Using the AMD Vitis ™
Model Composer Hub
Block

AMD 1

together we advance_

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs
Hardware Validation

Summary

AMDZ1

together we advance_

[Public]

AMD Vitis™ Model Composer Hub

Through AMD
Vitis™ Model
Composer Hub
Block

Create Simulate Analvze Validate on
Design y HW

__

AMDZ1

together we advance_

[Public]

What is the Hub Block?

Every design has one Hub block

Allows for many design-level controls

Hardware selection

SIMULATION

FORMAT

SingleStreamSSR - S

Stop Time <

L 3 Open ~ 1]
E - [5]
New e - Library Signal v | | Normal] s
~ = Print ~ Browser Table u@ Fast Restart Ba
FILE LIBRARY PREPARE S
g | < SSR4 singleStreamSSR
wvi
2 | ® [alsinglestreamssr »
m
T
2 @ U O .
= 1 i
E3 I -
=} : ‘ l :
= | Model Composer Hub I
|
|:| i — — _I R
—» Phaseln0_0 PhaseOut0
AMDZ1

together we advance_

[Public]

AMD Vitis™ Model Composer Hub

AMD Vitis™ Model Configures compilation and
Composer generates outputs

s

Controls the behavior of the tool

Specifies whether the model should be
Provides options to select the output flow treated as a legacy
System Generator design

Vitis Model Composer:

Helps with device, board, or
platform selection

AMDZ1

5 together we advance_

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs
Hardware Validation

Summary

AMDZ1

together we advance_

[Public]

Hardware Selection

Vitls Model Composer: mac_Fir_test

& . @
Hardware Cane Derign
Sebehion Ceneraton Gy
Ti sabech o hawdware: ianget [device o boaed, or pladfiorm), clck on e ' bution
Tt Masdwadi Fitex-UraScais KOULOS Evnduabon Pladom (sckas0sD-Mall 56-2-)
Taigel Type Beird
Dieplry Wams WOt LI ek NCLIT0S Evalsydon Plafiorm
Catecind e Bioawrdl Waime ol
Resssion 11
oo on Ly
Famiy e LivaSoale
Pat w00 L L S D
Packigs Bealise
Spaoad -2
AIE Ty
Fefresh O

Device Chooser: mac_fir_test s B €

Devices ' Boards |, Platform \)

Vendor: v| Name: a| | Board Revt g -
Search: | | (94 matches)

Display_Name Vendor ‘ Board_* Part ‘ Board_Name ‘ Versin{ Name ‘
ersal VCK180 Evaluation Platform xilinx.com Rev B02 xcvcl902-vwsva2197-2M... vckl190 3.0 xilinx.com:vck190:3.0 |~
“ersal WVCK190 Evaluation Platform xilinx.com Rev BO2 xcvcl902-wswva2l87-2M... wckl90 3.1 xilinx.comwck190:3.1
Versal VCK180 Evaluation Platform xilinx.com Rev B02 xcvcl902-wsva2197-2M... vckl190 3.2 xilinx.comvck190:3.2
“ersal WVCK190 Evaluation Platform xilinx.com Rev BO2 xcvcl902-wswva2l87-2M... wckl90 3.3 xilinx.comwck190:3.3
“ersal WCK190 Evaluation Platform with New SD L... xilinx.com Rev BO3 xcvcl902-wvswva2l87-2M... wvckl190_newl 1.0 xilinx.comavck190_newl:...
“ersal WVCK190 Evaluation Platform with New SD L... xilinx.com Rev BO3 xcvcl902-wvswva2l97-2M... wvckl90_newl 1.1 xilinx.comwvek190_newl:...
“ersal WCK190 Evaluation Platform with New SD L... xilinx.com Rev BO3 xcvcl902-wvswva2l87-2M... wvckl190_newl 1.2 xilinx.comavck190_newl:...
\Versal VEK280 Evaluation Platform with FMC Conn... xilinx.com Rev BO3 xcve2802-vsvh1760-2M... vek280 1.0 xilinx.com:vek280:1.0
“ersal VEK280 Evaluation Platform with FMC Conn... xilinx.com Rev BO3 xcve2B02-wsvhl1760-2M... vek280 1.1 xilinx.comwek280:1.1
\ersal VEK280 Evaluation Platform with FMC Conn... xilinx.com Rev B03 xcve2802-vsvh1760-2M... vek280 1.2 xilinx.comwek280:1.2 =]

