
Using the AMD Vitis

Model Composer Hub

Block

2 |

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs

Hardware Validation

Summary

3 |

[Public]

AMD Vitis Model Composer Hub

Create

Design
Analyze

Validate on

HW
ExportSimulate

1 52 3 4

Through AMD

Vitis Model

Composer Hub

Block

4 |

[Public]

What is the Hub Block?

Every design has one Hub block

Allows for many design-level controls

Hardware selection

5 |

[Public]

AMD Vitis Model Composer Hub

AMD Vitis Model

Composer
Configures compilation and

generates outputs

Helps with device, board, or

platform selection

Provides options to select the output flow

Specifies whether the model should be

treated as a legacy

System Generator design

Controls the behavior of the tool

6 |

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs

Hardware Validation

Summary

7 |

[Public]

Hardware Selection

Device Chooser obtains data from Vivado IDE database

8 |

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs

Hardware Validation

Summary

9 |

[Public]

Code Generation – HDL Design

10 |

[Public]

Code Generation – HDL Design

* Testbench generation is not supported for designs

that have gateways (Gateway In or Gateway Out)

configured as an AXI4-Lite interface

11 |

[Public]

Export Types for AMD Vitis Model Composer HDL Designs

• Can create following types of output from an HDL model:

• IP Catalog

• Hardware Co-Simulation

• Synthesized Checkpoint

• HDL Netlist

• Generate .xo

12 |

[Public]

Code Generation – AMD Vitis HLS Design

13 |

[Public]

Export Types for AMD Vitis Model Composer HLS Designs

• Can create two different types of output from an HLS model:

• HLS C++ code

• IP Catalog

14 |

[Public]

Code Generation – AI Engine Design

15 |

[Public]

Code Generation – AI Engine Design

16 |

[Public]

Export Types for AMD Vitis Model Composer AI Engine Designs

Can create two different types of output from an AI Engine model:

• Graph Code

• Vitis Subsystem

17 |

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs

Hardware Validation

Summary

18 |

[Public]

Performing Analysis in HDL Design
Analysis tools integrated in AMD Vitis Model Composer to help verify your design works correctly on your

target device

Timing Analysis

Closing timing to ensure the HDL files operate

correctly in hardware

Performance Analysis options:

Resource Analysis

Analyzing the resources to ensure they fit into

your target device

19 |

[Public]

Verifying the C++ Code – AMD Vitis HLS Design

C++ code verification flow:

• Model is simulated, and the input and outputs are logged

into the signals.stim binary file

• C++ code and a testbench (tb.cpp, which contains a main()

function) are generated

• Results are compared and verified from the generated C++

simulation and the output from the Simulink® simulation

(signals.stim)

• Mismatched output signal name is reported, as well as the

actual and expected values

• Result returns as a Pass/Fail

When the target specified is HLS C++ code, and the verification

flow is enabled, Vitis Model Composer uses C simulation to

verify the generated C++ code

20 |

[Public]

Verifying the C/RTL Code – AMD Vitis HLS Design

RTL code verification flow:

• Ensures that the C++ code generated is correct by

comparing with the Simulink® simulation (signals.stim)

• Ensures that the RTL code generated is correct by

comparing output stimulus from RTL with the C/C++ output

Result returns as a Pass/Fail

When the target specified is

IP Catalog, and the verification flow is enabled,

Vitis Model Composer runs C/RTL co-simulation

21 |

[Public]

Verification of the AI Engine Code

AMD Vitis Model Composer supports verification of the data flow graph using the AI Engine simulator

Vitis Model Composer Hub Block for Verification

When the AI Engine code cannot be verified with a TEST PASSED

message, need to debug it to arrive at the reference output

• Analyze tab: Verifies and analyzes the AI Engine design; generates

and compiles AI Engine code

• AI Engine code verification advances in three phases:

• Compiling the AI Engine graph design

• Running simulation using the AI Engine simulator

• Verifying the simulation results by comparing the output with

the golden reference output

22 |

[Public]

