
AMD Versal AI Engines

for DSP End-to-End

Design Flow

2 |2 |

Agenda 1. Creating a Vivado Extensible Platform

2. Creating an AI Engine Component in Vitis Unified IDE

3. Reviewing the Source Files

4. Configuring DSP Library Parameters Using .csv File

5. Running AI Engine Compiler and Simulator, Vitis Analyzer

to Measure Latency and Throughput

6. Running Export to Vivado Tool Flow

3 |3 |

Creating a Vivado Extensible Platform

• Click the Vivado Design Suite icon () from the

taskbar

• Click Create Project and click Next on New Project

window, enter project details and click on Next

4 |4 |

Creating a Vivado Extensible Platform

• Select the required Project Type and click on Next

• Now Add Sources and Constraints if required

• Choose a board required for the project and click

Next

• Review the project summary and click on Finish

5 |5 |

Agenda 1. Creating a Vivado Extensible Platform

2. Creating an AI Engine Component in Vitis Unified IDE

3. Reviewing the Source Files

4. Configuring DSP Library Parameters Using .csv File

5. Running AI Engine Compiler and Simulator, Vitis Analyzer

to Measure Latency and Throughput

6. Running Export to Vivado Tool Flow

6 |6 |

Creating an AMD Vitis Unified IDE Project

• Click the Vitis Unifed IDE icon () from the

taskbar

• Click Set Workspace to choose a workspace directory

• Click Open to proceed

7 |7 |

Creating an AI Engine Component

• Click Add Folders under Import Sources

• Select data and src directories

• File > New Component > AI Engine

• Component name (e.g., filter_design_acc)

• Choose Component location (default is workspace)

8 |8 |

Creating an AI Engine Component

• Review Summary

• Click Finish

• Component appears in Components Window

• Choose the required XSA

• Click Next

9 |9 |

Agenda 1. Creating a Vivado Extensible Platform

2. Creating an AI Engine Component in Vitis Unified IDE

3. Reviewing the Source Files

4. Configuring DSP Library Parameters Using .csv File

5. Running AI Engine Compiler and Simulator, Vitis Analyzer

to Measure Latency and Throughput

6. Running Export to Vivado Tool Flow

10 |10 |

Reviewing the Source Files

• Open graph code

• Path: [AI Engine] > Sources > src > fir1_graph.h

• For the FIR filter, the following parameters are

declared:
• TT_DATA: Data type

• TT_COEFF: Coefficient type

• TP_FIR_LEN: Length of the filter (overall length including zeros)

• TP_SHIFT: Shifting value operated just before sending the data to

the output

• TP_RND: Truncation, rounding, rounding up, etc.

• TP_INPUT_WINDOW_VSIZE: Size of the window (buffer) in

samples

• TP_CASC_LEN: Number of cascaded kernels to use for the FIR

• TP_DUAL_IP: Use dual inputs if set to 1

• TP_USE_COEFF_RELOAD: No reload if set to 0

• TP_NUM_OUTPUTS: Number of ports to broadcast the output

• TP_API: Set for windows (I/O buffers) or stream data APIs

• TP_SSR: Scale throughput using parallelization

11 |11 |

Reviewing the Source Files

For the FFT, the following parameters are

declared:
• TT_TYPE: Type of individual data samples input to and output

from the transform function

• TT_TWIDDLE: Twiddle factors of the transform

• TP_POINT_SIZE: Number of samples processed by the FFT

• TP_FFT_NIFFT: To select the transform to perform (0 for IFFT

and 1 for FFT)

• TP_SHIFT: Number of bits to shift accumulate down by before

output

• TP_CASC_LEN: Number of bits to shift accumulate down by

before output

• TP_DYN_PT_SIZE: Number of bits to shift accumulate down by

before output

• TP_WINDOW_SIZE: Number of samples in the input window

• TP_API: Set for windows (I/O buffers) or stream data APIs

• TP_PARALLEL_POWER: Selects the parallelism factor as a

power of 2. Values range from 0 to 4

12 |12 |

Reviewing the Source Files

• Review the other components

• Update the kernel connections in fir1_graph.h

as per your design
• filt_i.out [0] > fir_dut.in [0]

• fir_dut.out [0] > fft_dut.in [0]

