Revision Guide for AMD Family 15h Models 00h-0Fh Processors
© 2010-2014 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD FX, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
List of Figures

Figure 1. Format of CPUID Fn0000_0001_EAX..9
List of Tables

Table 1. Arithmetic and Logic Operators... 8
Table 2. CPUID Values for AMD Family 15h Models 00h-0Fh G34r1 Processor Revisions... 9
Table 3. CPUID Values for AMD Family 15h Models 00h-0Fh C32r1 Processor Revisions... 9
Table 4. CPUID Values for AMD Family 15h Models 00h-0Fh AM3r2 Processor Revisions... 10
Table 5. Supported Mixed Revision Configurations.. 11
Table 6. Cross Reference of Product Revision to OSVW ID... 13
Table 7. Cross-Reference of Processor Revision to Errata.. 14
Table 8. Cross-Reference of Errata to Package Type.. 18
Table 9. Cross-Reference of Errata to Processor Segments.. 21
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2014</td>
<td>3.24</td>
<td>Added erratum #775, #778, #786, and #815.</td>
</tr>
<tr>
<td>October 2012</td>
<td>3.18</td>
<td>Added AMD Opteron™ 3300 Series, 4300 Series, 6300 Series Processors and OR-C0 silicon revision to Overview and Tables 2-8. Added Mixed Processor Revision Support. Added errata #685, #699, #704, #707, #708, #727, #734, #739, and #759. Updated erratum #668.</td>
</tr>
<tr>
<td>August 2012</td>
<td>3.16</td>
<td>Added errata #737, #740, #742, #744, and #745; Updated erratum #709.</td>
</tr>
<tr>
<td>May 2012</td>
<td>3.12</td>
<td>Added AMD Opteron™ 3200 Series Processor to Overview, Table 4, and Table 9; Updated MSRC001_0141 OS Visible Work-around MSR1 (OSVW Status) section for errata #724; Added errata #691, #709, #714, #717- #720, #724-#726; Removed erratum #534 as this is redundant with, and replaced by, errata #717 and #718; Changed Fix Planned to "Yes" for errata #520, #535-#538, #586, #592, #593, #600, #619, #623, #624, #636, #658, #659, #660, #668, #671-#675, and #689.</td>
</tr>
<tr>
<td>November 2011</td>
<td>3.04</td>
<td>Added errata #600, #693-#695, and #709. Updated errata #534 and #671. Added package types G34, C32 to Table 8. Added AMD Opteron™ 4200 Series Processor and AMD Opteron™ 6200 Series Processor to Overview and Table 9. Added Table 2 and Table 3.</td>
</tr>
<tr>
<td>October 2011</td>
<td>3.00</td>
<td>Initial public release.</td>
</tr>
</tbody>
</table>
Overview

The purpose of the *Revision Guide for AMD Family 15h Models 00h-0Fh Processors* is to communicate updated product information to designers of computer systems and software developers. This revision guide includes information on the following products:

- AMD FX™-Series Processor
- AMD Opteron™ 3200 Series Processor
- AMD Opteron™ 3300 Series Processor
- AMD Opteron™ 4200 Series Processor
- AMD Opteron™ 4300 Series Processor
- AMD Opteron™ 6200 Series Processor
- AMD Opteron™ 6300 Series Processor

Feature support varies by brands and OPNs. To determine the features supported by your processor, contact your customer representative.

This guide consists of these major sections:

- **Processor Identification** shows how to determine the processor revision and workaround requirements, and to construct, program, and display the processor name string.
- **Product Errata** provides a detailed description of product errata, including potential effects on system operation and suggested workarounds. An erratum is defined as a deviation from the product's specification, and as such may cause the behavior of the processor to deviate from the published specifications.
- **Documentation Support** provides a listing of available technical support resources.

Revision Guide Policy

Occasionally, AMD identifies product errata that cause the processor to deviate from published specifications. Descriptions of identified product errata are designed to assist system and software designers in using the processors described in this revision guide. This revision guide may be updated periodically.
Conventions

Numbering

- **Binary numbers.** Binary numbers are indicated by appending a "b" at the end, e.g., 0110b.
- **Decimal numbers.** Unless specified otherwise, all numbers are decimal. This rule does not apply to the register mnemonics.
- **Hexadecimal numbers.** Hexadecimal numbers are indicated by appending an "h" to the end, e.g., 45F8h.
- **Underscores in numbers.** Underscores are used to break up numbers to make them more readable. They do not imply any operation. e.g., 0110_1100b.
- **Undefined digit.** An undefined digit, in any radix, is notated as a lower case "x".

Register References and Mnemonics

In order to define errata workarounds it is sometimes necessary to reference processor registers. References to registers in this document use a mnemonic notation consistent with that defined in the *BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors*, order# 42301. Each mnemonic is a concatenation of the register-space indicator and the offset of the register. The mnemonics for the various register spaces are as follows:

- **IO XXX:** x86-defined input and output address space registers; XXX specifies the byte address of the I/O register in hex (this may be 2 or 3 digits). This space includes the I/O-Space Configuration Address Register (IOCF8) and the I/O-Space Configuration Data Port (IOCFC) to access configuration registers.
- **DZFY x XXX:** PCI-defined configuration space at bus 0; Z specifies the PCI device address in hex; XXX specifies the byte address of the configuration register (this may be 2 or 3 digits) in hex; Y specifies the function number. For example, D18F3x40 specifies the register at bus 0, device 18h, function 3, address 40h. Some registers in D18F2xXXX have a _dct[1:0] mnemonic suffix, which indicates there is one instance per DRAM controller (DCT). The DCT instance is selected by DCT Configuration Select[DctCfgSel] (D18F1x10C[0]).
- **DZFy XXX _xZZZZZ:** Port access through the PCI-defined configuration space at bus 0; Z specifies the PCI device address in hex; XXX specifies the byte address of the data port configuration register (this may be 2 or 3 digits) in hex; Y specifies the function number; ZZZZZ specifies the port address (this may be 2 to 7 digits) in hex. For example, D18F2x9C_x1C specifies the port 1Ch register accessed using the data port register at bus 0, device 18h, function 2, address 9Ch. Refer to the *BKDG* for access properties. Some registers in D18F2xXXX _xZZZZZ have a _dct[1:0] mnemonic suffix, which indicates there is one instance per DRAM controller (DCT). The DCT instance is selected by DCT Configuration Select[DctCfgSel] (D18F1x10C[0]).
- **APICXXX:** APIC memory-mapped registers; XXX is the byte address offset from the base address in hex (this may be 2 or 3 digits). The base address for this space is specified by the APIC Base Address Register (APIC_BAR) at MSR0000_001B.
- **CPUID Fn XXXX_ XXXX_RRR _xYYY:** processor capability information returned by the CPUID instruction where the CPUID function is XXXX_ XXXX (in hex) and the ECX input is YYYY (if specified). When a register is specified by RRR, the reference is to the data returned in that register. For example, CPUID Fn8000_0001_EAX refers to the data in the EAX register after executing CPUID instruction function 8000_0001h.
- **MSRX XXXX_ XXXX:** model specific registers; XXXX_ XXXX is the MSR number in hex. This space is accessed through x86-defined RDMSR and WRMSR instructions.
- **PMC xxx [Y]:** performance monitor events; XXX is the hexadecimal event counter number programmed into MSR C01_020[A,8,6,4,2,0][EventSelect] (PERF_CTL[5:0] bits 7:0). Y, when specified, signifies the unit mask programmed into MSR C01_020[A,8,6,4,2,0][UnitMask] (PERF_CTL[5:0] bits 15:8).
- NBPMCxXXX[Y]: northbridge performance monitor events; XXX is the hexadecimal event counter number programmed into MSRC001_024[6,4,2,0][EventSelect] (NB_PERF_CTL[3:0] bits 7:0). Y, when specified, signifies the unit mask programmed into MSRC001_024[6,4,2,0][UnitMask] (NB_PERF_CTL[3:0] bits 15:8).

Many register references use the notation "[]" to identify a range of registers. For example, D18F2x[1,0][4C:40] is a shorthand notation for D18F2x40, D18F2x44, D18F2x48, D18F2x4C, D18F2x140, D18F2x144, D18F2x148, and D18F2x14C.

Arithmetic and Logical Operators

In this document, formulas follow some Verilog conventions as shown in Table 1.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>Curly brackets are used to indicate a group of bits that are concatenated together. Each set of bits is separated by a comma. E.g., {Addr[3:2], Xlate[3:0]} represents a 6-bit value; the two MSBs are Addr[3:2] and the four LSBs are Xlate[3:0].</td>
</tr>
<tr>
<td></td>
<td>Bitwise OR operator. E.g. (01b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>Bitwise AND operator. E.g. (01b & 10b == 00b).</td>
</tr>
<tr>
<td>&&</td>
<td>Logical AND operator. E.g. (01b && 10b == 1b); logical treats multibit operand as 1 if >=1 and produces a 1-bit result.</td>
</tr>
<tr>
<td>^</td>
<td>Bitwise exclusive-OR operator; sometimes used as "raised to the power of" as well, as indicated by the context in which it is used. E.g. (01b ^ 10b == 11b). E.g. (2^2 == 4).</td>
</tr>
<tr>
<td>~</td>
<td>Bitwise NOT operator (also known as one’s complement). E.g. (~10b == 01b).</td>
</tr>
<tr>
<td>!</td>
<td>Logical NOT operator. E.g. (!10b == 0b); logical treats multibit operand as 1 if >=1 and produces a 1-bit result.</td>
</tr>
<tr>
<td>==</td>
<td>Logical "is equal to" operator.</td>
</tr>
<tr>
<td>!=</td>
<td>Logical "is not equal to" operator.</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal operator.</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal operator.</td>
</tr>
<tr>
<td>*</td>
<td>Arithmetic multiplication operator.</td>
</tr>
<tr>
<td>/</td>
<td>Arithmetic division operator.</td>
</tr>
<tr>
<td><<</td>
<td>Shift left first operand by the number of bits specified by the 2nd operand. E.g. (01b << 01b == 10b).</td>
</tr>
<tr>
<td>>></td>
<td>Shift right first operand by the number of bits specified by the 2nd operand. E.g. (10b >> 01b == 01b).</td>
</tr>
</tbody>
</table>
Processor Identification

This section shows how to determine the processor revision.

Revision Determination

A processor revision is identified using a unique value that is returned in the EAX register after executing the CPUID instruction function 0000_0001h (CPUID Fn0000_0001_EAX). Figure 1 shows the format of the value from CPUID Fn0000_0001_EAX. In some cases, two or more processor revisions may exist within a stepping of a processor family and are identified by a unique value in D18F4x164 Fixed Errata Register (see D18F4x164 Fixed Errata Register).

![Figure 1. Format of CPUID Fn0000_0001_EAX](image)

The following tables show the identification numbers from CPUID Fn0000_0001_EAX and D18F4x164 (if necessary) for each revision of the processor to each processor segment. "X" signifies that the revision has been used in the processor segment. "N/A" signifies that the revision has not been used in the processor segment.