Profiling Statistics and Event Tracing

• Profiling data helps to gauge the efficiency of the kernels,

the stall and active times of each AI Engine, and kernels

whose performance may not be optimal

• Collect data on design latency, throughput, and bandwidth

• Event trace can be performed using a formatted printf

statement in the code for printing debug messages

• By enabling the Collect profiling statistics and enable

'printf' for debugging option in the Vitis Model

Composer Hub block

23 |

[Public]

Viewing Results in the AMD Vitis Analyzer

• From the report navigator, you can view other available reports, such as the Summary, Profile, Graph, Array, and Log

In Vitis Model Composer, you can launch the Vitis analyzer from the MATLAB® command window using the command:

xmcOpenVitisAnalyzer('file')

AMD Vitis software platform analyzer is a utility to view and

analyze the reports generated when building and running the

application

During the simulation of the AI Engine graph, the AI Engine simulator

writes a summary of the simulation results called
default.aierun_summary

The Vitis analyzer utility can be invoked by enabling the

Collect Data for Vitis Analyzer option from the Hub block

24 |

[Public]

Viewing AI Engine Simulation Output and Throughput

Simulation Data Inspector displays available data in

the Inspect pane

• To plot a signal, select the check box next to the signal

• Modify the layout and add different visualizations to

analyze the simulation data

• Obtain the throughput information for each port from

the Inspect pane

Vitis Model Composer provides the capability to:

• Log the simulation data and visualize the output of an AI Engine subsystem by

integrating the Simulink® tool’s Simulation Data Inspector feature

• Calculate the throughput for each output port of the AI Engine subsystem

(View AIE Simulation output and throughput option)

25 |

[Public]

Calculating Latency between AI Engine Ports

• Enable collect trace data option

• Run the AI Engine Simulation

• Select the AI Engine input/output signals

• Right-click and select “AIE Compute Latency”

Estimate Latency between input-output ports of AI Engine subsystem

Visualize Latency from AMD Vitis Model Composer:

Based on previous sample runs, the table shows first, last and avg. sample latency

AIE simulation is a cycle-approximate

26 |

[Public]

Plotting AI Engine Simulation Internal Signals

Simulation Data Inspector can also be used for signals within an AI Engine subsystem

Select Internal AIE

Signals

View Source and

Destination Signal in Data

Inspector (Simulink®)

Collect Trace Data in

Hub Block

27 |

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs

Hardware Validation

Summary

28 |

[Public]

Hardware Validation Flow for AI Engines

• Provides a methodology to verify AI Engine-based applications on hardware (AMD Versal devices)

• Provides option to validate the generated hardware image targeting a specific platform for the Simulink® model

• Hardware image can be:

• Run on a board to verify whether the results from hardware match with the simulation output

• Either bare-metal or Linux®-based

Hardware image can be generated for designs with:

• Only AI Engine blocks

• Both PL and AI Engines

• Only PL blocks

29 |

[Public]

Topologies Supported for the Hardware Validation Flow
AI Engine Design

HDL Design

HLS Kernel

All AI Engine

Design

One or

more inputs

One or more

outputs

All AI Engine Design

One or more

inputs

One or more

outputs

HLS

Kernel

HLS

Kernel

AI Engines

One or more

inputs

HDL

Design

HDL Design

One or

more inputs

One or more

outputs

One or more

outputs

HDL Design

One or

more inputs

AI Engines HDL Design

One or more

outputs

HLS Kernel

One or

more inputs

One or more

outputs

Must be hls_stream Must be hls_stream

One or more

outputs

HLS Kernel

One or

more inputs
All AI Engine

Design
HLS Kernel

Must be hls_stream Must be

hls_stream

30 |

[Public]

High-Level Flow for Generating a Hardware Image

Generate hardware image from the Simulink® tool:

• Requires an expandable platform (.xpfm) file

• For hardware (e.g., VCK190), the platform files are shipped with the AMD Vitis software platform

• Expandable custom platform can be created for a custom board

Bare-metal applications:

• Tool generates a BOOT.BIN image file

Linux®-based applications:

• Tool generates an sd_card.img file

Hardware runs independently; no information is communicated between

Vitis Model Composer and the hardware

31 |

[Public]

