	Slide 38: AI Engine DSP Library (DSPLib)
	Slide 39: Creating an AI Engine Design Using AMD Vitis™ Model Composer
	Slide 40: Preparing the AI Engine Kernels
	Slide 41: Importing the AI Engine Code as a Block
	Slide 42: Importing the AI Engine Code as a Block
	Slide 43: Importing the AI Engine Code as a Block
	Slide 44: Importing the AI Engine Code as a Block
	Slide 45: Running Simulink Simulation
	Slide 46: Agenda
	Slide 47: AMD Vitis™ Model Composer for AI Engine Development
	Slide 48: Connectivity Between Domains
	Slide 49: Connecting AI Engine and Non-AI Engine Blocks
	Slide 50: Interconnecting AI Engine and HDL Blocks
	Slide 51: AI Engine to HDL Block
	Slide 52: HDL to AIE Block
	Slide 53: Interconnecting AI Engine and HLS Kernel Blocks
	Slide 54: AI Engine to HLS Kernel Block
	Slide 55: HLS Kernel to AI Engine Block
	Slide 56: Agenda
	Slide 57: Summary
	Slide 58: GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT
	Slide 59