Table 2. CPUID Values for AMD Family 15h Models 00h-0Fh G34r1 Processor Revisions

<table>
<thead>
<tr>
<th>CPUID Fn0000_0001_EAX, D18F4x164[1:0] (Mnemonic)</th>
<th>AMD Opteron 6200 Series Processor</th>
<th>AMD Opteron 6300 Series Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>00600F12h, 1b (OR-B2)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>00600F20h, 11h (OR-C0)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. CPUID Values for AMD Family 15h Models 00h-0Fh C32r1 Processor Revisions

<table>
<thead>
<tr>
<th>CPUID Fn0000_0001_EAX, D18F4x164[1:0] (Mnemonic)</th>
<th>AMD Opteron 4200 Series Processor</th>
<th>AMD Opteron 4300 Series Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>00600F12h, 1b (OR-B2)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>00600F20h, 11b (OR-C0)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. CPUID Values for AMD Family 15h Models 00h-0Fh AM3r2 Processor Revisions

<table>
<thead>
<tr>
<th>CPUID Fn0000_0001_EAX, D18F4x164[1:0]</th>
<th>AMD FX 3200 Series Processor</th>
<th>AMD Opteron 3200 Series Processor</th>
<th>AMD Opteron 3300 Series Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>00600F12h, 1b (OR-B2)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>00600F20h, 11b (OR-C0)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D18F4x164 Fixed Errata Register

Communicating the status of an erratum within a stepping of a processor family is necessary in certain circumstances. D18F4x164 is used to communicate the status of such an erratum fix so that BIOS or system software can determine the necessity of applying the workaround. Under these circumstances, the erratum workaround references the specified bit to enable software to test for the presence of the erratum. The erratum may be specific to some stepings of the processor, and the specified bit may or may not be set on other unaffected revisions within the same family. Therefore, software should use the CPUID Fn00000_0001_EAX extended model, model, and stepping as the first criteria to identify the applicability of an erratum. Once defined, the definition of the status bit will persist within the family of processors.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>Reserved. If CPUID Fn00000_0001_EAX is 00600F12h (OR-B2), then D18F4x164 is 0000001h. If CPUID Fn00000_0001_EAX is 00600F20h (OR-C0), then D18F4x164 is 0000003h.</td>
</tr>
</tbody>
</table>
Mixed Processor Revision Support

AMD Family 15h processors with different revisions may be mixed in a multiprocessor system. Mixed revision support includes the AMD Opteron™ processor configurations as shown in Table 5. Processors of different package types can not be mixed in a multiprocessor system, for example a G34r1 processor can not be mixed with a C32r1 processor.

Table 5. Supported Mixed Revision Configurations

<table>
<thead>
<tr>
<th>CPUID</th>
<th>00600F12h (OR-B2)</th>
<th>00600F20h (OR-C0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn0000_0001_EAX</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>(Mnemonic)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Errata workarounds must be applied according to revision as described in the Product Errata section unless otherwise noted in the workaround of an erratum.

Programming and Displaying the Processor Name String

This section, intended for BIOS programmers, describes how to program and display the 48-character processor name string that is returned by CPUID Fn8000_000[4:2]. The hardware or cold reset value of the processor name string is 48 ASCII NUL characters, so the BIOS must program the processor name string before any general purpose application or operating system software uses the extended functions that read the name string. It is common practice for the BIOS to display the processor name string and model number whenever it displays processor information during boot up.

Note: Motherboards that do not program the proper processor name string and model number will not pass AMD validation and will not be posted on the AMD Recommended Motherboard Web site.

The name string must be ASCII NUL terminated and the 48-character maximum includes that NUL character.

The processor name string is programmed by MSR writes to the six MSR addresses covered by the range MSRC001_00[35:30]h. Refer to the BKDG for the format of how the 48-character processor name string maps to the 48 bytes contained in the six 64-bit registers of MSRC001_00[35:30].

The processor name string is read by CPUID reads to a range of CPUID functions covered by CPUID Fn8000_000[4:2]. Refer to CPUID Fn8000_000[4:2] in the BKDG for the 48-character processor name string mapping to the 48 bytes contained in the twelve 32-bit registers of CPUID Fn8000_000[4:2].

Constructing the Processor Name String

This section describes how to construct the processor name string. BIOS forms the name string as follows:

1. If D18F5x198_x0 is 00000000h, then use a name string of "AMD Unprogrammed Engineering Sample" and skip the remaining steps.
2. Read {D18F5x198_x1, D18F5x198_x0} and write this value to MSRC001_0030.
3. Read {D18F5x198_x3, D18F5x198_x2} and write this value to MSRC001_0031.
4. Read {D18F5x198_x5, D18F5x198_x4} and write this value to MSRC001_0032.
5. Read {D18F5x198_x7, D18F5x198_x6} and write this value to MSRC001_0033.
6. Read \{D18F5x198_{x9}, D18F5x198_{x8}\} and write this value to MSRC001_0034.
7. Read \{D18F5x198_{xB}, D18F5x198_{xA}\} and write this value to MSRC001_0035.
Operating System Visible Workarounds

This section describes how to identify operating system visible workarounds.

MSRC001_0140 OS Visible Work-around MSR0 (OSVW_ID_Length)

This register, as defined in *AMD64 Architecture Programmer's Manual Volume 2: System Programming*, order# 24593, is used to specify the number of valid status bits within the OS Visible Work-around status registers.

The reset default value of this register is 0000_0000_0000_0000h.

BIOS shall program the OSVW_ID_Length to 0005h prior to hand-off to the OS.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:16</td>
<td>Reserved.</td>
</tr>
<tr>
<td>15:0</td>
<td>OSVW_ID_Length: OS visible work-around ID length. Read-write.</td>
</tr>
</tbody>
</table>

MSRC001_0141 OS Visible Work-around MSR1 (OSVW_Status)

This register, as defined in *AMD64 Architecture Programmer's Manual Volume 2: System Programming*, order# 24593, provides the status of the known OS visible errata. Known errata are assigned an OSVW_ID corresponding to the bit position within the valid status field.

Operating system software should use MSRC001_0140 to determine the valid length of the bit status field. For all valid status bits: 1=Hardware contains the erratum, and an OS software work-around is required or may be applied instead of a BIOS workaround. 0=Hardware has corrected the erratum, so an OS software work-around is not necessary.

The reset default value of this register is 0000_0000_0000_0000h.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:5</td>
<td>OsvwStatusBits: Reserved. OS visible work-around status bits. Read-write.</td>
</tr>
<tr>
<td>4</td>
<td>OsvwId4: 1 = Hardware contains erratum #724, an OS workaround may be applied if available; 0 = Hardware has corrected erratum #724.</td>
</tr>
<tr>
<td>3</td>
<td>OsvwId3: Reserved, must be zero.</td>
</tr>
<tr>
<td>2</td>
<td>OsvwId2: Reserved, must be zero.</td>
</tr>
<tr>
<td>1</td>
<td>OsvwId1: Reserved, must be zero.</td>
</tr>
<tr>
<td>0</td>
<td>OsvwId0: Reserved, must be zero.</td>
</tr>
</tbody>
</table>

BIOS shall program the state of the valid status bits as shown in Table 6 prior to hand-off to the OS.

Table 6. Cross Reference of Product Revision to OSVW ID

<table>
<thead>
<tr>
<th>CPUID Fn0000_0001_EAX (Mnemonic)</th>
<th>MSRC001_0141 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>00600F12h (OR-B2)</td>
<td>0000_0000_0000_0010h</td>
</tr>
<tr>
<td>00600F20h (OR-C0)</td>
<td>0000_0000_0000_0010h</td>
</tr>
</tbody>
</table>
Product Errata

This section documents product errata for the processors. A unique tracking number for each erratum has been assigned within this document for user convenience in tracking the errata within specific revision levels. This table cross-references the revisions of the part to each erratum. "No fix planned" indicates that no fix is planned for current or future revisions of the processor.

Note: There may be missing errata numbers. Errata that do not affect this product family do not appear. In addition, errata that have been resolved from early revisions of the processor have been deleted, and errata that have been reconsidered may have been deleted or renumbered.

