
mrcy.com

Designer’s Journey:
Navigating the
Transition to
AMD Versal™
Adaptive SoCs

HENRY GILSDORF
FPGA Development Engineer
Mercury Systems

MITZI WERLINE
Principal Technical Writer
Mercury Systems

WHITE PAPER
To support ever-increasing computational challenges in
radar, engineers must consider new innovative design
approaches to meet real-time performance expectations.

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 2mrcy.com 2

Ever-increasing data volumes, rising computation demands and real-time performance
expectations can no longer be satisfied by traditional solutions. With the 2019 launch of
the AMD Versal™ architecture, AMD has enabled an innovative approach for the next era of
specialized computing. This highly dense, next-generation chip solution combines multiple
types of processing elements that step beyond the current CPU/GPU/FPGA paradigm.
Utilizing this technology, we can now solve the most advanced radar, cognitive EW and AI
challenges — all on a single board.

1. Source: Versal: The First Adaptive Compute Acceleration Platform
(ACAP AMD Versal™ WP505 (v1.1.1)

Mercury has benefited greatly from close collaboration with
AMD during the Versal™ platform development, allowing us to
bring a deployable Versal device to the market early — the new
SCFE6931 Dual AMD Versal™ AI Core adaptive SoC Processing
Board.

This white paper follows a Mercury design engineering
team’s journey toward AMD Versal™ AI Core development
methodologies. By starting simply, our team was able to better
understand the tools and technology behind the AMD Versal™
architecture before taking on more complex implementations.

The following engineer-to-engineer designer’s journey is
intended to assist other development teams as they adopt the
Versal™ adaptive SoC design.

Processing Challenges
Processing
Solutions

AMD Versal™
platform

Scalar Processing:
Complex algorithms,
widely branching decision
trees, broad library sets.

CPUs Arm® Cortex™
processors

Vector Processing:
Large-scale, parallel
computations on high data
volumes. Used for signal
processing and artificial
intelligence applications.

DSPs and GPUs Adaptable
Intelligence Engines
(AIE)

Programmable
Logic Processing:
Real-time, low/no latency,
and highly-customizable
user applications.

FPGAs FPGA with Network
on Chip (NoC)

Today’s processing challenges typically fall into one of three categories,
all if which can be addressed by the the AMD Versal™ platform.

AMD VERSAL™ ADAPTIVE SOC IS:

 ▪ 43x faster than today’s fastest CPUs.

 ▪ 3x faster than today’s fastest GPUs.

 ▪ Up to 20x faster than today’s
fastest FPGAs.1

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 3

2. Kernel: A small unit of execution that performs a clearly defined function and that can be executed in parallel.

AI Engine

AIE Kernel

AI Engine

AIE Kernel

AI Engine

AIE Kernel

Switch Switch Switch

PL I/O PL I/O PL I/O

HDL IP HDL IP

Switch Switch Switch

AIE Array

FPGA Fabric

Key

x4 AXI streams
16 GB/s

x2 AXI streams
8 GB/s

User defined

Cascade streams
48 GB/s

x6 AXI streams
24 GB/s

AIE Array Diagram

THE JOURNEY BEGINS
Adopting the AMD Versal™ AI Core device seemed challenging
for our team at first. Having a primary background in traditional
FPGA and DSP development, the idea of programming AIE
processors using high-level languages was unfamiliar to us. In
addition, we did not yet understand the available methods of
defining the dataflow into and out of the AIE array. To dispel our
worries, we decided to start small and build up our experience
with AI.

At a high level, the AIE array is similar to a GPU in that it consists
of hundreds of vector processors. Each AIE processor can
perform up to eight complex multiplications per cycle and has
its own memory scratch pad for temporary storage of work.
Data inputs and outputs are AXI4-Streams and can flow from the
programmable logic into multiple AIE processors before being
output from the AIE array. These functions executed by the AIEs
are called kernels2, and a single AIE can share its time between
different kernels.

Each AIE processor has two physical stream inputs and outputs, however, these interfaces can be multiplexed to
accommodate a higher number of “virtual streams.”

THE POWER OF THE AMD VERSAL™ ARCHITECTURE IN
A READY-TO-RUN, PROVEN AND TESTED PLATFORM

Jump-start development with the
Model 8258 low-cost 6U VPX platform
to build, run and debug applications
on the SCFE6931 Dual AMD Versal™
adaptive SoC processing module.
Providing power and cooling to match
the SCFE6931 in a small desktop
footprint, the chassis allows access
to all required front-panel interfaces
and the optional rear-panel
connectors to support 100 GigE.
Mercury’s Navigator® FPGA design
kit (FDK) and board support package
(BSP) complete the preconfigured
development platform.

