

PARTNER

PARTNER TIER

Elite

PROGRAM MEMBER SINCE

2009

CERTIFIED ENGINEERS

2

PRODUCT/SERVICES

- Boards & Kits
- Embedded Products

MARKETS SUPPORTED

- Aerospace and Defense
- Industrial
- Medical

Curtiss-Wright's Defense Solution division is a trusted, proven leader, delivering superior products and services that meet the defense and aerospace industries' toughest challenges with best-in-class value. Our solutions address defense and aerospace applications and are focused on growth segments with a high demand for advanced technology, enhanced safety, security, and performance. As a leading modular open systems approach (MOSA) solutions supplier for battlefield platforms and communication systems, we are uniquely positioned to benefit from global defense forces' commitment to maintaining technological superiority on the battlefield.

The products use future-proof open system architectures, including communication and processing systems and cards for the tactical edge, flight test and operational aerospace instrumentation, and stabilization and motion control solutions. Designed to perform reliably in harsh conditions, open architecture COTS based rugged embedded computing solutions process data in real time to support mission-critical functions such as radar, communications and mission processing.

Curtiss-Wright's embedded computing, flight test and monitoring, networking and communications, mission computing, data storage and recorder solutions are deployed aboard fixed-wing, rotorcraft, unmanned, ground vehicle, and naval vessel platforms. They provide the highly rugged and reliable critical systems and components needed to ensure the technical edge in today's battlefield.

As an industry leader, Curtiss-Wright takes an active role in industry standards organizations, serving, for example, as a Principal Member of The Open Group $SOSA^{\mathbb{T}}$ Consortium, as a member of the VITA $^{\mathbb{T}}$ Standards Organization's Board of Directors, and on multiple VITA $^{\mathbb{T}}$ VPX committees.

Product Name	Device(s)	Form Factor	Standards & Compliance
CHAMP-FX7 Processor Card	2 x AMD Versal™ Premium Adaptive SoCs (VP1702)	6U VPX	SOSA [™] Technical Standard, VITA [™] 65, VITA [™] 66
XMC-529 Security Card	AMD Zynq™ UltraScale+™ MPSoC	XMC™	VITA™ 42
XMC-528 Security Card	AMD Zynq™ UltraScale+™ MPSoC	XMC™	VITA™ 42
CHAMP-XD4 Cognitive DSP & FPGA Processor Card	AMD Zynq™ UltraScale+™ MPSoC	6U VPX	SOSA™ Technical Standard, VITA™ 65
CHAMP-XD3 DSP & FPGA Processor Card	AMD Zynq™ UltraScale+™ MPSoC	3U VPX	SOSA™ Technical Standard, VITA™ 65
VPX3-534 FPGA 6 Gsps Transceiver Card	AMD Kintex [™] UltraScale [™] , AMD Zynq [™] UltraScale+ [™] MPSoC	3U VPX	VITA™ 65
XF07-523	AMD Kintex™ 7 FPGA	XMC™	VITA™ 42
XF07-RLDRAM	AMD Kintex [™] 7 FPGA	XMC™	VITA™ 42
XF07-516	AMD Kintex [™] 7 FPGA	XMC TM	VITA™ 42
XF07-518	AMD Kintex [™] 7 FPGA	XMC™	VITA™ 42

	The second second	•				
				n independently verific Wright and may not be	ed by AMD. Performand typical. GD-181.	ce benefits can be
combination publication require thi	ons thereof are traden n are for identification rd-party enablemen	emarks of Advanced Non purposes only and r	Aicro Devices, Inc. So may be trademarks o rted features may va	OSA, VITA, XMC, and ot of their respective own ary by operating syster	ltraScale, UltraScale+, N ther product names use ers. Certain AMD techi n. Please confirm with	ed in this nologies m ay
						11
	•					