AM D ‘ AMD SR5690/5670/5650
& BIOS Developer’s Guide

Technical Reference Manual
Rev. 3.00

P/N: 43870 _sr56xx_bdg pub_3.00
© 2010 Advanced Micro Devices, Inc.

Trademarks

AMD, the AMD Arrow logo, AMD Virtualization, AGESA, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft is a registered trademark of Microsoft Corporation.

PCI Express and PCle are registered trademarks of PCI-SIG.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect
to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice.
No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's Standard
Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or

environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

© 2010 Advanced Micro Devices, Inc. All rights reserved.

Table of Contents

Chapter 1: Introduction

1.1 ADOUL THiS DIOCUIMIENEc.iiiiiiiieiii ettt ettt s sttt ekt b bttt e et e et e st es e st e st an e eteeneebeeteeneneens 1-1
1.2 ATCRILECTUIE OVEIVIEWeoviiiiieiiieti ettt ettt ettt ettt et e e e at et e est e s e eseeesees s e beeaeeesees e e s e eseeeseesseseenbeeseenseeneaseenseseenaeeneenees 1-1
Chapter 2: Register Space Access
2.1 PCle Core/Port Indirect Register Space (PCIEIND)cc.ooiiiiiiiiiiiiiiiieee ettt 2-1
2.2 PCle Port Indirect Register Space (PCIEIND P).......ooiiiiiiiie e 2-1
2.3 HTIU Indirect Register Space (HTTUIND)cociiiiiiiiiieieiie ettt ettt ss et ae e sbe et e e enseeseensenas 2-1
2.4 MISC Indirect Register Space (MISCIND)c.ooiiiiiiiiiiiiiee ettt ettt ettt ettt st eneeneas 2-1
2.5 Clock Configuration Register Space (CLKCONFIG)ccoiiiiiiiiiiie e 2-2
Chapter 3: IRQ Mapping
3.1 Legacy Interrup Mapping (IO APIC DiSabIEd)cccueeiiiiiiiiiiiie ettt ettt e e saeseee e 3-1
3.2 /O APIC Interrupt Mapping (I/O APIC 32 ENtry MOE)c.ooiiiiiiiiieiiieiieiecit ettt 3-2
3.3 Interrupt Mapping in Multi-NB ENVITONIMENEcoiiiiiiiiiiiiiii ittt e 3-2
3.4 T/O APIC SUPPOTL....ciiieiiieitiieie ettt ettt ettt e ettt et eeate e bt e s tbeesseesteeesseesseeesseessseesbe e esseesseeasseesseansaessseenseeasseenseenseenseessseenseees 3-3
Chapter 4: CIMx-SR5690 Architecture
N B U3 (o a1 o1 5 o o WSS 4-1
4.2 Binary TMAZE DIESINc.ooviiiiiiiiiiiieeiieeie ettt ettt ettt et e ettt ete st e eseesbeebe e st e ebeeseesseesseese et b e eseenteeaeenbeeae et ene e s enaeseeres 4-1
4.2.1 BiNAry BIOCK STIUCIUIEcoiiviiiiiiiiii ittt ettt ettt et et et es e e se e s e e seesseeseeeseessesseesaesseenseseens 4-1
4.2.2 BINATY HEAUCT.......ciiitiiiiiii ittt ettt et b ettt st ae et te b ae e ae st e eae e e ereenbe et e 4-2
4.2.3 MOAUIE HEAAET ..ottt etk ettt ettt n e st n e n ettt 4-2
4.3 Execution Environment EXPECLAtIONScc.oitiiiiiiiiieiii ittt ettt ettt et 4-3
4.4 StANAArd HEAAEToiiiiiiiie ettt ettt ettt et ee et eneen 4-3
4.5 Call ENLrY 10 DISPAICIETocuiiiiieiiiiiciieie ettt ettt ettt eae et e eaeeseeebe et e beesseebeesbeeseesseeseesbeeaeesseessesseenaesseeneas 4-4
4.6 CalIDACK FUNCHIONouviiiiiiieiieie ettt ettt ettt e e e et e et e e st e e beeseeeaeese e seenteebees s e seenseeseenseeneenseeseenseeneeseeneas 4-4
4.7 OPETAIONAL OVEIVIEWeouiiiieiii ettt ettt ettt ettt et e e st et e e st e bt e et e ee e es e e e bt es e e ea e ea e e bt em e e eh e es e es e emeeeseeneeeneemeeeeeeneeaneeeeanean 4-5
4.8 PUSH-HIGN INEEITACE ...vviviiiiiciieiece ettt ettt et e se e ebe s e beess e beesbeebe e st e eseesbeebe e st e eaeenseenaeseeneas 4-6
4.8.1 Theory Of OPEIAtIONc..oouiiiiiiiiiiitieie ettt ettt ettt ettt ettt eeaeese e beesseeseesseessesseeseesseeseesseeseeeseessesseensesseessesseans 4-6
4.8.2 Making Calls to Image Entry POINESc..cciiiiiiiiiiiiiii ettt 4-6
4.8.3 AMABIIAZE32 PrOCEAUIE.......ccuiiiiiiiiii ittt ettt e ettt e et e e eseeebeessesseeneeereensesse e 4-7
4.8.4 Handling Callback ProCeAUIESc.coiiiiiiiiiiieiiiiieieie ettt ettt et e s e saeese e 4-8
4.8.5 Alternative Callback in 32-Bit MOG@c.ooiiiiiiiiiiiieee et 4-9
4.9 INEEIEACE CAllS ...ttt ettt ettt ettt et h et a e b he e Re e a e Rt b e st et e eheen b e ae et eae et eneenneenean 4-9
4.9.1 AMAINIEALIZET. ..ottt ettt ettt ettt e heese e bt e s b e et e es s e eae e st e et et e e st e teeneeereenteeneeneeereenteeaeens 4-9
4.9.2 AMAPOWEIONRESEINMIL.ceiitiiiiiiiiii ettt ettt ettt eese et e et eeseenaeebeeneeeneeneenne e 4-9
4.9.3 AMAHEINIL ..ottt et a et et a et ettt n st ne s ese et et eneeneenen 4-9
4.9.4 AMAPCICEATTYINI.c.oiuiiiiiiiii ettt ettt ettt 4-9
4.9.5 AMAEAITYPOSIINI.c.oiiiiiiiiti ettt 4-10
4.9.6 AMAMIAPOSIINIL. ..ottt ettt ettt ettt e e b e bt sa e e st e beeseenteestenteeee et e eneeneeneenneeneas 4-10
4.9.7 AMALAEPOSLINIL.ouiiiiiiiiiee ettt ettt ettt et e ne et s et eneeeneeneas 4-10
4.9.8 AIMASSINI ..ottt ettt ettt ettt a ettt et ettt nsere et neeaeene e 4-11
4.10 INEETTACE CALIDACK ...ttt ettt ettt ettt e a e e bt et e bt e et e bt eee e bt ene e e st eneeeae e e seeeneeeneenbeeeeen 4-11
4.10.1 AmdPortTrainingCoOmMPLEtedocoiiiiiiiii ittt ettt ettt ettt eee s 4-11
4.10.2 AMAPOTtRESEIDEASSEIT.eiiietiiie ittt ettt ettt e ettt ettt e et ne e ene e e enean 4-11
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

