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This white paper is a technical explanation of what the discussed technology has been designed to 

accomplish. The actual technology or feature(s) in the resultant products may differ or may not meet these 

aspirations. Each description of the technology must be interpreted as a goal that AMD strived to achieve 

and not interpreted to mean that any such performance is guaranteed to be fully achieved.  Any computer 

system has risks of security vulnerabilities that cannot be completely prevented or mitigated. 
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INTRODUCTION 
AMD Secure Encryption Virtualization (SEV) technologies are designed to help protect data inside guest virtual 
machines (VMs) from outside entities such as the hypervisor. AMD SEV focuses on protecting data “in-use”, including 
data that is stored in CPU registers and private guest memory. It utilizes a hardware AES engine to encrypt and 
decrypt guest data as it is written to memory.

While the first generation of SEV technology focused only on protecting guest data in memory with encryption, 
subsequent technologies offer enhanced isolation by encrypting guest register state across VM transitions (SEV-ES) 
[1] and through memory integrity protection (SEV-SNP) [2]. Integrity protection ensures that untrusted entities, such 
as the hypervisor, cannot overwrite encrypted guest data. This protects against vectors like replay attacks.

Although access to the plaintext in SEV is limited to the VM which has the correct key, an adversary may be able to 
read the encrypted contents of guest memory (ciphertext) and in some cases may be able to use this information to 
deduce information about the guest execution or its data. This type of side-channel attack may be possible by either 
a malicious hypervisor in the current implementations of SEV or an attacker with physical access to the system and 
ability to monitor the DDR bus between the CPU and DRAM.  

This whitepaper discusses techniques guest software can utilize to limit the impact of this type of side-channel, 
especially for highly sensitive software like cryptographic algorithms, that run in AMD SEV guests. AMD believes this 
information may be helpful to software developers seeking to maximize the level of security that can be obtained 
within an AMD SEV guest.

BACKGROUND: AMD MEMORY ENCRYPTION
Current AMD SEV technologies utilize an AES-128 engine in the on-chip memory controllers to perform in-line 
encryption and decryption of guest memory. Each guest is assigned a unique Address Space ID (ASID) which 
corresponds to a set of unique keys. When a new guest is created, memory encryption keys are created randomly 
using an on-die random number generator [3]. Each key is then written to one of the on-chip memory controllers 
and used only for accesses by the assigned ASID.

The encryption and decryption of guest data is done using an XOR-Encrypt-XOR construct. The “tweak” value used 
in the XOR operation is based on the physical address where the data is being stored. Additionally, starting in AMD 
2nd Generation EPYC Processors, an additional random value generated at system boot time is used in the tweak 
generation.

As AES uses a 16B (byte) block size for encryption, the XOR-Encrypt-XOR operation ensures that identical plaintext 
will encrypt to different ciphertext at different 16B locations in memory. However, the same plaintext at the same 
location in memory will always encrypt to the same ciphertext value.

BACKGROUND: CPU REGISTER STATE
AMD SEV-SNP technology supports a feature called VMSA Register Protection described in section 15.36.17 of the 
AMD64 Architecture Programmer’s Manual [4]. When this feature is enabled, the CPU obfuscates guest register 
values before saving them in memory. The obfuscation value is changed on every Automatic Exit. As a result, this 
helps protect values in the general-purpose registers of an SEV-SNP guest from side channel attacks based on 
ciphertext visibility. The rest of this document therefore focuses on protecting values stored in guest memory only.
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CIPHERTEXT VISIBILITY CONCERNS
As AES is a cryptographically secure encryption algorithm, an adversary with access to ciphertext, and potentially 
knowledge of corresponding plaintext, cannot determine the encryption key used.  Even without knowledge of 
the encryption key though, a malicious entity that monitors a single 16B block of memory over time may be able 
to infer information about guest operations based on if and when that block of data changes.  For example, an 
adversary might notice that between two points in time, memory location A and B have been modified by the 
guest but memory location C has not.  Information like this might enable the attacker to help guess what software 
the guest is running, in what is known as an inference attack.

Whether or not the ciphertext at a memory location changes can also potentially convey information.  In the above 
example, if the attacker knows that memory location C was written but the ciphertext does not change, they can 
infer that the value stored at this location has not changed.

Another possibility is that the adversary might be able to gain information over time about what values certain 
ciphertext corresponds to.  For instance, if the attacker knows that at a certain time the guest VM stores the value 
0 to a memory location, they can read the ciphertext at that time and remember it.  At a later time, if they observe 
that same memory location contains the same ciphertext, they can infer that this location again has stored the 
value 0.

The ability for a malicious entity to conduct a ciphertext-based attack and extract meaningful information is highly 
dependent on the guest software being executed.  For example, software which writes memory location A when a 
secret value is 0, but memory location B when a secret value is 1 would be particularly susceptible to a ciphertext-
based attack.

Historically, software which deals with highly sensitive data, such as cryptographic keys, have taken extra 
precautions against side channel attacks that can arise due to shared caches, branch predictors, etc.  Ciphertext 
visibility by an adversary is another potential side channel which may merit consideration when writing sensitive 
software designed to execute inside an AMD SEV guest.

RECOMMENDED TECHNIQUES
The techniques mentioned here are presented as generic ideas which may or may not be useful in specific 
situations.  In all cases, the goal is for software to store a sensitive value to memory while limiting the ability for an 
outside entity to be able to either determine the plaintext value or in some cases, if the value was changed at all.

DATA PADDING         
Data padding may be used when the sensitive data being stored in memory is less than 16B in size.  In this 
scenario, an extra value may be stored next to the sensitive data so that the encrypted value of the entire 16B block 
changes in an unpredictable manner. 