OK Cancel

Device Chooser obtains data from Vivado™ |IDE database

AMDZ1

together we advance_

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs
Hardware Validation

Summary

AMDZ1

together we advance_

Code Generation — HDL Design

Vitis Model Composer: mac_Fir_test

& E B
Hardware Code Design
Selection Generation Settings

Settings Analyze Validate On Hardware Expont

~ mac_fir_test Settings I Analyze l‘\falidate On Hardware l Export l
Ramp

Analyze post-synthesis and post-implementation timing and resource utilization

These settings are common to all design steps for this subsystem

Rampl
Q mac_fir_test subsystem Target Language [VHDL v] C]

Target Directory | fcode [=] n Analyze

Synthesis Strategy [Vi\rado Synthesis Defaults

Implementation Strategy [Vi\.ra.do Implementation Defaults
=

|1 Enable multiple clocks | Perform Analysis [Pust Synthesis ¥]

FPGA clock period (ns) Analysis Type [Timing v]

Simulink system period (sec) Block lcon DiSFﬂE}I’ Default L J I | UPUH[E the model |

Clock pin location

[] Create interface document

[] Provide clock enable clear pin

[]Remote IP Cache [clearcache |

Refresh H Ok H Apply H Cancel H Help

AMDZ1

together we advance_

[Public]

Code Generation — HDL Design

Settings Analyze Validate On Hardware

Generate hardware image to validate HDL subsystem in hardware or hardware emulation. Settings Analyze alidate On Hardware

Export HDL subsystem for system integration.

Target Directory | netiist | (=) | S\ Vaidate |

Export Directory | ./netlist

HW System Type

(») Baremetal

Export Type | IP Catalog b

lg Generate testhench

[] Generate BOOT.EIN after code generation

* Testbench generation is not supported for designs
that have gateways (Gateway In or Gateway Out)
configured as an AXI4-Lite interface

AMDZ1

10 together we advance_

[Public]

Export Types for AMD Vitis™ Model Composer HDL Designs

» Can create following types of output from an HDL model:

» |P Catalog « HDL Netlist
 Hardware Co-Simulation Generate .xo

» Synthesized Checkpoint

Settings Analyze Validate On Hardware Export

Export HDL subsystem for system integration.

Export Directory | nefiist |

n Export ‘

Export Type | IP Catalog v | |
IP Catalog

Hardware Co-Simulation (JTAG)
synthesized Checkpoint

HOL Netlist

[| Generate t

Generate X0

AMDZ1

together we advance_

Code Generation — AMD Vitis™ HLS Design

Settings

Run RTL co-simulation, verify output against Simulink, and analyze latency and initiation interval (I1)

Settings Analyze Export Target Directory | RE) &\ Analyze \

These settings are common to all design steps for this subsystem

FPGA clock frequency (MHz) Seftings Analyze

Export HLS subsystem for system integration

Throughput Factor

Testbench stack size (MBytes)

Export Type | IP Catalog v [..

[] Generate testbench

AMDZ1

together we advance_

[Public]

Export Types for AMD Vitis™ Model Composer HLS Designs

» Can create two different types of output from an HLS model:

« HLS C++ code
» |P Catalog

Vitis Model Composer: CodeGen_IP S & &
L 4 E o
Hardware Code Design
Selection | | Generation Settings
~ CodeGen_|P

4 Edge_Detection

Settings Analyze Export

Export HLS subsystem for system integration

Export Directory | ./code | (=) | n Export |
Export Type | IP Catalog | [.
[]Generate ts HLS C++ code
IP Catalog
|Hefresh || oK || Apply || Cancel H Help |