Table of Contents-1

Table of Contents

4.10.3 AMAPOTERESEEASSEIT.ottt ettt ettt e et e e et e es e bt e e ekt eneeebe et e eseeneeeneeneeeneennens 4-12
4.10.4 AmAPOItRESEESUPPOITEAoiiiiiiiit ettt ettt ettt ettt a et e et e e e 4-12
4.10.5 AMAATIOCAIEBUITET ...ttt ettt ettt ettt e et ent e bt et e et et e eneeneeeneenae s 4-13
4.10.6 AMAFTEEBUTTEI.......uiiiiiie ettt ettt ettt ettt enb ettt se et ne e e 4-14
4.10.7 AmMAGENEratePCIRESELoouiiiiiiet ettt ettt ettt 4-14
4.10.8 AMAREPOITEVENL......oouiiitiiii ittt ettt e et e e et e e s e et e et e et e enteeae et e eseeneeeneeneeaneennens 4-15
4.10.9 AmdUpdate ApicInterTuUpPtMAPPING.coviiiieiieiieti ettt ettt tee ettt e et es ettt e et est e bt et eeeeeneesaeeneeeaeaneen 4-15
4.10.10 AMAPCICASPININTO ..ottt ettt ettt es ettt e et e ent e bt et e et et e e neeneeene e 4-16
4.11 Architectural Details 0f IOMMUoooiiiiiiiii et ettt ettt e eee e 4-16
4.11.1 THEOTY OF OPETALIONvieiiiiiiieiie ettt ettt ettt e et et e e eb e et e eebeessaeesbeebeeesseenseessseesseessseensaeenseenseessaeenseenseas 4-16
4112 REQUITEIMEIES ...ovvieiiieiieeeie ettt etee ettt ette et e et e etteesteetaeesseesaeesbeesseeesseessaeesseesseeesseesseessseanseessseenseeanseenseesaennseenseas 4-16
B O T 2 <ot 1510 s PSPPSR 4-17
4.12 Legacy Wrapper EXAIMPIEocoiuiiiiiiiiiiieiet ettt ettt b ettt sttt st ene s 4-17
Chapter 5: UEFI Support
5.1 UEFI Driver INTOrMAtIONc.oiiiiiiiiiiiieit ettt ettt ettt ettt ettt se e e st ebeete e b e ese e b e ene et e eneeeteeneeeneensesneenen 5-1

Chapter 6: Power Management

6.1 Sx State POWEr ManaGemENL........cc.coiiiiiiiiiiiiiii ittt ettt ettt ettt 6-1
6.1.1 Re@ISTEr RESIOTALION. . ..c..iutiiiieiiiciieiei ettt ettt ettt et b bttt ettt ettt ettt eneens 6-1
6.1.2 RESUME fTOM S3 SEALEo.viiiiiiiiciiiii ettt ettt b ettt ettt ettt ettt ens 6-1

Appendix A: Revision History

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
Table of Contents-2

List of Figures

List of Figures

Figure 4-1: Binary BIOCK SIIUCLUIEcc.ooiiiiiiiiiii ittt st b ettt eaeenes 4-1
Figure 4-2: B0oot SeqUENCE FIOW=CRAITcc.coiiiiiiiiiiiit ittt ettt ettt sttt ettt ene e 4-5
Figure 4-3: Push-High INEITACEcc.oouiiiiiiiii ettt ettt sttt b ettt eeeenes 4-6
Figure 4-4: Procedure Call through the Push-High INterfaceccooooiiiiiiiiiiiiiiii e 4-7
Figure 4-5: Callout ROULET OPETATIONoviuiiiiiiiiiieiiiit etttk ettt ettt sttt b ettt s ee bt bt et e e e et eneeteenes 4-8
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

List of Figures-1

List of Figures

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
List of Figures-2 Proprietary and Confidential

List of Tables

List of Tables

Table 3-1: Legacy INtErTUPt MAPPINGcoviiiiiiiiieiieit ittt ettt ettt et e e st s btttk s bt eb e bt se et e e e e st eteenes 3-1
Table 3-2: I/O APIC INEITUPt MAPPIIE .. .c.veuiiniiiiiiieiieit ettt ettt ettt ettt ettt b e bttt et sae b b e et ese et et eeeenes 3-2
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

List of Tables-1

List of Tables

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
List of Tables-2

AMDZ1

Chapter 1

Introduction

1.1

1.2

About This Document

This manual contains guidelines for the BIOS and software development of a system that utilizes the SR5690/5670/5650
system logic.

Changes and additions to the previous release of this document are highlighted in red. Refer to Appendix A at the end of
this document for a detailed revision history.

Architecture Overview

The SR5690/5670/5650 is the system logic of the latest server/workstation platform from AMD that enables its next
generation CPUs. The SR5690/5670/5650 also comes equipped with the new HyperTransport™ 3 and PCIe® Gen 2
technologies. The SR5690/5670/5650 introduces a variety of Reliability, Availability and Serviceability (RAS)
capabilities. These include parity protection for on-chip memories, PCI Express® Advanced Error Reporting (AER), and
advanced error handling capabilities for HyperTransport.

The SR5690/5670/5650 also supports a revision 1.2 compliant IOMMU (Input/Output Memory Management Unit)
implementation for address translation and protection services. This feature allows virtual addresses from PCI Express
endpoint devices to be translated to physical memory addresses. On-chip caching of address translations is provided to
improve /O performance. The device is also compliant with revision 1.0 of the PCI Express Address Translation Services
(ATS) specification to enable ATS-compliant endpoint devices to cache address translation. These features enhance
memory protection and support hardware-based /O virtualization when combined with appropriate operating system or
hypervisor software. Combined with AMD Virtualization™ technology, these features provide comprehensive platform
level virtualization support.

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

1-1

AMDZ Architecture Overview

This page is left blank intentionally.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
1-2

AMDZ1

Chapter 2

Register Space Access

2.1

2.2

2.3

24

PClIe® Core/Port Indirect Register Space (PCIEIND)

The Core Index Space contains control and status registers that are generic to all PCIe® ports in the SR5690/5670/5650.
This register space is accessed through the following index/data register pair located in the SR5690/5670/5650’s
northbridge PCI configuration registers:

* Index register is bus 0, device 0, register 0xEOQ.
e Data register is bus 0, device 0, register 0xE4.
Note: Register descriptions are referenced with the name PCIEIND.

The Core Index Space is subdivided into two parts. Since there are a total of 5 PCle cores in the SR5690/5670/5650,
hardware has been implemented to provide a mechanism to access these registers either independently or jointly through
the programming of bits [18:16] of the index register 0XEOQ. The encoding is as follows:

e 0xEO[18:16] == 0x5: Reads and writes accesses to 0xE4 will be directed at the per-core index registers in PCIE-SB
only.

* 0xEQ[18:16] == 0x4: Reads and writes accesses to 0xE4 will be directed at the per-core index registers in PCIE-GPP1
only.

e OxEO[18:16] == 0x6: Reads and writes accesses to 0xE4 will be directed at the per-core index registers in PCIE-GPP2
only.

e 0xEO[18:16] == 0x7: Reads and writes accesses to 0xE4 will be directed at the per-core index registers in
PCIE-GPP3a only.

e 0OxEO[18:16] == 0x3: Reads and writes accesses to 0xE4 will be directed at the per-core index registers in
PCIE-GPP3b only.

Note: Register descriptions are referenced with the name PCIEIND or BIFNB.

PCIe® Port Indirect Register Space (PCIEIND_P)

This register space is accessed through the following index/data register pair located in the SR5690/5670/5650’s
northbridge PCI configuration registers:

¢ Index register is bus 0, device 2/3/4/5/6/7/9/10/11/12/13, register 0xE0[15..0].
e Data register is bus 0, device 2/3/4/5/6/7/9/10/11/12/13, register 0xE4[31..0].
Note: Register descriptions are referenced with the name PCIEIND P or BIFNBP.

HTIU Indirect Register Space (HTIUIND)

This register space is accessed through the following index/data register pair located in the SR5690/5670/5650’s
northbridge PCI configuration registers:

* Index register is bus 0, device 0, register 0x94[7..0].
* Data register is bus 0, device 0, register 0x98[31..0]. To write HTIUIND, register 0x94[8] has to be set.
Note: Register descriptions are referenced with the name HTTUIND.

MISC Indirect Register Space (MISCIND)

This register space is accessed through the following index/data register pair located in the SR5690/5670/5650’s
northbridge PCI configuration registers:

* Index register is bus 0, device 0, register 0x60[7..0].