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 4

LEARNING BY EXAMPLE
We selected a problem to solve using AIE and created a small
test application consisting of a single kernel. This kernel would
perform a common DSP function: beamforming.

We began by studying the AIE architecture manual before
coding the test beamformer kernel in C++. This kernel would
take in multiple AXI4-Streams for element data and weights,
producing an output stream of a single complex beam.

For the first design, we settled on two input streams of
interleaved element samples, with another input stream for
weights. These streams were continuously read into double-
buffered memory within the AIE. The initial C code for the
kernel function looked like this:

WHAT IS BEAMFORMING?
Beamforming — also referred to as spatial filtering
— is a signal processing technique used in sensor
arrays for directional signal transmission or
reception. This is achieved by combining elements
in an antenna array in such a way that signals
at particular angles experience constructive
interference while others experience destructive
interference.

Simple Coherent Summation Equation:

We initially chose the input data width to be 64 receive
elements, as this represents a common beamforming
application. However, we soon discovered that routing 64
streams to a single AIE was not feasible.

As you will see in the next section, we overcame this obstacle
by interleaving our element samples into two streams.

“The appearance of U.S. Department of Defense (DoD) visual information does
not imply or constitute DoD endorsement.”

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 5

IMPLEMENTING THE DESIGN
Each AIE application consists of a dataflow graph3 that
describes a set of kernels and their associated inputs, outputs
and interconnections. For standalone simulation of an AIE graph,
these input and output ports reference test vector files. We
began testing our first application by generating test element
data and weights with MATLAB®. These test vectors represented
the input data that would normally flow from the programmable
logic fabric.

REVIEWING OUR INITIAL AIE DESIGN
After simulating our AIE kernel, we used the AMD Vitis™
analyzer tool to display the trace data generated. This timeline
display allowed us to see the activity of each AIE in the array
and how effectively it was being utilized.

3. Dataflow graph: A dataflow graph is how an AI Engine application is described at the highest level. Dataflow graphs consist of nodes and edges where nodes
represent compute kernel functions and edges represent data connections.

Initial Design: Simple Beamformer Kernel Stream Ports Diagram

Input: ElementsEven
Interleaved samples
from even elements:
#2, #4, #6 …

Input: Weights
Beamforming weights.

Output: Beam
Complex beam samples.

Input: ElementsOdd
Interleaved samples
from odd elements:
#1, #3, #5 …

As shown here in the debug
screen, we added debug
printf() statements inside our
C++ kernel code to print the
inputs and calculation results
for the first few elements.

Idle Time

Processing Time

As shown in the AMD Vitis™ analyzer screen below, our first
kernel spent a substantial amount of its time idle. This is
because the AIE was able to compute the output beam faster
than the I/O throughput rate.

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 6

INCREASING OUR UTILIZATION
To make better use of the processor’s time, we experimented
with increasing the number of beam outputs to discover how
throughput would be affected.

Improved Design: Simple Beamformer Kernel Stream
Ports Diagram

Doubled
Processing
Time

As shown below, the single AIE processor is now tasked more
than twice as efficiently. By reusing the element data with
more sets of weights to produce more beams, we greatly
increased our efficiency. However, this also meant that the input
throughput was reduced because we were now CPU bound.

Charting the throughput for designs with different numbers
of beam outputs illustrates the trade-offs that should be
considered when designing applications.

As we increased the number of beam outputs
from 4 to 5, the output rate showed a slight dip.
This is because the AIE’s accumulator registers
could not hold all the results at the same time.

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 7

EXPERIMENTING WITH PARAMETERS
At this point in the design, the beamforming kernel received its
weights from an input AXI4-Stream. Since these weights did
not need to be updated frequently, we found the opportunity to
further improve the kernel by using run-time parameters (RTPs).
RTPs can be single values or entire arrays that are passed from
either the processing system (PS) or another kernel.

Using RTPs to store weights alongside the kernel replaced
the need for them to be streamed from the Programmable
Logic (PL) , simplifying the design. This approach can improve
design throughput by reducing the amount of data streams
contending for routing resources within the AIE array.