Table 7. Cross-Reference of Processor Revision to Errata

<table>
<thead>
<tr>
<th>No.</th>
<th>Errata Description</th>
<th>CPUID Fn0000_0001_EAX, D18F4x164[1:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>00000F20h 01h (OR-B2)</td>
</tr>
<tr>
<td>361</td>
<td>Breakpoint Due to an Instruction That Has an Interrupt Shadow May Be Lost</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>APIC Task-Priority Register May Be Incorrect</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>Corrected L3 Errors May Lead to System Hang</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>Scrub Rate Control Register Address Depends on DtcCfgSel</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Some Lightweight Profiling Counters Stop Counting When Instruction-Based Sampling is Enabled</td>
<td>X</td>
</tr>
<tr>
<td>535</td>
<td>Lightweight Profiling May Not Indicate Fused Branch</td>
<td>X</td>
</tr>
<tr>
<td>536</td>
<td>Performance Counter for Instruction Cache Misses Does Not Increment for Sequential Prefetches</td>
<td>X</td>
</tr>
<tr>
<td>537</td>
<td>Performance Counter for Ineffective Software Prefetches Does Not Count for L2 Hits</td>
<td>X</td>
</tr>
<tr>
<td>538</td>
<td>Performance Counter Does Not Count for Some Retired Micro-Ops</td>
<td>X</td>
</tr>
<tr>
<td>540</td>
<td>GART Table Walk Probes May Cause System Hang</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>Latency Performance Counters Are Not Accurate</td>
<td></td>
</tr>
<tr>
<td>585</td>
<td>Incorrect Memory Controller Operation Due to a WrDatGrossDly Setting of 3.5 MEMCLKs</td>
<td></td>
</tr>
<tr>
<td>586</td>
<td>A Far Control Transfer Changing Processor Operating Mode May Generate a False Machine Check</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 7. Cross-Reference of Processor Revision to Errata (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Errata Description</th>
<th>CPUID Fn0000_0001_EAX, D18F4x164[1:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>00600F12h.01b.01h (OR-B2)</td>
</tr>
<tr>
<td>592</td>
<td>VPEXTRQ and VPINSRQ May Not Signal Invalid-Opcode Exception</td>
<td>X</td>
</tr>
<tr>
<td>593</td>
<td>Last-Branch Record Enabled May Cause Machine Check and Incorrect LastBranchToIp</td>
<td>X</td>
</tr>
<tr>
<td>600</td>
<td>HyperTransport™ Link Retry Due to Partial CRC Error May Cause System Hang</td>
<td>X</td>
</tr>
<tr>
<td>602</td>
<td>HyperTransport™ Link Frequency Changes May Cause a System Hang</td>
<td>No fix planned</td>
</tr>
<tr>
<td>608</td>
<td>P-state Limit Changes May Not Generate Interrupts</td>
<td>No fix planned</td>
</tr>
<tr>
<td>619</td>
<td>Non-Posted Reads May Block Write Dependent on Probe Responses</td>
<td>X</td>
</tr>
<tr>
<td>623</td>
<td>Small Code Segment Limits May Cause Incorrect Limit Faults</td>
<td>X</td>
</tr>
<tr>
<td>624</td>
<td>SB-RMI Processor State Accesses May Persistently Timeout if Interrupted by a Warm Reset</td>
<td>X</td>
</tr>
<tr>
<td>625</td>
<td>SB-RMI Writes May Not Be Observed by Processor</td>
<td>No fix planned</td>
</tr>
<tr>
<td>636</td>
<td>Instruction Addresses Near Canonical Address Limit May Cause #GP Exception</td>
<td>X</td>
</tr>
<tr>
<td>637</td>
<td>Processor Does Not Report the Correct DRAM Address for MCA Errors Within the CC6 Save Area</td>
<td>No fix planned</td>
</tr>
<tr>
<td>657</td>
<td>MC1_STATUS Enable Bit Not Set When Logging Corrected Errors</td>
<td>No fix planned</td>
</tr>
<tr>
<td>658</td>
<td>CPUID Incorrectly Reports Large Page Support in L2 Instruction TLB</td>
<td>X</td>
</tr>
<tr>
<td>659</td>
<td>VMCB Interrupt Shadow Status May Be Incorrect</td>
<td>X</td>
</tr>
<tr>
<td>660</td>
<td>APERF May Increase Unpredictably</td>
<td>X</td>
</tr>
<tr>
<td>661</td>
<td>P-State Limit and Stop Clock Assertion May Cause System Hang</td>
<td>No fix planned</td>
</tr>
<tr>
<td>663</td>
<td>Local Interrupts LINT0/LINT1 May Occur While APIC is Software Disabled</td>
<td>No fix planned</td>
</tr>
<tr>
<td>667</td>
<td>Processor May Generate Incorrect P-state Limit Interrupts</td>
<td>No fix planned</td>
</tr>
<tr>
<td>668</td>
<td>Load Operation May Receive Incorrect Data After Floating-point Exception</td>
<td>X</td>
</tr>
<tr>
<td>671</td>
<td>Debug Breakpoint on Misaligned Store May Cause System Hang</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 7. Cross-Reference of Processor Revision to Errata (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Errata Description</th>
<th>CPUID Fn0000_0001_EAX, D18F4×164[1:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>00600F12h.01b (OR-B2)</td>
</tr>
<tr>
<td>672</td>
<td>SVM Guest Performance Counters May Be Inaccurate Due to SMI</td>
<td>X</td>
</tr>
<tr>
<td>673</td>
<td>Misaligned Page Crossing String Operations May Cause System Hang</td>
<td>X</td>
</tr>
<tr>
<td>674</td>
<td>Processor May Cache Prefetched Data from Remapped Memory Region</td>
<td>X</td>
</tr>
<tr>
<td>675</td>
<td>Instructions Performing Read-Modify-Write May Alter Architectural State Before #PF</td>
<td>X</td>
</tr>
<tr>
<td>685</td>
<td>Some Processor Cores May Have Inaccurate Instruction Cache Fetch Performance Counter</td>
<td></td>
</tr>
<tr>
<td>689</td>
<td>AM3r2 Six Core Processor May Limit P-State When Core C6 State Is Disabled</td>
<td>X</td>
</tr>
<tr>
<td>690</td>
<td>Northbridge FIFO Read/Write Pointer Overlap May Cause Hang or Protocol Error Machine Check</td>
<td></td>
</tr>
<tr>
<td>691</td>
<td>Processors Using 1 MB L3 Subcaches May Execute a Write-Back Invalidate Operation Incorrectly</td>
<td></td>
</tr>
<tr>
<td>693</td>
<td>Performance Counter May Incorrectly Count MXCSR Loads</td>
<td>No fix planned</td>
</tr>
<tr>
<td>694</td>
<td>IBS Sampling of Instruction Fetches May Be Uneven</td>
<td>No fix planned</td>
</tr>
<tr>
<td>695</td>
<td>Processor May Interpret FCW Incorrectly after FNSAVE/SAVE Limit Fault</td>
<td>No fix planned</td>
</tr>
<tr>
<td>699</td>
<td>Processor May Generate Illegal Access in VMLOAD or VMSAVE Instruction</td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>Processor May Report Incorrect Instruction Pointer</td>
<td>X</td>
</tr>
<tr>
<td>707</td>
<td>Performance Counter for Locked Operations May Count Cycles from Non-Locked Operations</td>
<td></td>
</tr>
<tr>
<td>708</td>
<td>Initial Value of Time Stamp Counter May Include an Offset Error</td>
<td>X</td>
</tr>
<tr>
<td>709</td>
<td>Processor May Be Limited to Minimum P-state After a P-state Limit Change</td>
<td>No fix planned</td>
</tr>
<tr>
<td>714</td>
<td>Processor May Check DRAM Address Maps While Using L2 Cache as General Storage during Boot</td>
<td>No fix planned</td>
</tr>
<tr>
<td>717</td>
<td>Instruction-Based Sampling May Be Inaccurate</td>
<td>X</td>
</tr>
<tr>
<td>718</td>
<td>Instruction-Based Sampling May Be Inaccurate</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Errata Description</td>
<td>CPUID Fn0000_0001_EAX, D18F4x164[1:0]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>719</td>
<td>Instruction-Based Sampling Fetch Counter Always Starts at Maximum Value</td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>Processor May Not Respect Interrupt Shadow</td>
<td></td>
</tr>
<tr>
<td>724</td>
<td>Uninterrupted Halt Instruction May Cause Protocol Machine Check or Unpredictable System Behavior</td>
<td></td>
</tr>
<tr>
<td>725</td>
<td>Incorrect APIC Remote Read Behavior</td>
<td></td>
</tr>
<tr>
<td>726</td>
<td>Processor May Report Incorrect MCA Address for Loads that Cross Address Boundaries</td>
<td></td>
</tr>
<tr>
<td>727</td>
<td>Processor Core May Hang During CC6 Resume</td>
<td></td>
</tr>
<tr>
<td>734</td>
<td>Processor May Incorrectly Store VMCB Data</td>
<td></td>
</tr>
<tr>
<td>737</td>
<td>Processor Does Not Check 128-bit Canonical Address Boundary Case on Logical Address</td>
<td></td>
</tr>
<tr>
<td>739</td>
<td>Processor May Read Branch Status Register With Inconsistent Parity Bit</td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>Lightweight Profiling May Cause System Hang with Concurrent Stop Clock</td>
<td></td>
</tr>
<tr>
<td>742</td>
<td>DRAM Scrub Request During Register Write May Cause Unpredictable Behavior</td>
<td></td>
</tr>
<tr>
<td>744</td>
<td>Processor CC6 May Not Restore Trap Registers</td>
<td></td>
</tr>
<tr>
<td>745</td>
<td>Processor May Incorrectly Report Cache Sharing Property in CPUID Topology</td>
<td></td>
</tr>
<tr>
<td>775</td>
<td>Processor May Present More Than One #DB Exception on REP-INS or REP-OUTS Instructions</td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>Processor Core Time Stamp Counters May Experience Drift</td>
<td></td>
</tr>
<tr>
<td>786</td>
<td>APIC Timer Periodic Mode is Imprecise</td>
<td></td>
</tr>
<tr>
<td>815</td>
<td>Processor May Read Partially Updated Branch Status Register</td>
<td></td>
</tr>
</tbody>
</table>
Cross-Reference of Errata to Package Type

This table cross-references the errata to each package type. "X" signifies that the erratum applies to the package type. An empty cell signifies that the erratum does not apply. An erratum may not apply to a package type due to a specific characteristic of the erratum, or it may be due to the affected silicon revision(s) not being used in this package.

Table 8. Cross-Reference of Errata to Package Type

<table>
<thead>
<tr>
<th>Errata</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMD2</td>
</tr>
<tr>
<td>361</td>
<td>X</td>
</tr>
<tr>
<td>503</td>
<td>X</td>
</tr>
<tr>
<td>504</td>
<td>X</td>
</tr>
<tr>
<td>505</td>
<td>X</td>
</tr>
<tr>
<td>520</td>
<td>X</td>
</tr>
<tr>
<td>535</td>
<td>X</td>
</tr>
<tr>
<td>536</td>
<td>X</td>
</tr>
<tr>
<td>537</td>
<td>X</td>
</tr>
<tr>
<td>538</td>
<td>X</td>
</tr>
<tr>
<td>540</td>
<td>X</td>
</tr>
<tr>
<td>550</td>
<td>X</td>
</tr>
<tr>
<td>585</td>
<td>X</td>
</tr>
<tr>
<td>586</td>
<td>X</td>
</tr>
<tr>
<td>592</td>
<td>X</td>
</tr>
<tr>
<td>593</td>
<td>X</td>
</tr>
<tr>
<td>600</td>
<td>X</td>
</tr>
<tr>
<td>602</td>
<td>X</td>
</tr>
<tr>
<td>608</td>
<td>X</td>
</tr>
<tr>
<td>619</td>
<td>X</td>
</tr>
<tr>
<td>623</td>
<td>X</td>
</tr>
<tr>
<td>624</td>
<td>X</td>
</tr>
<tr>
<td>625</td>
<td>X</td>
</tr>
<tr>
<td>636</td>
<td>X</td>
</tr>
<tr>
<td>637</td>
<td>X</td>
</tr>
<tr>
<td>657</td>
<td>X</td>
</tr>
<tr>
<td>658</td>
<td>X</td>
</tr>
<tr>
<td>659</td>
<td>X</td>
</tr>
<tr>
<td>660</td>
<td>X</td>
</tr>
<tr>
<td>661</td>
<td>X</td>
</tr>
<tr>
<td>663</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 8. Cross-Reference of Errata to Package Type (continued)

<table>
<thead>
<tr>
<th>Errata</th>
<th>Package</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>667</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>668</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>671</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>673</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>674</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>676</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>677</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>678</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with more entries, each indicating which package types (AM3+, C32+, G34+) are affected by the respective errata.
Table 8. Cross-Reference of Errata to Package Type (continued)

<table>
<thead>
<tr>
<th>Errata</th>
<th>Package</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM32</td>
<td>C32r1</td>
<td>G34r1</td>
</tr>
<tr>
<td>759</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>775</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>778</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>786</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>815</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Cross-Reference of Errata to Processor Segments

This table cross-references the errata to each processor segment. "X" signifies that the erratum applies to the processor segment. An empty cell signifies that the erratum does not apply. An erratum may not apply to a processor segment due to a specific characteristic of the erratum, or it may be due to the affected silicon revision(s) not being used in this processor segment.

Table 9. Cross-Reference of Errata to Processor Segments

<table>
<thead>
<tr>
<th>Errata</th>
<th>AMD FX-™ Series Processor</th>
<th>AMD Opteron™ 3200 Processor</th>
<th>AMD Opteron™ 3300 Processor</th>
<th>AMD Opteron™ 4200 Processor</th>
<th>AMD Opteron™ 4300 Processor</th>
<th>AMD Opteron™ 6200 Processor</th>
<th>AMD Opteron™ 6300 Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>361</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>503</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>504</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>505</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>520</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>535</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>536</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>537</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>538</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>540</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>550</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>585</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>586</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>592</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>593</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>600</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>602</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>608</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>619</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>623</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>624</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>625</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>636</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>637</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>657</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 9. Cross-Reference of Errata to Processor Segments (continued)

<table>
<thead>
<tr>
<th>Errata</th>
<th>AMD FX™-Series Processor</th>
<th>AMD Opteron™ 3200 Processor</th>
<th>AMD Opteron™ 3300 Processor</th>
<th>AMD Opteron™ 4200 Processor</th>
<th>AMD Opteron™ 4300 Processor</th>
<th>AMD Opteron™ 6200 Processor</th>
<th>AMD Opteron™ 6300 Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>658</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>659</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>660</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>661</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>663</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>667</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>668</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>671</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>672</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>673</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>674</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>675</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>685</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>689</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>690</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>691</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>693</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>694</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>695</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>699</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>704</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>707</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>708</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>709</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>714</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>717</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>718</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>719</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>720</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>724</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>725</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 9. Cross-Reference of Errata to Processor Segments (continued)

<table>
<thead>
<tr>
<th>Errata</th>
<th>AMD FX™ Series Processor</th>
<th>AMD Opteron™ 3200 Processor</th>
<th>AMD Opteron™ 3300 Processor</th>
<th>AMD Opteron™ 4200 Processor</th>
<th>AMD Opteron™ 4300 Processor</th>
<th>AMD Opteron™ 6200 Processor</th>
<th>AMD Opteron™ 6300 Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>726</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>727</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>734</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>737</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>739</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>740</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>742</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>744</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>745</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>759</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>775</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>778</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>786</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
361 Breakpoint Due to an Instruction That Has an Interrupt Shadow May Be Lost

Description
A #DB exception occurring in guest mode may be discarded under the following conditions:

- A trap-type #DB exception is generated in guest mode during execution of an instruction with an interrupt shadow, and
- The instruction that generated the exception is immediately followed by an instruction resulting in #VMEXIT.