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

2-1

AMDZ1 Clock Configuration Register Space (CLKCONFIG)

¢ Data register is bus 0, device 0, register 0x64[31..0]. To write MISCIND, register 0x60[7] has to be set.
Note: Register descriptions are referenced with the name MISCIND.

2.5 Clock Configuration Register Space (CLKCONFIG)

The SR5690/5670/5650 clock control block is located in Device0, Functionl. By default, this PCI function does not
appear in the PCI configuration space. System firmware can make Device0, Function] visible by setting
NBCONFIG:0x4C[0] to 1. The expected use of the Clock Control function is to only enable it in the PCI configuration
space for modification by system firmware during POST. This function does not implement PCI device and vendor ID’s.
Therefore, system firmware should hide the Clock Control function after making modifications.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

AMDZ1

Chapter 3
IRQ Mapping

3.1 Legacy Interrup Mapping (I0 APIC Disabled)

Table 3-1 Legacy Interrupt Mapping

Device Behind Internal Bridge # Interrupt Mapping INT_SEL_MODE == 1 Interrupt Mapping
INTA -> INTC INTA -> INTG
2 INTB -> INTD INTB -> INTH
INTC -> INTA INTC -> INTE
INTD -> INTB INTD -> INTF
INTA -> INTD INTA -> INTH
3 INTB -> INTA INTB -> INTE
INTC -> INTB INTC -> INTF
INTD -> INTC INTD -> INTG
INTA -> INTA INTA -> INTE
4 INTB -> INTB INTB -> INTF
INTC -> INTC INTC -> INTG
INTD -> INTD INTD -> INTH
INTA -> INTB INTA -> INTF
5 INTB -> INTC INTB -> INTG
INTC -> INTD INTC -> INTH
INTD -> INTA INTD -> INTE
INTA -> INTC INTA -> INTG
6 INTB -> INTD INTB -> INTH
INTC -> INTA INTC -> INTE
INTD -> INTB INTD -> INTF
INTA -> INTD INTA -> INTH
7 INTB -> INTA INTB -> INTE
INTC -> INTB INTC -> INTF
INTD -> INTC INTD -> INTG
INTA -> INTB INTA -> INTF
9 INTB -> INTC INTB -> INTG
INTC -> INTD INTC -> INTH
INTD -> INTA INTD -> INTE
INTA -> INTC INTA -> INTG
10 INTB -> INTD INTB -> INTH
INTC -> INTA INTC -> INTE
INTD -> INTB INTD -> INTF
INTA -> INTD INTA -> INTH
1 INTB -> INTA INTB -> INTE
INTC -> INTB INTC -> INTF
INTD -> INTC INTD -> INTG
INTA -> INTA INTA -> INTE
12 INTB -> INTB INTB -> INTF
INTC -> INTC INTC -> INTG
INTD -> INTD INTD -> INTH
INTA -> INTB INTA -> INTF
13 INTB -> INTC INTB -> INTG
INTC -> INTD INTC -> INTH
INTD -> INTA INTD -> INTE
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

3-1

AMDA\ I/O APIC Interrupt Mapping (I/O APIC 32 Entry Mode)

3.2 I/0 APIC Interrupt Mapping (I/O APIC 32 Entry Mode)
Default interrupt mapping setup by CIMx and can be overridden through dedicated interface callback.

Table 3-2 1/0 APIC Interrupt Mapping

) . A) Bridge 10 APIC Device Behind Bridge Device Behind Bridge 10
Bridge Device Number | Bridge Interrupt Pin Interrupt Pin Interrupt Pin APIC Interrupt Pin
INTA -> INTA INTA->0
INTB -> INTB INTB -> 1
2 INTA -> INTE INTA ->28 INTC > INTC INTC > 2
INTD -> INTD INTD -> 3
INTA -> INTE INTA->4
INTB -> INTF INTB -> 5
3 INTA -> INTE INTA ->28 INTC -> INTG INTC -> 6
INTD -> INTH INTD ->7
INTA -> INTE INTA -> 20
INTB -> INTF INTB -> 21
4 INTA -> INTE INTA ->28 INTC > INTG INTC > 22
INTD -> INTH INTD -> 23
INTA -> INTG INTA -> 22
INTB -> INTH INTB -> 23
5 INTA ->INTE INTA ->28 INTC -> INTE INTC > 20
INTD -> INTF INTD -> 21
INTA -> INTD INTA -> 27
INTB -> INTA INTB -> 24
6 INTA -> INTF INTA ->29 INTC -> INTB INTC > 25
INTD -> INTC INTD -> 26
INTA -> INTC INTA -> 26
INTB -> INTD INTB -> 27
7 INTA -> INTF INTA ->29 INTC -> INTA INTC > 24
INTD -> INTB INTD -> 25
INTA -> INTA INTA -> 24
INTB -> INTB INTB -> 25
9 INTA ->INTF INTA ->29 INTC > INTC INTC > 26
INTD -> INTD INTD -> 27
INTA -> INTH INTA -> 23
INTB -> INTE INTB -> 20
10 INTA -> INTG INTA -> 30 INTC -> INTF INTC -> 21
INTD -> INTG INTD -> 22
INTA -> INTA INTA->8
INTB -> INTB INTB -> 9
11 INTA -> INTG INTA -> 30 INTC > INTC INTC > 10
INTD -> INTD INTD -> 11
INTA -> INTE INTA -> 12
INTB -> INTF INTB -> 13
12 INTA -> INTG INTA -> 30 INTC > INTG INTC > 14
INTD -> INTH INTD -> 15
INTA -> INTA INTA -> 16
INTB -> INTB INTB -> 17
13 INTA -> INTG INTA -> 30 INTC > INTC INTC > 18
INTD -> INTD INTD -> 19

3.3 Interrupt Mapping in Multi-NB Environment

Interrupt swizzling by the processor in a multi-NB environment:

In a multi-NB environment, the processor complex will swizzle the secondary NB’s interrupts as follows:
INTA->INTB

INTB->INTC

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

1/O APIC Support AMDZ1

INTC->INTD
INTD->INTA
INTE->INTE
INTF->INTF

INTG->INTG
INTH->INTH

The primary NB’s interrupts are unaffected.

34 1/0 APIC Support

All SR5690/5670/5650 1/0O APIC “Level Triggered” interrupt must be reported as Active High. Below is an example of
I/0 APIC interrupt routing implementation for ACPI for bridge device number 2. (LNKA/LNKB/LINKC/LINKD are SB
interrupt link control devices, interrupt vector on SR5690/5670/5650 I/O APIC starts from 24).

Scope (_SB) {
// PciExBr2
Package () {0x0002FFFF, 0, LNKC, 0 },

}
Name (AR00, Package () {
// PciExBr2
Package () {0Ox0002FFFF, 0, LN52, 0 },

b
Name (PR02, Package () {
// PciExSlot2
Package () {0x0000FFFF, O 0},
Package () {0x0000FFFF, 1 0},
Package () {0Ox0000FFFF, 2, LNKA, 0 },
3 0

b,

LNKC,

~

, LNKD,

LNKB,

~

Package () {0Ox0000FFFF,

hH
Name (AR02, Package () {
// PciExSlot2

Package () {0Ox0000FFFF, LN24,

01},
, LN25, 0 },

0

0

~

Package () {0Ox0000FFFF,
Package () {0x0000FFFF,
Package () {0x0000FFFF,

LN26, },
LN27,

w N B O
~

~

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
3-3

AMDZ 1/O APIC Support

3]

Device (PCIO) {

Name (_HID, EISAID ("PNPOAO3"))

Name (_ADR, 0x00180000)

Method (*BNOO, 0){ return(0x0000) }

Method (_BBN, 0){ return(BNOO()) }

Name (_UID, 0x0000)

