
AMD Vitis HLS

Performance Pragma

Performance Pragma – Methodology

3 |3 |

Challenges of Traditional HLS Optimization

Clock,

Device

Throughpu

t Goal

IP

C/C+

+

High-Level
Synthesis

AMD Vitis HLS compiles C++

to RTL

Design steps
• C simulation
• C synthesis
• Co-simulation

Choosing the Right Combination of Pragmas can be a Challenge!!!

• In the classic workflow, achieving performance goals requires expertise

in choosing the right combination of pragmas

• Pragma-based designs can be inflexible and sensitive to changes

• Vision library color detection uses over 40+ classic pragmas

• unroll, pipeline, flatten…

• Any changes in throughput could affect these 40+ pragmas...

Pragmas optimize design metrics:

• Latency

• Throughput

• Resources

4 |4 |

Performance Pragma: Simplifying HLS Optimization

AMD Performance

Pragma simplifies HLS

optimization

Allows users define a

high-level throughput

goal

Shifts manual pragma

selection optimization

burden to the compiler

Enables Automatic

Pragma Generation: No

more manual pragma

guessing!

Intelligently infers and

applies optimizations

(pipelining, unrolling,

etc.)

Offers flexible

throughput control via

target specification

Tool automatically

determines optimal

pragma configuration

Represents a new,

higher-level way to

constrain design

throughput

Provides a more

intuitive and efficient

path to desired

performance

5 |5 |

Performance Pragma

Performance Pragma can be applied to a top-level function or individual loops

Benefits

Support for Top-Down Goals:

Helps achieve system-level performance targets

Precise Control of Loop Behavior:

Optimizes critical loop throughput

• Defines a design-wide throughput goal

• Guides the compiler to optimize the entire design

• Automatically infers and applies loop-level

pragmas based on analysis

Top-Level Pragma

• Targets specific loops for local control

• Can be automatically inferred based on top-level

performance pragma or manually applied

• Enables fine-grain optimization, infers classic

pragmas (pipeline, unroll, etc...)

Loop-Level Pragma

6 |6 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance in

the user’s hardware implementation

Calculate the Performance Target Based on Throughput Goal

• Consider a video application aiming for a frame rate of 60 frames per second (60 fps) as an example

7 |7 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Determine the Top-Level Performance

Target (target_ti)

• To achieve the 60 FPS target, the top-level

function must be ready to process a new

frame within 1/60th of a second

• This yields the top-level performance target:

target_ti = 1 / FPS = 1 / 60 seconds ≈ 16.67 ms

Frame 1

Frame 2

Frame 3

Frame 59

Frame 60

Frame 4

Target Interval ≈ 16.67 ms

60 Frames per Second (FPS)

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance…

8 |8 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Re-architect the Code for Dataflow

• Design necessitates a re-architecture into the load-compute-store (LCS) paradigm and employ the

dataflow pragma

• Allows AMD Vitis HLS to effectively:

• Optimize the code

• Exploit potential parallelism

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance in the

user’s hardware implementation

9 |9 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Run C Simulation and Determine Loop Trip Counts

• Metric is vital as the performance pragma algorithm requires precise loop budgeting

• By default, variable loop bounds as "1024," which can lead to inaccurate performance estimations

• For variable loops, users should provide dynamic trip count information using the pragma HLS

loop_tripcount max=N

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance in the

user’s hardware implementation

10 |10 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Add the Top-Level Performance Target

• Apply the desired performance goal using the top-level performance pragma

 #pragma HLS performance target_ti = 16.67 ms/cycle

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance in the

user’s hardware implementation

11 |11 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Identify Bottleneck Loops (if any)

• Run C synthesis and analyze the C synthesis report to identify any loops or functions that fail to meet the

specified target_ti requirement

• Note: Even if the performance targets are not fully achieved, the pragma will ensure that the design meets

its timing requirements

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance in

the user’s hardware implementation

12 |12 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Performance Pragma Methodology

Add/Update Local Performance Targets

• For critical loops identified as bottlenecks, specify loop-level performance targets

• Rerun C synthesis and analyze the updated reports

• Continue this iterative process of refining loop-level targets until the overall design meets the desired

performance goal

Note: If the desired performance targets are still not met, it is recommended to use more granular, classic

pragmas to further enhance performance without violating the established timing constraints

Offers a streamlined approach to guide the HLS optimization process to achieve optimal performance in the

user’s hardware implementation

13 |13 |

Performance Pragma Methodology: Key Differences

Unlike starting optimization

at individual loop level, you

define a system-wide

performance target first

Provides the tool with

crucial information for

accurate performance

estimation, especially for

loops with variable

iterations

While the tool automates,

you can still fine-tune

specific bottlenecks for

more granular control

Top-Level Throughput

Constraint

Needs Trip Count for

Dynamic Loops

May Need Loop-Level

Performance Pragma Too

Key differences compared to the traditional approach of manual pragma insertion

Performance Pragma in Action: Convolution Design

15 |15 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Calculate the Performance Target

Calculate the Performance Target Based on Throughput Goal

• Convolution function process an HD 140 frames per second @ 300 MHz clock…

16 |16 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Determine the Top-Level Performance Target

Determine the Top-Level Performance Target

(target_ti)