AMDZ1

together we advance_

[Public]

Code Generation — Al Engine Design

Settings Validate On Hardware Export

Run System-C simulation, verify output against Simulink, and analyze throughput and |latency

Target Directory | _n Analyze

Analyze Validate On Hardware Export
These settings are common to all design steps for this subsystem AIE Simulator Options 0

‘l Sl e U |ﬂ'—“ Simulation timeout (cycles) | 50000

[] Collect profiling statistics and enable "printf for debugging

[] Collect trace data for Vitis Analyzer, viewing internal signals, and latency

[View AIE Simulation output and throughput] [Open Vitis Analyzer

AMDZ1

together we advance_

[Public]

Code Generation — Al Engine Design

Settings Analyze Validate On Hardware

Generate hardware image to validate AIE subsystem in hardware or hardware emulation

Target Directory

| ;l Validate |

HW System Type

(@) Baremetal () Linux

Target [hw v]

[] Generate BOOT.BIN after code generation

Settings Analyze Validate On Hardware

Export AIE subsystem for system integration

Export Directory | Jfcode

Export Type [Graph Code

Generate testbench

AMDZ1

together we advance_

[Public]

Export Types for AMD Vitis™ Model Composer Al Engine Designs

Can create two different types of output from an Al Engine model:

« Graph Code
« Vitis Subsystem

Vitis Model Composer: aie_testbench = =] x
W i e
Hardware Code Design
Selection Generation Settings
- aie_testbench Settings Analyze Validate On Hardware Export
Signal FromWorkspace
Export AIE subsystem for system integration
5 ai_engine
Export Directory | Jfcode | [| ‘ n Export
Export Type Vitls Subsystem
Graph Code b
AIE array c v
Vitis Subsystem
Generate testbench
| Refresh H oK H Apply H Cancel || Help |

AMDZ1

together we advance_

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs
Hardware Validation

Summary

AMDZ1

together we advance_

[Public]

Performing Analysis in HDL Design

Analysis tools integrated in AMD Vitis™ Model Composer to help verify your design works correctly on your

target device

~ mac_fir_test Settings Analyze | Validate On Hardware Export

Performance Analysis options:
Vitis Model Composer: mac_fir_test s O €
.. : e [E (.2
Timing Analysis | seecton || ceneration || setings |

Ram| I
. Analyze post-synthesis and post-implementation timing and resource utilization

Rampl

Closing timing to ensure the HDL files operate ey | & [D]
. Target Directory | Jcode | = Analyze
correctly in hardware £

Perform Analysis |’ Post Synthesis

Analysis Type Timing v
Resource Analysis ek conDispay | 1M1 (“Upsate v model
[] Create interface oocoment
Analyzing the resources to ensure they fit into
your target device [Reresn |[ok |[aomy |[camat || mep |

AMDZ1

together we advance_

[Public]

Verifying the C++ Code — AMD Vitis™ HLS Design

When the target specified is HLS C++ code, and the verification

flow is enabled, Vitis™ Model Composer uses C simulation to
verify the generated C++ code

Vitis Model Composer: CodeGen_IP = =) &

C++ code verification flow:

L B
- Model is simulated, and the input and outputs are logged Seecton | | Generaton || Setins
into the signals.stim binary file - CodeGen P | sotwngs | Anayze | Expor
© Eage_Detection Export HLS subsystem for system integration
« C++ code and a testbench (tb.cpp, which contains a main()
function) are generated Export Directry | code 1C)
» Results are compared and verified from the generated C++ ExportType (HISCrrooie 7]
simulation and the output from the Simulink® simulation [] Generate testoench
(signals.stim)
Refreah][oK H Apply H Cancel H Help]

« Mismatched output signal name is reported, as well as the
actual and expected values

 Result returns as a Pass/Fail

AMDZ1

together we advance_

[Public]