Method (_PRT,0) {
If (PICM) {Return(AR00)} // APIC mode
Return (PR00) // PIC Mode

Device (PCE2) { // PciExBr2
Name (_ADR, 0x00020000)
Method (_PRW, 0) { Return(GPRW(0x18, 4)) }
Method (_PRT,0) {
If (PICM) { Return(AR02) }// APIC mode
Return (PR02) // PIC Mode

}

Name (PRSP,
ResourceTemplate () { // _PRS for APIC Mode
Interrupt (ResourceConsumer, Level, ActiveHigh, Shared, , ,IRXX) { 0 }

)
Device (LN24) {

Name (_HID, EISAID ("PNPOCOF"))

Name (_UID, 24)

Method (_STA,0) {
Return (0xb)

}

Method (_PRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

1/O APIC Support AMDZ1

Store (24, IRQX)
return (PRSP)

}

Method (_DIS,0) {

}

Method (_CRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (24, IRQX)
return (PRSP)

}

Method (_SRS, 1)

{

}

}// end Device LN24

Device (LN25) {

Name (_HID, EISAID ("PNPOCOF"))

Name (_UID, 25)

Method (_STA,0) {
Return (0xb)

}

Method (_PRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (25, IRQX)
return (PRSP)

}

Method (_DIS,0) {

}

Method (_CRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (25, IRQX)
return (PRSP)

}

Method (_SRS, 1)

{

}

}// end Device LN25

Device (LN26) {

Name (_HID, EISAID ("PNPOCOF"))

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
3-5

AMDZ 1/O APIC Support

Name (_UID, 26)
Method (_STA,0) {
Return (0xb)
}
Method (_PRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (26, IRQX)
return (PRSP)
}
Method (_DIS,0) {
}
Method (_CRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (26, IRQX)
return (PRSP)
}
Method (_SRS, 1)
{
}

}// end Device LN26

Device (LN27) {

Name (_HID, EISAID ("PNPOCOF"))

Name (_UID, 27)

Method (_STA,0) {

Return (0xb)

}

Method (_PRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (27, IRQX)
return (PRSP)

}

Method (_DIS,0) {

}

Method (_CRS, 0) {
CreateDwordField (PRSP, 0x5, IRQX)
Store (27, IRQX)
return (PRSP)

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

1/O APIC Support

AMDZ1

Method (_SRS, 1)
{
}

}// end Device LN27

Device (LN52) {
Name (_HID, EISAID ("PNPOCOF"))
Name (_UID, 52)
Method (_STA,0) {
Return (0xb)
}
Method (_PRS, 0) {
CreateDwordField (PRSP, 0x5,
Store (52, IRQX)
return (PRSP)
}
Method (_DIS,0) {
}
Method (_CRS, 0) {
CreateDwordField (PRSP, 0x5,
Store (52, IRQX)
return (PRSP)
}
Method (_SRS, 1)
{

}
}// end Device LN52

IROX)

IRQOX)

© 2010 Advanced Micro Devices, Inc.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

3-7

AMDZ 1/O APIC Support

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

AMDZ1

Chapter 4
CIMx-SR5690 Architecture

4.1 Introduction
The CIMx-SR5690 uses an interface and distribution model to help quickly integrate SR5690/5670/5650 northbridge
family support in the customer products.
4.2 Binary Image Design
The binary image build style has several advantages and is required by the legacy Push-High interface. The binary image
is compiled and built using 32-bit tools, while the legacy code uses 16-bit tools.
4.2.1 Binary Block Structure
CIMx software binary image is prefixed with a binary header which identifies the binary and points to the code module(s)
contained within. There may be only a single code module or several modules combined into one binary image to reduce
build overhead costs.
yd _
f Modules
| Code
\
A Module Header
| Modules
Initialized Data
T Module Header
Relocation fixup data (B3 Image only)
Figure 4-1 Binary Block Structure
The host environment must first find the binary image in the memory space, then calculate the execution address of the
dispatcher to transfer control to the desired CIMx software function. Due to system requirements, the CIMx software may
be spread out into three binary images. A typical legacy environment may choose to create the following images:
Image ‘B1’: A code image for use in recovery mode. This is a separate image to satisfy the requirement that the recovery
code must be contained in a locked portion of the Flash ROM device.
Image ‘B2’: The main code image used during power-on initialization.
Image ‘B3’: A code image for use in system management mode. This is a separate image to allow a code load into SMM
RAM for faster execution.
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

4-1

AMDZ1

Binary Image Design

4.2.2

4.2.3

Binary Header

The following binary header exists in each binary image. It is the first element in the binary image and can be discovered
by either implicit build knowledge or by searching the memory space for the signature constant. The binary image, and
therefore the signature, must be aligned on a 32K byte boundary in the memory address space.

Prototype:

typedef struct {

UINT32 Signature;

CHAR8 CreatorID[8];
CHAR8 Version[12];
UINT32 ModuleInfoOffset;
UINT32 EntryPointAddress;
UINT32 ImageBase;

UINT32 RelocTableOffset;
UINT32 ImageSize;

UINT16 Checksum;

UINT8 ImageType;

UINT8 V_reserved;

} AMD_ IMAGE_HEADER;

The parameters are defined as follows:

Parameter Definition

Signature Signature that identifies this as an AGESA software image. This is a constant value equal to the string “SAMD”.

Creator ID Image creator ID signature. This is specified by a parameter and set by the BINUTIL image editing tool during the
build process. It is set to <TBD> by the binary table editor tool.

Version Release version of binary image.

ModulelnfoOffset Offset of first occurrence of AmdModuleHeader relative to the start of the binary image.

EntryPointAddress Offset of the entry point relative to the start of the binary image.

ImageBase Image base address. This the linear/physical address to which the image code has presently been located (where it
expects to execute).

RelocTableOffset Offset of relocation table, if applicable. Set to O if table not present. This the offset relative to the start of the binary
image.

ImageSize Size, in bytes, of the complete binary image including the header.

Checksum Checksum of the binary image. The entire binary image sums to 0. Using a word summation of bytes style algorithm.

ImageType Image type, e.g. 1-B1,2-B2, 3 -B3.

V_Reserved Must be 0.

Module Header

A module header exists for each code module included in the binary image. There may be more than one module, in
which case the NextBlock parameter is used to chain the modules in the binary image.

Prototype:

typedef struct _AMD MODULE_HEADER {

UINT32 ModuleHeaderSignature,

CHAR8 ModulelIdentifier[8],

CHAR8 ModuleVersion[1l2],

VOID *ModuleDispatcher,

struct _AMD MODULE HEADER *NextBlock

} AMD MODULE HEADER;

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

© 2010 Advanced Micro Devices, Inc.

Execution Environment Expectations

AMDZ1

4.3

4.4

The parameters are defined as follows:

Parameter

Definition

ModuleHeaderSignature

Constant value equal to the string “SMOD”.

Moduleldentifier

Published name for this module.

ModuleVersion

Release version of the module in string format.

ModuleDispatcher

Offset of the module dispatcher relative to the start of the binary image.

NextBlock

Offset of the next AmdModulelnfoBlock relative to the start of the binary image. If no more blocks are present, this
is set to 0x00000000.

Execution Environment Expectations

The image code expects to be located at an address determined by the host environment. This means the relocation fix-up
records are used to fix-up the code references to addresses in the image. AMD provides a tool called BINUTIL2.EXE to
perform this action. See “Build Process” in CIMX-NB.CHM.

Prior to calling any AGESA software interface, it is required that the host environment establish the following

requirements:

¢ CPU is in 32-bit protected mode execution

e (CSis a 32-bit code segment with Base/Limit — 0x00000000/0xffffftt.

* DS/ES/SS are 32-bit data segments with Base/Limit — 0x00000000/0x ffffffft.

e If paging is enabled, then pages must be identity mapped (e.g.: pg 1 to pgl, pg 2 to pg2, etc)

Standard Header

An architectural header is defined at the front of every function’s configuration block. This standard header is filled by the
host environment prior to calling through the entry point. This data is present in the configuration block at all times,
essentially making it global throughout the function call. For example, this data is a part of the legacy Push-High.