• fir_dut.out [0] > filt_o.in [0]

• fft_dut.out [0] > fft_o.in [0]

13 |13 |

Agenda 1. Creating a Vivado Extensible Platform

2. Creating an AI Engine Component in Vitis Unified IDE

3. Reviewing the Source Files

4. Configuring DSP Library Parameters Using .csv File

5. Running AI Engine Compiler and Simulator, Vitis Analyzer
to Measure Latency and Throughput

6. Running Export to Vivado Tool Flow

14 |14 |

How to Download / Import Libraries from GitHub

AMD Vitis DSP Library

https://github.com/Xilinx/Vitis_Libraries

https://github.com/Xilinx/Vitis_Libraries

15 |15 |

Configuration Parameters

• Different set of parameters for

different functions

• Available in AMD Vitis Libraries

Configuration Parameters

https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/compiling-and-simulating.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/compiling-and-simulating.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/compiling-and-simulating.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/compiling-and-simulating.html

16 |16 |

Configuration Databases

• Gives an early estimate of power, latency,

throughput, and resource utilization

• Benchmarks are for different combination of

Library parameters such as datatypes and

AI Engine types

• Has ~3K to 5K test results

• Is accessed as a CSV file located at:
Vitis_Libraries/dsp/docs/src/csv_data_files/L2 at

2025.1 · Xilinx/Vitis_Libraries · GitHub

AMD Vitis DSP Library – Configuration Database

https://github.com/Xilinx/Vitis_Libraries/tree/2025.1/dsp/docs/src/csv_data_files/L2
https://github.com/Xilinx/Vitis_Libraries/tree/2025.1/dsp/docs/src/csv_data_files/L2
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/benchmark.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/benchmark.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/benchmark.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/benchmark.html
https://docs.amd.com/r/en-US/Vitis_Libraries/dsp/user_guide/L2/benchmark.html

17 |17 |

Filtering and Sorting CSV table

FFT Window Function – Filtering the values in the CSV table using the Excel sheet in Desktop

18 |18 |

Agenda 1. Creating a Vivado Extensible Platform

2. Creating an AI Engine Component in Vitis Unified IDE

3. Reviewing the Source Files

4. Configuring DSP Library Parameters Using .csv File

5. Running AI Engine Compiler and Simulator, Vitis Analyzer
to Measure Latency and Throughput

6. Running Export to Vivado Tool Flow

19 |19 |

Building and Simulating the Project

• Click Build under AIE

Simulator/Hardware to build the

component

• Add Launch Configuration​
• Path: Settings > launch.json​

• Select filter_design_acc_aiesim_1 config​

• Click Run under AIE

Simulator/Hardware​

• Monitor TASK window​

20 |20 |

Latency and Throughput Estimates

Average Throughput Computed Displayed at End of AIE Simulation

aiesimulator –pkg-dir=./Work –dump-vcd foo –options-file=aiesim-options.txt

VCD file generates latency and throughput estimates

Vitis Unified IDE > AIE Simulation Reports > Trace > Opens Analysis View

vitis_analyzer aie/aiesimulator_output/default.aierun_summaryCommand line:

Continuous Latency
Between specific input and

output ports
Continuous Throughput

At a specific input or

output port

21 |21 |

Latency & Throughput Table
First Latency Last Latency Average Latency

Latency time

between first input to

first output

Latency time

between last input

to last output

Difference between

avg. output sample

time and avg. input

sample time

Plot or Export Continuous Latency and Throughput

22 |22 |

Agenda 1. Creating a Vivado Extensible Platform

2. Creating an AI Engine Component in Vitis Unified IDE

3. Reviewing the Source Files

4. Configuring DSP Library Parameters Using .csv File

5. Running AI Engine Compiler and Simulator, Vitis Analyzer
to Measure Latency and Throughput

6. Running Export to Vivado Tool Flow

23 |23 |

AMD Vitis Export to Vivado Flow

v++ -link --export_archive

Create custom Vivado platform (Flat/BDC) using RTL, HLS, or IP catalog

Flow can be repeated for any number of design iterations

XSA file can be exported from Vivado IDE and passed back to Vitis tools

Updated VMA file can be reimported into Vivado IDE

v++ compiler operates on Vivado project that has been encapsulated in extensible XSA