Verifying the C/RTL Code — AMD Vitis™ HLS Design

When the target specified is

IP Catalog, and the verification flow is enabled,
Vitis™ Model Composer runs C/RTL co-simulation " Vitis Model Composer: CodeGen_IP _ 4 ox
v ®
Hardware Code Design
. gon o Selection Generation Settings
RTL code verification flow: :
~ CodeGen_IP Settings | Analyze Export

() Edge_Detection |

* Ensures that the C++ code generated is correct by
comparing with the Simulink® simulation (signals.stim) I @

« Ensures that the RTL code generated is correct by
comparing output stimulus from RTL with the C/C++ output

Export HLS subsystem for system integration

Export Type [IP Catalog v]

[] Generate testbench

Result returns as a Pass/Falil

Help]

[o o

AMDZ1

20 together we advance_

[Public]

Verification of the Al Engine Code

AMD Vitis™ Model Composer supports verification of the data flow graph using the Al Engine simulator

Vitis MOdeI Composer HUb BIOCk for Verification Vitis Model Composer: passThrough

@ - B
0O . . Hardware Code Design
« Analyze tab: Verifies and analyzes the Al Engine design; generates | s || seuns
and compiles Al Engine code T O L
) o . . @ HDL_Subsystem Run System-C simulation, verify output against Simulink, and analyze throughput and latency

« Al Engine code verification advances in three phases: S ollw-r— |

« Compiling the Al Engine graph design | ~

AIE Simulator Options (O
* Running simulation using the Al Engine simulator Smulaton tmeout (cces) [50000 |
0 0 [] Collect profiling statistics and enable 'printf’ for debugging
» Verifying the simulation results by comparing the output with ol o i g i A
the g0|den reference Output | ViewAIE Simulation output and throughput | Open Vitis Analyzer

Completed Refresh oK || Apply ‘ Cancel ‘ Help ‘

'aie_system"” []

When the Al Engine code cannot be verified with a TEST PASSED
message, need to debug it to arrive at the reference output

AMDZ1

together we advance_

21

[Public]

Profiling Statistics and Event Tracing

- . Vitis Model Composer: passThrough ¥) (a) (x
Profiling data helps to gauge the efficiency of the kernels, ~ 3 ®
. . . Hardware Code Design
the stall and active times of each Al Engine, and kernels Setecton | | Generaton | | Setings
whose performance may not be optimal ol Setings [Analyze | Valicate On Hardware Expor
g :‘:L'm Run System-C simulation, verify output against Simulink, and analyze throughput and latency
. . Signal FromWorkspace - —_—
Collect data on design latency, throughput, and bandwidth Target Drectory | Jcode (=] | g maye |
. . AIE Simulator Options l { |
Event trace can be performed using a formatted printf e
statement in the code for printing debug messages (] Gollect profing statistics and enabe ‘print-for debugging \
By enabling the Collect profiling statistics and enable |D°°“e°‘“°"“‘”’V‘“S“"a"“’a""“””“g —
. . - - View AIE Simulation output and throughput Open Vitis Analyzer
printf’ for debugging option in the Vitis™ Model
Composer Hub block
“ Refresh H oK H Apply H Cancel H Help ‘
AMDZ

together we advance_

22

[Public]

Viewing Results in the AMD Vitis™ Analyzer

Vitis Model Composer: passThrough

AMD Vitis™ software platform analyzer is a utility to view and ® = ®
analyze the reports generated when building and running the ‘Setction || Genersion || Sattgs
~ passThrough Settings Analyze Validate On Hardware Export

application

(4 AIE_Subsystem : :

Run System-C simulation, verify output against Simulink, and analyze throughput and latency
& HDL_Subsystem
Signal FromWorkspace

Target Directory lJcode I |E| ‘ n Analyze ‘

During the simulation of the Al Engine graph, the Al Engine simulator
writes a summary of the simulation results called AIE Simuiator Options [0
Simulation timeout (cycles)

default.aierun summary
["] collect profiling statistics and enable "printf’ for debugging

(l:] Collect trace data for Vitis Analyzer and viewing internal signals
[View AIE Simulation output and throughput | |/ Open Vitis Analyzer |
The Vitis analyzer utility can be invoked by enabling the