Design Considerations for Hardware Validation Flow

• HLS Kernels must have AXI4-Stream input and

output ports

• HLS Kernel should be in free-running mode;

accomplished by including the following pragma in
the HLS function: #pragma HLS INTERFACE

ap_ctrl_none port=return

AXI4-Stream input and output ports of the subsystem must have a bit width in multiple of 8 bits, up to a maximum of 128 bits

• Only use HLS Kernel blocks to import C/C++ code (for PL) to connect

with AI Engines

• Blocks from the HLS library are not allowed to connect to and co-

simulate with the AI Engine

• Ensure the bit width of the HLS Kernel input or output that connects

with the AI Engine matches the PLIO width of the AIE

• Ensure that there are no extra outputs from the subsystem that will

not be in the hardware implementation, such as debug outputs to

monitor internal signals

• If multiple HLS Kernel inputs are being driven by the same signal, the

signal multiplexing must occur outside the hardware subsystem, so

there are subsystem inputs for each HLS Kernel input

Considerations for Designs

with HLS Kernels
Considerations for HLS-AI Engine Designs

32 |

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs

Hardware Validation

Summary

33 |

[Public]

Summary

01 AMD Vitis Model Composer automatically compiles designs into low-level representations using the Vitis

Model Composer Hub block

02 Vitis Model Composer Hub block controls the behavior of the Vitis Model Composer tool

05 Verification of AI Engine code can be done via the Vitis Model Composer Hub block, profiling, and event

tracing, as well as using the Vitis Analyzer tool to calculate throughput

03 Support for exporting different compilation types provides the freedom to choose a suitable representation for

a design’s environment

04 Enable the verification flow for HLS design by selecting the create testbench and run C simulation or C/RTL

co-simulation options from the Vitis Model Composer Hub block

06 Hardware validation flow can be performed by generating a hardware image targeting a specific platform for

the Simulink® environment

34 |

[Public]

GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT

The information contained herein is for informational purposes only and is subject to change without notice. While every

precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and

typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro

Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this

document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or

fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described

herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.

Terms and limitations applicable to the purchase or use of AMD products are as set forth in a signed agreement between

the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, UltraScale+, Versal, Vitis, Vivado,

Zynq, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective owners. Certain AMD

technologies may require third-party enablement or activation. Supported features may vary by operating system. Please

confirm with the system manufacturer for specific features. No technology or product can be completely secure.

	Slide 1: Using the AMD Vitis™ Model Composer Hub Block
	Slide 2: Agenda
	Slide 3: AMD Vitis™ Model Composer Hub
	Slide 4: What is the Hub Block?
	Slide 5: AMD Vitis™ Model Composer Hub
	Slide 6: Agenda
	Slide 7: Hardware Selection
	Slide 8: Agenda
	Slide 9: Code Generation – HDL Design
	Slide 10: Code Generation – HDL Design
	Slide 11: Export Types for AMD Vitis™ Model Composer HDL Designs
	Slide 12: Code Generation – AMD Vitis™ HLS Design
	Slide 13: Export Types for AMD Vitis™ Model Composer HLS Designs
	Slide 14: Code Generation – AI Engine Design
	Slide 15: Code Generation – AI Engine Design
	Slide 16: Export Types for AMD Vitis™ Model Composer AI Engine Designs
	Slide 17: Agenda
	Slide 18: Performing Analysis in HDL Design
	Slide 19: Verifying the C++ Code – AMD Vitis™ HLS Design
	Slide 20: Verifying the C/RTL Code – AMD Vitis™ HLS Design
	Slide 21: Verification of the AI Engine Code
	Slide 22: Profiling Statistics and Event Tracing
	Slide 23: Viewing Results in the AMD Vitis™ Analyzer
	Slide 24: Viewing AI Engine Simulation Output and Throughput
	Slide 25: Calculating Latency between AI Engine Ports
	Slide 26: Plotting AI Engine Simulation Internal Signals
	Slide 27: Agenda
	Slide 28: Hardware Validation Flow for AI Engines
	Slide 29: Topologies Supported for the Hardware Validation Flow
	Slide 30: High-Level Flow for Generating a Hardware Image
	Slide 31: Design Considerations for Hardware Validation Flow
	Slide 32: Agenda
	Slide 33: Summary
	Slide 34: GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT
	Slide 35