Potential Effect on System
None expected under normal conditions. Debug exceptions may not be received for programs running under a hypervisor.

Suggested Workaround
None.

Fix Planned
No fix planned
503 APIC Task-Priority Register May Be Incorrect

Description
An APIC task priority register (TPR) write may use an incorrect internal buffer for the data.

Potential Effect on System
Incorrect interrupt prioritization.

Suggested Workaround

Fix Planned
No fix planned
504 Corrected L3 Errors May Lead to System Hang

Description
Under a highly specific and detailed set of internal timing conditions that involves corrected L3 errors, a processor read from the L3 cache may hang.

Potential Effect on System
System hang.

Suggested Workaround
BIOS should program D18F3x1B8[18] to 1b.

Fix Planned
No fix planned
505 Scrub Rate Control Register Address Depends on DctCfgSel

Description
When DCT Configuration Select[DctCfgSel] (D18F1x10C[0]) is 1b, accesses to the Scrub Rate Control register (D18F3x58) incorrectly accesses a different register that does not actually affect any hardware.

Potential Effect on System
Incorrect scrub rate controls may be read or in effect.

Suggested Workaround
Software should clear DctCfgSel (D18F1x10C[0]) to 0b prior to any access to D18F3x58 Scrub Rate Control Register. The software must serialize any accesses to D18F3x58 with other accesses to registers that use DctCfgSel.

When enabling scrub settings, BIOS should write D18F3x58 twice with the same value - once with D18F1x10C[0] set to 0b and once with D18F1x10C[0] set to 1b.

BIOS should program D18F1x10C[0] to 0b before handing over control to the operating system.

Fix Planned
No fix planned
520 Some Lightweight Profiling Counters Stop Counting When Instruction-Based Sampling is Enabled

Description
When Lightweight Profiling (LWP) and Instruction-Based Sampling (IBS) measurement of instruction execution are simultaneously enabled, the following LWP counters do not increment:

- Instructions retired event counter (LWP EventId 2)
- Branches retired event counter (LWP EventId 3)

LWP is enabled once software executes a LLWCP or XRSTOR instruction with a valid LWPCB address. IBS instruction execution sampling is enabled when IBS Execution Control[IbsOpEn] (MSRC001_1033[17]) is 1b.

Potential Effect on System
Performance monitoring software using LWP may not have a count of instructions retired or branches retired.

Suggested Workaround
None.

Fix Planned
Yes
535 Lightweight Profiling May Not Indicate Fused Branch

Description
The Lightweight Profiling (LWP) fused operation bit (FUS - bit 28 of the branch retired event record, LWP EventId 3) may not be set when the processor core is profiling a fused branch (a compare operation followed by a conditional branch that is executed as a single operation internally) and a #PF or nested-paging exception occurs during the storing of the event.

Potential Effect on System
Performance monitoring software may not profile a fused branch correctly.

Suggested Workaround
None.

Fix Planned
Yes
536 Performance Counter for Instruction Cache Misses Does Not Increment for Sequential Prefetches

Description

PMCx081 (Instruction Cache Misses) does not increment for L1 instruction cache misses that are due to sequential prefetches.

Potential Effect on System

Performance monitoring software may undercount instruction cache misses.

Suggested Workaround

Performance monitoring software may use the difference of PMCx083 and PMCx082 as a close approximation of instruction cache misses.

Fix Planned

Yes
537 Performance Counter for Ineffective Software Prefetches Does Not Count for L2 Hits

Description
PMCx052[3] (ineffective software prefetch due to an L2 cache hit) does not increment.

Potential Effect on System
Performance monitoring software can not determine ineffective software prefetches due to an L2 cache hit.

Suggested Workaround
None.

Fix Planned
Yes
538 Performance Counter Does Not Count for Some Retired Micro-Ops

Description

Some instructions with F0h in the opcode byte are incorrectly detected by the processor core as empty micro-ops, causing the processor core to not properly increment PMCx0C1.

The following instructions may cause this performance monitor to undercount:

- FCOMI
- FCOMIP
- F2XM1

Potential Effect on System

Performance monitoring software will not have an accurate count of retired micro-ops. The performance counter may undercount and the error is directly proportional to the number of the instructions listed above.

Suggested Workaround

None.

Fix Planned

Yes
540 GART Table Walk Probes May Cause System Hang

Description
Probes that are generated for GART table walks may overflow internal queues and lead to a deadlock.

Potential Effect on System
System hang.

Suggested Workaround
System software that initializes the GART Table Base Address (D18F3x98) should set GART Aperture Control[DisGartTblWlkPrb] (D18F3x90[6]) = 1b. The GART tables should be in UC DRAM or be updated only using strongly-ordered uncachable writes.

System software should not set HWCR[ForceRdWrSzPrb] (MSRC001_0015[23]) if GART is enabled.

Fix Planned
No fix planned
550 Latency Performance Counters Are Not Accurate

Description
Latency performance counters NBPMCx1E2 through NBPMCx1E7 are not accurate when L3 speculative miss prefetching is enabled (D18F2x1B0[13] = 0b, Extended Memory Controller Configuration Low[SpecPrefDis]).

Potential Effect on System
Performance monitoring software cannot accurately measure latency events. The reported latency may greatly exceed the actual latency in some instances.

Suggested Workaround
No workaround is recommended.
Performance monitoring software may set D18F2x1B0[13] = 1b to collect accurate latency values. This workaround has an impact to overall system performance.

Fix Planned
No fix planned
585 Incorrect Memory Controller Operation Due to a WrDatGrossDly Setting of 3.5 MEMCLKs

Description
The memory controller may incorrectly issue a ZQ command during a 64-byte write operation when WrDatGrossDly is set to a value of 3.5 MEMCLKs (111b).

Potential Effect on System
Undefined system behavior.

Suggested Workaround
If WrDatGrossDly (D18F2x9C_x0000_0[3:0]0[3:1]_dct[1:0]) for all byte lanes (including the ECC byte lane) and all populated DIMMs = 111b, BIOS should set DataTxFifoWrDly (D18F2x210_dct[1:0]_nbp[3:0] bits 18:16) as specified in the BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors, order# 42301, but with a minimum value of 010b.

Fix Planned
No fix planned
586 A Far Control Transfer Changing Processor Operating Mode May Generate a False Machine Check

Description
A far control transfer that changes the processor operating mode may erroneously indicate a decoder instruction buffer parity error (DEIBP) machine check, leading to a system shutdown. The extended error code logged in the IF Machine Check Status register indicates a decode instruction buffer error (MSR0000_0405[20:16] = 10010b).

Potential Effect on System
Machine check exception due to a decoder instruction buffer parity error leading to system shutdown.

Suggested Workaround
BIOS should set MSRC001_0045[18] = 1b (MC1_CTL_MASK[DEIBP]).

Fix Planned
Yes
592 VPEXTRQ and VPINSRQ May Not Signal Invalid-Opcode Exception

Description

Advanced Vector Extensions (AVX) variants of legacy SSE instructions normally promote the size of a GPR operand using VEX.W. When running in 32-bit legacy or compatibility modes, setting VEX.W=1 is nonsensical and VEX.W is ignored. VPEXTRQ and VPINSRQ are an exception to that general rule and are specified to generate a Invalid-Opcode (#UD) exception.

In violation of this, the processor does not signal #UD exception for AVX instructions VPEXTRQ and VPINSRQ when VEX.W=1 and the processor is running in 32-bit legacy or compatibility modes. Instead, the instruction is executed as if VEX.W=0.

Potential Effect on System

None expected. These opcode encodings are not expected to be generated by software.

Suggested Workaround

Software should only generate VPEXTRQ and VPINSRQ instructions with VEX.W=0 when operating in 32-bit modes and not depend on generating a #UD with VEX.W=1.

Fix Planned

Yes
593 Last-Branch Record Enabled May Cause Machine Check and Incorrect LastBranchToIp

Description
When LBR is enabled, a complex interaction between two threads of the same compute-unit may result in the processor core reporting an incorrect value in the LastBranchToIp register (MSR0000_01DC).

Potential Effect on System
In rare circumstances, the value reported in LastBranchToIp may present incorrect debug information.

The processor may also report an uncorrectable machine check exception for a branch status register parity error, simultaneous to the above error. MC1_STATUS[ErrorCodeExt] (MSR0000_0405[20:16]) = 00110b identifies a branch status register parity error.

Suggested Workaround
BIOS should set MSRC001_0045[15] = 1b (MC1_CTL_MASK[BSRP]).

This workaround does not resolve the potential for an incorrect address to be provided in LastBranchToIp. This latter effect has negligible impact on debugging due to the low probability of the error occurring when this data is being collected. No workaround is required for this aspect.

Fix Planned
Yes
600 HyperTransport™ Link Retry Due to Partial CRC Error May Cause System Hang

Description
The northbridge may stall when a probe hit returning data occurs simultaneously with a link retry due to a partial CRC error detected on an unrelated read packet. This error can only occur on a coherent HyperTransport™ link.

Potential Effect on System
System hang.

Suggested Workaround
BIOS should not alter D18F0x150[11:9] (Link Global Retry Control Register[HtRetryCrcDatIns]) from its reset value of 000b.

Fix Planned
Yes
602 HyperTransport™ Link Frequency Changes May Cause a System Hang

Description
A HyperTransport™ link operating at a Gen3 frequency (greater than 2.0 GT/s) may have excessive link retries or may fail to train after transitioning to a new Gen3 frequency. The failure is due to a misconfiguration of the HyperTransport Link Phy Receiver DLL Control and Test 5 Register [DllProcessFreqCtlOverride, DllProcessFreqCtlIndex2] settings (D18F4x1[9C,94,8C,84]_x[5:4][9:0][8,0]F_dm[1] bits 12 and 3:0). These settings are specific to each Gen3 frequency and may be programmed only while the link is operating at a Gen1 frequency (less than or equal to 2.0 GT/s).

Potential Effect on System
System hang.

Suggested Workaround
Software that transitions a HyperTransport link between two different Gen3 frequencies must first transition the link to a Gen1 frequency so that the DllProcessFreqCtlOverride and DllProcessFreqCtlIndex2 settings may be programmed according to the algorithm documented in the BIOS and Kernel Developer's Guide (BKG) for AMD Family 15h Models 00h-0Fh Processors, order# 42301.

Fix Planned
No fix planned
608 P-state Limit Changes May Not Generate Interrupts

Description
P-state limit changes fail to generate interrupts when the target P-state limit is a higher or equal performance P-state (lower or equal numbered P-state) than the Application Power Management (APM) P-state limit.

Potential Effect on System
Operating systems monitoring processor P-state capabilities may not be notified of all P-state limit changes, resulting in either one of the following conditions:

- The processor runs continuously in a lower performance (higher numbered) P-state than is actually available.
- The operating system may request a higher performance (lower numbered) P-state than is actually available.

