
AMD Vitis Functional

Simulation

2 ||2

Agenda • What is Functional Simulation?

• Introduction to AMD Vitis Functional Simulation (VFS)

• Vitis Array (varray)

• VFS in MATLAB® / Python Environment

3 ||32

[Public]

What is Functional Simulation?

PL AI Engine

PMC

DDR4

A72

…

PCIe

Platform

Developed by the HW Team

Using AMD Vivado Tool

AIE+PL Subsystem

Developed by the

Algorithm Team

Using AMD Vitis Tool

AMD Versal Adaptive SoC

Heterogeneous Design with Versal AI Engine and PL

Programmable

 Logic (PL)
FPGA Logic

AMD Versal AI

Engine Array
AIE Function

Simulated using

C-Sim (if written

in Vitis HLS)

Simulated using

x86 simulator

Test and verify the functional correctness of the design

• Generate test vectors and simulate the behavior

• Bit-accurate simulation

• Use x86 simulator for AI Engine component

• Use C-Sim for HLS (PL) component

• Custom testbench is required

Functional Simulation

4 ||4

Simulation in High-Level Languages

Why?

What?

Simulation of the algorithmic part of a design in high-level languages is

critical in shortening development time and accelerating time to market.

AMD Versal devices introduce AI Engines in addition to

programmable logic and a simulation solution should seamlessly

incorporate both compute domains.

The simulation should be done in the customer’s preferred language.

5 ||5

Challenges

Solution

Customers cannot functionally simulate an

AI Engine graph or the HLS component

in MATLAB® and Python frameworks.

Customers cannot functionally simulate a

heterogeneous design in MATLAB and

Python frameworks.

AMD Vitis functional simulation allows customers to

functionally simulate using the MATLAB or Python

frameworks.

6 ||6

Agenda • What is Functional Simulation?

• Introduction to AMD Vitis Functional Simulation (VFS)

• Vitis Array (varray)

• VFS in MATLAB® / Python Environment

7 ||7

Introduction to AMD Vitis Functional Simulation (VFS)

Maintain original environment – minimizes changes during verification

Support heterogeneous systems

Bit-accurate functional simulation

Enables functional verification of:

• AI Engine graph natively in the MATLAB® or Python framework

• HLS kernel natively in the MATLAB or Python framework

• AIE-PL (HLS) subsystem natively in the MATLAB or Python framework

AI Engine

(AMD IP or

Custom IP)

Programmable Logic

(HDL, HLS) (AMD IP

or Custom IP)

Functionally simulate each component or

co-simulate

AMD Vitis Functional Simulation

(MATLAB, Python)

VSS

Cycle accurate simulation of each

component

AIE Simulation/HLS RTL cosim

Heterogeneous design with AMD Versal AI Engine and HLS (targeting the PL)

8 ||8

Benefits of AMD Vitis Functional Simulation

Benefits

AMD VFS automatically compiles

AI Engine graphs or HLS kernels

if required

Simulate and debug when

building up the design – high

level of design visibility

Fast simulation

speed – run millions of vectors

and analyze system metrics

(SNR, BER, etc.) in a closed-

loop environment

Flexible options to instantiate the

components and simulate: Use a

config file or key-value pairs

Provides choice of frameworks to

match needs (MATLAB® or

Python environments)

9 ||9

Current Tool Constraints (as of 2025.1)

No cycle count information –

cannot measure latency and

throughput

AMD Versal AI Engine

memory and stream access

conflicts are not modeled

Some programming

model constructs not

fully supported

AMD Vitis Functional

Simulation

MATLAB®

Python

2025.1

2025.1

Embedded Design

Development Using Vitis

User Guide (UG1701)

https://docs.amd.com/r/en-US/ug1701-vitis-accelerated-embedded/Getting-Started-with-Vitis-Unified-Software-Platform
https://docs.amd.com/r/en-US/ug1701-vitis-accelerated-embedded/Getting-Started-with-Vitis-Unified-Software-Platform
https://docs.amd.com/r/en-US/ug1701-vitis-accelerated-embedded/Getting-Started-with-Vitis-Unified-Software-Platform

10 ||10

Agenda • What is Functional Simulation?

• Introduction to AMD Vitis Functional Simulation (VFS)

• Vitis Array (varray)

• VFS in MATLAB® / Python Environment

11 ||11

Simulation Enginedata datavarray varray

Convert

from
varray

MATLAB array

Python Numpy array or

 lists/tuples

MATLAB array

Python Numpy array or

lists/tuples

Convert to
varray

Vitis Array supports all

AMD data types

AMD VFS and AMD Vitis Array (varray)

AMD Vitis Array

(varray)

A module to support all data types for AMD devices in MATLAB® / Python

Allows conversion and casting between the data types

The simulation engine needs to support all data types supported by AMD devices

Not all AMD supported data types are natively supported in MATLAB / Python

12 ||12

Varray and Supported Data Types

int8, uint8, cint8, cuint8

int16, uint16, cint16, cuint16

int64, uint64, cint64, cuint64

float, cfloat

double, cdouble

float8, bfloat8 (2025.2)

float16 (AIE-ML v2)

Bfloat16, cbfloat16 (AIE-ML)

mx9,mx6,mx4 (AIE-ML v2)1

uint4,int4 (AIE-ML v2)

fi(sign, width, fractional)2,3

1 - You can specify a rounding mode for mx data types.

