The AOCL-Data Analytics Library (AOCL-DA) provides optimized building blocks for data analysis and classical machine learning. APIs are available in C, C++, and Python. There is also a patch to enable scikit-learn users to benefit from the performance of AOCL-DA with minimal code changes.
AOCL-Data Analytics provides ability to:
- Load data from CSV files
- Preprocess data by standardizing, removing missing values and extracting subsets
- Process data using a variety of algorithms, including linear models, clustering methods, decompositions, decision forest and nearest neighbor algorithms
Highlights of AOCL-Data Analytics 5.1
- New APIs for DBSCAN clustering, support vector machines and pairwise distances
- Dynamic dispatch: multiple Zen generation code paths compiled in a single binary, with appropriate code path selected at runtime
- Performance improvements to decision trees, random forest and k-nearest neighbors algorithms
Documentation
- Source code: GitHub
- AOCL-DA API Guide
Downloads
File Name | Version | Size | Launch Date | OS | Bitness | Description |
Binary Packages Compiled with AOCC 5.0 | ||||||
aocl-da-linux-aocc-5.0.0.tar.gz | 5.0 | 8.7MB | 10/10/2024 | RHEL, Ubuntu, SLES | 64-bit | AOCC compiled AOCL-Data Analytics library binary package SHA-256 checksum: 7a2bc4b2a45c8ae94318ec638332c5c62a82818eda529f6c7e79751c552061e5 |
Binary Packages Compiled with GCC 14.2.1 | ||||||
aocl-da-linux-gcc-5.1.0.tar.gz | 5.1 | 31MB | 05/07/2025 | RHEL, Ubuntu, SLES | 64-bit | GCC compiled AOCL-Data Analytics library binary package sha256 Checksum: eea772f5ec120f44201562919d8c38fa4eeccdeed32bbff0396f952d3bd604f3 |
Windows Installer Containing AOCL-Data Analytics | ||||||
AOCL_Windows-setup-5.1.0.408-AMD.exe | 5.1 | 140MB | 05/07/2025 | Windows 11, Windows 10 | 64-bit | Windows installer file containing all the AOCL library binaries compiled with Clang 18. SHA-256 checksum: 61de98148459270ba3bd01f5b0c409299d8c0c144a925f3701e10f72678a328a |
Python Wheels
File Name | Version | Python Version | Size | Launch Date | OS | Bitness | Description |
aoclda-5.0.0-cp39-cp39-linux_x86_64.whl | 5.0 | 3.9 | 27MB | 10/10/24 | RHEL, Ubuntu, SLES | 64-bit | Python package of the AOCC compiled AOCL-Data Analytics library SHA-256 checksum: a78d6e1f846b4c0ec262a2f19293c71ae84e99b89de4e74b27e8520e878c7557 |
aoclda-5.0.0-cp310-cp310-linux_x86_64.whl | 5.0 | 3.10 | 27MB | 10/10/24 | RHEL, Ubuntu, SLES | 64-bit | Python package of the AOCC compiled AOCL-Data Analytics library SHA-256 checksum: d4befd998ba2a5f12deedd3dcf02b44cd21bf697413f7e5371d99fdcb7682304 |
aoclda-5.0.0-cp311-cp311-linux_x86_64.whl | 5.0 | 3.11 | 27MB | 10/10/24 | RHEL, Ubuntu, SLES | 64-bit | Python package of the AOCC compiled AOCL-Data Analytics library SHA-256 checksum: 18190c9eedf21f2f0499c4a39a9e44245a3e282ef751642ed066d8e3e8d123dc |
aoclda-5.0.0-cp312-cp312-linux_x86_64.whl | 5.0 | 3.12 | 27MB | 10/10/24 | RHEL, Ubuntu, SLES | 64-bit | Python package of the AOCC compiled AOCL-Data Analytics library SHA-256 checksum: 189fbd8e34756117193383a57137b39f293a18bd24986fabef56ccb371e5d444 |