Suggested Workaround
BIOS should set MSRC001_1000[16] = 1b.

Fix Planned
No fix planned
619 Non-Posted Reads May Block Write Dependent on Probe Responses

Description
The northbridge may stall indefinitely on non-posted reads when a posted write becomes dependent on probe responses.

Potential Effect on System
System hang.

Suggested Workaround
BIOS should set D18F5x88[14] = 1b.

Fix Planned
Yes
623 Small Code Segment Limits May Cause Incorrect Limit Faults

Description
In cases where the code segment limit is less than 0_0020h and the Granularity (G) bit is zero, the processor reports an incorrect #GP exception even when no limit violation exists.

Potential Effect on System
None expected. In the unlikely case that a code segment is 32 bytes or smaller, an unexpected #GP exception may occur.

Suggested Workaround
None required. It is anticipated that code segment sizes are greater than 32 bytes.

Fix Planned
Yes
624 SB-RMI Processor State Accesses May Persistently Timeout if Interrupted by a Warm Reset

Description
The assertion of a warm reset during a small timing window of an APML SB-RMI processor state access may cause the internal processor state access interface to hang. A protocol status code of 11h or 12h (Command Timeout) is returned, however, the internal interface remains hung and all future SB-RMI processor state accesses receive command timeouts until a cold reset is performed.

If SB-RMI timeouts are disabled (Control Register[TimeoutDis], SBRMI_x01[2]), the SB-RMI processor state accesses will not receive a successful completion, instead of a command timeout.

Potential Effect on System
Under rare circumstances, system management software will not be able to access processor state using SB-RMI processor state accesses.

SB-TSI accesses and SB-RMI register accesses are not impacted. Refer to Advanced Platform Management Link (APML) Specification, order# 41918 for details on differentiating SB-RMI processor state accesses from SB-RMI register accesses.

Suggested Workaround
None required.

Fix Planned
Yes
625 SB-RMI Writes May Not Be Observed by Processor

Description
After a write using the APML SB-RMI interface to either the Inbound Message Registers (SBRMI_x3[F:8]) or Software Interrupt Register (SBRMI_x40), the processor may observe the previous contents (as if the write did not occur) when reading these same registers using the SBI Address/Data registers (D18F3x1E8 and D18F3x1EC). The conditions under which this erratum may occur requires that message-triggered C1E is enabled (D18F3xD4[13] = 1b, Clock Power/Timing Control (MTC)1eEn), northbridge clock or power gating is enabled for any C-state action (C-state Control[NbClkGate2, NbClkGate1, NbClkGate0, NbPwrGate2, NbPwrGate1, NbPwrGate0], D18F4x118[27, 26, 11, 10], D18F4x11C[11, 10]) The functionality of the SB-RMI interface is not otherwise affected.

Potential Effect on System
Software running on the processor is not able to properly receive messages from system management software using the SB-RMI interface.

Suggested Workaround
None. In the event that system management software needs to communicate with software running on the processor, an alternative mechanism should be used.

Fix Planned
No fix planned
636 Instruction Addresses Near Canonical Address Limit May Cause #GP Exception

Description
The processor may incorrectly generate a #GP exception when an instruction executes within a small window of the linear-memory address at the limit of canonical address space (0000_7FFF_FFFF_FFFh: 0000_7FFF_FFFF_FFF2h) and multiple branch mis-predicts occur to a linear-memory address at the limit of canonical address space.

Potential Effect on System
In the unlikely event that the conditions for this erratum occur, an unexpected #GP exception may result in a program or system crash.

Suggested Workaround
None required.

Fix Planned
Yes
637 Processor Does Not Report the Correct DRAM Address for MCA Errors Within the CC6 Save Area

Description
While reporting an ECC machine check error in the core C6 (CC6) save area, the processor may store an internal address in MC4_ADDR (MSR0000_0412) instead of the physical DRAM address. The stored internal address can be uniquely identified, as it matches 000000FD_F7xxxxxxxxh.

Potential Effect on System
Software may not be able to correctly interpret the machine check addresses for either corrected or uncorrected DRAM errors. As a result, it may fail to report the correct physical location of the error.

Suggested Workaround
When using the address in MC4_ADDR (MSR0000_0412) software should compare MC4_ADDR[47:24] with 00FDF7h. If it matches 00FDF7h, then the following algorithm can be used to correct the value from MC4_ADDR into the physical DRAM address that is in error.

1. Software first determines which node (identified by its node ID) reported the machine check. This is usually known to software that reads MC4_ADDR, (i.e. NodeReportingMca = CPUID Fn8000_001e_CX[N1e_Dx]Dx, bits 6:0)), but in some cases software may not know the node that reported the machine check. In this case, the node that reported the MCA can be determined as follows:
 a. SourceNode = MC4_ADDR[22:20]. In this step, software determines the node that generated the CC6 save request. This is not necessarily the node that reported the machine check.
 b. NodeReportingMca = D(18h+SourceNode)F1x128[14:12], where "18h+SourceNode" is the device number of the node that generated the CC6 save request. In this step, software accesses the C-state Policy Control 1 Register[CoreStateSaveDestNode] on the node that generated the CC6 save request (SourceNode from the previous step). This is the node that reported the machine check.
2. DramLimitSysAddrReg = D(18h+NodeReportingMca)F1x124, where "18h+NodeReportingMca" is the device number of the node that reported the machine check. In this step, software reads the register containing the DRAM Limit System Address from the node that reported the machine check. The register contents from this step are saved in a temporary variable for use in later steps.
 . In this step, software calculates the CC6 base address using the DramLimitAddr. DramLimitAddr[47:27] is bits 20:0 of the register read in step 2. Bits 26:24 of the CC6 base address is calculated from DramInlvEn.
4. NodeInterleavingEnabled = (DramLimitSysAddrReg[23:21] != 000b). In this step, software determines if node interleaving is enabled. Node interleaving is enabled if the register read in step 2 has a non-zero value in bits 23:21 (DramInlvEn).
5. If node interleaving is not enabled (!NodeInterleavingEnabled from step 4):
 a. The physical DRAM address of the machine check error is (Cc6BaseAddress + MC4_ADDR[23:0]) where Cc6BaseAddress is the result from step 3.
6. If node interleaving is enabled (NodeInterleavingEnabled from step 4):
 a. TempMcaAddress = (MC4_ADDR[63:0] & 00000000_00FF0000h) << (log (base 2) of (DramLimitSysAddrReg[23:21] + 1)). In this step, a temporary variable is initialized using the value reported in MC4_ADDR, removing bits 47:24 and bits 11:0, and shifting the remaining bits by either 1 (two nodes), 2 (four nodes) or 3 (eight nodes). The node count is indirectly determined from DramInlvEn (bits 23:21 of the register read in step 2).
 b. DramBaseSysAddrReg = D(18h+NodeReportingMca)F1x120, where "18h+NodeReportingMca" is the device number of the node that reported the machine check. In this step, software reads the register.
containing the DRAM Base System Address from the node that reported the machine check. The register contents from this step are saved in a temporary variable for use in the next step.

c. TempMcaAddress = TempMcaAddress | (DramBaseSysAddrReg[23:21] << 12). In this step, the DramIntlvSel, bits 23:21 of the register read in the previous step, is placed in bits 14:12 of the address.

d. TempMcaAddress = TempMcaAddress | MC4_ADDR[11:0]. In this step, the low order bits of the machine check address are placed into the calculated address.

e. The physical DRAM address of the machine check error is (Cc6BaseAddress + TempMcaAddress) where Cc6BaseAddress is the result from step 3.

The DRAM address that results from this workaround is only appropriate for determining the location of the failing memory. Software cannot access system DRAM using this address.

Fix Planned

No fix planned
657 MC1_STATUS Enable Bit Not Set When Logging Corrected Errors

Description
The processor does not set MC1_STATUS[En] = 1b (MSR0000_0405[60]) when logging an enabled and corrected error in the IF machine check register bank (bank 1).

Software can identify the corrected errors that are affected by this erratum when it observes an MC1_STATUS register with all of the following:

- MC1_STATUS[Valid] (bit 63) = 1b
- MC1_STATUS[Uc] (bit 61) = 0b
- MC1_STATUS[En] (bit 60) = 0b
- MC1_STATUS[Pcc] (bit 57) = 0b
- The corresponding enable bit in MC1_CTL (MSR0000_0404) = 1b

Potential Effect on System
None expected.

Suggested Workaround
None required.

Fix Planned
No fix planned
658 CPUID Incorrectly Reports Large Page Support in L2 Instruction TLB

Description

The CPUID instruction incorrectly reports the number of entries and the associativity of 2 MB, 4 MB and 1 GB TLB entries in the L2 instruction TLB.

The following CPUID fields are incorrectly zero:

- CPUID Fn8000_0006_EAX[L2ITlb2and4MSize]
- CPUID Fn8000_0006_EAX[L2ITlb2and4MAssoc]
- CPUID Fn8000_0019_EBX[L2ITlb1GSize]
- CPUID Fn8000_0019_EBX[L2ITlb1GAssoc]

Potential Effect on System

None expected.

Suggested Workaround

Software may substitute the following values to determine the number and associativity of large page L2 TLB entries:

- CPUID Fn8000_0006_EAX[L2ITlb2and4MSize] = 1024
- CPUID Fn8000_0006_EAX[L2ITlb2and4MAssoc] = 6
- CPUID Fn8000_0019_EBX[L2ITlb1GSize] = 1024
- CPUID Fn8000_0019_EBX[L2ITlb1GAssoc] = 6

This workaround should only be implemented after checking for affected silicon family and model (CPUID Fn0000_0001_EAX[Extended Family, Family, Extended Model and Model]), and that the processor reports zero for these fields.

Fix Planned

Yes
659 VMCB Interrupt Shadow Status May Be Incorrect

Description
The processor may fail to clear the VMCB INTERRUPT_SHADOW field (VMCB offset 068h bit 0) when intercepting or interrupting an SVM guest that is executing a Move String instruction with a REP prefix under interrupt shadow. This erratum does not occur on the last iteration of the Move String instruction.

Potential Effect on System
The SVM guest may continue to operate under interrupt shadow until the Move String instruction has completed. This may delay servicing of a pending interrupt.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
Yes
660 APERF May Increase Unpredictably

Description
The value of MSR0000_00E8 (APERF) may increase unpredictably after any of the following events:

- A P-state transition, including those performed due to core performance boost (CPB).
- A C-state transition.
- A change in the P-state limit due to hardware thermal control (HTC), application power management (APM) or advanced platform management link (APML) TDP limiting.
- Execution of the MWAIT instruction.

Potential Effect on System
Software may calculate the effective frequency of a core incorrectly or observe that the APERF register value appears to increase unpredictably.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
Yes
661 P-State Limit and Stop Clock Assertion May Cause System Hang

Description
A P-state limit change that occurs within a small timing window of a Stop Clock assertion may result in DRAM not entering self-refresh mode for an S3 sleep state transition, or a system hang if it occurs while another processor core is transitioning to the Core C6 (CC6) state.

Potential Effect on System
System hang.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
663 Local Interrupts LINT0/LINT1 May Occur While APIC is Software Disabled

Description

The processor unmasks local interrupts (LINT0 and LINT1) while the APIC is software disabled (Spurious-Interrupt Vector Register[APICSWEn], APICF0[8] = 0b). The LINT[1:0] LVT entry mask bits (APIC3[60:50] bit 16) are cleared and cannot be set.