Prototype:

typedef struct {

UINT32 ImageBasePtr;
UINT32 Func;

UINT32 AltImageBasePtr;
VOID *PcieBasePtr;
CALLOUT_ ENTRY *CalloutPtr;
UINT32 Reserved[3]:;

} AMD CONFIG_PARAMS;

The parameters are defined as follows:

Parameter Definition

ImageBasePtr Memory location where the host environment has placed the binary image.

Func Identifier of the desired procedure. The identifiers are defined in a provided Include file.

AltimageBasePtr Memory location where the host environment has placed the B2 binary image. This value is optional and should be
set to 0x00000000 when not used.

PcieBasePtr Base address of the memory mapped I/O block for access to PCle® configuration cycles.

CalloutPtr 32-bit pointer to where the host environment has placed the entry point for call-out routines. The AGESA™
software code transfers control to this address for processing of call-out functions (see section 4.6 “Callback
Function” on page 4-4). In a legacy Push-High environment this is the address of AmdCallout16.

Reserved Reserved for future use.

© 2010 Advanced Micro Devices, Inc.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
4-3

AMDA\ Call Entry to Dispatcher

4.5

4.6

Call Entry to Dispatcher

The dispatcher in the code module uses a function definition as shown below. The value of the pointer ImageEntryPtr is
determined by either implicit knowledge of the host build environment or by scanning the memory address space for the
binary image.

Prototype:
AGESA STATUS (*ImageEntryPtr) (
IN OUT AMD_NB CONFIG_BLOCK *ConfigPtr
)

where ConfigPtr is a pointer to the function’s data structure which contains the standard header at the front (see
CIMx-NB.CHM for detailed definition of AMD_NB_CONFIG_BLOCK structure).

Possible return values are:

Return Value Definition
AGESA_SUCCESS The selected function has competed successfully.
AGESA_UNSUPPORTED The selected function is not supported/implemented.

AGESA_ERROR The selected function signaled error.

AGESA_FATAL Non-recoverable error encountered during call. BIOS post should stop.
AGESA_WARNING Warning encountered during calll.

Callback Function

All callback functions use the CallOutPtr structure element provided by the host environment in the Standard Header. The
Callback function definition is as follows:

Prototype:
AGESA_STATUS (*CallBackPtr) (

IN UINT32 CallbackId,
IN UINTN Data,
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)i
The parameters are defined as follows:
Parameter Definition
Callbackld Identifier of the desired procedure. The identifiers are defined in a provided Include file.
Data Specific to callback data.
ConfigPtr Pointer to the function’s data structure which contains the Standard Header at the front. Refer to
CIMX_NB.CHM for detailed definition of AMD_NB_CONFIG_BLOCK structure.

Possible return values are:

Return Value Definition
AGESA_SUCCESS The selected function has competed successfully.
AGESA_UNSUPPORTED The selected function is not supported/implemented.
AGESA_ERROR The selected function signaled error.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

Operational Overview

AMDZ1

4.7 Operational Overview

The following diagram is a representation of the timeline of a boot sequence depicting the major tasks performed in a

typical system.

(Power on Reset

[CIMx-SB SbPowerOnlnit

/

[HT Initialization (AGESA)

CIMx-NB
AmdNbPowerOnResetInit

[AP Initialization (AGESA)

CIMx-NB
AmdNbHtlnit

No

CIMx-NB
AmdNbPcieEarlylnit

| No Is S3 Resume ?

Memory initialization (AGESA)
System BIOS shadowing

CIMx-NB
AmdNbEarlyPostInit

C CIMx-SB SbBeforePcilnit

(PCI enumeration and resource aIIocation)

CIMx-NB
AmdNbMidPostlInit

C Video BIOS call)

(CIMx-SB SbAfterPcilnit)

Cnfigure all IO device.

Enumerate USB.

Detect and initialize all boot devices.
Initialize and execute Option ROM.
Prepare ACPI tables. BIOS setup, etc.

(CIMx-SB SbLatePost)

CIMx-NB
AmdNbLatePostInit

Restore Memory Controller

CIMx-SB SbBeforePciRestorelnit

Restore PCI Device configuration space)

Misc. Restore CPU

N Y)

[CIMx-SB SbAfterPciRestorelnit

CIMx-NB

AmdNbS3Init
Misc BIOS restore.
Give control to OS

[Operatin System

Figure 4-2 Boot Sequence Flow-Chart

© 2010 Advanced Micro Devices, Inc.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

4-5

AMDZ1 Push-High Interface

4.8

4.8.1

4.8.2

Push-High Interface

This section covers the host environment requirements to implement the Legacy BIOS interface mechanisms to access the
CIMx software procedures. This is collectively referred to as the “Push-High” interface. The Push-High interface relies
upon the modular construction of the CIMx software into binary images as mentioned in section 4.2 “Binary Image
Design” on page 4-1.

The Push-High interface also relies upon the existence of a stack. It is the responsibility of the host environment to call
this function to establish a valid stack prior to making any calls to the Push-High interface.

The Push-High routines do not rely on segment names being imported from the host environment through the INCLUDE
files. The procedures defined below are without segment declarations. The host environment must define a local file
conforming to the environment’s needs and use the INCLUDE directive to pull the Push-High source file into the local
file.

Theory of Operation

The Push-High model is used to interface the CIMx software to a legacy PC/AT system BIOS. It consists of code
compiled into the host environment BIOS and code compiled with the CIMx software core. The legacy side code (the
bridge) changes the processor mode to 32-bit protected mode flat address model, calls into the AGESA software side (the
Dispatcher), executes the requested function, and returns to the caller. The model also provides a framework for the CIMx
software side to call the legacy PC/AT system BIOS in its native 16-bit mode of operation.

Figure 4-3 Push-High Interface

Making Calls to Image Entry Points

All procedure calls are made using the module dispatchers described in section 4.5 “Call Entry to Dispatcher” on page
4-4. The host environment procedures must properly create and fill the Standard Header data. The identifiers for the
published entry point functions can be found in the CIMX-NB.INC include file. At each point in the host environment
code where a call to the CIMx software is desired, a call to the AMmdBridge32 procedure (described in section 4.8.3)
must be inserted.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

Push-High Interface AMDA

BIOS code

Dispatcher
AmdBridoed2

ClMx function

Dispatcher Exit

BIOS code (cont.)

Figure 4-4 Procedure Call through the Push-High Interface

4.8.3 AmdBridge32 Procedure

Function: Execute a CIMx software function through the Push-High interface.

Prototype:
mov (AMD_CONFIG_PARAMS PTR LocalConfigBlock) .Func, PH Initializer
mov (AMD CONFIG_PARAMS PTR LocalConfigBlock) .ImageBasePtr, \
OFFFFFFFFh - BIOS_ROM SIZE + 1 + AMD MODULE_OFFSET
mov (AMD CONFIG_PARAMS PTR LocalConfigBlock) .AltImageBasePtr, 0
mov (AMD CONFIG_PARAMS PTR LocalConfigBlock) .CalloutPtr, OFFSET AmdCalloutlé
mov dx, SEG OemCallback
shl edx, 16
mov dx, OFFSET OemCallback; set the real mode pointer
Xor esi, esi
mov si, seg LocalConfigBlock
shl esi, 4
add esi, offset LocalConfigBlock
call AmdBridge32

The parameters are defined as follows:

Parameter Definition

EDX A Real Mode FAR pointer using seg16:0ffset16 format that points to a local host environment call out
router. If this pointer is not equal to zero then this pointer will be used as the call out router instead of the
standard OemCallback. This may be useful when the callout router is not located in the same segment as
the AmdBridge32 and AmdCallout16 routines.