Support for modifications to Vivado project that do not invalidate contract between imported design

and XCLBIN

Enables bi-directional hardware hand-offs between Vivado Design Suite and Vitis tools

24 |24 |

Vitis Export Flow Implementation

1. Import XSA in Vitis to compile and link:

•AI Engine graph (libadf.a)

•PL kernels (.xo)

•Update system.cfg, run Vitis linker

2. Export Vitis Metadata Archive (VMA)

•v++ --link --export_archive --platform <xsa> -

-config system.cfg <xo> libadf.a -o

<vma>.vma

25 |25 |

3. Import VMA into Vivado tools:

•vitis::import_archive ./<vma>.vma

•Creates Vitis region block design (read-only

Vitis hierarchy)

4. Modify design in Vivado as needed

•For PL/AIE updates → remove VMA

(vitis::remove_archive)

•Re-export XSA and repeat Vitis tool flow if

required

5. After implementation, generate fixed XSA:

•write_hw_platform -fixed ./<fixed_xsa>.xsa

6. Use fixed XSA for:

•Yocto / Vitis Embedded apps

•Bare-metal or hardware validation

7. For emulation:

•Generate sim-included XSA (include_sim_content)

8. Package and create deployable .xclbin:

•v++ --package -t <hw|hw_emu> --xsa

<fixed_xsa>

AMD Vitis Export Flow Implementation

26 |26 |

In this demo, we’ll walk you through the complete end-to-end flow of developing a Vitis Subsystem, or VSS, and integrating it with

a custom Vivado extensible platform — targeting the AMD Versal VCK190 device.

Watch the video on YouTube - AMD Versal AI Engines for DSP End-to-End Design Flow

https://youtu.be/J6NlZHCKqIg

https://youtu.be/J6NlZHCKqIg

27 |27 |

Summary

Source AMD Vitis tools and configure

Linux® sysroot

1

Use Makefiles to compile AI Engine, HLS,

RTL, and validate functionality

2

Configure core blocks and export XSA for

Vitis integration

3

Link components in Vitis, generate VMA,

and import back into the Vivado for final

design

4

28 |28 |

General Disclaimer and Attribution Statement

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution

has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and

AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations

or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,

including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation

or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any

intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Versal, Vitis, Vivado, and combinations thereof

are trademarks of Advanced Micro Devices, Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other

countries. Yocto Project is a trademark of The Linux Foundation. Other product names used in this publication are for identification

purposes only and may be trademarks of their respective owners. Certain AMD technologies may require third-party enablement or

activation. Supported features may vary by operating system. Please confirm with the system manufacturer for specific features. No

technology or product can be completely secure.

	Slide 1: AMD Versal™ AI Engines for DSP End-to-End Design Flow
	Slide 2: Agenda
	Slide 3: Creating a Vivado Extensible Platform
	Slide 4: Creating a Vivado Extensible Platform
	Slide 5: Agenda
	Slide 6: Creating an AMD Vitis Unified IDE Project
	Slide 7: Creating an AI Engine Component
	Slide 8: Creating an AI Engine Component
	Slide 9: Agenda
	Slide 10: Reviewing the Source Files
	Slide 11: Reviewing the Source Files
	Slide 12: Reviewing the Source Files
	Slide 13: Agenda
	Slide 14: How to Download / Import Libraries from GitHub
	Slide 15: Configuration Parameters
	Slide 16: Configuration Databases
	Slide 17: Filtering and Sorting CSV table
	Slide 18: Agenda
	Slide 19: Building and Simulating the Project
	Slide 20: Latency and Throughput Estimates
	Slide 21: Latency & Throughput Table
	Slide 22: Agenda
	Slide 23: AMD Vitis Export to Vivado Flow
	Slide 24: Vitis Export Flow Implementation
	Slide 25: AMD Vitis Export Flow Implementation
	Slide 26: In this demo, we’ll walk you through the complete end-to-end flow of developing a Vitis Subsystem, or VSS, and integrating it with a custom Vivado extensible platform — targeting the AMD Versal VCK190 device. Watch the video on YouTube - AMD V
	Slide 27: Summary
	Slide 28: General Disclaimer and Attribution Statement
	Slide 29