Broadcast ExtInt and NMI interrupt requests can be converted to LINT0 and LINT1 local interrupts respectively by setting Link Transaction Control Register[LintEn] (D18F0x68[16]) = 1b. If this bit is set while the APIC is software disabled, an ExtInt or NMI interrupt causes an unexpected local interrupt.

Potential Effect on System

Software may receive a local interrupt that was not expected, possibly leading to a system crash.

Suggested Workaround

BIOS should set MSRC001_001F[23] = 1b before enabling the APIC (APIC_BAR[ApicEn] (MSR0000_001B[11]) = 1b) or before setting Link Transaction Control[LintEn] (D18F0x68[16]) = 1b.

Fix Planned

No fix planned
667 Processor May Generate Incorrect P-state Limit Interrupts

Description

P-state limit changes due to SB-RMI (SBI P-state Limit[PstateLimit], MSRC001_0072[10:8]), software (Software P-state Limit Register[SwPstateLimit], D18F3x68[30:28]), or hardware thermal control (entering HTC-active state, i.e. PROCHOT# assertion) may generate duplicate interrupts when Hardware Thermal Control Register bits [PslApicLoEn, PslApicHiEn] are not both zero (D18F3x64[7:6] != 00b).

The processor actually uses APM TDP Control[ApmTdpLimitIntEn] = 1b to enable the generation of interrupts for P-state limit changes due to SB-RMI, software, or HTC, as well as to generate interrupts for changes to TDP Limit 3 Register[ApmTdpLimit] (D18F5x8[28:16]).

Potential Effect on System

Operating systems monitoring processor P-state capabilities may receive duplicate notification of P-state limit changes due to SB-RMI, software, or HTC.

Suggested Workaround

BIOS should leave Hardware Thermal Control[PslApicLoEn, PslApicHiEn] at their default reset value (D18F3x64[7:6] = 00b) and should set APM TDP Control[ApmTdpLimitIntEn] (D18F4x16C[4]) = 1b. This workaround requires software to receive both P-state limit change interrupts and ApmTdpLimit change interrupts.

Fix Planned

No fix planned
668 Load Operation May Receive Incorrect Data After Floating-point Exception

Description
The processor may incorrectly load data from a prior store-to-load forwarding operation after an unmasked x87 floating-point exception (#MF) if the exception occurs while CR0 Numeric Error = 0b (CR0.NE, bit 5) and a prior exception is indicated (x87 Status Word Register Exception Status, FSW.ES bit 7, is already 1b).

Potential Effect on System
None expected. Operating systems typically set CR0.NE = 1b or floating-point exception handlers normally clear the exception status (FSW.ES). If these conditions are not met, a load operation may receive data that was not updated by the most current write from a processor core. AMD has not observed this erratum with any commercially available software.

Suggested Workaround
None.

Fix Planned
Yes
671 Debug Breakpoint on Misaligned Store May Cause System Hang

Description
A misaligned store that crosses cache lines and requires an address translation due to a TLB miss may cause a system hang if the trailing cache line has an address breakpoint enabled using DR7.

Potential Effect on System
System hang.

Suggested Workaround
Contact your AMD representative for information on a BIOS update. This workaround has a performance impact when certain debug breakpoints are enabled. System developers that wish to enable debug breakpoints without this workaround may first set MSRC001_1000[17] = 1b. AMD recommends this workaround be enabled with AMD Opteron™ processors. For all other processors, BIOS should disable the workaround by setting MSRC001_1000[17] = 1b.

Fix Planned
Yes
672 SVM Guest Performance Counters May Be Inaccurate Due to SMI

Description

Performance Event Counters[5:0] (MSRC001_020[B,9,7,5,3,1]) incorrectly count events in System-Management Mode (SMM) after a Secure Virtual Machine (SVM) guest receives a System-Management Interrupt (SMI) that is not intercepted by the host. This occurs when guest event counting is enabled by setting Performance Event Select[5:0][HostGuestOnly] = 01b (MSRC001_020[A,8,6,4,2,0][41:40]) and EFER[SVME] = 1b (MSRC000_0080[12]).

Potential Effect on System

Performance monitoring software overcounts events for an SVM guest when non-intercepted SMIs occur.

Suggested Workaround

Contact your AMD representative for information on a BIOS update. When the workaround is enabled, the processor swaps the HostGuestOnly bits (i.e. bits 41 and 40 of MSRC001_020[A,8,6,4,2,0] are exchanged) before entering SMM from SVM guest mode and again on the corresponding RSM.

Fix Planned

Yes
673 Misaligned Page Crossing String Operations May Cause System Hang

Description
A misaligned Move String or Store String instruction with a REP prefix that crosses a page boundary may cause a system hang. This may occur when the TLB entry for the leading page is evicted while the string operation is executing, or the trailing page of the string operation crosses into a large page (1 GB or 2 MB) which requires an address translation due to a TLB miss.

Potential Effect on System
Unpredictable system behavior, likely leading to a system hang.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
Yes
674 Processor May Cache Prefetched Data from Remapped Memory Region

Description
Prefetches from a write back (WB) DRAM memory region may persist when that memory region is remapped to an uncacheable (UC) or write combining (WC) memory type.

Potential Effect on System
Data could be cached in a modified state from the remapped memory region, which will not be probed, however this can only occur if a prefetch operation persists through the invalidation or flushing of TLB entries and cache lines before the remapped memory region is accessible in a coherent manner. There have been no observations of this erratum on silicon.

Suggested Workaround
None recommended. Optionally, system software may set MSRC001_1022[13] = 1b (DC_CFG[DisHwPf]) during system boot if frequent run-time remapping of memory types as described is expected.

Fix Planned
Yes
675 Instructions Performing Read-Modify-Write May Alter Architectural State Before #PF

Description
An instruction performing a read-modify-write operation may be presented with a page fault (#PF) after modifying architectural state.

Potential Effect on System
The processor may present a #PF exception after some of the instruction effects have been applied to the processor state. No system effect is observed unless the operating system's page fault handler has some dependency on this interim processor state, which is not the case in any known operating system software. The interim state does not impact program behavior if the operating system resolves the #PF and resumes the instruction. However, this interim state may be observed by a debugger or if the operating system changes the #PF to a program error (for example, a segmentation fault).

Suggested Workaround
None recommended.

Fix Planned
Yes
685 Some Processor Cores May Have Inaccurate Instruction Cache Fetch Performance Counter

Description
The processor may over-report PMCx080 (instruction cache fetches) when the performance monitor is enabled on an odd processor core number (APIC20[ApicId] is odd - i.e. bit 24 is 1b), as compared to when the performance counter is used on an even processor core number.

Potential Effect on System
Performance monitoring software may not have an accurate count of instruction cache fetch operations. The performance counter may overcount.

Suggested Workaround
None.

Fix Planned
No fix planned
689 AM3r2 Six Core Processor May Limit P-State When Core C6 State Is Disabled

Description
If system software disables core C6 state (CC6) on an AMD FX™ 6100 Six-Core Processor, OPN FD6100WMW6KGU, the application power management (APM) incorrectly limits the processor P-state to a low performing P-state. Refer to the BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors, order# 42301 section "Core C6 (CC6) State" for the conditions under which CC6 state is disabled.

Potential Effect on System
None expected under normal circumstances, as AMD recommends that CC6 is enabled in all systems. In the event that the system software implements an option to disable CC6, the system may experience low performance in this mode.

Suggested Workaround
AMD recommends that CC6 is enabled. This erratum does not apply in this case and no workaround is necessary.

In the event that system software disables CC6, disable APM using Core Performance Boost Control Register[ApmMasterEn] (D18F4x15C[7]) = 0b.

To avoid unnecessarily disabling APM on unaffected parts, the following conditions should be met before implementing this workaround:

- CC6 is disabled.
- CPUID Fn8000_0001_EBX[31:28] (BrandID Identifier[PkgType]) = 0001b (AM3r2 package type).
- CPUID Fn8000_0008_ECX[NC] (APIC ID Size and Core Count[Number of Physical Cores]) = 5.
- D18F4x150[7:0] = 6Bh.
- D18F4x10C[11:0] (TDP Limit 2 Register[NodeTdpLimit]) = 130h.

Fix Planned
Yes
690 Northbridge FIFO Read/Write Pointer Overlap May Cause Hang or Protocol Error Machine Check

Description
A command or data transfer may be lost when the write pointer overlaps the read pointer of a synchronization FIFO between the processor core and the northbridge.

Potential Effect on System
Unpredictable system behavior, likely leading to a hang of both cores of a compute-unit. The processor may also report a probe filter protocol machine check exception identified by the extended error code in the NB Machine Check Status Register (MC4_STATUS[ErrorCodeExt], MSR0000_0411[20:16] = 01011b).

Suggested Workaround
BIOS should set D18F3xDC[14:12] = 101b (Clock Power/Timing Control 2 [NbsynPtrAdj]). A warm reset is required before this setting takes effect.

Fix Planned
No fix planned
691 Processors Using 1 MB L3 Subcaches May Execute a Write-Back Invalidate Operation Incorrectly

Description

The processor may fail to flush the full address range of L3 cache when executing a WBINVD instruction, or INVD instruction with Hardware Configuration Register[INVDWBINVD] = 1b (MSRC001_0015[4]). This occurs when the L3 cache is less than 8 MB per northbridge and is configured using at least one 1 MB L3 subcache, as indicated by the L3SubcacheSize fields (L3 Cache Parameter Register[L3SubcacheSize[3:0]], D18F3x1C4[[15:12],[11:8],[7:4],[3:0]] = Dh or Eh).

Potential Effect on System

Unpredictable system behavior. This has only been observed by AMD as a system hang while using cache as general storage during boot.

Suggested Workaround

Contact your AMD representative for information on a BIOS update.

Fix Planned

No fix planned
693 Performance Counter May Incorrectly Count MXCSR Loads

Description

The processor may incorrectly increment the following performance counter due to XRSTOR, FXRSTOR, LDMXCSR or VLDMXCSR instructions loading the MXCSR register:

- PMCx003 (Retired Floating Point Ops)

Potential Effect on System

Performance monitoring software will not have an accurate count of the number of retired floating point operations reported by the above performance counter.

Suggested Workaround

None.

Fix Planned

No fix planned
694 IBS Sampling of Instruction Fetches May Be Uneven

Description
Instructions selected for instruction-based sampling (IBS) of fetch performance (Fetch Control[IbsFetchEn], MSRC001_1030[48] = 1b) may be sampled unevenly when the instruction fetch stream is redirected (e.g., due to a branch taken).

Potential Effect on System
Performance monitoring software may not receive even, unbiased IBS sampling of the instruction fetch stream. However, IBS can still be used effectively for identifying performance issues associated with specific instructions. The sampling bias makes IBS less effective for measuring the statistical distribution of operations and events.

Suggested Workaround
None.

Fix Planned
No fix planned
695 Processor May Interpret FCW Incorrectly after FNSAVE/FSAVE Limit Fault

Description

The processor operates as if the floating-point control word (FCW) has been initialized after executing an FNSAVE or FSAVE instruction which generates a stack limit fault (SS). This occurs when the instruction attempts to store the state of the floating-point unit to a memory location that crosses a 16-bit (0xFFFF) or 32-bit (0xFFFF FFFF) address boundary in real or protected mode respectively, and persists until software reinitializes the FCW. The FXSAVE instruction is not affected by this erratum.