Collect Data for Vitis Analyzer option from the Hub block ‘, ,’ ’ l ’
Refresh ‘ OK H Apply ‘ Cancel ’ Help

From the report navigator, you can view other available reports, such as the Summary, Profile, Graph, Array, and Log

In Vitis Model Composer, you can launch the Vitis analyzer from the MATLAB® command window using the command:

xmcOpenVitisAnalyzer ('file')
AMDZ\

together we advance_

23

[Public]

Viewing Al Engine Simulation Output and Throughput

Vitis Model Composer: passThrough viiAalix
@
Hardware Code Design
Selection Generation Settings

~ passThrough Settings Analyze Validate On Hardware Export
Vitis™ Model Composer provides the capability to: gg“T: SIS SO Y A A S gy B ey
* Log the simulation data and visualize the output of an Al Engine subsystem by B & R
integrating the Simulink® tool’s Simulation Data Inspector feature im0 |
Simuiation timeout (cyces)
Calculate the throughput for each output port of the Al Engine subsystem Szzwm;mﬁﬁ:xmﬂ
(View AIE Simulation output and throughput option) [viomne Srmaster st mrvvapat Y| openvessumne |

Simulaf Datal led* ‘iRehesn ” OK H o H - H o ‘
imulation Data Inspector - untitle

| I =R 2@ : : : : :
mfiﬂ Cm[;:: I = Ml Simulation Data Inspector displays available data in
@ L S | S S S the Inspect pane
« mimo_krnls_32bit \ \ 'I“| “I“ ‘|‘ ‘| ”‘. ". | I\ H.‘ . :
p e — Ay ‘,' A i ‘,' IREANI - To plot a signal, select the check box next to the signal
7 Out3 (110 MSPS) —_— [|\ [\ | \ | \ ‘ \ | \ | [| \
— 8 R o o o e
o D f il ama A f | ﬁ WARISIRA 4 Modify the layout and add different visualizations to
\ [‘ \ | \ \ | \ 0 .
T 1]] T T A f IR analyze the simulation data
L VIRVEVR IR VEIVIRREvmyay
= e \ oo o ¢ : : :
N IR VIR FAT A Obtain the throughput information for each port from
L3 T Y[R | 1 R A N Y[R RV Y the Inspect pane
. \l I'\\ II I|| “ ‘I‘ ‘\| \ ‘I| ‘Il
e S S G (D G G G SN (N GH) .|
. Properties A 1830 1860 1630 1920 1950 1980 2010 2040 2000 2100 2130 2160 2180

AMDZ1

24 together we advance_

[Public]

Calculating Latency between Al Engine Ports

AlE simulation is a cycle-approximate

Vitis Model Composer: passThrough v) (a) (x
. . . e TE|[@
Estimate Latency between input-output ports of Al Engine subsystem e Pl e
~ passThrough Settings Analyze Validate On Hardware Export
. . o k g:‘::w Run System-C simulation, verify output against Simulink, and analyze throughput and latency
Visualize Latency from AMD Vitis™ Model Composer: S oo o —
. Target Directory | /code | (=)
« Enable collect trace data option
- Run the Al Engine Simulation el |
« Select the Al Engine input/output signals] otect poting st a e e or g
. . « » [_] Collect trace data for Vitis Analyzer and viewing intemal signals)
* Right-click and select “AIE Compute Latency ————————
Based on previous sample runs, the table shows first, last and avg. sample latency —T T =T

(AMD) AIE Compute latency

h.l l -
. Latency computed between the input and output ports of "pfal008" subsystem.
(AMD) AIE View in Data Inspector sl - " ot S

(AMD) AIE Compute latency “First Latency (ps)" is the latency between the first input sample and first output sample,
: “Last Latency (ps)" is the latency between the last input sample and last output sample.
(AMD) Waveform Viewer ... “Average Latency (ps)” is the difference between average output sample time and average input sample time.