ESI A Flat Mode pointer (32bit address) that points to the configuration block for the CIMx software function.

AMD_CONFIG_PARAMS Standard header definition shown in “Standard Header”
(related parameter)

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
4-7

AMDZ1 Push-High Interface

4.8.4 Handling Callback Procedures

All procedure callbacks are made using the call port described in section 4.6 “Callback Function” on page 4-4. This
means the host environment must implement a call-out router function and load its address in the Standard Header
properly. In the Push-High interface, this function is provided by the AgesaCallOutl6 procedure. This procedure is
implemented in the host environment and functions as described in section 4.6 “Callback Function” on page 4-4.

The router portion of AgesaCallOutl6 uses another host environment procedure to translate the function number into a
execution address for the call out procedure.

ClIMx Function

Host BIOS
Callback

Procedure Return Point

CallCut Exit Dispatcher Exit

Figure 4-5 Callout Router Operation

The call interface to the router procedure is as follows:
Prototype:
;Input ECX/EDX/EAX/ESI
OemCallback PROC FAR PUBLIC
ret
OemCallback ENDP

The parameters are defined as follows:

Parameter Definition
ECX Callback ID. See “Interface Callback’”.
EDX Function specific data. See “Interface Callback”.
ESI A Flat Mode pointer (32bit address) that points to the AMD_NB_CONFIG_BLOCK.
EAX AGESA_UNSUPPORTED

Possible return values are defined as follows:

Return Value Definition
AGESA_SUCCESS The selected function has competed successfully.
AGESA_UNSUPPORTED The selected function is not supported/implemented.
AGESA_ERROR The selected function signaled error.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

Interface Calls AMDZ

4.8.5 Alternative Callback in 32-Bit Mode
The Push-High interface is designed for use in 16-bit execution legacy BIOS environments; however, any individual
callout for a core function may be implemented in 32-bit mode. This permits the author to use the C language and link the
function with the CIMx software module, which is loaded in the high area. This reduces the amount of “thunking” and
improves execution speed. In addition, it provides the benefits of easier support and reduced maintenance costs. The host
environment must modify the build control files to include their customized files.
4.9 Interface Calls
4.9.1 AmdlInitializer
Function: Initialize PCIE/HT/NB block configuration structure to default recommended value (refer to CIMx-NB.CHM
for details).
Push-High Function ID: PH_Initializer
Prototype:
AGESA_STATUS AmdInitializer(
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)
The parameter, ConfigPtr, is a pointer to the function’s data structure. Refer to CIMx-NB.CHM (can be CIMx-SR5690
distribution package) for detailed definition of AMD NB CONFIG BLOCK structure.
49.2 AmdPowerOnResetlnit
Function: Initialize northbridge registers on power-on reset.
Push-High Function ID: PH_amdPowerOnResetInit
Prototype:
AGESA STATUS AmdPowerOnResetInit (
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)
The parameter ConfigPtr is a pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of
the AMD _NB_CONFIG_BLOCK structure.
4.9.3 AmdHtInit
Function: Initialize HT subsystem in addition to initialization performed by AGESA.
Push-High Function ID: PH AmdPowerOnResetlnit
Prototype:
AGESA STATUS AmdHtInit (
IN OUT AMD NB CONFIG BLOCK *ConfigPtr
)
The parameter ConfigPtr is a pointer to the function's data structure. Refer to CIMx-NB.CHM for detailed definition of
the AMD NB CONFIG BLOCK structure.
4.9.4 AmdPcieEarlylnit
Function: Initialize PCle subsystem. Train links on all enabled ports. Initialize hot-plug. Result of this calls all PCle ports
in operational state.
Push-High Function ID: PH amdPcieEarlylnit
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

4-9

AMDZ Interface Calls

4.9.5

4.9.6

4.9.7

Prototype:
AGESA_STATUS AmdPcieEarlyInit (
IN OUT AMD NB CONFIG BLOCK *ConfigPtr
)

The parameter, ConfigPtr, is a pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of
AMD NB CONFIG BLOCK structure.

AmdEarlyPostInit
Function: Initialize miscellaneous northbridge feature at Early Post.
Push-High Function ID: PH amdEarlyPostInit
Prototype:
AGESA_ STATUS AmdEarlyPostInit(
IN OUT AMD_NB_CONFIG_BLOCK *ConfigPtr
);
The parameter, ConfigPtr, is a pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of
the AMD NB CONFIG BLOCK structure.
AmdMidPostInit
Function: Initialize miscellaneous northbridge feature at Mid Post.
Push-High Function Id: PH amdMidPostInit
Prototype:
AGESA_STATUS AmdMidPostInit (
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)i

The parameter, ConfigPtr, is a pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of
the AMD NB_CONFIG BLOCK structure.

The functions AmdEarlyPostInit/ AmdMidPostInit/AmdLatePostInit/AmdS3Init must share the same exact copy of the
AMD NB CONFIG BLOCK structure.
AmdLatePostInit
Function: Initialize miscellaneous Northbridge feature at Late Post.
Push-High Function Id: PH amdLatePostInit
Prototype:

AGESA STATUS AmdLatePostInit(

IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)i

The parameter, ConfigPtr, is a pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of
the AMD NB CONFIG BLOCK structure.

The functions AmdEarlyPostInit/AmdMidPostInit/AmdLatePostInit/ AmdS3Init must share the same exact copy of the
AMD NB CONFIG BLOCK structure.

Note: amdLatePostInit must be run after ACPI tables are created and linked into the RSDT.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

4-10

Interface Callback

AMDZ1

4.9.8 AmdS3Init

Function: Initialize PCle and northbridge feature on S3 resume. See Chapter 6: Power Management for additional details.

Push-High Function Id: PH amdS3Init
Prototype:
AGESA STATUS AmdS3Init(

IN OUT AMD NB CONFIG_BLOCK *ConfigPtr

)

The parameter, ConfigPtr, is a pointer to the function’s data structure. See CIMx-NB.CHM for detailed definition of the

AMD_ NB CONFIG BLOCK structure.

The functions AmdEarlyPostInit/ AmdMidPostInit/ AmdLatePostInit/ AmdS3Init must share same exact copy of the

AMD NB CONFIG BLOCK structure.

4.10 Interface Callback

4.10.1 AmdPortTrainingCompleted

Function: PClIe Port Initialization Completed endpoint detected.

Push-High Callback ID: PHCB_amdPortTrainingCompleted

Prototype:
AGESA STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN UINTN PortId,
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)
The parameters are defined as follows:
Parameter Definition
Data PCI Express Port ID.
ConfigPtr Pointer to the function’s data structure. See CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.
Return Values:
Return Value Definition
AGESA_UNSUPPORTED Callback function not supported.
AGESA_ERROR Disable port

4.10.2 AmdPortResetDeassert

Function: Deassert reset for device connected to PCle port.

Push-High Callback ID: PHCB amdPortResetDeassert

Prototype:
AGESA STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN UINTN PortIdBitMap,
IN OUT AMD NB CONFIG_BLOCK

)

*ConfigPtr

© 2010 Advanced Micro Devices, Inc.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
4-11

AMDZ1

Interface Callback

4.10.3

4.104

The parameters are defined as follows:

Parameter Definition
PortldBitMap Bitmap of port id to deassert reset (0x4 - Portld 2, 0x8 - Portld 3, ...)
ConfigPtr Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of
AMD_NB_CONFIG_BLOCK structure.

Return Values:
Return Value Definition
AGESA_UNSUPPORTED Callback function not supported.
AGESA_ERROR Disable port
AmdPortResetAssert

Function: Assert reset for device connected to PCle port.