Potential Effect on System

None expected during normal operation. A stack limit fault while executing an FNSAVE or FSAVE instruction is unusual and AMD has not observed the above conditions in any commercially available software. In the unlikely event that software creates the conditions described above one of the following may occur:

- The processor may write an indefinite value, as if masked, when signaling an invalid-operation exception (IE) after an FLD instruction executes with invalid operands while invalid operations are unmasked (FCW.IM, bit 0 = 0b).

- The processor may set the FERR signal incorrectly after an FLDCW instruction updates the floating-point control word mask bits (FCW[5:0]). A subsequent floating point operation may then result in an incorrect or missing x87 floating-point exception (#MF).

Suggested Workaround

None required.

Fix Planned

No fix planned
699 Processor May Generate Illegal Access in VMLOAD or VMSAVE Instruction

Description

The processor may generate a speculative access during execution of a VMLOAD or VMSAVE instruction. The memory type used for this access is defaulted to WB DRAM memory type, however the address used may not be a valid DRAM address or it may be an address that is not specified as cacheable in the memory type (i.e., the actual memory type is UC or WC).

Potential Effect on System

When the address is not a valid DRAM address, the processor may recognize a northbridge machine check exception for a link protocol error. This machine check exception causes a sync flood and system reset under AMD recommended BIOS settings. The machine check has the following signature:

- The MC4_STAT register (MSR0000_0411) is equal to BA000020_000B0C0F. Bit 62 (error overflow) or bit 59 (miscellaneous valid) of MC4_STAT may or may not be set.
- Bits 5:1 of the MC4_ADDR register (MSR0000_0412) is equal to 01001b, indicating that a coherent-only packet was issued to a non-coherent link.

When the address is actually a non-cacheable memory type, the processor may incorrectly cache the data, resulting in unpredictable system behavior.

AMD has only observed a northbridge link protocol error machine check. The incorrect caching of an uncachable memory region has not been observed by AMD.

Suggested Workaround

Contact your AMD representative for information on a BIOS update.

Fix Planned

No fix planned
704 Processor May Report Incorrect Instruction Pointer

Description
Under a highly specific and detailed set of internal timing conditions, the processor may store an incorrect instruction pointer (rIP) while processing an interrupt or a debug trap exception (#DB).

Potential Effect on System
Unpredictable system behavior.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
707 Performance Counter for Locked Operations May Count Cycles from Non-Locked Operations

Description
PMCx024[2] may include cycles spent performing non-locked operations.

Potential Effect on System
Performance monitoring software may receive an incorrect (larger) count of the number of cycles spent in the non-speculative phase of locked operations.

Suggested Workaround
None.

Fix Planned
No fix planned
708 Initial Value of Time Stamp Counter May Include an Offset Error

Description

During the interval of time between the northbridge observing the RESET# deassertion and the processor cores initializing internal copies of the time stamp counter (TSC), the TSC appears to increment at a rate that is twice the actual processor core software P0 frequency. This introduces an initial offset error in the reset value for each processor core. The actual value of the offset error is unpredictable.

On the first case of any P-state change (either due to a P-state limit change or a software initiated P-state change), any halt instruction or C-state activity, the above initial offset error is removed. It is possible that the BIOS could observe the TSC to change to a smaller value (i.e., the TSC may appear to decrement once) if the latency of this operation is less than the above introduced error. If the software was to perform a write to the TSC before this event, the offset error is also removed.

Potential Effect on System

None expected under normal circumstances.

Suggested Workaround

Contact your AMD representative for information on a BIOS update.

Fix Planned

No fix planned
709 Processor May Be Limited to Minimum P-state After a P-state Limit Change

Description
Following a change to the P-state limit or a core C6 (CC6) exit, the processor may incorrectly restrict the processor to the lowest-performing P-state (Clock Power/Timing Control 2 Register[HwPstateMaxVal], D18F3xDC[10:8]). This restriction may not match any of the actual P-state limits and does not get removed until a processor reset occurs.

P-state limit changes that may cause this erratum may be due to SB-RMI (SBI P-state Limit[PstateLimit], MSRC001_0072[10:8]), software (Software P-state Limit Register[SwPstateLimit], D18F3x68[30:28]), or hardware thermal control (entering HTC-active state, i.e. PROCHOT# assertion).

Potential Effect on System
Processor performance is limited to the lowest-performing P-state.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
714 Processor May Check DRAM Address Maps While Using L2 Cache as General Storage during Boot

Description
BIOS accesses, while running with L2 cache as general storage, may hit in the L2 cache while they are concurrently checked against the DRAM Base and Limit Registers in the northbridge. In the event that this check is performed while the DRAM address maps are not yet completed by BIOS, the northbridge may flag a protocol error if it cannot find a DRAM address map associated with the BIOS access. AMD has only observed this issue when node-interleaving is enabled (DRAM Base/Limit Register[IntlvEn] (D18F1x[17C:140,7C:40] [10:8] != 000b).

Potential Effect on System
The processor may recognize a northbridge machine check exception for a link protocol error. The machine check exception may cause a sync flood and/or a system reset. This may be observed as a system hang.

The machine check has the following signature:

- The MC4_STAT register (MSR0000_0411) is equal to BA000020_000B0C0F. Bit 62 (error overflow) or bit 59 (miscellaneous valid) of MC4_STAT may or may not be set.
- Bits 5:1 of the MC4_ADDR register (MSR0000_0412) is equal to 01001b, indicating that a coherent-only packet was issued to a non-coherent link.

The conditions under which this erratum may be observed as a system failure are sensitive to the core and northbridge frequencies. AMD has only observed this erratum with one G34 processor configuration where the software P-state 0 core frequency is less than the northbridge frequency.

Suggested Workaround
BIOS should set MSRC001_102A[8] to 1b prior to using L2 cache as general storage during boot, and then should restore MSRC001_102A[8] to it's original value after completing L2 cache as general storage.

Fix Planned
No fix planned
717 Instruction-Based Sampling May Be Inaccurate

Description
The processor may experience sampling inaccuracies when Instruction-Based Sampling (IBS) is enabled in the following cases:

- When IBS Op Data 3 Register[IBsDcMiss] (MSRC001_1037[7]) is 0b, IBS Op Data 3 Register[IBsDcMabHit] (MSRC001_1037[16]) should always be 0b. However, the processor may incorrectly set IbsDcMabHit.
- When the processor samples an instruction that is altering the CS_BASE value, the IbsOpRip reported in IBS Op Logical Address (MSRC001_1034) may be determined using an incorrect CS_BASE.
- In rare instances, a tagged branch may set an inaccurate value in IBS Branch Target Address Register (MSRC001_103B).

Potential Effect on System
Inaccuracies in performance monitoring software may be experienced.

Suggested Workaround
The following workarounds can be used for the above issues:

- Performance monitoring software should treat IBS Op Data 3 Register[IBsDcMabHit] (MSRC001_1037[16]) as 0b when MSRC001_1037[7] is 0b.
- No workaround is necessary for IbsOpRip when CS_BASE is zero. CS_BASE is normally zero in commercially available software.
- Performance monitoring software should not rely on the value in MSRC001_103B (IbsBrTarget).

Fix Planned
Yes
718 Instruction-Based Sampling May Be Inaccurate

Description
The processor may experience sampling inaccuracies when Instruction-Based Sampling (IBS) is enabled in the following cases:

- The processor may set IBS Op Data 3 Register [IbsDcStToLdCan, IbsDcStToLdFwd] (MSR C001_1037[12, 11]) incorrectly for load instructions that are tagged for IBS if there was a recently executed store instruction whose store address matches the load address in bits 11:0.
- When performing an IBS execution sample, the processor only sets, but never clears, the following bits:
 - IbsDcL2TlbMiss (MSR C001_1037[3])
 - IbsDcL2TlbHit2M (MSR C001_1037[6])
 - IbsDcL2TlbHit1G (MSR C001_1037[19])
- The processor incorrectly updates IBS Op Data 2 Register [NbIbsReqCacheHitSt, NbIbsReqDstProc, NbIbsReqSrc] (MSR C001_1036[5,4,2:0]) during an IBS fetch sample. If both IBS execution sampling (IBS Execution Control[IbsOpEn], MSR C001_1033[17] = 1b) and IBS fetch sampling (IBS Fetch Control[IbsFetchEn], MSR C001_1030[48] = 1b) are enabled simultaneously, valid execution sample data may be overwritten by a fetch sample resulting in IBS data that is inconsistent with the accompanying IBS execution sample data.
- The processor may infrequently report an incorrect instruction pointer in the IBS Fetch Linear Address (MSR C001_1031).

Potential Effect on System
Inaccuracies in performance monitoring software may be experienced.

Suggested Workaround
The following workarounds can be used for the above issues:

- No workaround exists for IbsDcStToLdCan and IbsDcStToLdFwd. These bits would not significantly over-indicate a store to load forwarding with most code.
- Performance monitoring software should clear the IBS Op Data 3 Register (MSR C001_1037[63:0] = 0) between each IBS sample.
- Performance monitoring software should not rely on MSR C001_1036 if both IBS execution sampling and IBS fetch sampling are enabled simultaneously.
- Performance monitoring software should not rely on MSR C001_1031.

Fix Planned
No fix planned
719 Instruction-Based Sampling Fetch Counter Always Starts at Maximum Value

Description

When setting IBS Fetch Control Register[IbsFetchEn] = 1b to enable IBS fetch sampling, the periodic fetch counter always starts at the maximum value programmed into IBS Fetch Control Register[IbsFetchMaxCnt] (MSRC001_1030[15:0]) instead of starting at the value written into IBS Fetch Control Register[IbsFetchCnt] (MSRC001_1030[19:4]).

Potential Effect on System

System software that is managing multiple processes or virtual machines with different IBS configurations may create unintended delays before the next IBS sample by writing to MSRC001_1030.

In the event that system software consistently writes to MSRC001_1030, it is possible that the IBS fetch counter never expires and no instruction fetches are tagged. AMD has not observed this effect with production software.

Suggested Workaround

None.

Fix Planned

No fix planned
720 Processor May Not Respect Interrupt Shadow

Description
Under a highly specific and detailed set of internal timing conditions, a #DB exception may be presented during execution of an instruction that is in an interrupt shadow. In order for this erratum to occur, the other processor core in the compute-unit must be performing microcoded functions that are uncommon in usage.

Potential Effect on System
Under rare circumstances, a debug exception may occur in an interrupt shadow. Under common software use, this exception does not have a system effect. In the event that system software uses "STI, RET" instead of a single IRET instruction, or changes the stack segment simultaneously with the stack pointer (i.e. not using a flat segment for the stack), unpredictable system failure may result. AMD has not observed this erratum with any commercially available software.

Suggested Workaround
None.

Fix Planned
No fix planned
724 Unintercepted Halt Instruction May Cause Protocol Machine Check or Unpredictable System Behavior

Description
An unintercepted halt instruction executed in guest mode may result in a processor core being in a cache-flush-on-halt state while having VMCB data in the cache.

Potential Effect on System
Northbridge machine check exception (#MC) for a link protocol error. This machine check exception causes a sync flood and system reset under AMD recommended BIOS settings. The machine check has the following signature:

- The MC4_STAT register (MSR0000_0411) is equal to BA000020_000B0C0F. Bit 62 (error overflow) or bit 59 (miscellaneous valid) of MC4_STAT may or may not be set.
- Bits 5:1 of the MC4_ADDR register (MSR0000_0412) is equal to one of 10011b, 10100b, 11000b or 11001.

In addition, it is possible for unpredictable system operation to occur without a machine check exception. For example, a processor core may not observe a write that is performed by another processor core. AMD has not observed this effect in any commercially available software.