(AMD) Add to Viewer
(AMD) Clear Waveform Selections

& Cut

Input Port Output Port First Latency (ps) |Last Latency (ps) |Average Latency (ps)
Inl Outl 7193600 437600 3654698

AMDZ1

25 together we advance_

[Public]

Plotting Al Engine Simulation Internal Signals

Simulation Data Inspector can also be used for signals within an Al Engine subsystem

View Source and
Destination Signal in Data
Inspector (Simulink®)

Select Internal AIE
Signals

Collect Trace Data in
Hub Block

Settings Analyze Validate On Hardware Export
Run System-C simulation, verify output against Simulink, and analyze throughput and latency + .
Target Directory :Jtude _. || n Analyze .:
g
' ' 1 1 AMD AIE View in Data Inspector 3, N A F
AIE Simulator Options 0 it
Simutation timeout (cycles) | 50000 1 AMD Waveform Viewear .. 2 A _ J’ '
[] Collect profiling statistics and enable “printT for debugging FIRchain_AIE AMD Add to Viewer B i i i
([T Cotect wace cata for Vius Analyzer and viewing intermal signals) AMD Clear Waveform Selections L UIPE I
(| ViewAE Simulation output and throughput | | Open Vitis Analyzer Signal Hierarchy ® w
Properties | “4l P

Archive (2)

Properties E B e e e e e @ W e W e

AMDZ1

26 together we advance_

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs
Hardware Validation

Summary

AMDZ1

27 together we advance_

[Public]

Hardware Validation Flow for Al Engines

« Provides a methodology to verify Al Engine-based applications on hardware (AMD Versal™ devices)
« Provides option to validate the generated hardware image targeting a specific platform for the Simulink® model
* Hardware image can be:
* Run on a board to verify whether the results from hardware match with the simulation output
» Either bare-metal or Linux®-based

Vitis Model Composer:]

Hardware image can be generated for designs with:

« Only Al Engine blocks
« Both PL and Al Engines
« Only PL blocks H ysem Tpe

(@) Baremetal

‘Refresh H OK H Apply H Cancel H Help “

AMDZ1

28 together we advance_

[Public]

Topologies Supported for the Hardware Validation Flow
S)

Al Engine Design

One or One or more

more inputs . outputs
— All Al Engine —

HDL Design

One or One or more

more inputs outputs
3 HDLDesign [2

HLS Kernel

One or One or more
more inputs

outputs
3 HLSKemel [2
. Must be hls_stream

Must be hls stream

29

One or more
inputs

>

HLS
Kernel j
One or more

outputs

HDL
Design n

One or more
inputs

ey

One or more

outputs
All Al Engine Design

One or

One or more
more inputs outputs
HDL Design [Lo 2 Al Engines ___ M HDL Design
One or One or more
more mputs . outputs
All Al Engine
HLS Kernel ‘ Besign ﬂ HLS Kernel
Must be hls_stream Must be
hls_stream
AMDZ

together we advance_

[Public]

High-Level Flow for Generating a Hardware Image

Generate hardware image from the Simulink® tool:
* Requires an expandable platform (.xpfm) file

* For hardware (e.g., VCK190), the platform files are shipped with the AMD Vitis™ software platform
« Expandable custom platform can be created for a custom board

Bare-metal applications:
» Tool generates a BOOT.BIN image file

Linux®-based applications:
» Tool generates an sd_card.img file

Hardware runs independently; no information is communicated between
Vitis Model Composer and the hardware

AMDZ1

30 together we advance_

[Public]

Design Considerations for Hardware Validation Flow

AXIl4-Stream input and output ports of the subsystem must have a bit width in multiple of 8 bits, up to a maximum of 128 bits

Considerations for Designs
with HLS Kernels

Considerations for HLS-Al Engine Designs

- HLS Kernels must have AXI4-Stream input and * Only use HLS Kernel blocks to import C/C++ code (for PL) to connect
output ports with Al Engines