Push-High Callback ID: PHCB_amdPortResetAssert

Prototype:
AGESA STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN UINTN PortIdBitMap,
IN OUT AMD_NB_CONFIG _BLOCK *ConfigPtr

)/

The parameters are defined as follows:

Parameter Definition
PortldBitMap Bitmap of port id to assert reset (0x4 - Portld 2, 0x8 - Portld 3, ...)
ConfigPtr Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.
Return Values:
Return Value Definition
AGESA_UNSUPPORTED Callback function not supported.
AGESA _ERROR Disable port

AmdPortResetSupported

Function: Check if there is controllable reset logic present for device connected to PCle port.

Push-High Callback ID: PHCB_amdPortResetSupported

Prototype:
AGESA_STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN UINTN Portld,
IN OUT AMD_NB_CONFIG_BLOCK *ConfigPtr

)

The parameters are defined as follows:

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

4-12

© 2010 Advanced Micro Devices, Inc.

Interface Callback

AMDZ1

4.10.5

Parameter

Definition

Portld

PCle Port ID.

ConfigPtr

Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

Return Values:

Return Value Definition
AGESA_UNSUPPORTED Callback function not supported
AGESA_SUCCESS Keep port enabled.
AGESA_ERROR Disable PCle port.
AmdAllocateBuffer
Function: Allocate memory buffer
ACPI handles used:

Handle Value Definition

SRVI

IOMMU IVRS virtualization table

Usage: ACPI tables should be allocated via PMM function 0 with handle and size specified in BufferParamsPtr and the
address must be returned in BufferParamsPtr. Expected usage is to allocate a buffer for CIM usage in early or mid post
and to link the ACPI table, if one of the above handles is passed, after ACPI has been configured by the system BIOS.

Push-High Callback ID: PHCB_AmdAllocateBuffer

Prototype:

AGESA_STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN NB BUFFER_PARAMS *BufferParamPtr,

IN OUT AMD NB CONFIG_BLOCK

)

*ConfigPtr

The parameters are defined as follows:

Parameter

Definition

BufferParamPtr

Pointer to NB_PARAMS_PTR datatype containing length and place holder for address of allocated
buffer (see CIMx-NB.CHM for more details).

ConfigPtr

Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

Return Values:

Return Value

Definition

AGESA_UNSUPPORTED

Callback function not implemented.

AGESA_SUCCESS

Memory allocation succeeded.

AGESA_ERROR

Memory allocation failed.

© 2010 Advanced Micro Devices, Inc.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
4-13

AMDZ1

Interface Callback

4.10.6 AmdFreeBuffer

4.10.7

Function: De-allocate memory buffer

Usage: Free the memory buffer via PMM function 2 with handle as specified in BufferParamsPtr, and clear the address in
BufferParamsPtr on success. ACPI handles will not be explicitly freed, but should be linked into the ACPI table structure
after it has been configured by the system BIOS. They may then be freed if necessary.

Push-High Callback ID: PHCB AmdFreeBuffer

Prototype:

AGESA_STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN NB BUFFER_PARAMS *BufferParamPtr,
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr

)

The parameters are defined as follows:

Parameter Definition
BufferParamPtr Pointer to NB_PARAMS_PTR datatype containing handle of buffer to free (see CIMx-NB.CHM for
more details).
ConfigPtr Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

Return Values:

Return Value Definition
AGESA_UNSUPPORTED Callback function not implemented.
AGESA_SUCCESS Memory allocation succeeded.
AGESA_ERROR Memory allocation failed.
AmdGeneratePciReset
Function: Generate reset.
Push-High Callback ID: PHCB_amdGeneratePciReset
Prototype:
AGESA_STATUS (*CallOutPtr) (
IN UINT32 CallbackId,
IN UINTN ResetType,
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr
)
The parameters are defined as follows:
Parameter Definition
ResetType Reser type 0x01 - Warm Reset, 0x02 - Cold Reset
ConfigPtr Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

4-14

© 2010 Advanced Micro Devices, Inc.

Interface Callback

AMDZ1

Return Values:

Return Value

Definition

AGESA_SUCCESS

Debug feature to completely avoid reset generation.

4.10.8 AmdReportEvent

Function: Report event.

Push-High Callback ID: PHCB_AmdReportEvent

Prototype:

AGESA STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN AGESA_EVENT *Event,
IN OUT AMD NB CONFIG_BLOCK *ConfigPtr

)

The parameters are defined as follows:

Parameter Definition
Event Pinter to event structure
ConfigPtr Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

Return Values:

Return Value

Definition

AGESA_UNSUPPORTED

Callback function not implemented.

AGESA_SUCCESS

Event logging succeeded.

AGESA_ERROR

Event logging failed

4.10.9 AmdUpdateApicInterruptMapping

Function: Update default [/O APIC interrupt mapping.

Push-High Callback ID: PHCB_AmdUpdateApicInterruptMapping

Prototype:

AGESA STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN APIC DEVICE_ INFO *pApicPortInfo,
IN OUT AMD NB CONFIG BLOCK *ConfigPtr

)

The parameters are defined as follows:

Parameter

Definition

pApicPortinfo

Pointer to array of structutes containing default IO APIC interrupt mapping info. For default interrupt
mapping info (see CIMx-NB.CHM for more details).

ConfigPtr

Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

© 2010 Advanced Micro Devices, Inc.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
4-15

AMDZ Architectural Details of IOMMU

Return Values:

Return Value Definition
AGESA_UNSUPPORTED Callback function not implemented (default interrupt mapping will be used).
AGESA_SUCCESS Interrupt table updated.

4.10.10 AmdPcieAspmlInfo
Function: Update PCle link ASMP info.
Push-High Callback ID: PHCB_AmdPcieAspmInfo
Prototype:
AGESA_STATUS (*CallOutPtr) (

IN UINT32 CallbackId,
IN ASPM LINK INFO *pAspmLinkInfo,
IN OUT AMD NB_CONFIG_BLOCK *ConfigPtr

);

The parameters are defined as follows:

Parameter Definition
pAspmLinkinfo Pointer to structure containing ASPM link information (see CIMx-NB.CHM for more details).
ConfigPtr Pointer to the function’s data structure. Refer to CIMx-NB.CHM for detailed definition of the
AMD_NB_CONFIG_BLOCK structure.

Return Values:

Return Value Definition
AGESA_UNSUPPORTED Callback function not implemented (default interrupt mapping will be used).
AGESA_SUCCESS Link ASPM info updated.

4.11 Architectural Details of IOMMU

4.11.1 Theory of Operation

The IOMMU is a system function that translates addresses used in DMA transactions, protects memory from illegal
access by /O devices, and remaps peripheral interrupts. A single northbridge will typically include one IOMMU device
for all the components of that device. Unlike many PCI devices, the base address may be written only once, and is located
in the IOMMU capability block.

There are three logical components to configuring an IOMMU. First, each IOMMU will be initialized and granted a base
address. Second, all IOMMU devices will be described in an ACPI table. Third, the ACPI table will be patched with the
APIC IDs, found from the ACPI MADT table, for each northbridge.

4.11.2 Requirements
In order to enable the IOMMU two pieces of data are necessary:

IommuBaseAddress — a 16KB aligned memory 64-bit memory address where the IOMMU will be located in memory. It
must be provided in each northbridge configuration block, as each IOMMU in a multi-northbridge configuration will

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
4-16

Legacy Wrapper Example AMDZ\

4.11.3

require resources to be assigned. If a value of NULL or 0 is provided, the IOMMU corresponding to that northbridge
block will be disabled (see CIMX-NB.CHM for more details on the northbridge configuration structure)

AmdAllocateBuffer is a callback made to the host BIOS in order to reserve a memory buffer where the IVRS is to be
created. A single IVRS table will be created for all IOMMU devices found in a system (see CIMX-NB.CHM for more
details).

Execution

Enabling the IOMMU is done as a three step process in AmdMidPost and AmdLatePost. An IVRS table will be returned,
which must be added to the ACPI table hierarchy. The final patch phase must be run after the ACPI MADT and ACPI
IVRS tables are linked to the RSDT.

IOMMU Initialization (AmdMidPostInit) — Each northbridge is checked for a compatible IOMMU type, subsystem ID is
programmed to match the northbridge, and initial settings are made.