2 - For fi, Overflow mode: Saturate, Rounding mode: Nearest

3 - In HLS, we specify the bit width and the integer bits

 ap_fixed<16,16> is equivalent to fi(1,16,0)

varray in MATLAB® /

Python

Convert to

uint8

Shared object (.so)

generated by v++

Convert uint8 to

output data type

varray in MATLAB / Python

13 ||13

Varray in MATLAB® / Python Environment

Convert

back to

a MATLAB

array

See the

underlying bytes

Create

varray

Convert back

to numpy

See the

underlying bytes

Create varray

MATLAB PYTHON

14 ||14

Agenda • What is Functional Simulation?

• Introduction to AMD Vitis Functional Simulation (VFS)

• Vitis Array (varray)

• VFS in MATLAB® / Python Environment

15 ||15

AMD VFS Initialization Methods

aie_graph = vfs.aieGraph(input_file: ‘…’, part:
‘…’, include_paths:
[‘…’])
hls_kernel = vfs.hlsKernel(part: ‘…’,
hls_function: ‘…’,
 input_files: [‘…’])

aie_graph =
vfs.aieGraph(config_file=‘<path_to_cfg_file>’)
hls_kernel =
vfs.hlsKernel(config_file=‘<path_to_cfg_file>’)

• Specify a .cfg file with build details

• VFS checks for availability of build; updates

• Specify simulation parameters as key-value pairs

• VFS generates .cfg file and checks for build

Using a Configuration File Using Key-Value Pairs

16 ||16

AMD Vitis Functional Simulation – MATLAB Environment

MATLAB® tool is the DSP
environment of choice

Allows calling AIE graphs and
PL (HLS) kernels directly from
m-code

Generate data and simulate and
verify functionality in the MATLAB
environment

Programmable

 Logic (PL)

FPGA Logic

AMD Versal

AI Engine Array

AIE Function

Functional Simulation in MATLAB

MATLAB PLAI Engine

>> myGraph =

vfs.aieGraph(input_file='../src/graph.cpp',

 include_paths = ['../src','../kernel','../'])

>> hls_kernel =
vfs.hlsKernel(input_files,

“hls_kernel.cpp”,
hls_function=“kernel_function”)

>> out = myGraph.run(in); >> out = hls_kernel.run(in);

graph.h

graph.cpp
hls_kernel.cpp

17 ||17

AMD VFS with MATLAB Tool – Example

Running the

AIE graph

Vitis Software

Platform array

Providing the

input files,

target part and

include paths

FIR – AI Engine Graph VFS Call within MATLAB® to Graph Code

Creates an AI Engine graph

/ HLS kernel object

AMD Vitis Software Platform

array appears, behaves, and

operates like MATLAB array

“run” takes Vitis Software

Platform array input, runs the

graph, and produces the

output

18 ||18

AMD Vitis Functional Simulation – Python Scripting

Programmable

 Logic (PL)

FPGA Logic

AMD Versal

AI Engine Array

AIE Function

Functional Simulation in Python

Python
Python scripting is a popular choice in

machine learning applications

AMD VFS allows calling AI Engine graphs and

PL (HLS) kernels directly from Python scripts

Users can take the design to the Python environment

– functionally simulate and verify

19 ||19

AMD VFS with Python Scripting – Example

Providing the input files,

target part and include paths

Running the AIE graph

AMD Vitis Software

Platform array

20 ||20

AMD VFS with MATLAB and Python – Example Comparison

MATLAB® Environment

Python Environment

Source: <path_to_tools>/settings64.(c)sh

21 ||21

Port Dump for AI Engine Graph

You can dump all the ports within the AI Engine graph into files:

Enable port dump

Run simulation

Dump files

22 ||22

Summary

01 AMD Vitis functional simulation (VFS) enables customers to develop subsystems in their own

simulation frameworks

02 Vitis Array supports all the datatypes available in AMD devices in both MATLAB® and Python

environments and allows conversion and casting between the types

03 VFS allows calling AI Engine graphs and HLS kernels directly from MATLAB or Python code

04 Subsystem simulation can be performed either through MATLAB or Python frameworks with VFS

05 VFS can provide a high level of design visibility as it enables simulation and debug when build up

a design

23 ||23

General Disclaimer and Attribution Statement 2025

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution

has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and

AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations

or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,

including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation

or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any

intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Versal, Vitis, Vivado, and combinations thereof

are trademarks of Advanced Micro Devices, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Python is

a trademark of the Python Software Foundation. TensorFlow, the TensorFlow logo and any related marks are trademarks of Google

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective

owners. Certain AMD technologies may require third-party enablement or activation. Supported features may vary by operating

system. Please confirm with the system manufacturer for specific features. No technology or product can be completely secure.

	Slide 1: AMD Vitis™ Functional Simulation
	Slide 2: Agenda
	Slide 3: What is Functional Simulation?
	Slide 4: Simulation in High-Level Languages
	Slide 5: Challenges
	Slide 6: Agenda
	Slide 7
	Slide 8: Benefits of AMD Vitis™ Functional Simulation
	Slide 9
	Slide 10: Agenda
	Slide 11
	Slide 12: Varray and Supported Data Types
	Slide 13: Varray in MATLAB® / Python™ Environment
	Slide 14: Agenda
	Slide 15: AMD VFS Initialization Methods
	Slide 16
	Slide 17: AMD VFS with MATLAB Tool – Example
	Slide 18
	Slide 19: AMD VFS with Python™ Scripting – Example
	Slide 20: AMD VFS with MATLAB and Python – Example Comparison
	Slide 21: Port Dump for AI Engine Graph
	Slide 22: Summary
	Slide 23: General Disclaimer and Attribution Statement 2025
	Slide 24