- HLS Kernel should be in free_running mode; Blocks from the HLS Ilbrary are not allowed to connect to and co-
accomplished by including the following pragma in simulate with the Al Engine
the HLS function: #pragma HLS INTERFACE » Ensure the bit width of the HLS Kernel input or output that connects
ap _ctrl none port=return with the Al Engine matches the PLIO width of the AIE

» Ensure that there are no extra outputs from the subsystem that will
not be in the hardware implementation, such as debug outputs to
monitor internal signals

« If multiple HLS Kernel inputs are being driven by the same signal, the
signal multiplexing must occur outside the hardware subsystem, so
there are subsystem inputs for each HLS Kernel input

AMDZ1

31 together we advance_

[Public]

Agenda Introduction

Hardware Selection

Code Generation

Analyzing and Verifying Designs
Hardware Validation

Summary

AMDZ1

32 together we advance_

[Public]

33

Summary

AMD Vitis™ Model Composer automatically compiles designs into low-level representations using the Vitis
Model Composer Hub block

Vitis Model Composer Hub block controls the behavior of the Vitis Model Composer tool

Support for exporting different compilation types provides the freedom to choose a suitable representation for
a design’s environment

Enable the verification flow for HLS design by selecting the create testbench and run C simulation or C/RTL
co-simulation options from the Vitis Model Composer Hub block

Verification of Al Engine code can be done via the Vitis Model Composer Hub block, profiling, and event
tracing, as well as using the Vitis Analyzer tool to calculate throughput

Hardware validation flow can be performed by generating a hardware image targeting a specific platform for
the Simulink® environment

[Public]

34

GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT

The information contained herein is for informational purposes only and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or
fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.
Terms and limitations applicable to the purchase or use of AMD products are as set forth in a sighed agreement between
the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, UltraScale+, Versal, Vitis, Vivado,
Zynq, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective owners. Certain AMD
technologies may require third-party enablement or activation. Supported features may vary by operating system. Please
confirm with the system manufacturer for specific features. No technology or product can be completely secure.

AMDZ1

together we advance_

	Slide 1: Using the AMD Vitis™ Model Composer Hub Block
	Slide 2: Agenda
	Slide 3: AMD Vitis™ Model Composer Hub
	Slide 4: What is the Hub Block?
	Slide 5: AMD Vitis™ Model Composer Hub
	Slide 6: Agenda
	Slide 7: Hardware Selection
	Slide 8: Agenda
	Slide 9: Code Generation – HDL Design
	Slide 10: Code Generation – HDL Design
	Slide 11: Export Types for AMD Vitis™ Model Composer HDL Designs
	Slide 12: Code Generation – AMD Vitis™ HLS Design
	Slide 13: Export Types for AMD Vitis™ Model Composer HLS Designs
	Slide 14: Code Generation – AI Engine Design
	Slide 15: Code Generation – AI Engine Design
	Slide 16: Export Types for AMD Vitis™ Model Composer AI Engine Designs
	Slide 17: Agenda
	Slide 18: Performing Analysis in HDL Design
	Slide 19: Verifying the C++ Code – AMD Vitis™ HLS Design
	Slide 20: Verifying the C/RTL Code – AMD Vitis™ HLS Design
	Slide 21: Verification of the AI Engine Code
	Slide 22: Profiling Statistics and Event Tracing
	Slide 23: Viewing Results in the AMD Vitis™ Analyzer
	Slide 24: Viewing AI Engine Simulation Output and Throughput
	Slide 25: Calculating Latency between AI Engine Ports
	Slide 26: Plotting AI Engine Simulation Internal Signals
	Slide 27: Agenda
	Slide 28: Hardware Validation Flow for AI Engines
	Slide 29: Topologies Supported for the Hardware Validation Flow
	Slide 30: High-Level Flow for Generating a Hardware Image
	Slide 31: Design Considerations for Hardware Validation Flow
	Slide 32: Agenda
	Slide 33: Summary
	Slide 34: GENERAL DISCLOSURE AND ATTRIBUTION STATEMENT
	Slide 35