One way to do this is to pad data with a random value, such as from the CPU RDRAND instruction.  The RDRAND 
instruction is available on AMD CPUs that support any flavor of SEV technology and the instruction returns a 
random value directly from the hardware random number generator.  For instance, an 8B data value could be 
padded with an 8B random value.  The chance of two 8B random data values repeating over time is extremely low 
and therefore the sensitive data stored in the lower 8B will be less susceptible to a side channel attack.

In some cases, padding could be a simple counter as shown in Figure 1.  Each time the memory location is written, 
the counter value is incremented.  In this way, the ciphertext changes on each write and will never repeat as long as 
the counter value never repeats.  To ensure the padding values never repeat even if memory is re-used, software 
should obtain the initial counter value (IV) randomly.
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If the data being stored is too large to be padded directly, it 
can be broken up until smaller pieces and “striped” across 
memory.  For example, instead of storing a 32B value 
in two successive 16B locations, it could be stored in 8B 
chunks in four successive 16B locations with data padding 
at each location.

DATA MASKING      
While data padding may work in some cases, it requires 
extra memory usage to store the padding values.  Using 
data masking, less additional memory may be required.  
This technique involves generating a random, or pseudo-
random value and performing a reversible tweak on data 
values before they are stored in memory.  For example, 
before storing a 128B block of data, software can generate 
a random 16B value and XOR each block of the data with 
the random value before storing it in memory.  The random 
16B value can itself be stored somewhere else  
in memory.

This technique permutes the data stored in memory in an unpredictable manner, causing ciphertext changes on 
every write.  It works best if a large block of data is being stored at once and will be accessed later again as a large 
block.  Each time the data block is written, the tweak value should be regenerated.

DATA ALIGNMENT         
Data structures which are mis-aligned across 16B boundaries and contain secret information may be more 
sensitive to ciphertext visibility concerns.  For example, an 8B secret which is stored from address 0x100F-0x101E 
spans two 16B blocks.  While there are 264 possible values of this secret, there are only 256 possible values for the 
first byte of the secret.  If the data in addresses 0x1000-0x100E remains static, it may be easier for the attacker 
to infer the first byte of the secret since there are only 256 possible values of the ciphertext of this 16B block.  If 
the secret data was aligned and placed at address 0x1010-0x101F then it would be much more difficult to infer 
any information about the secret since any change in a single byte of the secret would result in the entire 16B 
ciphertext changing.

Software typically aligns data structures on natural boundaries for performance reasons, but this alignment is also 
important to limit ciphertext visibility concerns.

DATA MOVEMENT        
Another technique that may be useful in specific cases involves moving data values in memory when they may or 
may not change.  This is particularly useful when the fact that a value is being changed (or not changed) conveys 
sensitive information.  While other techniques including padding or masking can also help mitigate ciphertext 
visibility in this case, it may be simpler to copy the data values to a different memory location after performing 
the appropriate operation.  The ciphertext of those values at a new location will be different than the ciphertext at 
their previous location, regardless of any actual change in the values themselves.

When this technique is used, it is recommended that software move the data values to memory locations with 
different page offsets (bits 11:0) than their previous location.  This ensures that a different encryption tweak value 
will be used, regardless of how guest memory is mapped into the physical address space.

FIGURE 1: DATA PADDING WITH A COUNTER
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EXAMPLE: MONTGOMERY LADDER
An example of a constant-time Montgomery Ladder 
for ECDSA is shown in Figure 2.  This uses a CSWAP 
(conditional swap) operation which swaps the two inputs 
based on a third input.  Even if CSWAP is implemented 
in a constant-time manner, as written, this code may be 
vulnerable to ciphertext side channels.  As the secret key 
(k) is used to conditionally swap the value A and B, an 
attacker who can observe whether the memory locations 
corresponding to A and B change in each loop iteration may 
be able to infer the value of the secret. 

To help mitigate potential ciphertext side channels, the 
data movement technique can be used.  The CSWAP 
operation should write the result into a different memory 
location, rather than operating in-place.  As the values 
A and B change in each iteration of the loop, an attacker 
would not be able to observe whether the values 
were swapped or not.  An example of this form of the 
Montgomery Ladder is shown in Figure 3.  In this code,  
the result of each CSWAP operation is written to a 
different memory location.  This code could be further 
optimized, but this demonstrates how a Montgomery 
Ladder can be written while hiding the secret used in each 
CSWAP operation.

CONCLUSION
Current versions of AMD SEV technologies offer many protections to guest VMs that wish to run in confidential 
environments under a potentially malicious hypervisor and subject to various forms of physical attacks.  While 
AMD continues to invest in new security technologies and hardware-based enhancements for future designs, 
this paper describes techniques and considerations for software developers that wish to maximize the level of 
protection that can be achieved in AMD SEV environments.
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FIGURE 2: BASIC MONTGOMERY LADDER

fo r   ( i = (n -1 )  d o w n  t o  0)

 C S WA P (A ,  B ,  k i)

 B  =  A D D (A ,  B )

 A  =  D O U B L E (A)

 C S WA P (A ,  B ,  k i)

end for

FIGURE 3: SAFER MONTGOMERY LADDER

fo r   ( i = ( (n / 2 )  –  1 )  d o w n  t o  0)

 {C ,  D }  =  C S WA P (A ,  B ,  k 2 i + 1)

 D  =  A D D (C ,  D)

 C  =  D O U B L E (C )

 {A ,  B }  =  C S WA P (C ,  D,  k 2 i + 1)

 { E ,  F }  =  C S WA P (A ,  B ,  k 2 i)

 F  =  A D D ( E ,  F )

 E  =  D O U B L E ( E )

 {A ,  B }  =  C S WA P ( E ,  F,  k 2 i)

end for
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