Further Improvement: Single Kernel While Using Run-Time Parameters

Memory for Weights

From Processing System

Kernel weights
delivered using RTP

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 8

MULTI-KERNEL GRAPH
So far, we have explored several example AIE kernels. But what
about larger applications? To effectively use the AIE array,
designers must consider how to divide their application into
multiple kernels that work together.

To demonstrate this, we created a graph with 16 kernels where
each of the kernels computes part of the input elements. The
intermediate results are passed to the next kernel in the AIE
array through a cascade path. The last kernel finishes the
calculations and outputs the data to the FPGA fabric.

Multi-Kernel Graph

HIGH-PERFORMANCE APPLICATIONS
For the most demanding applications, designers should
consider how to structure graphs so they can scale efficiently
across many AIEs. The physical location of kernels and I/O
interfaces is also important. A good starting point is to map the
dataflow of the application, as this will guide the other aspects
of the AIE design.

Input data should flow directly upward from the logic fabric
through the AIE array. This is because the AIE array’s AXI4-
Stream interconnect is non-symmetrical, with more paths
traveling north than any other direction (see the AIE Array
Diagram on page 3).

If one of the input streams is broadcast to many kernels, it
will occupy more routing as it branches out to each of the
destinations.

Within the application, designers should take advantage of the
cascade path to forward data between kernels when possible.
To transfer low-bandwidth data, designers should consider
using RTPs, which can be transferred both between kernels as
well as the processing system. These techniques will reduce
the total number of data streams and make the application
more flexible and easier to implement.

http://mrcy.com

WHITE PAPER
Designer’s Journey: Navigating the Transition to AMD Versal™ Adaptive SoCs

mrcy.com 9

About Mercury
Mercury Systems is a technology company that delivers mission-critical processing power to the edge
to solve the most pressing aerospace and defense challenges. Combining technologies and expertise
developed for more than 40 years, the Mercury Processing Platform offers customers a unique advantage
to unleash breakthrough capabilities. It spans the full breadth of signal processing—from RF front end to
the human-machine interface—enabling customers to turn data into decisions with standard products
and custom solutions from silicon to system scale. Mercury’s products and solutions are deployed in more
than 300 programs and across 35 countries. The company is headquartered in Andover, Massachusetts,
and has 23 locations worldwide. To learn more, visit mrcy.com. (Nasdaq: MRCY)

mrcy.com

The Mercury Systems logo is a registered trademark of Mercury Systems, Inc. Other marks used herein may be trademarks or registered trademarks of their
respective holders. Mercury products identified in this document conform with the specifications and standards described herein. Conformance to any such
standards is based solely on Mercury’s internal processes and methods. The information contained in this document is subject to change at any time without notice.
AMD, the AMD Arrow logo, Versal™, Vitis™ and combinations thereof are trademarks of Advanced Micro Devices, Inc.

© 2024 Mercury Systems, Inc. 8107.00E-1124-wp-ACAPJourney

Learn more about the SCFE6931
mrcy.com/acap

Collaborate with us on your
Versal solution:
mrcy.com/contactus

CONCLUSION
Necessity is most assuredly the mother of invention.
Today’s exploding data volumes, combined with the increasing
need for energy efficiency, require a new generation of
processing solutions. The AMD Versal™ adaptive SoC meets
those demands. Now a single, hardened, heterogeneous silicon
chip provides the computational performance of multiple
devices while using much less energy.

The landscape has changed and the journey has just begun
toward more complex, secure and purpose-built solutions
and systems for the next generation in aerospace and
defense capabilities.

Corporate Headquarters

50 Minuteman Road
Andover, MA 01810 USA
+1 978.967.1401 tel
+1 866.627.6951 tel
+1 978.256.3599 fax

International Headquarters
Mercury International

Avenue Eugène-Lance, 38
PO Box 584
CH-1212 Grand-Lancy 1
Geneva, Switzerland
+41 22 884 51 00 tel

Acknowledgments
The authors would like to recognize the valuable contributions
and support given by Kok Lee, Berk Adanur, and Don Stickels.

http://mrcy.com
http://mrcy.com
https://utm.io/ueqZB
mailto:dl-sdl-techsales%40mrcy.com?subject=
https://utm.io/ueqZB
https://www.linkedin.com/company/mercury-systems/
https://twitter.com/MRCY
https://www.youtube.com/user/MercurySystems
https://www.facebook.com/MRCYSystems/
https://www.instagram.com/mrcysystems