Target Interval (target_ti) can be expressed in time (ms)

or number of cycles:

• Time: 140 frames/sec hence: target_ti

(milliseconds/frame) = 1000 /140 = 7.14 ms

• Cycles: 140 frames/sec at 300 MHz hence:

• target_ti = (kernel freq.) / (throughput) =

 (300 * 106 cycles/second) /140 =

2,142,857.14 cycles/frame

Frame 1

Frame 2

Frame 3

Frame 139

Frame 140

Frame 4

Target Interval ≈ 7.14 ms | 2142857

cycles/frame 140 Frames per Second (FPS)

17 |17 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Run C Simulation with Code Analyzer

Run C Simulation and Determine

Loop Trip Counts

• Run C simulation with Code

Analyzer

• Add trip counts for dynamic

variable loops

18 |18 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Re-architect the Code

Re-architect the Code for Dataflow

• Code for load-compute-store…

19 |19 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Add the Top-Level Performance Target

Add the Top-Level Performance Target

• Apply the top-level performance

pragma using target_ti

• Enable performance pragma via ​

• TCL: config_dse -enable=true​

• Config: ​syn.dse.enabled=1​

20 |20 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Detect Performance Bottlenecks

Identify Bottleneck Loops

(if any)

• Identify underperforming

process

• Here Window2D

does not meet the

performance target

of 45,915,037 cycles

per frame

21 |21 |

Step 1 Step 2 Step 3 Step 4 Step 5 Step 7Step 6

Convolution 2D: Add/Update Local Performance Targets (1/2)

Add/Update Local Performance

Targets

• Apply loop-level performance pragmas

• Specify loop-level performance

pragmas for the Window2D function

to achieve target_ti

22 |22 |

Convolution 2D: Add/Update Local Performance Targets (2/2)

Csynth report with top and loop-level Performance pragma

Target Still Not Reached Solution

Set a target loop TI = 1 for this shift loop to

nudge the compiler to execute the loop in a

single cycle

Voila!! Meets performance!

23 |23 |

Goal

Convolution 2D: Results

Category Using Classic Pragmas Using Performance Pragma

Target Interval 2,087,651 2,087,651

Optimizations Pragmas in the

Design
8 3 (2.6X fewer pragmas)

2,142,857.14 cycles/frame

or 140 frames per second

2,087,651 cycles/frame or

~144 frames per second

Achieved

Performance Pragma: Limitations

25 |25 |

Limitations of Performance Pragma

Pragma Precedence ("OFF" pragmas prevent automatic inference)

PIPELINE OFF

Disables automatic

pipelining for a loop

Disables automatic

unrolling for a loop
Disables automatic

partitioning for a

local array

Prevents automatic

flattening for a loop

Interface Port

Limitation

• Arrays at the top function interface are NOT auto-partitioned by default

(potential bottleneck)

• Enable with config_array_partition -throughput_driven=aggressive

PIPELINE OFF UNROLL OFF FLATTEN
ARRAY_PARTITION

OFF

26 |26 |

Limitations of Performance Pragma

27 |27 |

Performance Pragma simplifies complex HLS optimization by enabling

users to define a high-level throughput goal, shifting the optimization

burden to the compiler for automatic pragma generation and application

of key transformations, offering flexible throughput control and a more

efficient path to desired hardware performance.

Summary

28 |28 |

General Disclaimer and Attribution Statement

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution

has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and

AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations

or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,

including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation

or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any

intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18u.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Vitis, and combinations thereof are trademarks

of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be

trademarks of their respective owners. Certain AMD technologies may require third-party enablement or activation. Supported

features may vary by operating system. Please confirm with the system manufacturer for specific features. No technology or

product can be completely secure.

	Slide 1: AMD Vitis™ HLS Performance Pragma
	Slide 2: Performance Pragma – Methodology
	Slide 3: Challenges of Traditional HLS Optimization
	Slide 4: Performance Pragma: Simplifying HLS Optimization
	Slide 5: Performance Pragma
	Slide 6: Performance Pragma Methodology
	Slide 7: Performance Pragma Methodology
	Slide 8: Performance Pragma Methodology
	Slide 9: Performance Pragma Methodology
	Slide 10: Performance Pragma Methodology
	Slide 11: Performance Pragma Methodology
	Slide 12: Performance Pragma Methodology
	Slide 13: Performance Pragma Methodology: Key Differences
	Slide 14: Performance Pragma in Action: Convolution Design
	Slide 15: Convolution 2D: Calculate the Performance Target
	Slide 16: Convolution 2D: Determine the Top-Level Performance Target
	Slide 17: Convolution 2D: Run C Simulation with Code Analyzer
	Slide 18: Convolution 2D: Re-architect the Code
	Slide 19: Convolution 2D: Add the Top-Level Performance Target
	Slide 20: Convolution 2D: Detect Performance Bottlenecks
	Slide 21: Convolution 2D: Add/Update Local Performance Targets (1/2)
	Slide 22: Convolution 2D: Add/Update Local Performance Targets (2/2)
	Slide 23: Convolution 2D: Results
	Slide 24: Performance Pragma: Limitations
	Slide 25: Limitations of Performance Pragma
	Slide 26: Limitations of Performance Pragma
	Slide 27: Summary
	Slide 28
	Slide 29