Suggested Workaround
Hypervisors should intercept HLT instructions by setting VMCB.Intercept_HLT (offset 00Ch bit 24) to 1b.

Fix Planned
No fix planned
725 Incorrect APIC Remote Read Behavior

Description
The processor may provide incorrect APIC register data on an APIC remote register read. A remote read is performed using Interrupt Command Register Low[MsgType] of 011b (APIC300[10:8]). The processor may, but does not always, provide an error indication in the remote read status field (APIC300[17:16]).

This erratum does not impact the use of remote APIC reads by BIOS during early power-on-self-test (POST) when the remote read is performed for addresses APIC300-APIC3F0.

Potential Effect on System
None expected, as it is anticipated that no software other than BIOS uses remote APIC reads.

Suggested Workaround
Software should not use remote APIC reads.

Fix Planned
No fix planned
726 Processor May Report Incorrect MCA Address for Loads that Cross Address Boundaries

Description
In the event that a line fill error or system read data error is reported for some, but not all, bytes of an unaligned load instruction that crosses a cache line boundary (64 bytes), the processor may intermittently report the address of the unaffected cache line in MC0_ADDR (MSR0000_0402).

Potential Effect on System
None expected.

Suggested Workaround
None.

Fix Planned
No fix planned
727 Processor Core May Hang During CC6 Resume

Description
During a resume from core C6 (CC6) state, the processor may hang.

Potential Effect on System
Processor core hang, usually resulting in a system hang.

Suggested Workaround
BIOS should set MSRC001_1000[15] = 1b.

Fix Planned
No fix planned
734 Processor May Incorrectly Store VMCB Data

Description
Under a highly specific and detailed set of internal timing conditions during a #VMEXIT for a virtual machine guest that has multiple virtual CPUs, the processor may store incorrect data to the virtual machine control block (VMCB) reserved and guest save areas and may also store outside of the VMCB.

Potential Effect on System
Data corruption.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
737 Processor Does Not Check 128-bit Canonical Address Boundary Case on Logical Address

Description
The processor core may not detect a #GP exception if the processor is in 64-bit mode and the logical address of a 128-bit operation (for example, a octal-word SSE instruction) is canonical on the first byte, but whose final byte crosses over the canonical address boundary. The processor does check the linear address and signals a #GP exception if the linear address is not canonical (for all eight bytes of the operation). Therefore, this erratum can only occur if the segment register is non-zero and causes a wrap in the logical address space only.

In the unlikely event that software causes this wrap, the processor core will execute the 128-bit operation as if the second part of the misaligned access starts at linear address equal to zero.

Potential Effect on System
None expected, as the normal usage of segment registers and segment limits does not expose this erratum.

Suggested Workaround
None required.

Fix Planned
No fix planned
739 Processor May Read Branch Status Register With Inconsistent Parity Bit

Description
Under a highly specific and detailed set of internal timing conditions, the processor may read an internal branch status register (BSR) while the register is being updated and may observe a partially written entry with an inconsistent parity bit. When the conditions for this erratum occur, the processor does not actually use the contents of this branch status register, however it may report a parity error machine check exception (#MC).

Potential Effect on System
The processor reports an uncorrectable machine check exception for a branch status register parity error. MC1_STATUS[ErrorCode] (MSR0000_0405[20:16]) = 00110b identifies a branch status register parity error.

Suggested Workaround
BIOS should set MSRC001_0045[15] = 1b (MC1_CTL_MASK[BSRP]).

Fix Planned
No fix planned
740 Lightweight Profiling May Cause System Hang with Concurrent Stop Clock

Description
The processor may hang if it performs an internal stop-clock event to handle an I/O C-state request or P-state change at approximately the same time that a lightweight profiling (LWP) monitored event overflows its event counter, signalling the need for an LWP event record to be stored. Only LWP record type 2 (instructions retired) or LWP record type 3 (branches retired) events can cause this hang to occur. LWP is enabled once software executes an LLWCP or XRSTOR instruction with a valid LWP control block (LWPCB) address.

Potential Effect on System
System hang.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
742 DRAM Scrub Request During Register Write May Cause Unpredictable Behavior

Description

The default BIOS sequence for enabling DRAM scrubbing and performing configuration accesses to enable DRAM phy power savings results in the possibility that a DRAM scrub event is occurring simultaneously to a BIOS write to a register accessed through the DRAM Controller Additional Data Index/Data port of D18F2x98_dct[1:0] and D18F2x9C_dct[1:0]. In the event that these operations occur at the same time, the processor DRAM controller may enter an invalid state.

DRAM scrubbing is enabled when the value in Scrub Rate Control Register[DramScrub] (D18F3x58[4:0]) is not equal to 00000b or when the DRAM Scrub Address Low Register[ScrubReDirEn] (D18F3x5C[0]) is equal to 1b. BIOS does not enable DRAM scrubbing unless the DIMMs support ECC.

Potential Effect on System

All future reads of the memory attached to the affected DRAM controller return unpredictable data. The processor may report, but not necessarily in all circumstances, an uncorrectable DRAM ECC machine check error. The system may hang or reset during the BIOS boot process, or the inconsistent memory data may cause a system crash.

This failure is highly intermittent over multiple boot cycles.

Suggested Workaround

BIOS should complete all writes to any register in the range of D18F2x9C_x0000_0000_0000_dct[1:0] through D18F2x9C_x0D0F_FFFF_dct[1:0] prior to enabling DRAM scrubbing. Specifically, the writes that are recommended by the *BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors*, order# 42301 section “DRAM Phy Power Savings” should be performed earlier in the DCT initialization sequence so that they do not occur while scrubbing is enabled, provided that they are performed after completing DRAM data training.

Fix Planned

No fix planned
744 Processor CC6 May Not Restore Trap Registers

Description
Following a core C6 (CC6) power state transition, the processor core may not restore the following registers:

- MSRC001_0053, IO Trap Register 3
- MSRC001_0052, IO Trap Register 2
- MSRC001_0051, IO Trap Register 1
- MSRC001_0050, IO Trap Register 0

Instead, the registers are set to zero when the processor resumes from CC6 state.

This erratum only applies on processor models that have a single core per compute-unit (Compute Unit Status Register[DualCore], D18F5x80[16] is 0b).

Potential Effect on System
The processor may not observe debug traps after the processor has entered and exited CC6 mode.

Suggested Workaround
BIOS should not use these trap registers.

Fix Planned
No fix planned
745 Processor May Incorrectly Report Cache Sharing Property in CPUID Topology

Description

On processor models that have a single core per compute-unit (Compute Unit Status Register[DualCore], D18F5x80[16] is 0b), CPUID Fn8000_001D_EAX_x1[NumSharingCache, bits 25:15] and CPUID Fn8000_001D_EAX_x2[NumSharingCache, bits 25:15] incorrectly report that the instruction cache and the L2 cache as being shared between two processor cores. On the above-mentioned processor models, the instruction cache and the L2 cache are not shared and software would not find two processor cores that reported the same Compute Unit ID (CPUID Fn8000_001E_EBX[ComputeUnitID, bits 7:0]).

Potential Effect on System

Software may incorrectly observe the topology of the instruction cache and the L2 cache.

Suggested Workaround

None required.

Fix Planned

Yes
759 One Core May Observe a Time Stamp Counter Skew

Description

During a P-state change or following a C-state change, the processor core may synchronize an internal copy of the time stamp counter (TSC) incorrectly. The processor may then observe TSC values (e.g., RDTSC, RDTSCP and RDMSR 0000_0010h instructions) or MPERF (MSR0000_000E7) values that do not account for the time spent performing this last P-state or C-state change. This error is normally temporary in nature, in that it may be resolved after the next P-state or C-state change.

Potential Effect on System

System software or software with multiple threads may observe that one thread or processor core provides TSC values that are behind all of the other threads or processor cores.

While a single thread operating on a single core can not observe successively stored TSC values that incorrectly decrement, it is possible that a single thread may be dispatched on one core, where the software observes a TSC, and is then dispatched by the operating system on another core that has encountered the conditions of the erratum. In this sequence of events, the thread may observe a TSC that appears to decrement.

In addition, software may calculate a higher effective frequency (APERF, MSR0000_00E8, divided by MPERF).

Suggested Workaround

Contact your AMD representative for information on a BIOS update.

Fix Planned

Yes
775 Processor May Present More Than One #DB Exception on REP-INS or REP-OUTS Instructions

Description
When a REP-INSx or REP-OUTSx instruction is interrupted by a system management interrupt (SMI), the processor does not set RFLAGS.RF to 1b in the SMM save state. After the SMM code executes RSM to return from SMM, any debug exception present on the instruction may get presented again.

Potential Effect on System
Debug software may observe two or more #DB exceptions for a single execution of REP-INS or REP-OUTS instruction.

Suggested Workaround
None.

Fix Planned
No fix planned
778 Processor Core Time Stamp Counters May Experience Drift

Description
Following a long period in a P-state without any core P-state or C-state activity, the time stamp counter for a processor core may appear to drift slightly from other processor cores. This TSC drift does not occur unless the processor has spent over four billion consecutive clocks in a single P-state at C0.

This erratum does not apply if the processor is in the non-boosted software P0 frequency.

Potential Effect on System
System software or software with multiple threads may observe that one thread or processor core provides TSC values that are behind another thread or processor core. This can only happen if the processor core is spending very long intervals in the C0 (running) state and is either pinned to a software P-state lower than P0, or the application power management (APM) behavior of the software running on this core allows the processor to remain in a boosted state without any changes to the P-state.

A single thread operating on a single core can not observe successively stored TSC values that incorrectly decrement.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
786 APIC Timer Periodic Mode is Imprecise

Description

The APIC timer may not properly initialize back to the APIC timer initial count value (APIC380) when it transitions to zero and Timer Local Vector Table Entry[Mode] (APIC320[17]) is configured to run in periodic mode. In this mode, when the APIC timer reaches zero, the next value in the APIC current count register (APIC390) is set to the APIC initial count (APIC380), but the processor may incorrectly add or subtract an offset that is between 0 and 31.

Potential Effect on System

The standard use of the APIC timer and the level of accuracy required does not make this error significant.

Suggested Workaround

None.

Fix Planned

No fix planned
815 Processor May Read Partially Updated Branch Status Register

Description
Under a highly specific and detailed set of internal timing conditions, the processor may read an internal branch status register (BSR) while the register is being updated resulting in an incorrect rIP.

Potential Effect on System
The incorrect rIP causes unpredictable program or system behavior, usually observed as a page fault.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No fix planned
Documentation Support

The following documents provide additional information regarding the operation of the processor:

- **BIOS and Kernel Developer’s Guide (BKDG)** for AMD Family 15h Models 00h-0Fh Processors, order# 42301
- **AMD64 Architecture Programmer’s Manual Volume 1: Application Programming**, order# 24592
- **AMD64 Architecture Programmer’s Manual Volume 2: System Programming**, order# 24593
- **AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions**, order# 24594
- **AMD64 Architecture Programmer’s Manual Volume 4: 128-Bit and 256-Bit Media Instructions**, order# 26568
- **AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 Floating-Point Instructions**, order# 26569
- **AMD I/O Virtualization Technology (IOMMU) Specification**, order# 48882
- **Advanced Platform Management Link (APML) Specification**, order# 41918
- **HyperTransport™ I/O Link Specification** (www.hypertransport.org)

See the AMD Web site at www.amd.com for the latest updates to documents.