ACPI IVRS Initialization (AmdMidPostInit) — The IVRS (I/O Virtualization Structure) is generated for the system, and
each IOMMU is given an IVHD sub-entry. The peripheral device hierarchy respective to each IOMMU is programmed as
well.

ACPI IVRS Patching (AmdLatePostInit) — Each IVRS special device (type 72) entry for AMD devices is patched with an
instance handle. In the case of the IOAPIC entry, the APIC ID is patched by correlating the ACPI MADT IOAPIC base
address entry to the AMD northbridge or southbridge device, and programming this APIC identifier into the handle field
in the type 72 entry.

4.12 Legacy Wrapper Example
See Legacy wrapper example implementation located at \Addendum\RD890\Wrapper in CIMx package.
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

4-17

AMDA\ Legacy Wrapper Example

This page is left blank intentionally.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
4-18

AMDZ1

Chapter 5
UEFI Support

5.1 UEFI Driver Information
For UEFI driver information see CIMx-NB.CHM file.

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00
5-1

AM Dl‘.l UEF!I Driver Information

This page is left blank intentionally.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.
5-2

AMDZ1

Chapter 6

Power Management

6.1 Sx State Power Management
During certain Sx states (such as S1) the system maintains power to the SR5690/5670/5650 and all register settings are
retained, therefore, no action is required when the system resumes. However, under other S states (such as S3), typical
designs will shut down power to the SR5690/5670/5650 and all of the register settings will be lost.
The SBIOS is responsible for reinitializing all of the SR5690/5670/5650 registers. Reinitializing the SR5690/5670/5650
registers after S3 can be done by either restoring the tables of register settings which were saved to non-volatile storage
prior to entering S3, or by initializing all registers as if from cold.
For most configurations restoration by table is not practical. The recommendation is to re-execute the initialization code.
The remaining NB registers are covered in section 6./.1.
6.1.1 Register Restoration
The registers listed in this section are restored after the system memory is made available by bringing the system RAM
out of self refresh mode.
On SR5690/5670/5650 designs, the main system memory is controlled by the memory controller in the AMD CPU. (For
more information on saving and restoring the memory controller settings, along with entering and exiting self refresh
mode, refer to the “AMD Kernel BIOS Writers Guide™). The reference BIOS saves the registers listed in this section prior
to entering S3. It then restores them after system memory is available on resume from S3.
Note: The list of registers in the following sections is subject to change. If an OEM customer changes any other registers
in the SR5690/5670/5650 during POST, then they must also be restored on an S3 resume.
¢ Northbridge (0:0:0)
e (0x04 - 0x06
* 0x4C - 0x4F
e (0x8C - 0x8F
e PCIe® bridges (0:2/3/4/5/7/9/10/11/12/13:0)
e (0x18-0x1B
e 0x20-0x23
e 0x24 -0x27
e 0x2C-0x2F
e (0x04 - 0x06
6.1.2 Resume from S3 State
When the system wakes up from S3 the BIOS is initially executed from ROM, once it is determined this is an S3 resume.
The SBIOS is responsible for restoring the system memory controller’s configuration as outlined in the “AMD Kernel
BIOS Writer’s Guide”.
Once the system memory is available the BIOS should then restore the SR5690/5670/5650 registers that were saved prior
to entering S3.
© 2010 Advanced Micro Devices, Inc. 43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00

6-1

AMDA Sx State Power Management

This page is left blank intentionally.

43870 SR5690/5670/5650 BIOS Developer’s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

AMDAA

Appendix A

Revision History

Rev 3.00 (Nov 2010)

e Public release.
e General edits.

Rev 1.02 (Nov 2009)
e Updated Table 3-2 “I/O APIC Interrupt Mapping”, on page 3-2.

Rev 1.01 (May 2009)

* Added variant SR5650 to the document.

¢ Added new sections to Chapter 3: IRQ Mapping.

¢ Updated prototype code in section 4.8.3, “AmdBridge32 Procedure,’ on page 4- 7.

* Added new section 4.9.3, “AmdHtInit,” on page 4- 9.

* Added a note to section 4.9.7, “AmdLatePostInit,” on page 4- 10.

¢ Inall interface calls in section 4.10, “Interface Callback,’ on page 4- 11, changed Nbxx... to Amdxx...; similarly
changed PClexx... to Amdxx....

* Added return values to section 4.10.1, “AmdPortTrainingCompleted,” on page 4- 11.

¢ Added return values to section 4.10.2, “AmdPortResetDeassert,”’ on page 4- 11.

* Added return values to section 4.10.3, “AmdPortResetAssert,” on page 4- 12.

* Added two more return values to section 4.10.4, “AmdPortResetSupported,’ on page 4- 12.

* Added new sections 4.10.5 to 4.10.10.

* Added new section section 4.12, “Legacy Wrapper Example ,’ on page 4- 17.

Rev 1.00 (July 2008)

¢ Preliminary OEM release.

© 2010 Advanced Micro Devices, Inc. 43870 SR5690/SR5670 BIOS Developer’s Guide 3.00
A-1

AMDZ1

This page intentionally left blank.

43870 SR5690/SR5670 BIOS Developer’'s Guide 3.00 © 2010 Advanced Micro Devices, Inc.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1.1 About This Document
	1.2 Architecture Overview

	Register Space Access
	2.1 PCIeâ Core/Port Indirect Register Space (PCIEIND)
	2.2 PCIeâ Port Indirect Register Space (PCIEIND_P)
	2.3 HTIU Indirect Register Space (HTIUIND)
	2.4 MISC Indirect Register Space (MISCIND)
	2.5 Clock Configuration Register Space (CLKCONFIG)

	IRQ Mapping
	3.1 Legacy Interrup Mapping (IO APIC Disabled)
	3.2 I/O APIC Interrupt Mapping (I/O APIC 32 Entry Mode)
	3.3 Interrupt Mapping in Multi-NB Environment
	3.4 I/O APIC Support

	CIMx-SR5690 Architecture
	4.1 Introduction
	4.2 Binary Image Design
	4.2.1 Binary Block Structure
	4.2.2 Binary Header
	4.2.3 Module Header

	4.3 Execution Environment Expectations
	4.4 Standard Header
	4.5 Call Entry to Dispatcher
	4.6 Callback Function
	4.7 Operational Overview
	4.8 Push-High Interface
	4.8.1 Theory of Operation
	4.8.2 Making Calls to Image Entry Points
	4.8.3 AmdBridge32 Procedure
	4.8.4 Handling Callback Procedures
	4.8.5 Alternative Callback in 32-Bit Mode

	4.9 Interface Calls
	4.9.1 AmdInitializer
	4.9.2 AmdPowerOnResetInit
	4.9.3 AmdHtInit
	4.9.4 AmdPcieEarlyInit
	4.9.5 AmdEarlyPostInit
	4.9.6 AmdMidPostInit
	4.9.7 AmdLatePostInit
	4.9.8 AmdS3Init

	4.10 Interface Callback
	4.10.1 AmdPortTrainingCompleted
	4.10.2 AmdPortResetDeassert
	4.10.3 AmdPortResetAssert
	4.10.4 AmdPortResetSupported
	4.10.5 AmdAllocateBuffer
	4.10.6 AmdFreeBuffer
	4.10.7 AmdGeneratePciReset
	4.10.8 AmdReportEvent
	4.10.9 AmdUpdateApicInterruptMapping
	4.10.10 AmdPcieAspmInfo

	4.11 Architectural Details of IOMMU
	4.11.1 Theory of Operation
	4.11.2 Requirements
	4.11.3 Execution

	4.12 Legacy Wrapper Example

	UEFI Support
	5.1 UEFI Driver Information

	Power Management
	6.1 Sx State Power Management
	6.1.1 Register Restoration
	6.1.2 Resume from S3 State

	Revision History

